WO2009123496A1 - Method and device for measuring impurities in oil and petroleum products - Google Patents

Method and device for measuring impurities in oil and petroleum products Download PDF

Info

Publication number
WO2009123496A1
WO2009123496A1 PCT/RU2008/000209 RU2008000209W WO2009123496A1 WO 2009123496 A1 WO2009123496 A1 WO 2009123496A1 RU 2008000209 W RU2008000209 W RU 2008000209W WO 2009123496 A1 WO2009123496 A1 WO 2009123496A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
electrode
measuring
chamber
oil
Prior art date
Application number
PCT/RU2008/000209
Other languages
French (fr)
Russian (ru)
Inventor
Владислав Петрович СТАРИКОВ
Александр Викторович КОПЫТИН
Original Assignee
Ог Системз Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ог Системз Лимитед filed Critical Ог Системз Лимитед
Priority to PCT/RU2008/000209 priority Critical patent/WO2009123496A1/en
Publication of WO2009123496A1 publication Critical patent/WO2009123496A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • G01N27/44Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte using electrolysis to generate a reagent, e.g. for titration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring deposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • G01N27/423Coulometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels

Definitions

  • the invention relates to the field of determining the content of mercaptans, chloride and sulfide ions in oil and oil products and can be used for coulometric titration in non-aqueous solutions with potentiometric indication of equivalence points.
  • a known method of measuring individual components in non-aqueous media comprising burning a sample, absorbing gases, followed by coulometric titration of the components.
  • the disadvantage of this method is that in this method the total content of chlorine and sulfide is determined.
  • the voltage applied to the generator and auxiliary electrodes due to the voltage drop in the solution significantly affects the emf of the galvanic cell and does not allow fixing the equivalence points, and thus measure (patent RU 2243552 , 2004).
  • the technical result from the use of the present invention is the ability to determine in oil impurities of sulfides, chlorides and mercaptans (as well as bromides and iodides, if present) without the use of titrants, giving a systematic error in the determination, as well as the possibility of automation of the method.
  • a method for determining impurities in oil and oil products includes automatic sampling, transferring it to a measuring electrochemical cell, mixing with a mineral or organic electrolyte, homogenizing the resulting mixture, electrochemical generation of silver by anodic oxidation of a silver generator electrode, and sequential coulometric titration of the mixture with generated silver ions with fixing points of equivalence by potentiometric method using indicator sulfur ro-selective electrode.
  • Anodic oxidation of silver is mainly carried out in an environment containing an electrolyte with concentrations from 0.001 to O, IM at electrolysis currents from 3 to 0.01 mA.
  • an organic electrolyte a solution of lithium salt with an anion of an organic acid is predominantly used.
  • a solution of lithium salts with inorganic anions is mainly used as a mineral electrolyte.
  • Lithium salts such as hexafluorophosphate, pechlorate, etc., are good electrolytes and have high solubility in organic solvents.
  • a pH sensitive glass electrode is usually used as a reference electrode.
  • the proposed device for implementing this method includes a chamber with a mixing device and fittings for supplying and removing liquids.
  • the chamber consists of two interconnected electrochemical cells located one below the other.
  • a generating cell with two horizontally mounted plate electrodes, of which the lower is a cathode and made of platinum, and the upper is made of silver and has openings for communication with the measuring electrochemical cell located above.
  • This cell includes a measuring ion-selective electrode and a reference electrode.
  • the most suitable mixing device is a magnetic stirrer, which is located between the electrodes of the generating cell.
