WO2009124446A1 - 三维小面元电磁连续阵列数据采集方法 - Google Patents

三维小面元电磁连续阵列数据采集方法 Download PDF

Info

Publication number
WO2009124446A1
WO2009124446A1 PCT/CN2009/000049 CN2009000049W WO2009124446A1 WO 2009124446 A1 WO2009124446 A1 WO 2009124446A1 CN 2009000049 W CN2009000049 W CN 2009000049W WO 2009124446 A1 WO2009124446 A1 WO 2009124446A1
Authority
WO
WIPO (PCT)
Prior art keywords
points
point
small
data
electric field
Prior art date
Application number
PCT/CN2009/000049
Other languages
English (en)
French (fr)
Inventor
何展翔
孙卫斌
王永涛
陶德强
胡祖志
罗卫锋
张月
Original Assignee
中国石油集团东方地球物理勘探有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油集团东方地球物理勘探有限责任公司 filed Critical 中国石油集团东方地球物理勘探有限责任公司
Priority to RU2010145243/28A priority Critical patent/RU2500002C2/ru
Priority to EP09729497.9A priority patent/EP2267487B1/en
Publication of WO2009124446A1 publication Critical patent/WO2009124446A1/zh
Priority to US12/924,268 priority patent/US8330464B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/082Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with fields produced by spontaneous potentials, e.g. electrochemical or produced by telluric currents

