WO2009123209A1 - Polymerizable composition, resin molded article, and cross-linked resin molded article - Google Patents

Polymerizable composition, resin molded article, and cross-linked resin molded article Download PDF

Info

Publication number
WO2009123209A1
WO2009123209A1 PCT/JP2009/056707 JP2009056707W WO2009123209A1 WO 2009123209 A1 WO2009123209 A1 WO 2009123209A1 JP 2009056707 W JP2009056707 W JP 2009056707W WO 2009123209 A1 WO2009123209 A1 WO 2009123209A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin molded
polymerizable composition
atom
carbene complex
complex catalyst
Prior art date
Application number
PCT/JP2009/056707
Other languages
French (fr)
Japanese (ja)
Inventor
有信 堅田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2010505947A priority Critical patent/JP5365625B2/en
Publication of WO2009123209A1 publication Critical patent/WO2009123209A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Definitions

  • the present invention relates to a polymerizable composition, a resin molded body, and a crosslinked resin molded body. More specifically, a cross-linked resin molded article or a cross-linked resin composite suitable as an electric material used for an electric circuit board can be obtained, and the polymerizability that achieves both a rise in viscosity over time and a high polymerization conversion rate. Composition, resin molded body obtained using the polymerizable composition, and electrical insulation, adhesion, mechanical strength, heat resistance, and dielectric properties obtained using the polymerizable composition or the resin molded body The present invention relates to a crosslinked resin molded article excellent in
  • a polymer exhibiting excellent mechanical or electrical properties can be obtained by bulk polymerization of a cycloolefin monomer using a metathesis polymerization catalyst such as a ruthenium carbene complex.
  • Patent Document 1 discloses that a polymerizable composition containing a norbornene-based monomer, a ruthenium carbene complex catalyst, a chain transfer agent, and a crosslinking agent is subjected to metathesis bulk polymerization to obtain a crosslinkable thermoplastic resin, and this crosslinkable thermoplastic resin. Is laminated on a substrate or the like and crosslinked to obtain a composite material.
  • metathesis polymerization using a ruthenium carbene complex catalyst has high activity and extremely high polymerization rate compared to polymerization of an epoxy resin or the like usually used as an insulating material for an electric circuit board. Therefore, when forming into a film shape by impregnating the polymerizable composition into a fiber reinforcement, the molecular weight and viscosity of the polymerizable composition are increased before molding. There is a problem that it becomes difficult to impregnate the product with a fiber reinforcing material, and the properties of the resulting cross-linkable thermoplastic resin become unstable.
  • Patent Document 2 and Patent Document 3 disclose a ruthenium carbene complex having a chelating carbene ligand, and the progress of the reaction is delayed by using the complex having the structure as a metathesis polymerization catalyst. It has been suggested that In particular, in Patent Document 3, by using two types of isomers of a ruthenium carbene complex having a chelating carbene ligand, polymerization latency is exploited by utilizing the difference in polymerization activity between the two types of isomers. It is disclosed that the period can be controlled.
  • Special Table 2002-506455 Special table 2007-530706 gazette
  • Patent Document 4 discloses a method for producing a ruthenium carbene complex catalyst using alkylacetylene, which suggests that the productivity of catalyst synthesis is increased.
  • Patent Document 4 there is no description about the characteristics after monomer polymerization using the synthesized ruthenium carbene complex catalyst. According to the study of the present inventor, in the disclosed ruthenium carbene complex catalyst, the reaction as described above is not performed. It was not possible to simultaneously control the progress and the polymerization conversion of the monomer. JP-T-2001-503434
  • Non-Patent Document 1 also discloses a ruthenium carbene complex catalyst having a chelating carbene ligand.
  • a catalyst disclosed in Non-Patent Document 1 it has been impossible to achieve both a rise in viscosity due to the passage of time of the polymerizable composition and a high polymerization conversion rate.
  • Non-Patent Document 1 discusses that an equilibrium reaction occurs in which a compound in which a carbene substituent of a ruthenium carbene complex catalyst is chelated becomes an unchelated compound in the presence of tricyclohexylphosphine.
  • the method described in Non-Patent Document 1 allows an equilibrium reaction between compounds having structures represented by Formula (A1) and Formula (A2) described later. I could not confirm what would happen. Therefore, in the method of Non-Patent Document 1, the composition of the ruthenium carbene complex catalyst cannot be controlled.
  • An object of the present invention is to obtain a resin molded article suitable as an electric material used for an electric circuit board and the like, and a polymerizable composition that achieves both suppression of increase in viscosity over time and high polymerization conversion, and production thereof It is to provide a method. Further, a resin molded body obtained by using the polymerizable composition, a method for producing the same, a crosslinked resin molded body having excellent electrical insulation, adhesion, mechanical strength, heat resistance, dielectric properties, and the like, and production thereof It is to provide a method.
  • a ruthenium carbene complex catalyst having a chelate coordination structure [ruthenium having a structure represented by the formula (A1) described later] is used in the production of a polymerizable composition.
  • a mixture of a carbene complex catalyst (A1)] and a ruthenium carbene complex catalyst [ruthenium carbene complex catalyst (A2) having a structure represented by the formula (A2) described later] having no chelate coordination structure It is possible to simultaneously satisfy the two contradictory properties of suppressing the increase in viscosity over time and obtaining a high monomer polymerization conversion rate, whereby the fibrous composition can be uniformly impregnated with the polymerizable composition.
  • the cross-linked resin molded body and the cross-linked resin excellent in electrical insulation, adhesion, mechanical strength, heat resistance, dielectric properties, etc. It has been found that a fat composite can be produced stably.
  • the present inventor further found out a production method that is excellent in productivity of the polymerizable composition by preparing the mixture of ruthenium carbene complex catalyst at once.
  • the present invention has been completed based on these findings.
  • L 1 and L 2 are neutral electron donating ligands;
  • X 1 and X 2 are anionic ligands;
  • R 1 represents a hydrogen atom, a carbon atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms substituted with a group containing any of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom Is;
  • A is a divalent or trivalent organic group;
  • Z is an electron donating group.
  • L 1 and L 2 are neutral electron donating ligands;
  • X 1 and X 2 are anionic ligands;
  • R 1 represents a hydrogen atom, a carbon atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms substituted with a group containing any of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom Is;
  • A is a divalent or trivalent organic group;
  • Z is an electron donating group.
  • [6] A method for producing a resin molded body comprising a step of subjecting the polymerizable composition according to [5] to metathesis bulk polymerization.
  • [7] A method for producing a crosslinked resin molded product, comprising a step of crosslinking the resin molded product obtained by the production method according to [6].
  • [8] A ruthenium carbene complex catalyst (A1) and a ruthenium carbene complex catalyst (A2) defined in the above [1] by reacting the compound (B) and the compound (C) defined in the above [2]. ) And a step of mixing the ruthenium carbene complex catalyst mixture with a cycloolefin monomer.
  • a resin molded body obtainable by the production method according to [6].
  • [10] A crosslinked resin molded article obtainable by the production method according to [7].
  • the polymerizable composition of the present invention can simultaneously satisfy two contradictory properties of suppressing the increase in viscosity over time and increasing the polymerization conversion rate of the monomer, and can uniformly impregnate the fibrous reinforcement. It is.
  • the polymerizable composition of the present invention is bulk polymerized and then crosslinked, a crosslinked resin molded article excellent in properties such as electrical insulation, adhesion, mechanical strength, heat resistance, and dielectric properties can be stably produced.
  • a polymerizable composition is prepared by using a mixture of ruthenium carbene complex catalysts prepared in a lump by the production method of the present invention, the polymerizable composition having the above-described characteristics can be produced with high productivity.
  • the cross-linked resin molded product and the cross-linked resin composite obtained using the polymerizable composition of the present invention are suitable as an electric material used for an electric circuit board.
  • the polymerizable composition of the present invention contains a mixture of a ruthenium carbene complex catalyst and a cycloolefin monomer.
  • the cycloolefin monomer constituting the polymerizable composition of the present invention is a compound having a ring structure formed of carbon atoms and having a carbon-carbon double bond in the ring. The carbon-carbon double bond is a bond that can be opened by a metathesis reaction to form a polymer.
  • Examples of cycloolefin monomers include norbornene monomers.
  • the norbornene-based monomer is a cycloolefin monomer containing a norbornene ring.
  • the norbornene monomer has a hydrocarbon group having 1 to 20 carbon atoms such as an alkyl group, an alkenyl group, an alkylidene group, and an aryl group, and a polar group such as a carboxyl group or an acid anhydride group as a substituent. May be.
  • a polar group such as a carboxyl group or an acid anhydride group as a substituent. May be.
  • the norbornene ring double bond it may further have a double bond.
  • norbornene-based monomers that do not contain a polar group that is, are composed only of carbon atoms and hydrogen atoms are preferable.
  • the number of rings constituting the norbornene-based monomer is preferably 3 to 6, more preferably 3 or 4, and particularly preferably 4.
  • the content of the norbornene monomer in the cycloolefin monomer is not particularly limited, but is preferably 60% by weight or more, more preferably 80% by weight or more. Further, the total amount of the cycloolefin monomer may be a norbornene monomer.