  • the cathode of the generating cell can be mounted in the bottom of the chamber. It is desirable that the area of the holes in the anode of the generating cell be at least 30% of the total surface of the plate of the anode, which will provide more complete and reliable homogenization of the mixture in the chamber.
  • the measuring device is shown in Fig. L and is a cylindrical chamber 1 with a nozzle 9 for supplying liquids and a nozzle 10 for withdrawing the mixture. Preferred dimensions of the chamber 1: inner diameter - 40-50 mm; height - 60 mm.
  • the generating electrochemical cell includes two horizontal plate electrodes 6 and 7.
  • the lower electrode, cathode 7, can be mounted in the bottom of chamber 1, and the second electrode, anode 6, is located at a distance not exceeding 20 mm from cathode 7.
  • the device is a magnetic stirrer 5, which functions from external influences — a source 8 of an alternating magnetic field.
  • the plate of the upper electrode - anode 6 has holes, which allows homogenization of the measured solution in the entire volume of both cells of chamber 1.
  • the area of the holes in the anode 6 of the generating cell is at least 30% of the total surface area of the anode plate.
  • Measuring silver-selective electrode 2 is a modification of the ion-selective electrode IONIKS 122 (LLC IOHIKC alpha). Which is made in the form of a tube, at the end of which an element sensitive to silver ions is fixed.
  • the reference electrode 3 can be selected, for example, pH is a sensitive sensor.
  • a device in which the proposed method is implemented operates as follows.
  • a sample of a fixed volume for example, taken from an oil pipeline using an automatic peristaltic pump, is supplied into the chamber 1 through the nozzle 9. Then, a fixed volume of electrolyte is supplied to chamber 1 in the same way.
  • the mixture of liquids is homogenized - mixed with a magnetic stirrer 5 for 2-3 minutes.
  • the EMF of the measuring cell 4 composed of a glass electrode 3 used as a reference electrode, and a silver-selective measuring electrode 2 (indicator electrode of the IONIKS 122 type) is recorded.
  • a constant voltage is applied to the electrodes 6 and 7 of the generating electrochemical cell and the change in the EMF of the measuring cell 4 in time is recorded.
  • the equivalence points are successively reached, the amount of electricity spent on electrolysis is measured, and based on the combined Faraday law, the amount of this or that impurity contained in the sample is calculated.
  • the mixture of liquids is removed from the chamber 1 through the nozzle 10 using a pump.
  • the chamber 1 is washed with a washing reagent with a working magnetic stirrer 5.
  • mineral and organic salts for example, lithium perchlorate or lithium benzoate
  • the horizontally located indicator and generator electrodes with a mixing device between them and a galvanic measuring cell located above them allow measurements in organic media, while eliminating the influence of voltage in the generator part on the potential of the measuring measuring cell.
  • the device of the claimed design allows to increase the accuracy of determination of chlorides, mercaptans and sulfides in oil by eliminating errors associated with the standardization of titrant, simplify the design of the analyzer and, as a result, increase the accuracy of the determination.
  • FIG. 2 A typical sequential coulometric titration curve of sulfides, mercaptans and chlorides is shown in FIG. 2. The curve was obtained at a concentration of sulfides, mercaptans and chlorides equal to 10 "4 mEq / L. The current strength was 0.98 mA. A 0.0 IM solution of lithium perchlorate in a mixed solvent of equal volumes of toluene and decyl alcohol was used as an electrolyte. Prior to titration of the admixture mixture, equivalence points on the control samples were determined, each of which contained only one of these impurities.
  • Determination of the content of mercaptans is possible in the concentration range from 10 to 200 mg / l. In the concentration range of less than 1 mg / L, a relatively small jump in the potentiometric detector does not allow us to fix the equivalence point; when the concentration of mercaptans is above 200 mr / L, the determination error associated with a decrease in current efficiency increases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