Definitions

  • the invention relates to a three-dimensional small-face electromagnetic continuous array data acquisition method for effectively suppressing and eliminating noise by electric field closing method and implementing planar spatial filtering to eliminate static displacement in a time series.
  • One-dimensional working method that is, a quadrature electromagnetic field four-component receiving device (Ex, Ey, Hx, Hy) or a five-component receiving device (Ex, Ey, Hx, Hy, Hz) is arranged at one measuring point, and the time domain electromagnetic field is continuously collected.
  • the power spectrum of each field component is obtained by Fourier transform of the time data indoors, the impedance tensor is estimated by the power spectrum, and the apparent resistivity and the phase difference are finally calculated.
  • Two-dimensional working method that is, two orthogonal electromagnetic field two components (or four-component five-component receiving device) are arranged along the measuring line to continuously record the time domain electromagnetic field, and the electromagnetic field spectrum is also obtained by indoor Fourier transform, and the visual field is calculated. Resistivity and phase difference.
  • This method can achieve better results in the case of relatively simple underground structures, such as one-dimensional and two-dimensional geological conditions.
  • the above methods solve geological problems. There are gaps between the ability and precision and the actual requirements.
  • the noise interference effect is difficult to effectively suppress, affecting the quality of the data;
  • since a magnetic station is arranged on a relatively long arrangement the magnetic station differs greatly from the respective measuring points, and it is unreasonable in a region where the magnetic field changes greatly, and the above methods are difficult to solve.
  • the object of the present invention is to provide a three-dimensional small-face electromagnetic continuous array data acquisition method for effectively suppressing and eliminating noise by electric field closing method, and performing planar spatial filtering to eliminate static displacement in time series, thereby improving data acquisition quality.
  • the specific implementation steps of the present invention are:
  • the small-surface mesh collection method is adopted, and two electric field collection stations (Ex and Ey) are arranged in the small facet center.
  • the small-face mesh collection method uses the electric field to measure the corner points of the cloth.
  • the edge point adopts the T-laying mode in the conventional method
  • the middle point adopts the +-type cloth pole mode in the conventional method
  • the two-quantity orthogonal horizontal magnetic field (Hx, Hy) or three-part orthogonal magnetic field (Hx, Hy, Hz) the direction of Hx, Hy is parallel to the direction of the electric field;
  • Step 1) The small bin mesh acquisition method is such that each small bin is in units of 2x2 or 3x3 or 4x4 or 5x5.
  • Step 1) The 2x2 unit bin is called the minimum small bin.
  • Step 1) The 3x3 unit bin is decomposed into four minimum small bins.
  • Step 1) The 4x4 unit bin is decomposed into nine minimum small bins.
  • Step 1) The small bin corner point and the side point and the midpoint of each two adjacent measuring points are the grounding points of the receiving electrodes (M, N), which are also the common electrodes of the adjacent measuring points, and the center point is not Set the electrode ',
  • Step 1) The adjacent measuring points in the small facet are connected by a common electrode, and the potential difference of the whole small face is closed.
  • the potential difference accumulated at the collecting station at any time should be equal to zero.
  • Step 1) The distance between each measuring point of the smallest small-face unit to the magnetic station is 0.5L and 0. 707L, and L is the minimum small-face side length.
  • each collection station starts to collect the natural electromagnetic field time series data at the same time with the same acquisition parameters, and the sampling rate can be set according to the frequency;
  • Step 2 The sampling rate high frequency band adopts a high sampling rate, the acquisition time is short, the medium frequency band adopts a medium sampling rate, and the low frequency band adopts a low sampling rate to acquire a long time.
  • Step 3 Firstly perform de-interference processing on the recorded data to obtain interference-free observation data; Step 3) The de-interference processing is to perform spatial closure adjustment processing on data at any time, and distribute data error in each closed circle. To each measurement point, the adjustment is first in each Small loop adjustment inside the smallest small area, identify the interference data, and calculate the interference-free observation data by the principle of the closed loop of the potential field.
  • Step 3 The de-interference processing, if there is interference in the entire closed loop at a certain moment, and the closing difference is greater than the specified minimum allowable value, the data at the moment is deleted, and then the adjustment of the outermost loop of the small-face element is performed. Obtained interference-free observation data after adjustment processing.
  • Step 3 The so-called interference-free data means that the closed difference of any loop is less than the specified minimum allowable value.
  • Step 4) The adjacent two points to all points refer to all electric field recording points including two points to both sides of the straight line.
  • Step 4) The corner point calculates two points to all points in the direction of the bin, which means that all the electric field recording points from the two points to the straight line side are included.
  • the conventional method described in step 5) includes calculating a power spectrum and an impedance tensor, wherein the magnetic field shares share the center point magnetic field, and the apparent resistivity and phase curves of each point and other calculation results are obtained.
  • the conventional method described in step 5) includes performing power spectrum analysis and impedance tensor estimation on time series data of different lengths of poles of each measuring point, and obtaining a series of topological apparent resistivity observation curves of the same recording point.
  • the conventional method described in step 5) includes plotting the frequency-apparent resistivity curve of different pole pitches of the same measuring point in a double logarithmic coordinate system, comparing the variation law of the resistivity curve, analyzing whether the static displacement is affected, and the electric field of the maximum pole distance.
  • the obtained apparent resistivity curve has the least influence on the static displacement, such as If all the curves coincide with the apparent resistivity curve of the maximum pole pitch, there is no static displacement. If the curve of the smaller pole pitch deviates from the maximum pole pitch curve, there is a static displacement. The larger the deviation, the greater the influence of the static displacement effect.
  • FIG. 1 is a schematic diagram of a small facet data collection setup of the present invention
  • Figure 3 is a schematic diagram of electric field calculation in the same direction of the midpoint and the center point of the rim;
  • Figure 4 is a schematic diagram of electric field calculation in the same direction of corner points and side points
  • Figure 5 shows a schematic diagram of a 3x3 small area A.