  • Norbornenes having 2 rings such as -2-norbornene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, 5-propenyl-2-norbornene;
  • the number of rings such as 5-cyclohexyl-2-norbornene, 5-cyclopentyl-2-norbornene, 5-cyclohexenyl-2-norbornene, 5-cyclopentenyl-2-norbornene, 5-phenyl-2-norbornene is 3 Norbornenes; dicyclopentadiene, methyldicyclopentadiene, dihydrodicyclopentadiene (also referred to as tricyclo [5.2.1.0 2,6 ] dec-8-ene), etc. Pentadienes;
  • Examples of norbornene-based monomers containing a polar group include tetracyclo [6.2.1.1 3,6 . 0 2,7 ] methyl dodeca-9-ene-4-carboxylate, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4-methanol, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4-carboxylic acid, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4,5-dicarboxylic acid, tetracyclo [6.2.1.1 3,6 .
  • dodec-9-ene-4,5-dicarboxylic anhydride methyl 5-norbornene-2-carboxylate, methyl 2-methyl-5-norbornene-2-carboxylate, 5-norbornene-2 acetate -Yl, 5-norbornene-2-methanol, 5-norbornene-2-ol, 5-norbornene-2-carbonitrile, 2-acetyl-5-norbornene, 7-oxa-2-norbornene and the like.
  • monocyclic cycloolefins such as cyclobutene, cyclopentene, cyclooctene, cyclododecene, 1,5-cyclooctadiene, and derivatives thereof having a substituent are added to the norbornene-based monomer for polymerization.
  • the above cycloolefin monomers can be used alone or in combination of two or more. It is possible to control the glass transition temperature and the melting temperature of the resulting resin molded article by using two or more monomers together and changing the quantity ratio.
  • the addition amount of the monocyclic cycloolefins and their derivatives is usually 40% by weight or less, preferably 20% by weight or less, based on the total amount of the cycloolefin monomer. When the addition amount exceeds 40% by weight, the heat resistance of the polymer obtained by bulk polymerization tends to be insufficient.
  • the mixture of the ruthenium carbene complex catalyst constituting the polymerizable composition of the present invention includes a ruthenium carbene complex catalyst (A1) having a chelate-coordinated ring structure having a structure represented by the following formula (A1): And a ruthenium carbene complex catalyst (A2) having a structure represented by the formula (A2) and having no chelate coordination ring structure.
  • Z is chelate-coordinated to Ru, that is, Z is coordinated to Ru via a lone pair as a ligand, and C, A, Z and Ru Thus, a chelate coordination ring structure is formed.
  • R 1 is a hydrogen atom, a carbon atom, a halogen atom, or a group containing any of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom.
  • X 1 and X 2 each independently represents an arbitrary anionic ligand.
  • L 1 and L 2 each independently represent a neutral electron donating ligand.
  • A represents a divalent or trivalent organic group.
  • An organic group is an atomic group containing a carbon atom. The organic group is not particularly limited.
  • Z is an electron donating group.
  • the electron donating group is an atomic group composed of at least one atom having an unshared electron pair.
  • Examples of the electron donating group include an atomic group having a structure represented by OR 2 , O, PR 3 R 4 , or NR 5 R 6 .
  • R 2 to R 6 each independently represents a hydrocarbon group having 1 to 20 carbon atoms.
  • Anionic ligands are ligands that have a negative charge when pulled away from the central metal.
  • the anionic ligand include halogen atoms such as F, Cl, Br, and I. Among these, Cl (chlorine atom) is preferable.
  • a neutral electron donating ligand is a ligand that has a neutral charge when pulled away from the central metal.
  • the neutral electron donating ligand is not particularly limited, and examples thereof include carbene compounds, carbonyls, amines, pyridines, ethers, nitriles, esters, phosphines, thioethers, aromatic compounds, olefins. , Isocyanides, thiocyanates and the like.
  • carbene compounds, phosphines, ethers, and pyridines are preferable, carbene compounds are more preferable, and heteroatom-containing carbene compounds are particularly preferable.
  • the heteroatom in the heteroatom-containing carbene compound means an atom belonging to Group 15 and Group 16 of the periodic table (according to the long-period type periodic table; the same shall apply hereinafter).
  • O, P, S, As, Se, etc. can be mentioned.
  • N, O, P, and S are preferable, and N (nitrogen atom) is more preferable.
  • the heteroatom-containing carbene compound preferably has a structure in which heteroatoms are adjacently bonded to both sides of the carbene carbon atom, and further comprises a heterocycle comprising the carbene carbon atom and heteroatoms on both sides thereof. It is more preferable. Moreover, it is preferable that the hetero atom adjacent to the carbene carbon atom has a bulky substituent.
  • heteroatom-containing carbene compound examples include compounds represented by the following formula (D) or formula (E).
  • R 7 to R 10 are each independently a hydrogen atom, a halogen atom, or a carbon atom that may contain a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom. This represents a hydrocarbon group of 1 to 20. R 7 to R 10 may be bonded to each other in any combination to form a ring.
  • Examples of the divalent or trivalent organic group represented by A in the formula (A1) and the formula (A2) include a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom. Examples thereof may include a divalent or trivalent hydrocarbon group having 1 to 20 carbon atoms.
  • the “hydrocarbon group” may be a chain hydrocarbon group or a cyclic hydrocarbon group.
  • a preferable example of A is a cyclic hydrocarbon group containing one nitrogen atom, and the cyclic hydrocarbon bonded to the carbene carbon bonded to the ruthenium atom at the nitrogen atom.
  • Specific examples of such cyclic hydrocarbon groups include groups having the following structures.
  • the combination of the ruthenium carbene complex catalyst (A1) and the ruthenium carbene complex catalyst (A2) is, for example, (1,3-dimesityl-4- Imidazoline-2-ylidene) (2-pyrrolidone-1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride and (1,3-dimesityl-4-imidazoline-2-ylidene) (2-pyrrolidone-1-ylmethylene) ruthenium dichloride (1,3-dimesityl-4-imidazoline-2-ylidene) (2-phthalimido-1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride and (1,3-dimesityl-4-imidazoline-2-ylidene) ( 2-phthalimido-1-ylmethyl (Len) ruthen
  • the amount ratio of the ruthenium carbene complex catalyst (A1) and (A2) is in this range, the two contradictory properties of suppressing the increase in viscosity with time and increasing the polymerization conversion of the monomer are further satisfied at the same time. This is preferable.
  • the use amount of the ruthenium carbene complex catalyst as the mixture of the polymerizable composition of the present invention is usually 1: 2,000 to 1: 2,000,000 in terms of a molar ratio of (ruthenium atom: cycloolefin monomer).
  • the range is preferably 1: 5,000 to 1: 1,000,000, more preferably 1: 10,000 to 1: 500,000.
  • the ruthenium carbene complex catalyst can be used, if desired, dissolved or suspended in a small amount of an inert solvent.
  • solvents include chain aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, liquid paraffin, mineral spirits; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane , Cycloaliphatic hydrocarbons such as decahydronaphthalene, dicycloheptane, tricyclodecane, hexahydroindene and cyclooctane; aromatic hydrocarbons such as benzene, toluene, xylene and indene; nitrogen-containing compounds such as nitromethane, nitrobenzene and acetonitrile Hydrocarbons; oxygen-
  • reaction (a) In the formulas (B) and (C), L 1 , L 2 , X 1 , X 2 , R 1 , A, and Z are the same as described in the formulas (A1) and (A2). Reaction (a) is performed as follows. The compound (B) having a structure represented by the formula (B) and the compound (C) having a structure represented by the formula (C) are dissolved in a solvent.
  • the amount of compound (C) added is usually in the range of 2 to 30 equivalents, preferably 5 to 25 equivalents, more preferably 10 to 20 equivalents, relative to compound (B).
  • the solvent is capable of dissolving the ruthenium carbene complex catalysts (A1) and (A2) and the compounds (B) and (C), and is preferably inert to the ruthenium carbene complex catalyst.
  • Specific examples of the solvent include toluene, benzene, tetrahydrofuran, dichloromethane, and chloroform. Of these, tetrahydrofuran and benzene are preferable, and tetrahydrofuran is more preferable.
  • the amount of the solvent is not particularly limited as long as the ruthenium carbene complex catalysts (A1) and (A2) and the compounds (B) and (C) are dissolved, but usually 50 parts per 100 parts by weight of the compound (B). It is in the range of ⁇ 300 parts by weight, preferably 80 to 200 parts by weight. When the amount of the solvent is within this range, the compounds (B) and (C) are sufficiently dissolved, and the efficiency of drying the solvent described later is excellent and preferable.
  • the reaction system is preferably filled with an inert gas so that the compound (B) does not decompose. Specifically, nitrogen or argon gas is usually selected as the inert gas.
  • the dissolution temperature is usually in the range of ⁇ 60 to + 20 ° C., preferably ⁇ 50 to 0 ° C., more preferably ⁇ 40 to ⁇ 10 ° C. When the dissolution temperature is within this range, the compound (B) does not decompose and is excellent in workability.
  • a reaction accelerator for reaction (a) such as CH 3 CN and a compound having a structure represented by CH ⁇ CR 11 are added. It is preferable to start the reaction for producing the ruthenium carbene complex catalyst mixture by increasing the temperature in the container.
  • R 11 is not particularly limited, and examples thereof include alkyl groups, alkenyl groups, aryl groups, alkoxy groups, ether bond-containing groups, amino groups, nitrile groups, thiol groups, carbonyl groups, aldehyde groups, ketone groups, carboxyl groups, and esters. Examples thereof include a bond-containing group and an amide group. Preferably, it is a carboxyl group.
  • the reaction temperature is usually ⁇ 20 to + 50 ° C., preferably 0 to 40 ° C. When the reaction temperature is within this range, it is preferable that the compound (B) does not decompose and the reaction proceeds without delay.