The invention relates to measuring the mercaptan, chloride- and sulphide ions in oil and petroleum products. The inventive method for measuring impurities in oil and petroleum products involves automatically sampling, transferring a sample into a measuring electrochemical cell, mixing with a mineral or organic electrolyte, homogenising the thus produced mixture, electrochemically generating silver by means of the anodic oxidation of a generator silver electrode and subsequently carrying out the coulometric titration of the mixture and generating silver ions with fixing equivalence points by a potentiometric method using a test silver-selective electrode. The silver is anode-oxidized in an electrolyte-containing medium with concentrations ranging from 0.001 to 0.1 M and an electrolysis current ranging from 3 to 0.01 mA. The impurity measuring device comprises a chamber with a mixing unit and fittings for feeding and evacuating liquids, which chamber consists of two interconnected electrochemical cells arranged one under the other. A generating cell is placed in the lower part of the chamber and comprises two horizontally positioned plate-type electrodes, wherein the lower electrode is used as a cathode and is made of platinum, the upper electrode is made of silver and provided with holes for communicating with a measuring electrochemical cell which is situated above it and contains a measuring ion-selective electrode and a comparison electrode.

Description

СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПРИМЕСЕЙ В НЕФТИ И НЕФТЕПРОДУКТАХ METHOD AND DEVICE FOR DETERMINING IMPURITIES IN OIL AND OIL PRODUCTS
Изобретение относится к области определения содержания меркаптанов, хлорид- и сульфид- ионов в нефти и нефтепродуктах и может использоваться при кулонометриче- ском титровании в неводных растворах с потенциометрической индикацией точек эквивалентности. Известен способ измерения отдельных компонентов в неводных средах включающий сжигание пробы поглощение газов с последующим кулонометрическим титрованием компонентов. Недостатком известного способа является то, что в данном методе определяется общее содержание хлора и сульфида. При использовании известной конструкции ячеек для определения ионов в неводных средах напряжение накладываемое на rенера- торный и вспомогательный электроды за счет падения напряжения в растворе существенным образом влияет на ЭДС гальванической ячейки и не позволяет фиксировать точки эквивалентности, и таким образом, проводить измерения (патент RU 2243552, 2004 г.).The invention relates to the field of determining the content of mercaptans, chloride and sulfide ions in oil and oil products and can be used for coulometric titration in non-aqueous solutions with potentiometric indication of equivalence points. A known method of measuring individual components in non-aqueous media comprising burning a sample, absorbing gases, followed by coulometric titration of the components. The disadvantage of this method is that in this method the total content of chlorine and sulfide is determined. When using the well-known cell design for determining ions in non-aqueous media, the voltage applied to the generator and auxiliary electrodes due to the voltage drop in the solution significantly affects the emf of the galvanic cell and does not allow fixing the equivalence points, and thus measure (patent RU 2243552 , 2004).
Известен также способ определения компонентов в нефти потенциометрическим титрованием нитратом серебра с потенциометрической фиксацией точек эквивалентности [UOP LАВОRАТОRY TEST METHODS: 163-89 Нуdrоgеп Sulfidе апd Меrсарtап Sulfur iп Liquid Нуdrосаrbопs]. К недостаткам данного способа следует отнести наличие систематической погрешности, связанной с установлением характеристик титранта, а также необходимость достаточно частого переустановления характеристик титранта, что затрудняет возможность его использования в автоматических анализаторах. Техническим результатом от использования предлагаемого изобретения является возможность определения в нефти примесей сульфидов, хлоридов и меркаптанов (а также бромидов и иодидов, в случае их присутствия) без применения титрантов, дающих систематическую погрешность определений, а также возможность автоматизации метода.There is also a known method for determining components in oil by potentiometric titration with silver nitrate with potentiometric fixation of equivalence points [UOP LAVORATORY TEST METHODS: 163-89 Sound Hydrogen Sulfide Ap Sulfur Liquid Sulfur Liquid]. The disadvantages of this method include the presence of a systematic error associated with the establishment of the characteristics of the titrant, as well as the need for a fairly frequent reinstallation of the characteristics of the titrant, which complicates the possibility of its use in automatic analyzers. The technical result from the use of the present invention is the ability to determine in oil impurities of sulfides, chlorides and mercaptans (as well as bromides and iodides, if present) without the use of titrants, giving a systematic error in the determination, as well as the possibility of automation of the method.