  • Each small face is in units of 2x2 or 3x3 or 4x4 or 5x5;
  • each small minimum facet (2x2) center is equipped with two or three parts of the electromagnetic collection station, 3x3 bins can be decomposed into four minimum small bins, and 4x4 bins can be decomposed into nine minimum small bins.
  • the magnetic field collection station is not arranged on the side of the small face and the corner point (see Figure 1).
  • the cloth pole is specified as follows:
  • the corner point adopts the L-type cloth pole method in the conventional method
  • the edge point adopts the T-type layout mode in the conventional method
  • the intermediate point adopts the +-type cloth pole mode in the conventional method
  • the corner point and the side point and the midpoint of each two adjacent measuring points are the grounding point of the receiving electrode (M, N), which is also the common electrode of the adjacent measuring point, and the center point is not provided with the electrode, therefore, the small surface
  • M, N the receiving electrode
  • the center point is not provided with the electrode, therefore, the small surface
  • the adjacent measuring points in the element are connected by two common electrodes, and the internal potential difference of the whole small surface element can be closed, that is, the potential difference recorded by the collecting station in the small surface element is accumulated at any time and in any closed loop. Equal to zero.
  • Hx, Hy two orthogonal horizontal magnetic fields
  • Hx, Hy three orthogonal magnetic fields
  • Hx, Hy, Hz three orthogonal magnetic fields
  • the distance between the magnetic stations and the small measuring points is not much different, which is 0. 5L and 0. 707L
  • L is the minimum small side length.
  • each collection station is required to start data recording at the same time with the same acquisition parameters.
  • Others like the conventional method, collect natural electromagnetic field time series data, and the sampling rate can be set to three according to the frequency, high frequency band. With high sampling rate, the acquisition time is short, the medium frequency band uses the medium sampling rate, and the low frequency band uses the low sampling rate.
  • 3) Firstly perform interference cancellation processing in the room: spatially close the adjustment processing for the data at any time, and assign the data error in each closed circle to each measurement point. Firstly, adjust the adjustment in each small circuit. Interfere with the data, and use the field closed loop principle to calculate the interference-free data. If the flatness difference is less than a certain allowable value, it is considered that the interference-free data is obtained. If the flatness difference is greater than the allowable value, the entire closed loop is considered to have interference. Then delete the data at that moment, and then adjust the outermost loop of the small facet, and obtain new observation data after the adjustment.
  • Figure 1 is an embodiment of the present invention.
  • 3x3 small-face grid acquisition is adopted in the construction area of the work area: 3D EM continuous array exploration is carried out with 36 electric collection stations and 16 magnetic acquisition stations, and 4 small-face element acquisition grids are arranged, each of which is 3x3.
  • the grid size is 250x250 meters, and the A-face mesh nodes (ie, measuring points) are numbered (see Figure 5): All, A12, A13; A21, A22, A23; A31, A32, A33. B, C.
  • A11, A31, A13, A33 are corner points
  • Ex and Ey electrode distance length is 125 meters, such as corner point All
  • Ex's galvanic pole is XM11-XN11
  • XM11 is at the All point
  • XN11 is at the midpoint of All and A12
  • Ey is very YM11-YN11
  • YM11 is at the All point
  • YN11 is at the midpoint of All and A21, using L-shaped cloth, and the rest is analogous
  • A12, A21, A23, A32 is the edge point, using T-type cloth pole, the length of the electric dipole along the edge is 250 meters, the length of the electric dipole in the panel is 125 meters, such as the edge point A12
  • the couple of Ex is extremely XM21-XN21, XM21 XN11 with the All point is the common electrode
  • M13 of the X 21 and A13 points is the common electrode
  • the rest is analogous
  • A22
  • each collection station starts to collect and record the natural electromagnetic field time series data with the same acquisition parameters.
  • the sampling rate can be set according to the frequency. After the A, B, and CD small facets are laid, three sampling rates are set.
  • the high frequency band uses a high sampling rate, the acquisition time is short, the medium frequency band uses a medium sampling rate, and the low frequency band uses a low sampling rate.
  • Each collection station starts data at the same time. Record, collect natural electromagnetic field time series data.
  • VllX0 Vl lX+DV/8
  • V12X0 V12X+DV/8
  • VllY0 VllY+DV/8
  • V12Y0 V12Y+DV/8
  • V21Y0-V21Y+DV/8, V22Y0 V22Y+DV/8
  • the adjustment processing is performed for each time series, and the adjustment time series data of the first loop is obtained. Similarly, other closed loops in the small bin can be adjusted. If the calculated accumulated value is too large (greater than ⁇ , ⁇ is the allowable value of the closed loop potential difference), indicating that there is strong interference at this point in time, it can be checked that the interference mainly comes from the data of that track, and the other values of the closed loop are used to calculate the Road data, if each data deviates from a large amount, it is necessary to delete the data at that moment.
  • the adjustment of the other closed loops is performed in turn, wherein the adjustment of the common side and the common node is uniformly calculated, for example, the electric field ⁇ of the center point, and the original recorded value plus the sum of all the adjustments of each closed loop. Finally, calculate the closure of the small-faceted outer loop to check the adjustment effect. After the adjustment is completed, we get the time series data of f. Calculate the electromagnetic spectrum power spectrum and impedance tensor of each measuring point, and obtain the apparent resistivity and phase curves of each point, which can be compared with the original curve.
  • the power spectrum method is calculated as described above and a series of topographic apparent resistivity and phase curves at that point are calculated.
  • the small pole pitch curve is significantly higher or lower than the large pole pitch curve, which indicates that it is affected by static displacement.
  • the new time series data is processed by the conventional method. After the time domain adjustment denoising and spatial domain filtering, the noise and static displacement in the new time series data are suppressed, and the new apparent resistivity and phase curve precision are obtained. And improved reliability profiles.
  • the power spectrum and the impedance tensor are calculated according to a conventional method, wherein the magnetic field component of each small measuring point of the smallest small surface shares the central point magnetic field, and the apparent resistivity and phase curve of each point can be obtained. , and other calculation results.
  • the invention suppresses noise and static displacement effects, and the quality of EM data acquisition is significantly improved in areas with severe noise interference and static displacement. It is widely used for electromagnetic data collection in various situations such as land and sea.