  • the amount ratio of the ruthenium carbene complex catalysts (A1) and (A2) in the mixture can be controlled to a desired value, and the ruthenium carbene can be efficiently performed in one reaction. Mixtures of complex catalysts can be produced. Within this range, particularly when the reaction temperature is high, the ratio of the ruthenium carbene complex catalyst (A1) can be increased in the mixture of the ruthenium carbene complex catalyst (A1) and (A2) to be produced.
  • the ratio of the ruthenium carbene complex catalyst (A2) can be increased.
  • the reaction time is appropriately selected depending on the purpose, but is usually in the range of 20 minutes to 3 hours, preferably 1 hour to 2 hours.
  • X ⁇ 1 >, X ⁇ 2 >, L ⁇ 1 > and L ⁇ 2 > substitution for raising polymerization activity is usually performed, and the structure of a ruthenium carbene complex catalyst can be changed to a more preferable aspect.
  • X 1 and X 2 can be replaced with the desired halogen atom by reaction with HF, HCl, HBr, or HI.
  • L 1 and L 2 can be substituted with a heteroatom-containing carbene or the like in the presence of potassium-t-butoxide or the like.
  • the ruthenium carbene complex catalyst can be substituted with a desired structure, and a more suitable mixture of the ruthenium carbene complex catalyst (A1) and (A2) can be produced.
  • the produced mixture of the ruthenium carbene complex catalysts (A1) and (A2) is isolated from other compounds in the reaction system according to a usual method.
  • the isolation method include methods such as adsorption of impurities, recrystallization, and precipitation with a poor solvent, usually after drying the solvent used in the reaction under reduced pressure and passing through a column containing silica.
  • precipitation with a poor solvent is preferable because of excellent workability.
  • the poor solvent is not particularly limited as long as it does not dissolve the ruthenium carbene complex catalyst, and examples thereof include methanol, ethanol, n-pentane, and n-hexane.
  • the temperature at which the ruthenium carbene complex catalyst is precipitated with a poor solvent is preferably lower.
  • a mixture of the ruthenium carbene complex catalysts (A1) and (A2) can be obtained.
  • a mixture is dissolved or dispersed in an appropriate solvent to prepare a catalyst solution, which is used for polymerization of cycloolefin monomer.
  • a catalyst solution which is used for polymerization of cycloolefin monomer.
  • the cycloolefin monomer can be polymerized while maintaining the quantitative ratio of the ruthenium carbene complex catalysts (A1) and (A2) in the obtained mixture.
  • the polymerizable composition of the present invention is obtained.
  • the mixing ratio of the mixture and the cycloolefin monomer may be appropriately determined in consideration of the amount of the ruthenium carbene complex catalyst used.
  • the manufacturing method of the polymeric composition containing the mixture of the ruthenium carbene complex catalyst (A1) and (A2) of this invention includes the process of manufacturing this mixture collectively, it has high productivity.
  • the polymerizable composition of the present invention comprises, for example, a ruthenium carbene complex catalyst (A1) and (A2) with reference to a known production method of a ruthenium carbene complex catalyst and a method described in Example 3 described later. It can also be prepared by preparing separately and mixing them to obtain a mixture of ruthenium carbene complex catalysts which are mixed with cycloolefin monomer.
  • additives such as polymerization reaction retarders, chain transfer agents, crosslinking agents, radical crosslinking retarders, modifiers, antioxidants, difficulty A flame retardant, a filler, a colorant, a light stabilizer and the like can be contained. These can be used by, for example, dissolving or dispersing in advance in a monomer liquid or a catalyst liquid when the polymerizable composition of the present invention is produced.
  • polymerization reaction retarder examples include phosphines such as triphenylphosphine, tributylphosphine, trimethylphosphine, and triethylphosphine; Lewis bases such as aniline and pyridine.
  • phosphines are preferred because the pot life of the polymerizable composition of the present invention can be controlled efficiently and the inhibition of the polymerization reaction is small.
  • cycloolefin monomers a monomer having a 1,5-diene structure or a 1,3,5-triene structure in the molecule also functions as a polymerization reaction retarder. Examples of such compounds include 1,5-cyclooctadiene and 5-vinyl-2-norbornene.
  • chain olefins which may have a substituent can be usually used. Specifically, aliphatic olefins such as 1-hexene and 2-hexene; olefins having an aromatic group such as styrene, divinylbenzene and stilbene; olefins having an alicyclic hydrocarbon group such as vinylcyclohexane; Vinyl ethers such as ethyl vinyl ether; vinyl ketones such as methyl vinyl ketone, 1,5-hexadien-3-one, 2-methyl-1,5-hexadien-3-one; styryl acrylate, ethylene glycol diacrylate; allyltri Vinylsilane, allylmethyldivinylsilane, allyldimethylvinylsilane; glycidyl acrylate, allylglycidyl ether; allylamine, 2- (diethylamino) ethanol vinyl ether, 2- (diethylamino)
  • chain transfer agents compounds represented by the formula (F): CH 2 ⁇ CH—Y—OCO—CR 12 ⁇ CH 2 are preferable.
  • Y in the formula (F) is an alkylene group, and R 12 is a hydrogen atom or a methyl group.
  • the number of carbon atoms of the alkylene group is not particularly limited, but is usually 1 to 20, preferably 4 to 12.
  • Examples of the compound represented by the formula (F) include allyl methacrylate, 3-buten-1-yl methacrylate, allyl acrylate, 3-buten-1-yl acrylate, undecenyl methacrylate, hexenyl methacrylate, and the like. It is done. Of these, undecenyl methacrylate and hexenyl methacrylate are particularly preferred.
  • the addition amount of the chain transfer agent is usually 0.01 to 10% by weight, preferably 0.1 to 5% by weight, based on the total amount of the cycloolefin monomer.
  • the addition amount of the chain transfer agent is within this range, a resin molded product having a high metathesis polymerization reaction rate and capable of being crosslinked by the crosslinking agent can be efficiently obtained.
  • the soot polymerizable composition further contains a crosslinking agent in order to obtain a resin molded body that can be crosslinked after bulk polymerization.
  • the crosslinking agent is a compound that can induce a crosslinking reaction in the resin molded body.
  • examples of the crosslinking agent include radical generators, epoxy compounds, isocyanate group-containing compounds, carboxyl group-containing compounds, acid anhydride group-containing compounds, amino group-containing compounds, Lewis acids, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • radical generators epoxy compounds, isocyanate group-containing compounds, carboxyl group-containing compounds, and acid anhydride group-containing compounds
  • radical generators epoxy compounds, and isocyanate group-containing compounds
  • carboxyl group-containing compounds, and acid anhydride group-containing compounds are preferred, and the use of radical generators, epoxy compounds, and isocyanate group-containing compounds is more preferred.
  • the use of radical generators is particularly preferred.
  • radical generator examples include organic peroxides, diazo compounds, and nonpolar radical generators.
  • organic peroxide examples include hydroperoxides such as t-butyl hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide; dicumyl peroxide, t-butylcumyl peroxide, ⁇ , ⁇ '-bis (t- Butylperoxy-m-isopropyl) benzene, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) -3-hexyne, 2,5-dimethyl-2,5-di ( dialkyl peroxides such as t-butylperoxy) hexane; diacyl peroxides such as dipropionyl peroxide and benzoyl peroxide; 2,2-di (t-butylperoxy) butane, 1,1-di (t-hexylperoxy)
  • diazo compound examples include 4,4′-bisazidobenzal (4-methyl) cyclohexanone, 4,4′-diazidochalcone, 2,6-bis (4′-azidobenzal) cyclohexanone, and 2,6-bis.
  • Nonpolar radical generators used in the present invention include 2,3-dimethyl-2,3-diphenylbutane, 2,3-diphenylbutane, 1,4-diphenylbutane, 3,4-dimethyl-3,4- Diphenylhexane, 1,1,2,2-tetraphenylethane, 2,2,3,3-tetraphenylbutane, 3,3,4,4-tetraphenylhexane, 1,1,2-triphenylpropane, 1 1,1,2-triphenylethane, triphenylmethane, 1,1,1-triphenylethane, 1,1,1-triphenylpropane, 1,1,1-triphenylbutane, 1,1,1-triphenyl And phenylpentane, 1,1,1-triphenyl-2-propene, 1,1,1-triphenyl-4-pentene, 1,1,1-triphenyl-2-phenylethane, etc. .
  • radical generators may be used alone or in combination of two or more. It is possible to control the glass transition temperature and the molten state of the resin molded body and cross-linked resin molded body obtained by using two or more kinds of radical generators together and changing the quantity ratio thereof.
  • the amount of the crosslinking agent is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the cycloolefin monomer. If the amount of the crosslinking agent is too small, crosslinking may be insufficient, and a crosslinked product having a high crosslinking density may not be obtained. When the amount of the crosslinking agent is too large, the crosslinking effect is saturated, but there is a possibility that a resin molded body and a crosslinked resin molded body having desired physical properties cannot be obtained.
  • crosslinking aids include hydrocarbon compounds having two or more isopropenyl groups such as diisopropenylbenzene; methacrylate compounds such as lauryl methacrylate and trimethylolpropane trimethacrylate; cyanuric acids such as triallyl cyanurate and triallyl isocyanurate Compounds; imide compounds such as maleimide; and the like.
  • the amount of the crosslinking aid is not particularly limited, but is usually 0 to 100 parts by weight, preferably 0 to 50 parts by weight with respect to 100 parts by weight of the cycloolefin monomer.