Согласно изобретению, способ определения примесей в нефти и нефтепродуктах, включает автоматический отбор пробы, перенос ее в измерительную электрохимическую ячейку, смешивание с минеральным или органическим электролитом, гомогенизацию полученной смеси, электрохимическую генерацию серебра анодным окислением генераторного серебряного электрода и последовательное кулонометрическое титрование смеси генерированными ионами серебра с фиксацией точек эквивалентности потенциометриче- ским способом с использованием индикаторного серебро-селективного электрода. Анодное окисление серебра преимущественно проводят в среде содержащей электролит с концентрациями от 0,001 до О, IM при значениях тока электролиза от 3 до 0,01мA.According to the invention, a method for determining impurities in oil and oil products includes automatic sampling, transferring it to a measuring electrochemical cell, mixing with a mineral or organic electrolyte, homogenizing the resulting mixture, electrochemical generation of silver by anodic oxidation of a silver generator electrode, and sequential coulometric titration of the mixture with generated silver ions with fixing points of equivalence by potentiometric method using indicator sulfur ro-selective electrode. Anodic oxidation of silver is mainly carried out in an environment containing an electrolyte with concentrations from 0.001 to O, IM at electrolysis currents from 3 to 0.01 mA.
В качестве органического электролита преимущественно используют раствор соли лития с анионом органической кислоты. В качестве минерального электролита преимущественно используют раствор солей лития с неорганическими анионами. Соли лития, такие как гексафторфосфат, пехлорат и т.д., являются хорошими электролитами и обладают высокой растворимостью в органических растворителях.As an organic electrolyte, a solution of lithium salt with an anion of an organic acid is predominantly used. A solution of lithium salts with inorganic anions is mainly used as a mineral electrolyte. Lithium salts, such as hexafluorophosphate, pechlorate, etc., are good electrolytes and have high solubility in organic solvents.
При потенциометрической индикации точек эквивалентности в качестве электрода сравнения обычно используют рН - чувствительный стеклянный электрод.For potentiometric indications of equivalence points, a pH sensitive glass electrode is usually used as a reference electrode.
Предлагаемое устройство для реализации такого способа включает камеру с перемешивающим устройством и штуцерами для подачи и удаления жидкостей. Камера состоит из двух сообщающихся между собой электрохимических ячеек, расположенных одна под другой. В нижней части камеры расположена генерирующая ячейка с двумя гори- зонтально установленными пластинчатыми электродами, из которых нижний является катодом и выполнен из платины, а верхний выполнен из серебра и имеет отверстия для сообщения с расположенной выше измерительной электрохимической ячейкой. В состав этой ячейки входят измерительный ионоселективный электрод и электрод сравнения.The proposed device for implementing this method includes a chamber with a mixing device and fittings for supplying and removing liquids. The chamber consists of two interconnected electrochemical cells located one below the other. In the lower part of the chamber there is a generating cell with two horizontally mounted plate electrodes, of which the lower is a cathode and made of platinum, and the upper is made of silver and has openings for communication with the measuring electrochemical cell located above. This cell includes a measuring ion-selective electrode and a reference electrode.
Наиболее подходящим перемешивающим устройством служит магнитная мешалка, которую располагают между электродами генерирующей ячейки.The most suitable mixing device is a magnetic stirrer, which is located between the electrodes of the generating cell.
Катод генерирующей ячейки может быть вмонтирован в дно камеры. Желательно, чтобы площадь отверстий в аноде генерирующей ячейки составляла не менее 30% от общей поверхности пластины анода, что обеспечит более полную и надежную гомогенизацию смеси в камере. Схематически измерительное устройство показано на Фиг.l и представляет собой цилиндрическую камеру 1 со штуцером 9 подачи жидкостей и штуцером 10 отвода смеси. Предпочтительные размеры камеры 1: внутренний диаметр - 40-50 мм; высота - 60 мм. В камере 1 находятся две электрохимические ячейки, расположенные соосно, одна над другой, при этом генерирующая ячейка, ограниченная электродами 6 и 7, находится в нижней части камеры 1. Над ней располагается измерительная ячейка 4, в которой находятся измерительный ионоселективный электрод 2 и электрод 3 сравнения.The cathode of the generating cell can be mounted in the bottom of the chamber. It is desirable that the area of the holes in the anode of the generating cell be at least 30% of the total surface of the plate of the anode, which will provide more complete and reliable homogenization of the mixture in the chamber. Schematically, the measuring device is shown in Fig. L and is a cylindrical chamber 1 with a nozzle 9 for supplying liquids and a nozzle 10 for withdrawing the mixture. Preferred dimensions of the chamber 1: inner diameter - 40-50 mm; height - 60 mm. In chamber 1 there are two electrochemical cells located coaxially, one above the other, while the generating cell bounded by electrodes 6 and 7 is located in the lower part of chamber 1. Above it is located measuring cell 4, in which there is an ion-selective measuring electrode 2 and electrode 3 comparisons.