Landscapes

  • Remote Sensing (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

三维小面元电磁连续阵列数据采集方法
技术领域
本发明涉及一种通过电场闭合方式有效地压制和消除噪音, 在时间 系列实施平面空间滤波消除静态位移的三维小面元电磁连续阵列数据采 集方法。
背景技术
目前, 在油气、 矿产及地下水资源勘探中, 电磁法已经应用很广。 但已一直沿用单点测深 (一维) 或剖面测深 (二维) 的工作方式。 一维 工作方法, 即在一个测点布设正交电磁场四分量接收装置 (Ex、 Ey、 Hx、 Hy)或五分量接收装置(Ex、 Ey、 Hx、 Hy、 Hz), 连续采集时间域电磁场, 在室内对时间数据进行傅氏变换求出每个场分量的功率谱, 用功率谱进 行阻抗张量估算, 最后计算出视电阻率和相位差。 二维工作方法, 即在 沿测线测点布设多个正交电磁场二分量 (或四分量五分量接收装置) 连 续记录时间域电磁场, 同样在室内经富里叶变换获得电磁场频谱, 并计 算出视电阻率和相位差。
这种方法在地下构造比较简单的情况下, 比如一维和二维地质条件 下的应用, 可以取得较好的效果, 但是, 面对复杂地表和地下构造, 比 如三维情况, 上述方法在解决地质问题的能力和精度等方面与实际要求 存在差距, 一是静态位移影响严重, 难以有效压制和消除, 影响了勘探 效果, 甚至会产生虚假构造, 二是噪声干扰影响难以有效压制, 影响了 资料质量; 另外, 由于在一个比较长的排列上布设一个磁站, 磁站与各 测点远近差别很大, 在磁场变化大的地区是不合理的, 这些问题上述方 法难以解决。
发明内容
本发明目的在于提供一种通过电场闭合方式有效地压制和消除噪 音, 在时间系列实施平面空间滤波消除静态位移, 从而提高资料采集质 量的三维小面元电磁连续阵列数据采集方法。 本发明具体实现步骤是:
1 )在工区施工布极采用小面元网格采集方式, 在小面元中心布设二 份量电场采集站(Ex、 Ey), 小面元网格采集方式电场份量的布极为角点 采用常规方法中的 L型布极方式, 边点采用常规方法中的 T型布设方式, 中间点采用常规方法中的 +型布极方式; 在最小小面元中心点布设二份 量正交水平磁场 (Hx、 Hy)或三份量正交磁场 (Hx、 Hy、 Hz), Hx、 Hy方 向与电场份量的方向平行;
步骤 1 ) 所述的小面元网格采集方式是每个小面元以 2x2或 3x3或 4x4或 5x5为单元。
步骤 1 ) 所述的 2x2单元面元称为最小小面元。
步骤 1 ) 所述的 3x3单元面元分解成四个最小小面元。
步骤 1 ) 所述的 4x4单元面元分解成九个最小小面元。
步骤 1 )所述的小面元角点和边点以及每两个相邻测点连线中点是接 收电极 (M、 N) 的接地点, 也是相邻测点的公共电极, 中心点不设置电 极',
步骤 1 )所述的小面元内的相邻测点都由一个公共电极两两相连,整 个小面元内部电位差闭合, 任意时刻采集站记录的电位差累加应等于零。
步骤 1 )所述的最小小面元各测点到磁站的距离为 0. 5L和 0. 707L, L为最小小面元边长。
2 ) 采集数据记录时各个采集站以相同的采集参数同时开始采集记 录天然电磁场时间系列数据, 采样率可以根据频率设置;
步骤 2)所述的采样率高频段采用高采样率, 采集时间较短, 中频段 采用中等采样率, 低频段采用低采样率采集时间较长。
3) 对记录的数据首先进行去干扰处理, 获得无干扰观测数据; 步骤 3)所述的去干扰处理是对任意时刻的数据进行空间闭合平差处 理, 将每一个闭合圈内的数据误差分配到各个测点, 平差时首先在每个 最小小面元内部的小回路平差, 识别干扰数据, 并用位场闭合回路原理 计算出无干扰观测数据。
步骤 3)所述的去干扰处理,如果某一时刻整个闭合回路都存在干扰, 闭合差大于指定的最小容许值, 则删除该时刻的数据, 然后进行小面元 最外层回路的平差, 平差处理后获得无干扰观测数据。
步骤 3)所谓无干扰数据是指任意回路的闭合差小于指定的最小容许 值。
4)对边点和中心点以记录点为中心对所有观测点的时间域电场数据 分别进行相邻两点至全部点的同一分量进行相加求平均值; 对于角点则 向面元方向计算相邻两点至全部测点的同一电场分量的平均值; 用求得 的最大空间的电场分量分别当作新的观测场值;
步骤 4)所述的相邻两点至全部点, 是指包括二点至直测线两侧所有 电场记录点。
步骤 4)所述的角点则向面元方向计算两点至全部点, 是指包括二点 至直测线一侧所有电场记录点。
5)对观测场值进行上述步骤处理后, 获得压制噪音和静态位移效应 的新的时间系列数据, 再采用常规方法进行处理即可获得各点视电阻率 和相位曲线。
步骤 5)所述的常规方法处理包括计算功率谱及阻抗张量, 其中磁场 份量共用中心点磁场, 可获得各点视电阻率和相位曲线及其它计算结果。
步骤 5)所述的常规方法处理包括对每个测点的不同长度极距的时间 系列数据分别进行功率谱分析及阻抗张量估算, 得到同一记录点的一系 列拓扑视电阻率观测曲线。
步骤 5)所述的常规方法处理包括在双对数坐标系绘制同一测点不同 极距的频率-视电阻率曲线, 对比电阻率曲线变化规律, 分析是否受静态 位移影响, 最大极距的电场获得的视电阻率曲线静态位移影响最小, 如 果所有曲线与最大极距的视电阻率曲线重合即无静态位移, 如果较小极 距的曲线偏离最大极距曲线则说明存在静态位移, 偏离越大静态位移效 应影响越大。
附图说明
图 1为本发明小面元数据采集设置示意图;
图 2 为本发明 "L", "T", "+"采集布极示意图;
图 3 为围边中点和中心点同一方向电场计算示意图;
图 4 为角点和边点同一方向电场计算示意图;
图 5 为 3x3小面元 A示意图。
具体实施方式
以下结合附图详细说明本发明具体实现步骤。
1 ) 在工区施工布极采用小面元网格采集;
每个小面元以 2x2或 3x3或 4x4为或 5x5为单元;
根据仪器数量决定, 每个最小小面元(2x2) 中心布设二分量或三份 量电磁采集站, 3x3面元可以分解成四个最小小面元, 4x4面元可以分解 成九个最小小面元, 小面元边及角点不布设磁场采集站 (见附图 1 )。
对于电场份量的布极规定如下: 角点采用常规方法中的 L型布极方 式, 边点采用常规方法中的 T型布设方式, 中间点采用常规方法中的 + 型布极方式,见附图 2, 角点和边点以及每两个相邻测点连线中点是接收 电极(M、 N) 的接地点, 也是相邻测点的公共电极, 中心点不设置电极, 因此, 小面元内的相邻测点都由一个公共电极两两相连的, 整个小面元 内部电位差是可以闭合的, 即将小面元内采集站记录的电位差在任意时 刻、 任意闭合环内累加应等于零。
对于磁场份量的布极, 在最小小面元中心点布设二份量正交水平磁 场 (Hx、 Hy)或三份量正交磁场(Hx、 Hy、 Hz ), Hx、 Hy方向与电场份量 的方向平行。 磁站到小面元各测点的距离相差不大, 为 0. 5L和 0. 707L, L为最小小面元边长。
2) 数据记录: 小面元布设完成后要求各个采集站以相同的采集参 数同时开始数据记录, 其它与常规方法一样, 采集天然电磁场时间系列 数据, 采样率可以根据频率设置成三种, 高频段采用高采样率, 采集时 间较短, 中频段采用中等采样率, 低频段采用低采样率。
3)在室内首先进行去干扰处理: 对任意时刻的数据进行空间闭合平 差处理, 将每一个闭合圈内的数据误差分配到各个测点, 平差时首先在 每个小回路平差, 识别干扰数据, 并用位场闭合回路原理计算出无干扰 的数据, 如果平差值小于某个容许值, 则认为获得无干扰数据, 如果平 差值大于容许值, 则认为整个闭合回路都存在干扰, 则删除该时刻的数 据, 然后进行小面元最外层回路的平差, 平差处理后获得新的观测数据。