  • radical crosslinking retarders examples include alkoxyphenols, catechols, and benzoquinones, and alkoxyphenols such as 3,5-di-t-butyl-4-hydroxyanisole are preferred.
  • flame retardants examples include phosphorus flame retardants, nitrogen flame retardants, halogen flame retardants, metal hydroxide flame retardants such as aluminum hydroxide, and antimony compounds such as antimony trioxide. Although a flame retardant may be used independently, you may use it in combination of 2 or more type.
  • filler various materials can be used regardless of whether they are organic or inorganic as long as they are insoluble in the cycloolefin monomer and the solvent used as required.
  • a filler is suitably selected according to the use of the resin molding obtained and a crosslinked resin molding.
  • the average particle diameter is not particularly limited, it is usually a median diameter containing 50% by volume of the total filler measured with a laser scattering diffraction particle size distribution meter, and is usually 0.001 to 70 ⁇ m, preferably 0.01 to 50 ⁇ m, more The thickness is preferably 0.05 to 15 ⁇ m.
  • the inorganic filler include glass, ceramic, silica and the like.
  • the organic filler include polyolefin, various elastomers, waste plastics and the like.
  • short fiber fillers such as chopped strands and milled fibers can also be used.
  • the fiber examples include inorganic fibers such as glass fibers, carbon fibers, and metal fibers, or organic fibers such as aramid fibers, nylon fibers, jute fibers, kenaf fibers, bamboo fibers, polyethylene fibers, and polypropylene fibers.
  • these fillers may be used alone or in combination of two or more.
  • the filler one that has been surface-treated with a silane coupling agent or the like can also be used.
  • the amount of the filler is usually 0 to 600 parts by weight, preferably 50 to 500 parts by weight, and more preferably 50 to 300 parts by weight with respect to 100 parts by weight of the cycloolefin monomer.
  • colorant dyes, pigments and the like are used. There are various kinds of dyes, and known dyes can be appropriately selected and used.
  • the polymerizable composition of the present invention is prepared by preparing a liquid (catalyst liquid) in which a ruthenium carbene complex catalyst is dissolved or dispersed in an appropriate solvent, and separately adding other additives to a cycloolefin monomer as required ( It is preferable to prepare a monomer liquid) by adding a catalyst liquid to the monomer liquid and stirring.
  • a catalyst liquid to the monomer liquid and stirring.
  • the addition of the ruthenium carbene complex catalyst is preferably performed immediately before the bulk polymerization described below.
  • the chain transfer agent, radical generator, radical crosslinking retarder, etc. may be added in advance to the monomer liquid and / or catalyst liquid before mixing the monomer liquid and catalyst liquid, or the monomer liquid and catalyst liquid. May be added simultaneously with or after mixing.
  • the resin molded product of the present invention can be obtained by bulk polymerization of the polymerizable composition substantially without using a solvent.
  • a method of coating the polymerizable composition on a support, and then bulk polymerization for example, (a) a method of coating the polymerizable composition on a support, and then bulk polymerization, (b) Examples thereof include a method in which the polymerizable composition is injected into the space of the mold and then bulk polymerization, and (c) a method in which the fibrous composition is impregnated with the polymerizable composition and then bulk polymerization.
  • the polymerizable composition of the present invention has a low viscosity, the application in the method (a) can be smoothly carried out, and the injection in the method (b) does not rapidly cause foaming even in a complex-shaped space.
  • the fibrous reinforcing material can be impregnated quickly and uniformly.
  • a resin molded body such as a film or plate
  • the thickness of the molded body is usually 15 mm or less, preferably 5 mm or less, more preferably 0.5 mm or less, and most preferably 0.1 mm or less.
  • the support include films and plates made of resins such as polyethylene terephthalate, polypropylene, polyethylene, polycarbonate, polyethylene naphthalate, polyarylate, and nylon; iron, stainless steel, copper, aluminum, nickel, chromium, gold, and silver.
  • films and plates made of metal materials such as Especially, use of metal foil or a resin film is preferable.
  • the thickness of these metal foils or resin films is usually 1 to 150 ⁇ m, preferably 2 to 100 ⁇ m, more preferably 3 to 75 ⁇ m from the viewpoint of workability and the like.
  • Examples of the method for applying the polymerizable composition of the present invention on the support include known coating methods such as spray coating, dip coating, roll coating, curtain coating, die coating, and slit coating. .
  • the polymerizable composition coated on the support is optionally dried and then bulk polymerized.
  • the polymerizable composition is heated for bulk polymerization.
  • a heating method a method of placing and heating the polymerizable composition applied to a support on a heating plate, a method of heating while applying pressure using a press (hot pressing), a method of pressing a heated roller, Examples include a method using a heating furnace.
  • the shape of the resin molding obtained by the method of (b) can be arbitrarily set by a molding die.
  • a film shape, a column shape, other arbitrary three-dimensional shapes, etc. are mentioned.
  • the shape, material, size, etc. of the mold are not particularly limited.
  • a conventionally known mold for example, a split mold structure, that is, a mold having a core mold and a cavity mold; a mold having a spacer between two plates; and the like can be used.
  • the pressure (injection pressure) for injecting the polymerizable composition of the present invention into the space (cavity) of the mold is usually 0.01 to 10 MPa, preferably 0.02 to 5 MPa. If the injection pressure is too low, the filling may be insufficient and the transfer surface formed on the inner surface of the cavity may not be transferred well. If the injection pressure is too high, the mold may have high rigidity. Needed and not economical.
  • the mold clamping pressure is usually in the range of 0.01 to 10 MPa.
  • Bulk polymerization can be performed by heating the polymerizable composition filled in the heel space.
  • Examples of the method for heating the polymerizable composition include a method using a heating means such as an electric heater and steam disposed in a mold, and a method for heating the mold in an electric furnace.
  • Examples of the resin molded product obtained by the method of c) (c) include a prepreg formed by filling a bulk polymer with a gap between fibrous reinforcing materials.
  • fibrous reinforcing material inorganic and / or organic fibers can be used, such as glass fibers, metal fibers, ceramic fibers, carbon fibers, aramid fibers, polyethylene terephthalate fibers, vinylon fibers, polyester fibers, amide fibers, And known ones such as liquid crystal fibers such as polyarylate. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • Examples of the shape of the fibrous reinforcing material include mats, cloths, and nonwoven fabrics.
  • a predetermined amount of the polymerizable composition is poured onto a fibrous reinforcing material cloth, mat, etc. It can be performed by stacking protective films and pressing with a roller or the like from above.
  • a prepreg impregnated with a resin can be obtained by impregnating the polymerizable composition into a fibrous reinforcing material and then heating to a predetermined temperature to cause the resulting impregnated product to undergo bulk polymerization.
  • a heating method for example, a method in which an impregnated material is placed on a support and heated as in the method (a) above, a fibrous reinforcing material is set in a mold in advance, and a polymerizable composition is used. After impregnation, a method of heating as in the method (b) is used.
  • the heating temperature for bulk polymerization of the polymerizable composition is usually 30 to 250. ° C, preferably 50 to 200 ° C.
  • the polymerization time may be appropriately selected, but is usually 1 second to 20 minutes, preferably 10 seconds to 5 minutes or less.
  • the bulk polymerization reaction is started by heating the polymerizable composition to a predetermined temperature.
  • the temperature of the polymerizable composition rapidly increases due to the heat of reaction, and reaches the peak temperature in a short time (eg, about 10 seconds to 5 minutes). Further, the bulk polymerization reaction proceeds, but the polymerization reaction gradually stops and the temperature decreases. It is preferable to control the peak temperature so as to be equal to or higher than the glass transition temperature of the polymer constituting the resin molded body obtained by this polymerization reaction, since the polymerization proceeds completely.
  • the peak temperature can be controlled by the heating temperature.
  • the polymerization reaction rate of a polymer is 80% or more normally, Preferably it is 90% or more, More preferably, it is 95% or more.
  • the polymerization reaction rate of the polymer can be determined, for example, by analyzing a solution obtained by dissolving the polymer in a solvent by gas chromatography. A polymer in which bulk polymerization has proceeded almost completely has little residual monomer and substantially no odor.
  • the peak temperature during the bulk polymerization reaction becomes too high, not only the bulk polymerization reaction but also the crosslinking reaction may progress all at once. Therefore, in order to completely advance only the bulk polymerization reaction and prevent the crosslinking reaction from proceeding, it is usually preferable to control the peak temperature of the polymerizable composition in the bulk polymerization to less than 200 ° C. However, from the viewpoint of productivity and the like, the bulk polymerization reaction and the crosslinking reaction may proceed simultaneously.
  • the peak temperature in bulk polymerization is not more than the 1 minute half-life temperature of the radical generator.
  • the crosslinked resin molded article of the present invention is obtained by heating and crosslinking the resin molded article of the present invention obtained using a polymerizable composition containing a crosslinking agent.
  • the temperature at which the resin molded body is crosslinked by heating is usually 170 to 250 ° C., preferably 180 to 220 ° C. This temperature is preferably higher than the peak temperature in the bulk polymerization, and more preferably 20 ° C. or higher.
  • the time for crosslinking by heating is not particularly limited, but is usually 1 minute to 10 hours.
  • the method for heating and crosslinking the plastic molded body is not particularly limited.
  • the resin molded body is in the form of a film
  • a method of laminating a plurality of sheets if desired and applying pressure simultaneously with heating by hot pressing is preferable.
  • the pressure during hot pressing is usually 0.5 to 20 MPa, preferably 3 to 10 MPa.