Генерирующая электрохимическая ячейка включает два пластинчатых горизонтально расположенных электрода 6 и 7. При этом нижний электрод - катод 7 может быть вмонтирован в дно камеры 1, а второй электрод - анод 6 находится на расстоянии, не пре- вышающем 20 мм от катода 7. Между электродами располагается перемешивающее уст- ройство - магнитная мешалка 5, функционирующая от внешнего воздействия - источника 8 переменного магнитного поля. Пластина верхнего электрода - анода 6 имеет отверстия, что позволяет осуществлять гомогенизацию измеряемого раствора во всем объеме обеих ячеек камеры 1. Площадь отверстий в аноде 6 генерирующей ячейки составляет не менее 30% от общей площади поверхности пластины анода.The generating electrochemical cell includes two horizontal plate electrodes 6 and 7. In this case, the lower electrode, cathode 7, can be mounted in the bottom of chamber 1, and the second electrode, anode 6, is located at a distance not exceeding 20 mm from cathode 7. Between the electrodes the mixing device is located The device is a magnetic stirrer 5, which functions from external influences — a source 8 of an alternating magnetic field. The plate of the upper electrode - anode 6 has holes, which allows homogenization of the measured solution in the entire volume of both cells of chamber 1. The area of the holes in the anode 6 of the generating cell is at least 30% of the total surface area of the anode plate.
Измерительный серебро-селективный электрод 2 представляет собой модификацию ионоселективного электрода ИОНИКС 122 (ООО «ИOHИKC aльфa»). Который выполнен в виде трубки, на конце которой закреплен элемент, чувствительный к ионам серебра. Электродом 3 сравнения может быть выбран, например, рН - чувствительный дат- чик.Measuring silver-selective electrode 2 is a modification of the ion-selective electrode IONIKS 122 (LLC IOHIKC alpha). Which is made in the form of a tube, at the end of which an element sensitive to silver ions is fixed. The reference electrode 3 can be selected, for example, pH is a sensitive sensor.
Устройство, в котором реализуется предложенный способ, работает следующим образом.A device in which the proposed method is implemented operates as follows.
В камеру 1 через штуцер 9 подается проба фиксированного объема, отобранная, например, из нефтепровода с помощью автоматического перистальтического насоса. За- тем в камеру 1 тем же путем подается фиксированный объем электролита. Смесь жидкостей гомогенизируется - перемешивается с помощью магнитной мешалки 5 в течение 2-3 минут.A sample of a fixed volume, for example, taken from an oil pipeline using an automatic peristaltic pump, is supplied into the chamber 1 through the nozzle 9. Then, a fixed volume of electrolyte is supplied to chamber 1 in the same way. The mixture of liquids is homogenized - mixed with a magnetic stirrer 5 for 2-3 minutes.
Одновременно фиксируется ЭДС измерительной ячейки 4, составленной из стеклянного электрода 3, используемого в качестве электрода сравнения, и измерительного серебро-селективного электрода 2 (индикаторного электрода типа ИОНИКС 122).At the same time, the EMF of the measuring cell 4, composed of a glass electrode 3 used as a reference electrode, and a silver-selective measuring electrode 2 (indicator electrode of the IONIKS 122 type) is recorded.
Подается постоянное напряжение на электроды 6 и 7 генерирующей электрохимической ячейки и фиксируется изменение ЭДС измерительной ячейки 4 во времени. При последовательном достижении точек эквивалентности, измеряется количество электричества, затраченное на электролиз, и на основе объединенного закона Фарадея, рассчитыва- ется количество той или иной примеси, содержащейся в пробе.A constant voltage is applied to the electrodes 6 and 7 of the generating electrochemical cell and the change in the EMF of the measuring cell 4 in time is recorded. When the equivalence points are successively reached, the amount of electricity spent on electrolysis is measured, and based on the combined Faraday law, the amount of this or that impurity contained in the sample is calculated.
После окончания измерений смесь жидкостей удаляют из камеры 1 по штуцеру 10 с помощью насоса. Перед измерением следующей пробы камера 1 промывается реагентом для промывки при работающей магнитной мешалке 5.After the measurement, the mixture of liquids is removed from the chamber 1 through the nozzle 10 using a pump. Before measuring the next sample, the chamber 1 is washed with a washing reagent with a working magnetic stirrer 5.
Для обеспечения 100% выхода по току и требуемой электропроводности растворов в качестве электролита (буферного раствора) используются минеральные и органические соли, например, перхлорат или бензоат лития. Горизонтально расположенные индикаторный и генераторный электроды с расположенным между ними перемешивающим устройством и расположенной над ними гальванической измерительной ячейкой позволяют проводить измерения в органических средах, при этом устраняется влияние напряжения в ге- нераторной части на потенциал измерительного измерительной ячейки. Устройство заявленной конструкции позволяет повысить точность определения хлоридов, меркаптанов и сульфидов в нефти за счет исключения ошибок, связанных со стандартизацией титранта, упростить конструкцию анализатора и как следствие повысить точность определений. Типичная кривая последовательного кулонометрического титрования сульфидов, меркаптанов и хлоридов приведена на Фиг. 2. Кривая получена при концентрации сульфидов, меркаптанов и хлоридов равной 