4)然后进行去静态效应处理: 对上面去干扰处理获得的新的时间系 列数据进行进一步的处理, 对边点和中心点以记录点为中心对所有观测 点的时间域电场数据分别进行相邻两点、 三点、 四点、 直至全部点的同 一分量进行相加求平均值; 对于角点则向面元方向计算二点、 三点、 直 至全部点的同一分量的平均值; 用以上求得的最大空间距离的电场分量 分别当作新的观测场值。 这一过程实际上就是在空间域对高频静态位移 效应进行了滤波。
如果对每个测点的不同长度极距数据分别进行功率谱分析及阻抗张 量估算, 即可得同一记录点的一系列拓扑视电阻率观测曲线。 在双对数 坐标系绘制同一测点不同极距的频率-视电阻率曲线, 对比电阻率曲线变 化规律, 可分析受静态位移影响程度, 最大极距的电场获得的视电阻率 曲线静态位移影响最小, 如果所有曲线与最大极距的视电阻率曲线重合 即无静态位移, 如果较小极距的曲线偏离最大极距曲线则说明存在静态 位移, 偏离越大静态位移效应影响越大;
5)对经过上述步骤处理后获得的新的时间系列数据, 再按常规方法 计算功率谱及阻抗张量, 其中磁场份量共用中心点磁场, 可获得各点视 电阻率和相位曲线, 以及其它计算结果。 新的计算结果压制了噪音和静 态位移效应,在噪音干扰和静态位移严重地区 EM资料采集质量明显提高。
图 1为本发明实施情况。
1 )在工区施工布极采用 3x3小面元网格采集: 用 36个电采集站和 16个磁采集站开展三维 EM连续阵列勘探,布设 4个小面元采集网格, 每 个为 3x3, 网格大小 250x250米, A面元网格节点 (即测点) 编号 (见图 5): All , A12, A13; A21, A22, A23; A31 , A32, A33。 B、 C. D面元网 格节点编号依次类推, A11,A31,A13,A33为角点, Ex和 Ey电极距长度都 为 125米, 如角点 All , Ex的电偶极为 XM11-XN11,XM11位于 All点处, XN11位于 All与 A12中点, Ey的电偶极为 YM11-YN11, YM11位于 All点 处, YN11位于 All与 A21中点,采用 L型布极,其余类推; A12, A21, A23, A32 为边点, 采用 T型布极, 沿边的电偶极长度为 250米, 向面元内的电偶 极长度 125米, 如边点 A12, Ex的电偶极为 XM21-XN21,XM21与 All点的 XN11是共用电极, X 21与 A13点的 M13是共用电极, 其余类推; A22为 中心点, 采用 +型布极, Ex和 Ey 电偶极距均为 250米, Ex的电偶极为 XM22-XN22, XM22在 A21与 A22中点, X 22在 A22与 A23中点; Ey的电 偶极为 YM22-YN22, YM22在 A12与 A22中点, YN22在 A22与 A32中点; 中心点 A22布设正交水平磁场 Hx和 Hy。
2)数据记录: 采集数据记录时各个采集站以相同的采集参数同时开 始采集记录天然电磁场时间系列数据, 采样率可以根据频率设置。 A、 B、 C D小面元布设完成后, 设置三种采样率, 高频段采用高采样率, 采集 时间较短, 中频段采用中等采样率, 低频段采用低采样率, 各个采集站 同时开始数据记录, 采集天然电磁场时间系列数据。
3)对记录的数据首先进行去干扰处理, 获得无干扰观测数据: 室内 提取时间系列数据, 在每个小面元内对相同时刻采集数据进行闭合和平 差, 我们规定最小容许平差值为 ε, 先在最小回路中进行闭合平差, 如 A11-A12-A22-A21-A11回路, 将 All点 X方向的电位差 VllX, A12点 X方 向的 1/2电位差 V12X,和 A12点 Y方向的电位差 V12Y, A22点 Y方向的 1/2电位差 V22Y, A22点 X方向的 1/2电位差 V22X, A21点 X方向的电位差 V21X, A21点 Y方向的 1/2电位差 V21Y,以及 All点 Y方向的电位差 V11Y 等 8个电位差进行累加:
DV=V11X+V12X+V12Y+V22Y+V22X+V21X+V21Y+V11Y
如果测量精度极高则 | DV | < ±s
由于各种干扰, 实际记录数据不可能等于零, 因此, 要对此进行平 差, 将误差平均分配到每道中去。
故此: VllX0=Vl lX+DV/8, V12X0=V12X+DV/8
V21X0=V21X+DV/8, V22X0=V22X+DV/8
VllY0=VllY+DV/8, V12Y0=V12Y+DV/8
V21Y0-V21Y+DV/8, V22Y0=V22Y+DV/8
对每个时间系列都实行平差处理, 就得到第一个回路的平差时间系列数 据。 同样, 可以对小面元内其它闭合回路进行平差处理。 如果计算出的 累加值太大(大于 ε, ε为闭合回路电位差容许值),说明该时刻点存在强干 扰, 可以检査干扰主要来自那个道的数据, 并用该闭合回路其它值计算 出该道数据, 如果每道数据均偏离较大, 要直接删除该时刻数据。 依次 进行其它闭合回路的平差, 其中公共边及公共节点的平差统一计算, 比 如, 中心点的电场 Εχ, 由原始记录值加上每个闭合回路所有平差之和。 最后, 计算小面元外环回路的闭合情况, 以检查平差效果。 平差完成后 我们得到 f的时间系列数据。 计算每个测点电磁场功率谱及阻抗张量, 获得各点视电阻率和相位曲线, 可与原始曲线对比。
4)对边点和中心点以记录点为中心对所有观测点的时间域电场数据 分别进行相邻两点至全部点的同一分量进行相加求平均值; 对上面平差 后得到新的时间系列数据进行处理, 如边点 A12 电场 Ex数据计算三点 All、 A12、 A13的电场平均值 Exl2 - 3= (E11+E12+E13) /3,当作 A12点的 观测场值; 对中心点 A22的电场 Ex计算 A21、 A22、 A23的电场平均值 Ex22-3= (E21+E22+E23) /3, 当作 A22 点的观测场值; 对于角点则向面 元方向计算相邻两点至全部测点的同一电场分量的平均值; 如角点 All 的电场 Ex 计算 All、 A12 和 All、 A12、 A13 的电场平均值, Exll-12=(3Ell+E12) /4, Exll-13= (4E11+E12+E13) /6, 当作 All 的观测 场值, 依次类推。 这样就得到每个测点从小极距到大极距一系列新的电 场观测值, 把计算的最大极距电场值当作新的观测电场值。
为了研究某些点的静态位移, 按上述计算功率谱方法计算功率谱和 该点的一系列拓扑视电阻率和相位曲线。 在双对数坐标系绘制同一测点 不同极距的视电阻率曲线, 如 All点的视电阻率曲线有 3条, 分析视电 阻率曲线变化规律, 如果 3条曲线重合说明无静态位移, 如果小极距曲 线明显高于或低于大极距曲线则说明受静态位移影响。
5 )采用常规方法对新的时间系列数据进行处理, 经过时间域平差去 噪和空间域滤波后新的时间系列数据中噪音和静态位移得到压制, 得到 的新的视电阻率和相位曲线精度和可靠性提高的剖面。
工业实用性
本发明处理后获得的新的时间系列数据, 再按常规方法计算功率谱 及阻抗张量, 其中最小小面元各测点的磁场份量共用中心点磁场, 可获 得各点视电阻率和相位曲线, 以及其它计算结果。 本发明压制了噪音和 静态位移效应, 在噪音干扰和静态位移严重地区 EM资料采集质量明显提 高。 广泛适用于陆地以及海洋等各种情况的电磁数据采集。