  • the bulk polymerization reaction and the crosslinking reaction may be simultaneously performed to obtain a crosslinked resin molded body directly from the polymerizable composition.
  • the method for heating, polymerizing and crosslinking the polymerizable composition is not particularly limited.
  • a method of injecting a polymerizable composition into a mold and applying pressure simultaneously with heating by a hot press is preferable.
  • the pressure during hot pressing is usually 0.5 to 20 MPa, preferably 3 to 10 MPa.
  • the resin molded body or the crosslinked resin molded body may be used as a laminate.
  • the laminate has a constituent layer composed of the resin molded body or the crosslinked resin molded body, more specifically, has at least two or more layers, and at least one of the layers is the resin molded body or the crosslinked resin. It is formed of a molded body.
  • a more specific example of such a laminate includes a laminate including a base material such as a copper foil and a constituent layer formed from the resin molded body or the crosslinked resin molded body of the present invention.
  • the laminated body may be a composite material in which a base material such as a copper foil and a resin layer made of a resin molded body or a crosslinked resin molded body are alternately laminated like a multilayer laminated substrate.
  • a base material such as a copper foil
  • a resin layer made of a resin molded body or a crosslinked resin molded body are alternately laminated like a multilayer laminated substrate.
  • the composition of each resin layer may be the same or different.
  • the base material examples include metal foils such as copper foil, aluminum foil, nickel foil, chrome foil, gold foil, and silver foil; substrates for manufacturing printed wiring boards; polytetrafluoroethylene (PTFE) films, conductive polymer films, etc. Resin film; Noise suppression sheet, radio wave absorber and the like.
  • the surface of the base material may be treated with a silane coupling agent, a thiol coupling agent, a titanate coupling agent, various adhesives, or the like.
  • a resin molded product obtained using the polymerizable composition of the present invention is suitable.
  • a laminate may be obtained by superimposing on a base material, or a laminate may be obtained by superimposing resin molded bodies on each other.
  • a polymerizable composition can be coated on a suitable base material or resin molded body, and the polymerizable composition can be polymerized to obtain a laminate.
  • the laminated body containing the structural layer which consists of the crosslinked resin molding of this invention for example, (1) The resin molding obtained using the polymeric composition containing a crosslinking agent is used for base material. Superposed, then heated to crosslink, (2) Laminate polymerizable composition on substrate material, proceed with bulk polymerization and crosslinking reaction, (3) Obtained using polymerizable composition containing crosslinking agent There is a method in which two or more obtained resin molded bodies are superposed and then heated to crosslink.
  • a resin molded body and a metal foil as a base material are overlapped and heated by hot pressing or the like to be cross-linked and firmly adhered to the metal foil.
  • a metal foil-clad laminate can be obtained.
  • the peel strength of the metal foil of the obtained metal foil-clad laminate is a value measured based on JIS C 6481, using a surface-treated F0 copper foil having a thickness of 12 ⁇ m, More than 0.2 kN / m, preferably more than 0.4 kN / m, more preferably more than 0.6 kN / m.
  • the bulk polymerization temperature of the polymerizable composition is set high and heating is performed at a temperature at which a crosslinking reaction occurs.
  • the peel strength at the interface increases.
  • a plurality of such laminates may be further laminated.
  • a laminate in which a metal foil, a crosslinked resin molded product, and a resin molded product are laminated in this order is used, a multilayer circuit board can be easily obtained.
  • a conductive circuit is formed by patterning the metal foil layer of the laminate.
  • the method for patterning the metal foil is not particularly limited, and examples thereof include a photolithography method and a laser processing method.
  • a via hole is formed through the cross-linked body layer and the resin molded body layer and exposing the conductor circuit on the bottom surface. Then, a conductor is provided to the via hole and a wiring electrically connected from the conductor circuit to the resin molded body layer side is provided to obtain a single-sided circuit board for a multilayer circuit board.
  • a method for forming the via hole is not particularly limited, and examples thereof include a laser drilling method and a paste printing method. After forming the via hole, a permanganate desmear method can be performed in order to remove laser smear generated by the laser drilling method.
  • a method for applying a conductor to the via hole is not particularly limited, and a method of filling the via hole with a conductive paste by a screen printing method may be used.
  • a conductive bump in which the conductive paste protrudes from the surface of the resin molded body layer can be formed.
  • the height of the conductive bump is usually 5 to 100 ⁇ m.
  • a conductor may be applied to the via hole by plating.
  • a multilayer circuit board having an inner layer wiring and a surface wiring can be obtained by stacking two or more single-sided circuit boards for the multilayer circuit board or by stacking them with another circuit board and hot pressing.
  • the hot press By the hot press, the resin molded body layer is melted and deformed according to the unevenness of the circuit board.
  • the resin molded body layer is further heated, a cross-linking reaction proceeds and adhesion is improved.
  • the resin molded body and the crosslinked resin molded body of the present invention can be produced by bulk polymerization and have an advantage that they can be produced very easily because a step of evaporating a large amount of solvent as in the conventional casting method is unnecessary.
  • the polymerizable composition of the present invention can be polymerized at a high polymerization conversion rate, the produced resin molded article has no stickiness and excellent workability, and has no odor derived from the monomer and excellent in the use environment. .
  • the polymerizable composition of the present invention has a very small increase in viscosity over time, and can uniformly impregnate a fibrous reinforcing material, and can always produce a resin molded product having stable properties.
  • the polymerizable composition of the present invention is produced with high productivity while using a plurality of ruthenium carbene complex catalysts by collectively producing a mixture of two types of ruthenium carbene complex catalysts having a specific structure. be able to.
  • the resin molded body and cross-linked resin molded body of the present invention have excellent electrical characteristics such as low dielectric loss tangent, and have a lower linear expansion coefficient and higher mechanical strength than conventional resin molded bodies, etc. Adhesion to other supports such as foil is also high.
  • the resin molded body and the crosslinked resin molded body of the present invention having such characteristics include a prepreg; a copper foil with resin; a printed wiring board, an insulating sheet, an interlayer insulating film, an overcoat, an antenna substrate, an electromagnetic wave absorber, an electromagnetic wave shield, and the like. It is suitable as an electronic component material.
  • Polymerization conversion A part of the central part of the prepreg was cut out and dissolved in toluene, and then the dissolved components were extracted, and the residual monomer amount was measured by gas chromatography. The polymerization conversion rate was calculated from the measured residual monomer amount and evaluated according to the following evaluation criteria. (Evaluation criteria) A: Polymerization conversion rate is 98% or more B: 95% or more, less than 98% C: 90% or more, less than 95% D: less than 90%
  • the ruthenium carbene complex catalyst mixture (powder) was dissolved in CDCl 3 and calculated from the area ratio of hydrogen peaks of the carbene part of the ruthenium carbene complex catalyst (A1) and the ruthenium carbene complex catalyst (A2) using 1 H-NMR. did.
  • Example 1 In a glass flask whose inside was a nitrogen atmosphere, 2.3 parts of (bistricyclohexylphosphine) ruthenium dichloride hydride complex powder was added, and 200 parts of tetrahydrofuran was added thereto with a syringe. Using a thermostatic bath, the temperature in the glass flask was adjusted to 0 ° C., 0.3 parts of acetonitrile, 0.2 parts of propiolic acid, 3.3 parts of 1N hydrogen chloride / ethanol solution, and N-vinylpyrrolidone 3. Seven parts were added sequentially. This was stirred for 3 hours to react.
  • a mixture of the ruthenium carbene complex catalyst was dissolved in tetrahydrofuran in nitrogen to prepare a catalyst solution having a ruthenium concentration of 0.05 mol / liter.
  • Table 1 shows the evaluation results of the rate of increase in the viscosity of the polymerizable composition after 60 minutes, the impregnation into glass cloth, and the polymerization conversion rate of the monomers used for preparing the prepreg.
  • Example 2 A ruthenium carbene complex catalyst (A1) (1,3-dimesityl-4-imidazoline-) was obtained in the same manner as in Example 1 except that the reaction temperature during the preparation of the ruthenium carbene complex catalyst mixture was changed from 0 ° C. to 40 ° C. 2-Ilidene) (2-pyrrolidone-1-ylmethylene) ruthenium dichloride and ruthenium carbene complex catalyst (A2) (1,3-dimesityl-4-imidazoline-2-ylidene) (2-pyrrolidone-1-ylmethylene) A mixture with (tricyclohexylphosphine) ruthenium dichloride was obtained.
  • Example 3 10 parts of the ruthenium carbene complex catalyst mixture obtained in Example 1 and 2 parts of CuCl were dissolved in 200 parts of methylene chloride and stirred at room temperature for 2 hours.
  • the ruthenium carbene complex catalyst (A2) phosphine coordinated to ruthenium and CuCl reacted to precipitate a solid product. This was filtered, dried under reduced pressure, and isolated with methanol as a poor solvent to obtain (1,3-dimesityl-4-imidazoline-2-ylidene) (2-pyrrolidone-1) which is a ruthenium carbene complex catalyst (A1).
  • -Ilmethylene) ruthenium dichloride was obtained.
  • Benzylidene-bis (tricyclohexylphosphine) ruthenium dichloride (Grubbs Catalyst 1st Generation; Sigma Aldrich) 2.3 parts, 1,3-dimesitylimidazolidine chloride 3 parts, and potassium-t-butoxide 0.2 part, tetrahydrofuran Dissolved in and stirred at room temperature for 2 hours.
  • 3.7 parts of N-vinylpyrrolidone was dissolved, stirred at 40 ° C. for 3 hours, and then dried under reduced pressure. The temperature was set to ⁇ 80 ° C., n-pentane was added, the complex was precipitated, and collected by filtration in the atmosphere.