10"4м-эквл/л. Сила тока составляла 0,98 мА. В качестве электролита использовался 0,0 IM раствор перхлората лития в смешанном растворителе из равных объемов толуола и децилового спирта. Перед титрованием смеси приме- сей были определены точки эквивалентности на контрольных образцах, каждый из которых содержал только одну из названных примесей.To ensure 100% current efficiency and the required conductivity of the solutions, mineral and organic salts, for example, lithium perchlorate or lithium benzoate, are used as the electrolyte (buffer solution). The horizontally located indicator and generator electrodes with a mixing device between them and a galvanic measuring cell located above them allow measurements in organic media, while eliminating the influence of voltage in the generator part on the potential of the measuring measuring cell. The device of the claimed design allows to increase the accuracy of determination of chlorides, mercaptans and sulfides in oil by eliminating errors associated with the standardization of titrant, simplify the design of the analyzer and, as a result, increase the accuracy of the determination. A typical sequential coulometric titration curve of sulfides, mercaptans and chlorides is shown in FIG. 2. The curve was obtained at a concentration of sulfides, mercaptans and chlorides equal to 10 "4 mEq / L. The current strength was 0.98 mA. A 0.0 IM solution of lithium perchlorate in a mixed solvent of equal volumes of toluene and decyl alcohol was used as an electrolyte. Prior to titration of the admixture mixture, equivalence points on the control samples were determined, each of which contained only one of these impurities.
Определение концентрации хлорид ионов (Табл.l) возможно в диапазоне концентраций от 10 до 2000 мг/л. При концентрации хлорид ионов менее 10 мг/л фиксация точки эквивалентности затруднена т.к. скачок титрования достаточно сильно размыт. При концентрации выше 2000мг/л для сохранения временных характеристик анализа необходимо поддержание достаточно высокого тока электролиза выше 7 мА, что уменьшает выход по току и приводит к значительным погрешностям определений (выше 10% отн).Determination of chloride ion concentration (Table l) is possible in the concentration range from 10 to 2000 mg / l. At a chloride ion concentration of less than 10 mg / l, fixing the equivalence point is difficult because the titration jump is quite blurry. At a concentration above 2000 mg / l, in order to preserve the temporal characteristics of the analysis, it is necessary to maintain a sufficiently high electrolysis current above 7 mA, which reduces the current efficiency and leads to significant measurement errors (above 10% rel.).
Табл.l Определение содержания хлоридов в нефти.Table.l Determination of chloride content in oil.
Figure imgf000006_0001
Figure imgf000006_0001
Определение содержания меркаптанов (Taбл.2) возможно в диапазоне концентраций от 10 до 200 мг/л. В области концентраций меньше 1 мг/л сравнительно небольшая величина скачка потенциометрического детектора не позволяет зафиксировать точку эк- вивалентности, при концентрации меркаптанов выше 200 мr/л увеличивается ошибка определения, связанная с уменьшением выхода по току.Determination of the content of mercaptans (Table 2) is possible in the concentration range from 10 to 200 mg / l. In the concentration range of less than 1 mg / L, a relatively small jump in the potentiometric detector does not allow us to fix the equivalence point; when the concentration of mercaptans is above 200 mr / L, the determination error associated with a decrease in current efficiency increases.
Определение содержания сульфидов в нефти (Табл.З) возможно в диапазоне концентраций от 5 до 200 мг/л. При содержании сульфидов меньше 5 мг/л фиксация точки эквивалентности затруднена, что приводит к увеличению погрешности определения, уве- личение концентрации выше 200 мг/л увеличение погрешности определения связано с уменьшением выхода по току. Табл.2 Определение содержания меркаптанов в нефтиDetermination of sulfide content in oil (Table.Z) is possible in the concentration range from 5 to 200 mg / l. When the sulfide content is less than 5 mg / L, the fixation of the equivalence point is difficult, which leads to an increase in the determination error, an increase in concentration above 200 mg / L, an increase in the determination error is associated with a decrease in current efficiency. Table 2 Determination of mercaptan content in oil
Figure imgf000007_0001
Figure imgf000007_0001
Табл.З Определение содержания сульфидов в нефтиTable 3 Determination of sulphide content in oil
Figure imgf000007_0002
Figure imgf000007_0002
Taбл.4 Одновременное определение сульфидов, меркаптанов и хлоридов в нефти.Table 4 Simultaneous determination of sulfides, mercaptans and chlorides in oil.
Пример 1Example 1
Пример 2Example 2
Пример 3Example 3
Пример 4
Figure imgf000007_0003
Пример 5
Example 4
Figure imgf000007_0003
Example 5
Пример 6Example 6
Пример 7Example 7
Пример 8Example 8
Figure imgf000008_0001
Figure imgf000008_0001
Как видно из приведенных таблиц, существуют нефти и нефтепродукты с содержанием примесей в концентрациях меньше нижнего предела обнаружения, которые не детектируются данным способом. As can be seen from the tables, there are petroleum and petroleum products with impurities in concentrations below the lower detection limit, which are not detected by this method.