Claims

权利要求书
1、 一种三维小面元电磁连续阵列数据采集方法, 其特征在于: 包括 以下步骤:
1 )在工区施工布极采用小面元网格采集方式, 在小面元中心布设二 份量电场采集站 (Ex、 Ey), 小面元网格采集方式电场份量的布极为角点 采用常规方法中的 L型布极方式, 边点采用常规方法中的 T型布设方式, 中间点采用常规方法中的 +型布极方式; 在最小小面元中心点布设二份 量正交水平磁场(Hx、 Hy)或三份量正交磁场(Hx、 Hy、 Hz ), Hx、 Hy方 向与电场^量的方向平行;
2 ) 采集数据记录时各个采集站以相同的采集参数同时开始采集记 录天然电磁场时间系列数据, 采样率可以根据频率设置;
3 ) 对记录的数据首先进行去干扰处理, 获得无干扰观测数据;
4)对边点和中心点以记录点为中心对所有观测点的时间域电场数据 分别进行相邻两点至全部点的同一分量进行相加求平均值; 对于角点则 向面元方向计算相邻两点至全部测点的同一电场分量的平均值; 用求得 的最大空间的电场分量分别当作新的观测场值;
5 )对观测场值进行上述步骤处理后, 获得压制噪音和静态位移效应 的新的吋间系列数据, 再采用常规方法进行处理即可获得各点视电阻率 和相位曲线。
2、 根据权利要求 1所述的三维小面元电磁连续阵列数据采集方法, 其特征在于: 步骤 1 )所述的小面元网格采集方式是每个小面元以 2x2或 3x3或 4x4或 5x5为单元; 3x3单元面元分解成四个最小小面元; 4x4单 元面元分解成九个最小小面元。
3、 根据权利要求 1所述的三维小面元电磁连续阵列数据采集方法, 其特征在于: 步骤 1 )所述的小面元角点和边点以及每两个相邻测点连线 中点是接收电极 (M、 N) 的接地点, 也是相邻测点的公共电极, 中心点 不设置电极。
4、 根据权利要求 1所述的三维小面元电磁连续阵列数据采集方法, 其特征在于: 步骤 1 )所述的小面元内的相邻测点都由一个公共电极两两 相连, 整个小面元内部电位差闭合, 任意时刻采集站记录的电位差累加' 等于零。
5、 根据权利要求 1所述的三维小面元电磁连续阵列数据采集方法, 其特征在于: 步骤 1 ) 所述的最小小面元各测点到磁站的距离为 0. 5L和 0. 707L, L为最小小面元边长。
6、 根据权利要求 1所述的三维小面元电磁连续阵列数据采集方法, 其特征在于:步骤 2)所述的采样率高频段采用采集时间较短的高采样率, 中频段采用中等采样率, 低频段采用采集时间较长的低采样率。
7、 根据权利要求 1所述的三维小面元电磁连续阵列数据采集方法, 其特征在于: 步骤 3)所述的去干扰处理是将每一个闭合圈内的数据误差 分配到各个测点, 平差时首先在每个最小小面元内部的小回路平差, 识 别干扰数据, 并用位场闭合回路原理计算出无干扰观测数据, 如果某一 时刻整个闭合回路都存在干扰, 闭合差大于指定的最小容许值, 则删除 该时刻的数据, 然后进行小面元最外层回路的平差, 平差处理后获得无 干扰观测数据。
8、根据权利要求 1或 7所述的三维小面元电磁连续阵列数据采集方 法, 其特征在于: 步骤 3 )所谓无干扰数据是指任意回路的闭合差小于指 定的最小容许值。
9、 根据权利要求 1所述的三维小面元电磁连续阵列数据采集方法, 其特征在于步骤 4)所述的相邻两点至全部点是指包括二点至直测线两侧 所有电场记录点; 所述的角点则向面元方向计算两点至全部点, 是指包 括二点至直测线一侧所有电场记录点。
10、根据权利要求 1所述的三维小面元电磁连续阵列数据采集方法, 其特征在于: 步骤 5) 所述的常规方法处理包括计算功率谱及阻抗张量, 其中最小小面元各测点的磁场份量共用中心点磁场, 获得各点视电阻率 和相位曲线及其它计算结果; 还包括对每个测点的不同长度极距的时间 系列数据分别进行功率谱分析及阻抗张量估算, 得到同一记录点的一系 列拓扑视电阻率观测曲线; 还包括在双对数坐标系绘制同一测点不同极 距的频率-视电阻率曲线, 对比视电阻率曲线变化规律, 分析是否受静态 位移影响, 最大极距的电场获得的视电阻率曲线静态位移影响最小, 如 果所有曲线与最大极距的视电阻率曲线重合即无静态位移, 如果较小极 距的曲线偏离最大极距曲线则说明存在静态位移, 偏离越大静态位移效 应影响越大。
PCT/CN2009/000049 2008-04-10 2009-01-14 三维小面元电磁连续阵列数据采集方法 WO2009124446A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2010145243/28A RU2500002C2 (ru) 2008-04-10 2009-01-14 Способ сбора данных посредством трехмерного регулярного электромагнитного массива малых ячеек интегрирования
EP09729497.9A EP2267487B1 (en) 2008-04-10 2009-01-14 Three dimensional small bins electromagnetic consecutive array data acquisition method
US12/924,268 US8330464B2 (en) 2008-04-10 2010-09-22 Data acquisition method with a three dimensional small bin electromagnetic consecutive array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101036950A CN101556340B (zh) 2008-04-10 2008-04-10 三维小面元大地电磁连续阵列数据采集方法
CN200810103695.0 2008-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/924,268 Continuation US8330464B2 (en) 2008-04-10 2010-09-22 Data acquisition method with a three dimensional small bin electromagnetic consecutive array