  • the ruthenium carbene complex catalyst (A2) ruthenium carbene complex catalyst (1,3-dimesityl-4-imidazoline- 2-Ilidene) (2-pyrrolidone-1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride was obtained.
  • a catalyst solution having a concentration of 0.05 mol / liter was prepared. Except for the above, a polymerizable composition was prepared in the same manner as in Example 1 to obtain a prepreg. The evaluation results are shown in Table 1.
  • the laminated body is obtained by sandwiching the prepared prepreg sheet and heating press at 3 MPa for 20 minutes at 205 ° C., all such laminated bodies are excellent as electrical materials used for the electric circuit board, It exhibits adhesion, mechanical strength, heat resistance, and dielectric properties.
  • the temperature is set to ⁇ 80 ° C., n-pentane is added, the complex is precipitated, and is collected by filtration under the atmosphere, and is ruthenium carbene complex catalyst (A2) (1,3-dimesityl-4-imidazoline-2-ylidene) (2-Pyrrolidone-1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride was obtained.
  • the obtained ruthenium carbene complex catalyst was dissolved in tetrahydrofuran in nitrogen to prepare a catalyst solution having a ruthenium concentration of 0.05 mol / liter.
  • a polymerizable composition was prepared in the same manner as in Example 1 except that the above-described catalyst solution was used for the ruthenium carbene complex catalyst.
  • the viscosity of the polymerizable composition became too high after 60 minutes from the preparation, so that the glass cloth could not be impregnated and a prepreg could not be produced. Therefore, the polymerization conversion rate could not be measured.
  • the evaluation results are shown in Table 2.
  • the polymerizable composition was too high in viscosity to impregnate glass cloth, and a prepreg could not be produced. Therefore, the polymerization conversion rate could not be measured.
  • the evaluation results are shown in Table 2.
  • the obtained ruthenium carbene complex catalyst was dissolved in tetrahydrofuran in nitrogen to prepare a catalyst solution having a ruthenium concentration of 0.05 mol / liter.
  • a polymerizable composition was prepared in the same manner as in Example 1 except that the above catalyst solution was used as the catalyst solution for the ruthenium carbene complex catalyst.
  • polymerization did not proceed even after heating, and a prepreg could not be produced.
  • the evaluation results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Disclosed are: a polymerizable composition which can provide a resin molded article suitable as an electric material for use in an electric circuit board or the like, is suppressed in the increase in viscosity over time and has a high polymerization conversion rate; a process for production of the polymerizable composition; a resin molded article produced by using the polymerizable composition; a process for producing the resin molded article; a cross-linked resin molded article having excellent electrical insulation properties, adhesiveness, mechanical strength, heat resistance, dielectric properties and others; and a process for producing the cross-linked resin molded article.

Description

重合性組成物、樹脂成形体、及び架橋樹脂成形体Polymerizable composition, resin molded body, and cross-linked resin molded body
  本発明は、重合性組成物、樹脂成形体、及び架橋樹脂成形体に関する。より詳細には、電気回路基板に使用する電気材料等として好適な架橋樹脂成形体、又は架橋樹脂複合体を得ることができ、経時の粘度上昇抑制と高い重合転化率とを両立させた重合性組成物、該重合性組成物を用いて得られる樹脂成形体、及び該重合性組成物又は該樹脂成形体を用いて得られる電気絶縁性、密着性、機械的強度、耐熱性、及び誘電特性などに優れた架橋樹脂成形体に関する。 The present invention relates to a polymerizable composition, a resin molded body, and a crosslinked resin molded body. More specifically, a cross-linked resin molded article or a cross-linked resin composite suitable as an electric material used for an electric circuit board can be obtained, and the polymerizability that achieves both a rise in viscosity over time and a high polymerization conversion rate. Composition, resin molded body obtained using the polymerizable composition, and electrical insulation, adhesion, mechanical strength, heat resistance, and dielectric properties obtained using the polymerizable composition or the resin molded body The present invention relates to a crosslinked resin molded article excellent in
  これまで、ルテニウムカルベン錯体などのメタセシス重合触媒を用いてシクロオレフィンモノマーを塊状重合させることにより、機械的又は電気的に優れた性質を示す重合体が得られることが知られている。 Until now, it is known that a polymer exhibiting excellent mechanical or electrical properties can be obtained by bulk polymerization of a cycloolefin monomer using a metathesis polymerization catalyst such as a ruthenium carbene complex.
  例えば、特許文献1には、ノルボルネン系モノマー、ルテニウムカルベン錯体触媒、連鎖移動剤及び架橋剤を含む重合性組成物をメタセシス塊状重合して架橋性の熱可塑性樹脂を得、この架橋性熱可塑性樹脂を基板等に積層し、架橋して、複合材料を得ることが開示されている。
特開2004-244609号公報
For example, Patent Document 1 discloses that a polymerizable composition containing a norbornene-based monomer, a ruthenium carbene complex catalyst, a chain transfer agent, and a crosslinking agent is subjected to metathesis bulk polymerization to obtain a crosslinkable thermoplastic resin, and this crosslinkable thermoplastic resin. Is laminated on a substrate or the like and crosslinked to obtain a composite material.
Japanese Patent Laid-Open No. 2004-244609
  しかしながら、通常電気回路基板の絶縁材料として用いられるエポキシ樹脂の重合等と比べて、一般にルテニウムカルベン錯体触媒によるメタセシス重合は、活性が高く、重合速度が極めて大きくなる。そのため、重合性組成物を繊維強化材に含浸させるなどしてフィルム状に成形する場合に、成形前に該重合性組成物の分子量、及び粘度が高くなることから、時間の経過とともに重合性組成物の繊維強化材への含浸が困難になったり、得られる架橋性の熱可塑性樹脂の性質が安定しなくなるという問題があった。 However, in general, metathesis polymerization using a ruthenium carbene complex catalyst has high activity and extremely high polymerization rate compared to polymerization of an epoxy resin or the like usually used as an insulating material for an electric circuit board. Therefore, when forming into a film shape by impregnating the polymerizable composition into a fiber reinforcement, the molecular weight and viscosity of the polymerizable composition are increased before molding. There is a problem that it becomes difficult to impregnate the product with a fiber reinforcing material, and the properties of the resulting cross-linkable thermoplastic resin become unstable.
  そこで、特許文献2、及び特許文献3には、キレート化カルベン配位子を有したルテニウムカルベン錯体が開示されており、該構造の錯体をメタセシス重合触媒として使用することにより、反応の進行を遅延させられることが示唆されている。特に、特許文献3では、キレート化カルベン配位子を有したルテニウムカルベン錯体の2種類の異性体を併用することにより、2種類の異性体間での重合活性の差を利用して重合の潜伏期間を制御できることが開示されている。
特表2002-506455号公報 特表2007-530706号公報
Therefore, Patent Document 2 and Patent Document 3 disclose a ruthenium carbene complex having a chelating carbene ligand, and the progress of the reaction is delayed by using the complex having the structure as a metathesis polymerization catalyst. It has been suggested that In particular, in Patent Document 3, by using two types of isomers of a ruthenium carbene complex having a chelating carbene ligand, polymerization latency is exploited by utilizing the difference in polymerization activity between the two types of isomers. It is disclosed that the period can be controlled.
Special Table 2002-506455 Special table 2007-530706 gazette
  しかしながら、特許文献2又は3に記載のルテニウムカルベン錯体触媒を用いた場合は、反応の進行は抑制できたが、反対にモノマーの重合転化率が著しく低下し、できた重合体にベタツキが生じて作業性が悪くなる、モノマーの臭気により使用環境が悪くなる、電気回路基板に使用する電気材料として使用したとき導体との密着性や耐熱性が低下する等の問題があった。このように重合性組成物の時間の経過による粘度の上昇と、高い重合転化率は相反する特性であり、これらを同時に制御することは非常に困難であった。また、2種類のルテニウムカルベン錯体触媒を合成するために、合成された1種類目のルテニウムカルベン錯体触媒を更に加熱して異性化し、単離する工程が必要になり、1種類のルテニウムカルベン錯体触媒を使用する場合に比べて生産性が悪くなるという問題もあった。 However, when the ruthenium carbene complex catalyst described in Patent Document 2 or 3 was used, the progress of the reaction could be suppressed, but on the contrary, the polymerization conversion of the monomer was significantly reduced, and the resulting polymer was sticky. There are problems such as poor workability, poor working environment due to the odor of the monomer, and poor adhesion to the conductor and heat resistance when used as an electrical material for an electric circuit board. Thus, the increase in the viscosity of the polymerizable composition with the passage of time and the high polymerization conversion are contradictory properties, and it is very difficult to control these simultaneously. Further, in order to synthesize two kinds of ruthenium carbene complex catalysts, a process of further isolating by heating and isolating the synthesized first kind of ruthenium carbene complex catalyst is required, and one kind of ruthenium carbene complex catalyst is required. There was also a problem that the productivity was worse than when using the.