Claims

Формула изобретения Claim
1. Способ определения примесей в нефти и нефтепродуктах, включающий автоматический отбор пробы, перенос ее в измерительную электрохимическую ячейку, смешивание с минеральным или органическим электролитом, гомогенизацию полученной смеси, электрохимическую генерацию серебра анодным окислением генераторного серебряного электрода и последовательное кулонометрическое титрование смеси генерированными ионами серебра с фиксацией точек эквивалентности потенциометрическим способом с использованием индикаторного серебро-селективного электрода. 1. A method for determining impurities in oil and oil products, including automatic sampling, transferring it to a measuring electrochemical cell, mixing with a mineral or organic electrolyte, homogenization of the resulting mixture, electrochemical generation of silver by anodic oxidation of a silver generator electrode, and sequential coulometric titration of the mixture with generated silver ions with fixation of equivalence points by potentiometric method using silver-selective electronic indicator ktroda.
2. Способ по п.l отличающееся тем, что анодное окисление серебра проводят в среде содержащий электролит с концентрациями от 0,001 до 0,1 M при значениях тока электролиза от 3 до 0,01м А.2. The method according to claim 1, characterized in that the anodic oxidation of silver is carried out in a medium containing an electrolyte with concentrations from 0.001 to 0.1 M at an electrolysis current of 3 to 0.01 m A.
3. Способ по п.l, отличающийся тем, что в качестве органического электролита используют раствор литиевой соли органической кислоты. 3. The method according to claim 1, characterized in that a solution of a lithium salt of an organic acid is used as an organic electrolyte.
4. Способ по п.l, отличающийся тем, что в качестве минерального электролита используют раствор солей лития с неорганическими анионами с концентрацией 0,001 - 0,1 M.4. The method according to claim 1, characterized in that a solution of lithium salts with inorganic anions with a concentration of 0.001-0.1 M is used as a mineral electrolyte.
5. Способ по п.l отличающееся тем, что при потенциометрической индикации точек эквивалентности в качестве электрода сравнения используются рН - чувствитель- ный стеклянный электрод.5. The method according to claim 1, characterized in that for potentiometric indication of the equivalence points, a pH sensitive glass electrode is used as a reference electrode.
6. Устройство для определения примесей в нефти и нефтепродуктах включающее камеру с перемешивающим устройством и штуцерами для подачи и удаления жидкостей, причем камера состоит из двух сообщающихся между собой электрохимических ячеек, расположенных одна под другой, при этом в нижней части камеры располо- жена генерирующая ячейка с двумя горизонтально установленными пластинчатыми электродами, из которых нижний является катодом и выполнен из платины, а верхний выполнен из серебра и имеет отверстия для сообщения с расположенной выше измерительной электрохимической ячейкой, в состав которой входят измерительный ионоселективный электрод и электрод сравнения. 6. A device for determining impurities in oil and oil products comprising a chamber with a mixing device and fittings for supplying and removing liquids, the chamber consisting of two interconnected electrochemical cells located one below the other, while a generating cell is located in the lower part of the chamber with two horizontally mounted plate electrodes, of which the lower is the cathode and is made of platinum, and the upper is made of silver and has openings for communication with the higher ritelnoy electrochemical cell which comprises an ion-selective measuring electrode and a reference electrode.
7. Устройство по п.6, отличающееся тем, что перемешивающее устройство представляет собой магнитную мешалку, расположенную между электродами генерирующей ячейки.7. The device according to claim 6, characterized in that the mixing device is a magnetic stirrer located between the electrodes of the generating cell.
8. Устройство по п.6, отличающееся тем, что катод генерирующей ячейки вмонтирован в дно камеры. 8. The device according to claim 6, characterized in that the cathode of the generating cell is mounted in the bottom of the chamber.
9. Устройство по п.6, отличающееся тем, что площадь отверстий в аноде генерирующей ячейки составляет не менее 30% от общей поверхности пластины анода. 9. The device according to claim 6, characterized in that the area of the holes in the anode of the generating cell is at least 30% of the total surface of the plate of the anode.
PCT/RU2008/000209 2008-04-03 2008-04-03 Method and device for measuring impurities in oil and petroleum products WO2009123496A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2008/000209 WO2009123496A1 (en) 2008-04-03 2008-04-03 Method and device for measuring impurities in oil and petroleum products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2008/000209 WO2009123496A1 (en) 2008-04-03 2008-04-03 Method and device for measuring impurities in oil and petroleum products

Publications (1)

Publication Number Publication Date
WO2009123496A1 true WO2009123496A1 (en) 2009-10-08

Family

ID=41135768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2008/000209 WO2009123496A1 (en) 2008-04-03 2008-04-03 Method and device for measuring impurities in oil and petroleum products

Country Status (1)