Publications (1)

Publication Number Publication Date
WO2009124446A1 true WO2009124446A1 (zh) 2009-10-15

Family

ID=41161524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000049 WO2009124446A1 (zh) 2008-04-10 2009-01-14 三维小面元电磁连续阵列数据采集方法

Country Status (5)

Country Link
US (1) US8330464B2 (zh)
EP (1) EP2267487B1 (zh)
CN (1) CN101556340B (zh)
RU (1) RU2500002C2 (zh)
WO (1) WO2009124446A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949973A (zh) * 2010-09-15 2011-01-19 吉林大学 地电位测量方法
ITMI20102355A1 (it) * 2010-12-22 2012-06-23 Eni Spa Sistema di rilevamento di formazioni geologiche sottomarine in particolare per la localizzazione di formazioni di idrocarburi
CN108387444A (zh) * 2018-04-02 2018-08-10 东方华隆(北京)石油技术有限公司 一种基于井地电位成像的套管井压裂连续监测控制方法
CN113126172A (zh) * 2020-01-16 2021-07-16 中国石油天然气集团有限公司 静位移校正方法及装置
CN114152987A (zh) * 2021-12-21 2022-03-08 中国科学技术大学 基于双模并行电法的真三维观测系统布置及真三维数据体合成方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466822B (zh) * 2010-11-04 2013-09-04 中国石油天然气集团公司 一种海洋电磁勘探四极互组合布极方法
US8928324B2 (en) 2011-12-27 2015-01-06 Pgs Geophysical As In-line and broadside marine electromagnetic surveying
CN103278853B (zh) * 2013-04-24 2016-02-17 中国科学院地质与地球物理研究所 一种单通道大地电场仪
CN103198157B (zh) * 2013-04-28 2016-02-03 南京信息工程大学 一种大地电场数据的压缩存储处理方法
CN103278855B (zh) * 2013-05-13 2015-06-24 江苏大学 一种消除巷道和地形对直流勘探视电阻率影响的方法
KR101415309B1 (ko) * 2014-04-10 2014-07-04 한국지질자원연구원 스트리핑을 위한 위로 연속법의 최적 연속 거리 결정을 위한 장치 및 방법
CN105116452A (zh) * 2015-08-24 2015-12-02 中国石油天然气集团公司 一种确定地质异常体电阻率和极化率的方法和装置
CN105445805B (zh) * 2015-11-16 2017-08-25 中南大学 一种时空阵列差分电磁勘探方法
CN105717547B (zh) * 2015-12-22 2017-12-08 吉林大学 一种各向异性介质大地电磁无网格数值模拟方法
CN107966738A (zh) * 2017-11-02 2018-04-27 中国科学院地质与地球物理研究所 地面电磁法仪器野外作业控制及数据处理方法及系统
CN107748391B (zh) * 2017-11-30 2023-09-22 长江大学 一种增强可控源电磁法采集信号的观测方法及系统
CN108107478B (zh) * 2017-12-25 2019-06-04 湖南科技大学 大地电磁同步探测与实时反演方法及系统
CN109375272A (zh) * 2018-11-09 2019-02-22 安徽省勘查技术院 一种新的在低阻厚覆盖区进行三维激电的工作方法和技术
CN109901226B (zh) * 2019-04-15 2021-09-07 国科(重庆)仪器有限公司 一种可控源张量大地电磁系统及其控制计算方法
CN110596763B (zh) * 2019-08-23 2021-04-23 南方科技大学 一种大地电磁数据的三维采集方法、装置及终端设备
CN113447991A (zh) * 2020-03-24 2021-09-28 中国石油化工股份有限公司 地下电性异常体重建方法及装置
CN112433252B (zh) * 2020-11-06 2021-08-10 浙江大学 电极随机分布式三维高密度电法数据采集方法
NO346411B1 (en) * 2021-03-03 2022-07-11 Captrol As Method and apparatus for performing a marine CSEM survey
CN114114431B (zh) * 2021-11-29 2022-08-19 合肥工业大学 一种基于双模并行电法的小极距电位提取方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86103551A (zh) * 1986-04-25 1987-11-04 得克萨斯系统大学董事会 电磁阵列断面勘测方法
US4862089A (en) * 1988-09-23 1989-08-29 Amoco Corporation Method of magnetotelluric exploration using a zigzag array
US5043667A (en) * 1989-04-21 1991-08-27 Amoco Corporation Method of magnetotelluric exploration using areal arrays
CN1580818A (zh) * 2003-08-01 2005-02-16 中国石油天然气集团公司 人工源时间频率电磁测深方法
CN101017205A (zh) * 2007-03-08 2007-08-15 刘俊昌 一种高分辨率去静态频率域大地电磁法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU652374B2 (en) * 1990-06-06 1994-08-25 Gap Geophysics Pty Limited Sub-audio magnetics instrument
RU2084929C1 (ru) * 1993-03-24 1997-07-20 Владимир Сергеевич Могилатов Способ геоэлектроразведки
MY131017A (en) * 1999-09-15 2007-07-31 Exxonmobil Upstream Res Co Remote reservoir resistivity mapping
US6950747B2 (en) * 2003-01-30 2005-09-27 Kent Byerly Methods of processing magnetotelluric signals
CN1532560A (zh) * 2003-03-21 2004-09-29 中国石油集团东方地球物理勘探有限责 自然电位多极环路梯度观测方法
CN1252492C (zh) * 2003-12-25 2006-04-19 周仁安 大地电磁波电阻率测量方法及其仪器
CN100429531C (zh) * 2006-01-20 2008-10-29 中国石油天然气集团公司 目标最小化的三维电磁快速反演方法
CN100487493C (zh) * 2006-05-11 2009-05-13 中国石油集团东方地球物理勘探有限责任公司 一种大地电磁阻抗测量方法
CN100554998C (zh) * 2006-05-11 2009-10-28 侯树麒 地震勘探数据采集系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86103551A (zh) * 1986-04-25 1987-11-04 得克萨斯系统大学董事会 电磁阵列断面勘测方法
US4862089A (en) * 1988-09-23 1989-08-29 Amoco Corporation Method of magnetotelluric exploration using a zigzag array
US5043667A (en) * 1989-04-21 1991-08-27 Amoco Corporation Method of magnetotelluric exploration using areal arrays
CN1580818A (zh) * 2003-08-01 2005-02-16 中国石油天然气集团公司 人工源时间频率电磁测深方法
CN101017205A (zh) * 2007-03-08 2007-08-15 刘俊昌 一种高分辨率去静态频率域大地电磁法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN, W. ET AL.: "THE DEVELOPMENT OF MT SONDING TECHNIQUE AND ITS APPLICATION TO THE OIL AND GAS EXPLORATION", GEOLOGY AND PROSPECTING., vol. 39, October 2003 (2003-10-01), pages 3 - 9, XP008145743 *
WANG, Y. ET AL.: "Proceeding of the 8th China International Geo-Electromagnetic Workshop.", 2007, article "3D Data acquisition technology for Gravity-Magnetic-Electromagetics in southern area covered by carbonate rock.", pages: 31 - 35, XP008171066 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949973A (zh) * 2010-09-15 2011-01-19 吉林大学 地电位测量方法
ITMI20102355A1 (it) * 2010-12-22 2012-06-23 Eni Spa Sistema di rilevamento di formazioni geologiche sottomarine in particolare per la localizzazione di formazioni di idrocarburi
WO2012084744A1 (en) * 2010-12-22 2012-06-28 Eni S.P.A. System for detecting underwater geological formations in particular for the localization of hydrocarbon formations
CN108387444A (zh) * 2018-04-02 2018-08-10 东方华隆(北京)石油技术有限公司 一种基于井地电位成像的套管井压裂连续监测控制方法
CN113126172A (zh) * 2020-01-16 2021-07-16 中国石油天然气集团有限公司 静位移校正方法及装置
CN113126172B (zh) * 2020-01-16 2024-01-30 中国石油天然气集团有限公司 静位移校正方法及装置
CN114152987A (zh) * 2021-12-21 2022-03-08 中国科学技术大学 基于双模并行电法的真三维观测系统布置及真三维数据体合成方法