  一方、特許文献4では、アルキルアセチレンを用いたルテニウムカルベン錯体触媒の製造方法が開示されており、触媒合成の生産性が高くなることが示唆されている。しかしながら、特許文献4には、合成したルテニウムカルベン錯体触媒を用いたモノマー重合後の特性に対する記載はなく、本発明者の検討では、開示されているルテニウムカルベン錯体触媒では、上述のように反応の進行の抑制と、モノマーの重合転化率を同時に制御することはできなかった。
特表2001-503434号公報
On the other hand, Patent Document 4 discloses a method for producing a ruthenium carbene complex catalyst using alkylacetylene, which suggests that the productivity of catalyst synthesis is increased. However, in Patent Document 4, there is no description about the characteristics after monomer polymerization using the synthesized ruthenium carbene complex catalyst. According to the study of the present inventor, in the disclosed ruthenium carbene complex catalyst, the reaction as described above is not performed. It was not possible to simultaneously control the progress and the polymerization conversion of the monomer.
JP-T-2001-503434
  また非特許文献1でもキレート化カルベン配位子を有するルテニウムカルベン錯体触媒についての開示がある。しかし、非特許文献1に開示される触媒では、上記重合性組成物の時間の経過による粘度の上昇と、高い重合転化率の両立をすることができなかった。
Organometallics,Vol.21,No.11,2002  p.2153
Non-Patent Document 1 also discloses a ruthenium carbene complex catalyst having a chelating carbene ligand. However, with the catalyst disclosed in Non-Patent Document 1, it has been impossible to achieve both a rise in viscosity due to the passage of time of the polymerizable composition and a high polymerization conversion rate.
Organometallics, Vol. 21, no. 11, 2002 p. 2153
  また、非特許文献1では、ルテニウムカルベン錯体触媒のカルベン置換基がキレート化した化合物が、トリシクロヘキシルホスフィンの存在下で、キレート化していない化合物となる平衡反応が起こることを論じている。しかしながら、本発明者によると、後述の参考例1のように、非特許文献1での方法で、後述の式(A1)及び式(A2)で表される構造を有する化合物間で平衡反応が起こることを確認できなかった。そのため、非特許文献1の方法では、ルテニウムカルベン錯体触媒の組成を制御することができないため、シクロオレフィンモノマーの重合に使用する際に経時の粘度上昇抑制と高い重合転化率とを両立することは困難であった。
 本発明の課題は、電気回路基板に使用する電気材料等として好適な樹脂成形体を得ることができ、経時の粘度上昇抑制と高い重合転化率とを両立させた重合性組成物、及びその製造方法を提供することにある。また、該重合性組成物を用いて得られる樹脂成形体、及びその製造方法、並びに電気絶縁性、密着性、機械的強度、耐熱性、誘電特性などに優れた架橋樹脂成形体、及びその製造方法を提供することにある。
Non-Patent Document 1 discusses that an equilibrium reaction occurs in which a compound in which a carbene substituent of a ruthenium carbene complex catalyst is chelated becomes an unchelated compound in the presence of tricyclohexylphosphine. However, according to the present inventor, as in Reference Example 1 described later, the method described in Non-Patent Document 1 allows an equilibrium reaction between compounds having structures represented by Formula (A1) and Formula (A2) described later. I could not confirm what would happen. Therefore, in the method of Non-Patent Document 1, the composition of the ruthenium carbene complex catalyst cannot be controlled. Therefore, when used for the polymerization of a cycloolefin monomer, it is possible to achieve both a rise in viscosity over time and a high polymerization conversion rate. It was difficult.
An object of the present invention is to obtain a resin molded article suitable as an electric material used for an electric circuit board and the like, and a polymerizable composition that achieves both suppression of increase in viscosity over time and high polymerization conversion, and production thereof It is to provide a method. Further, a resin molded body obtained by using the polymerizable composition, a method for producing the same, a crosslinked resin molded body having excellent electrical insulation, adhesion, mechanical strength, heat resistance, dielectric properties, and the like, and production thereof It is to provide a method.
  本発明者は、上記課題を解決すべく鋭意検討した結果、重合性組成物の製造に、キレート配位の構造を有するルテニウムカルベン錯体触媒〔後述の式(A1)で表される構造を有するルテニウムカルベン錯体触媒(A1)〕とキレート配位の構造を有しないルテニウムカルベン錯体触媒〔後述の式(A2)で表される構造を有するルテニウムカルベン錯体触媒(A2)〕との混合物を使用することによって、経時による粘度上昇を抑制し、かつ高いモノマーの重合転化率を得るという2つの相反する特性を同時に満足させることができ、これにより重合性組成物を繊維状強化材に均一に含浸させることが可能となり、得られる樹脂成形体により、電気絶縁性、密着性、機械的強度、耐熱性、誘電特性などに優れた架橋樹脂成形体及び架橋樹脂複合体が安定的に製造できることを見出した。 As a result of intensive studies to solve the above problems, the present inventor has found that a ruthenium carbene complex catalyst having a chelate coordination structure [ruthenium having a structure represented by the formula (A1) described later] is used in the production of a polymerizable composition. By using a mixture of a carbene complex catalyst (A1)] and a ruthenium carbene complex catalyst [ruthenium carbene complex catalyst (A2) having a structure represented by the formula (A2) described later] having no chelate coordination structure It is possible to simultaneously satisfy the two contradictory properties of suppressing the increase in viscosity over time and obtaining a high monomer polymerization conversion rate, whereby the fibrous composition can be uniformly impregnated with the polymerizable composition. The cross-linked resin molded body and the cross-linked resin excellent in electrical insulation, adhesion, mechanical strength, heat resistance, dielectric properties, etc. It has been found that a fat composite can be produced stably.
  本発明者はさらに、ルテニウムカルベン錯体触媒の前記混合物を一括で調製することにより、前記重合性組成物の生産性に優れる製造方法を見出した。本発明は、これらの知見に基づき、完成するに至ったものである。 The present inventor further found out a production method that is excellent in productivity of the polymerizable composition by preparing the mixture of ruthenium carbene complex catalyst at once. The present invention has been completed based on these findings.
  すなわち、本発明は以下の態様を含むものである。
〔1〕式(A1)で表される構造を有するルテニウムカルベン錯体触媒(A1)と、式(A2)で表される構造を有するルテニウムカルベン錯体触媒(A2)との混合物、及びシクロオレフィンモノマーを含有する重合性組成物。
Figure JPOXMLDOC01-appb-C000003
(式(A1)及び式(A2)において、
  L及びLは、中性電子供与性配位子であり;
  X及びXは、アニオン性配位子であり;
  Rは、水素原子、炭素原子、ハロゲン原子、又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子若しくは珪素原子のいずれかを含む基で置換された炭素数1~20の炭化水素基であり;
  Aは、2価、又は3価の有機基であり;
 Zは、電子供与性基である。)
〔2〕ルテニウムカルベン錯体触媒の前記混合物を構成する(A1)及び(A2)が、式(B)で表される構造を有する化合物(B)と、式(C)で表される構造を有する化合物(C)とを反応させて得られるものである前記〔1〕記載の重合性組成物。
Figure JPOXMLDOC01-appb-C000004
(式(B)及び式(C)において、
  L及びLは、中性電子供与性配位子であり;
  X及びXは、アニオン性配位子であり;
  Rは、水素原子、炭素原子、ハロゲン原子、又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子若しくは珪素原子のいずれかを含む基で置換された炭素数1~20の炭化水素基であり;
  Aは、2価、又は3価の有機基であり;
  Zは、電子供与性基である。)
〔3〕前記式(A1)及び前記式(A2)において、Lがヘテロ原子含有カルベン配位子である前記〔1〕又は〔2〕記載の重合性組成物。
〔4〕前記ルテニウムカルベン錯体触媒(A1)と、前記ルテニウムカルベン錯体触媒(A2)とのモル比が、(A1):(A2)=90:10~50:50の範囲である前記〔1〕~〔3〕いずれか記載の重合性組成物。
〔5〕架橋剤を更に含んでなる前記〔1〕~〔4〕いずれか記載の重合性組成物。
〔6〕前記〔5〕に記載の重合性組成物をメタセシス塊状重合する工程を含む、樹脂成形体の製造方法。
〔7〕前記〔6〕に記載の製造方法で得られる樹脂成形体を架橋する工程を含む、架橋樹脂成形体の製造方法。
〔8〕前記〔2〕に規定される、化合物(B)と化合物(C)とを反応させて、前記〔1〕に規定される、ルテニウムカルベン錯体触媒(A1)とルテニウムカルベン錯体触媒(A2)との混合物を得る工程、及びルテニウムカルベン錯体触媒の前記混合物とシクロオレフィンモノマーとを混合する工程を含む重合性組成物の製造方法。
〔9〕前記〔6〕に記載の製造方法により得られうる樹脂成形体。
〔10〕前記〔7〕に記載の製造方法で得られうる架橋樹脂成形体。
That is, the present invention includes the following aspects.
[1] A mixture of a ruthenium carbene complex catalyst (A1) having a structure represented by the formula (A1) and a ruthenium carbene complex catalyst (A2) having a structure represented by the formula (A2), and a cycloolefin monomer Polymeric composition to contain.
Figure JPOXMLDOC01-appb-C000003
(In Formula (A1) and Formula (A2),
L 1 and L 2 are neutral electron donating ligands;
X 1 and X 2 are anionic ligands;
R 1 represents a hydrogen atom, a carbon atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms substituted with a group containing any of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom Is;
A is a divalent or trivalent organic group;
Z is an electron donating group. )
[2] (A1) and (A2) constituting the mixture of the ruthenium carbene complex catalyst have the structure represented by the compound (B) having the structure represented by the formula (B) and the formula (C). The polymerizable composition according to the above [1], which is obtained by reacting the compound (C).