Country Link
WO (1) WO2009123496A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108836A (en) * 2019-05-30 2019-08-09 岭东核电有限公司 The measuring method and its application of chlorine ion concentration in nuclear power plant's liquid waste treatment system
RU2735372C1 (en) * 2020-05-29 2020-10-30 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Method of determining content of sulphides in deposits in oil-field equipment
RU2743783C1 (en) * 2020-06-30 2021-02-25 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Method for determining sediment composition in oil preparation equipment
CN112964826A (en) * 2021-03-17 2021-06-15 中国大唐集团科学技术研究院有限公司华中电力试验研究院 Trapping device and method for measuring chloride ions in oil through high-temperature combustion hydrolysis-potentiometric titration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU320772A1 (en) * Специальное конструкторское бюро автоматике нефтепереработке
GB972172A (en) * 1962-10-24 1964-10-07 Beckman Instruments Inc Coulometric reagent generator
SU443301A1 (en) * 1972-12-15 1974-09-15 Предприятие П/Я Х-5498 Device for coulometric titration
SU645077A1 (en) * 1977-05-03 1979-01-30 Предприятие П/Я А-7564 Method of quantitative determining of aliphatic and aromatic alcohols in hydrocarbons
GB2237387A (en) * 1989-09-25 1991-05-01 Petrochem Analysis Limited Coulometric titration system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU320772A1 (en) * Специальное конструкторское бюро автоматике нефтепереработке
GB972172A (en) * 1962-10-24 1964-10-07 Beckman Instruments Inc Coulometric reagent generator
SU443301A1 (en) * 1972-12-15 1974-09-15 Предприятие П/Я Х-5498 Device for coulometric titration
SU645077A1 (en) * 1977-05-03 1979-01-30 Предприятие П/Я А-7564 Method of quantitative determining of aliphatic and aromatic alcohols in hydrocarbons
GB2237387A (en) * 1989-09-25 1991-05-01 Petrochem Analysis Limited Coulometric titration system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B.A. LOPATIN. ET AL.: "Teoreticheskie osnovy elektrokhimicheskikh metodov analiza. Moskva", VYSSHAYA SHKOLA, vol. 47, 1975, pages 70,71, - 83,84 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108836A (en) * 2019-05-30 2019-08-09 岭东核电有限公司 The measuring method and its application of chlorine ion concentration in nuclear power plant's liquid waste treatment system
RU2735372C1 (en) * 2020-05-29 2020-10-30 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Method of determining content of sulphides in deposits in oil-field equipment
RU2743783C1 (en) * 2020-06-30 2021-02-25 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Method for determining sediment composition in oil preparation equipment
CN112964826A (en) * 2021-03-17 2021-06-15 中国大唐集团科学技术研究院有限公司华中电力试验研究院 Trapping device and method for measuring chloride ions in oil through high-temperature combustion hydrolysis-potentiometric titration
CN112964826B (en) * 2021-03-17 2023-10-17 中国大唐集团科学技术研究院有限公司华中电力试验研究院 Device and method for capturing chloride ions in high-temperature combustion hydrolysis-potentiometric titration measurement oil

Similar Documents

Publication Publication Date Title
Johnson et al. Coulometric TCO2 analyses for marine studies; an introduction
Meyer et al. Determination of water by titration wth coulometrically generated Karl Fischer reagent
CN103278551A (en) Active carbon double-electrode system-based heavy metal electrochemical sensor and method for detection of heavy metals by the active carbon double-electrode system-based heavy metal electrochemical sensor
Shibata et al. Stability of a Ag/AgCl reference electrode equipped with an ionic liquid salt bridge composed of 1-methyl-3-octylimidazolium bis (trifluoromethanesulfonyl)-amide in potentiometry of pH standard buffers
CN105531584A (en) Ion-selective electrode
US20020081231A1 (en) Fluid analyte measurement system
WO2009123496A1 (en) Method and device for measuring impurities in oil and petroleum products
CN101825579A (en) Method for measuring concentration of polyacrylamide solution
US7632393B2 (en) Total organic carbon (TOC) analyzer
CN102072930A (en) Flow injection serially connected microelectrode electrochemical automatic method and device for simultaneous measurement of various electrolytes in blood sample
RU2457475C2 (en) Method and apparatus for determining impurities in oil and oil products
CN110045058A (en) Hydrogen fluoride content test method in electrolyte
CN102841122A (en) Fe<2+> content rapid analysis method for LiFePO4 (lithium iron phosphate)/C (carbon) composite anode material
CN113049585A (en) Analysis method of sulfate ions in additive for lithium ion battery electrolyte
CN216870444U (en) Stable electrolyte concentration detection device
Slepchenko et al. An electrochemical sensor for detecting selenium in biological fluids on an arenediazonium tosylate-modified metal electrode
CN111751433A (en) Method for measuring chloride ion content by adopting B-Z chemical oscillation reaction
CN112083121A (en) Method for measuring content of free acid in lithium ion battery electrolyte
Sevilla III et al. The electrician's multimeter in the chemistry teaching laboratory: Part 2: Potentiometry and conductimetry
CN216082589U (en) Portable drilling fluid filtrating ion concentration detection device
Evans Coulometric titration of cyclohexene with bromine
RU2302628C1 (en) Electrochemical mode of determination of selenium and arsenic in natural objects
Tao et al. Determination of total alkalinity and calcium concentration of seawater rapidly and automaticly with small-amount samples
RU2107286C1 (en) Method of determination of octadecylamine concentration in water heat carrier and device intended for its realization
Ozeki et al. Plots of the pH versus Electric Conductivity of Rainwater for Evaluating the Accuracy of pH Measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010144835

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 08873796

Country of ref document: EP

Kind code of ref document: A1