Also Published As

Publication number Publication date
RU2010145243A (ru) 2012-05-20
US8330464B2 (en) 2012-12-11
CN101556340B (zh) 2011-08-03
EP2267487B1 (en) 2022-04-06
CN101556340A (zh) 2009-10-14
US20110037473A1 (en) 2011-02-17
EP2267487A4 (en) 2017-08-02
EP2267487A1 (en) 2010-12-29
RU2500002C2 (ru) 2013-11-27

Similar Documents

Publication Publication Date Title
WO2009124446A1 (zh) 三维小面元电磁连续阵列数据采集方法
Ritter et al. New equipment and processing for magnetotelluric remote reference observations
CN105866852B (zh) 一种基于相关性检测的远参考大地电磁阻抗计算方法
CN103389514B (zh) 一种大地电磁去噪装置及大地电磁去噪方法
CN109765616B (zh) 一种保幅波场延拓校正方法及系统
CN105510975B (zh) 提高地震数据信噪比的方法及装置
CN106199698A (zh) 基于多次波信息的频率域地震数据重构方法
CN113156427A (zh) 探地雷达数据的反演方法和装置
CN104330826A (zh) 一种去除复杂地表条件下多种噪音的方法
CN106249292B (zh) 一种共反射点道集优化处理方法
CN109597021A (zh) 一种波达方向估计方法及装置
CN104749643B (zh) 一种用于电磁干扰地区的csamt测量方法和装置
CN113759426B (zh) 一种基于参考道的人工源电磁勘探方法及系统
CN106814394B (zh) 台站式检波器与常规检波器联合低频恢复方法
CN116127287A (zh) 一种电阻率法勘探信号的降噪方法
CN103513288B (zh) 一种二维网格数据的补偿方向滤波方法
CN104570118B (zh) 一种基于双因素的自动识别与去除工业干扰的方法
CN102928666A (zh) 一种交流电的相位差的数字化测量方法
Groune et al. Statistical approach for microleveling of aerogeophysical data
CN105137481A (zh) 一种调整用于叠前偏移成像的地震数据能量一致性的方法
CN115373023A (zh) 一种基于地震反射和车辆噪声的联合探测方法
Sungkono et al. Application of Noise-Assisted Multivariate Empirical Mode Decomposition in VLF-EM Data to Identify Underground River
CN114415234A (zh) 基于主动源面波频散和h/v确定浅地表横波速度的方法
Auken et al. Optimized model resolution using low pass filters in TDEM soundings
AU2020101905A4 (en) A method for determining middle zone exploration depth of electromagnetic exploration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729497

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009729497

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010145243

Country of ref document: RU