Figure JPOXMLDOC01-appb-C000004
(In Formula (B) and Formula (C),
L 1 and L 2 are neutral electron donating ligands;
X 1 and X 2 are anionic ligands;
R 1 represents a hydrogen atom, a carbon atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms substituted with a group containing any of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom Is;
A is a divalent or trivalent organic group;
Z is an electron donating group. )
[3] The polymerizable composition according to the above [1] or [2], wherein in Formula (A1) and Formula (A2), L 1 is a heteroatom-containing carbene ligand.
[4] The molar ratio of the ruthenium carbene complex catalyst (A1) to the ruthenium carbene complex catalyst (A2) is in the range of (A1) :( A2) = 90: 10 to 50:50 [1] -[3] The polymerizable composition as described in any one of the above.
[5] The polymerizable composition as set forth in any one of [1] to [4], further comprising a crosslinking agent.
[6] A method for producing a resin molded body comprising a step of subjecting the polymerizable composition according to [5] to metathesis bulk polymerization.
[7] A method for producing a crosslinked resin molded product, comprising a step of crosslinking the resin molded product obtained by the production method according to [6].
[8] A ruthenium carbene complex catalyst (A1) and a ruthenium carbene complex catalyst (A2) defined in the above [1] by reacting the compound (B) and the compound (C) defined in the above [2]. ) And a step of mixing the ruthenium carbene complex catalyst mixture with a cycloolefin monomer.
[9] A resin molded body obtainable by the production method according to [6].
[10] A crosslinked resin molded article obtainable by the production method according to [7].
  本発明の重合性組成物は、経時による粘度上昇を抑え、かつモノマーの重合転化率を高くするという2つの相反する特性を同時に満足することができ、繊維状強化材への均一な含浸が可能である。
  本発明の重合性組成物を塊状重合し次いで架橋させると、電気絶縁性、密着性、機械的強度、耐熱性、誘電特性などの特性に優れた架橋樹脂成形体が安定的に生産できる。
  本発明の製造方法により一括で調製したルテニウムカルベン錯体触媒の混合物を用いて重合性組成物とすると、上記特性を持ち、かつ該重合性組成物を生産性良く製造することができる。
  本発明の重合性組成物を用いて得られた架橋樹脂成形体、及び架橋樹脂複合体は、電気回路基板に使用する電気材料等として好適である。
The polymerizable composition of the present invention can simultaneously satisfy two contradictory properties of suppressing the increase in viscosity over time and increasing the polymerization conversion rate of the monomer, and can uniformly impregnate the fibrous reinforcement. It is.
When the polymerizable composition of the present invention is bulk polymerized and then crosslinked, a crosslinked resin molded article excellent in properties such as electrical insulation, adhesion, mechanical strength, heat resistance, and dielectric properties can be stably produced.
When a polymerizable composition is prepared by using a mixture of ruthenium carbene complex catalysts prepared in a lump by the production method of the present invention, the polymerizable composition having the above-described characteristics can be produced with high productivity.
The cross-linked resin molded product and the cross-linked resin composite obtained using the polymerizable composition of the present invention are suitable as an electric material used for an electric circuit board.
(重合性組成物)
  本発明の重合性組成物は、ルテニウムカルベン錯体触媒の混合物、及びシクロオレフィンモノマーを含有するものである。
(1)シクロオレフィンモノマー
  本発明の重合性組成物を構成するシクロオレフィンモノマーは、炭素原子で形成される環構造を有し、該環中に炭素-炭素二重結合を有する化合物である。前記炭素-炭素二重結合はメタセシス反応によって開環し、重合体を生成しうる結合である。シクロオレフィンモノマーとしては、例えば、ノルボルネン系モノマーが挙げられる。ノルボルネン系モノマーは、ノルボルネン環を含むシクロオレフィンモノマーである。具体的には、ノルボルネン類、ジシクロペンタジエン類、及びテトラシクロドデセン類などが挙げられる。ノルボルネン系モノマーは、アルキル基、アルケニル基、アルキリデン基、及びアリール基などの、炭素数1~20の炭化水素基や、カルボキシル基又は酸無水物基などの極性基を、置換基として有していてもよい。また、ノルボルネン環の二重結合以外に、さらに二重結合を有していてもよい。これらの中でも、極性基を含まない、すなわち炭素原子と水素原子のみで構成されるノルボルネン系モノマーが好ましい。ノルボルネン系モノマーを構成する環の数は、3~6であるものが好ましく、3又は4であるものがより好ましく、4であるものが特に好ましい。シクロオレフィンモノマー中のノルボルネン系モノマーの含有量としては、特に制限されるものではないが、好ましくは60重量%以上、より好ましくは80重量%以上である。また、シクロオレフィンモノマーの全量がノルボルネン系モノマーであってもよい。
(Polymerizable composition)
The polymerizable composition of the present invention contains a mixture of a ruthenium carbene complex catalyst and a cycloolefin monomer.
(1) Cycloolefin monomer The cycloolefin monomer constituting the polymerizable composition of the present invention is a compound having a ring structure formed of carbon atoms and having a carbon-carbon double bond in the ring. The carbon-carbon double bond is a bond that can be opened by a metathesis reaction to form a polymer. Examples of cycloolefin monomers include norbornene monomers. The norbornene-based monomer is a cycloolefin monomer containing a norbornene ring. Specific examples include norbornenes, dicyclopentadiene, and tetracyclododecenes. The norbornene monomer has a hydrocarbon group having 1 to 20 carbon atoms such as an alkyl group, an alkenyl group, an alkylidene group, and an aryl group, and a polar group such as a carboxyl group or an acid anhydride group as a substituent. May be. In addition to the norbornene ring double bond, it may further have a double bond. Among these, norbornene-based monomers that do not contain a polar group, that is, are composed only of carbon atoms and hydrogen atoms are preferable. The number of rings constituting the norbornene-based monomer is preferably 3 to 6, more preferably 3 or 4, and particularly preferably 4. The content of the norbornene monomer in the cycloolefin monomer is not particularly limited, but is preferably 60% by weight or more, more preferably 80% by weight or more. Further, the total amount of the cycloolefin monomer may be a norbornene monomer.
  極性基を含まないノルボルネン系モノマーとしては、2-ノルボルネン、5-メチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-ヘキシル-2-ノルボルネン、5-デシル-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、5-プロペニル-2-ノルボルネン、などの環の数が2であるノルボルネン類; Examples of norbornene monomers that do not contain a polar group include 2-norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-butyl-2-norbornene, 5-hexyl-2-norbornene, and 5-decyl. Norbornenes having 2 rings such as -2-norbornene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, 5-propenyl-2-norbornene;
  5-シクロヘキシル-2-ノルボルネン、5-シクロペンチル-2-ノルボルネン、5-シクロヘキセニル-2-ノルボルネン、5-シクロペンテニル-2-ノルボルネン、5-フェニル-2-ノルボルネンなどの環の数が3であるノルボルネン類;ジシクロペンタジエン、メチルジシクロペンタジエン、ジヒドロジシクロペンタジエン(トリシクロ[5.2.1.02,6]デカ-8-エンとも言う。)などの環の数が3であるジシクロペンタジエン類; The number of rings such as 5-cyclohexyl-2-norbornene, 5-cyclopentyl-2-norbornene, 5-cyclohexenyl-2-norbornene, 5-cyclopentenyl-2-norbornene, 5-phenyl-2-norbornene is 3 Norbornenes; dicyclopentadiene, methyldicyclopentadiene, dihydrodicyclopentadiene (also referred to as tricyclo [5.2.1.0 2,6 ] dec-8-ene), etc. Pentadienes;
  テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンとも言う。)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン(1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセンとも言う。)などの環の数が4であるノルボルネン類; Tetracyclo [9.2.1.0 2,1 0.0 3,8 ] tetradeca-3,5,7,12-tetraene (1,4-methano-1,4,4a, 9a-tetrahydro-9H-fluorene Tetracyclo [10.2.1.0 2,1 1.0 4,9 ] pentadeca-4,6,8,13-tetraene (1,4-methano-1,4,4a, 9, Norbornenes having 4 rings such as 9a, 10-hexahydroanthracene);
  テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチレンテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチリデンテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-ビニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-プロペニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、などの環の数が4であるテトラシクロドデセン類; Tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-methyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-ethyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-methylenetetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-ethylidenetetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-vinyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-propenyltetracyclo [6.2.1.1 3,6 . Tetracyclododecenes having 4 rings such as 0 2,7 ] dodec-4-ene;
  9-シクロヘキシルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-シクロペンチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-シクロヘキセニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-シクロペンテニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-フェニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどの環の数が5であるテトラシクロドデセン類; 9-Cyclohexyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-cyclopentyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-cyclohexenyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-cyclopentenyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene, 9-phenyltetracyclo [6.2.1.1 3,6 . Tetracyclododecenes having 5 rings such as 0 2,7 ] dodec-4-ene;
  ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカ-4,10-ジエン、ペンタシクロ[9.2.1.14,7.02,10.03,8]ペンタデカ-5,12-ジエン、ヘキサシクロ[6.6.1.13,6.110,13.02,7.09,14]ヘプタデカ-4-エンなどの環の数が5以上であるその他のノルボルネン系モノマー;などが挙げられる。 Pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13] pentadeca-4,10-diene, pentacyclo [9.2.1.1 4,7. 0 2,10 . 0 3,8 ] pentadeca-5,12-diene, hexacyclo [6.6.1.1 3,6 . 1 10,13 . 0 2,7 . 0 9,14] other norbornene-based monomer is the number of rings, such as 5 or more heptadeca-4-ene; and the like.
  極性基を含むノルボルネン系モノマーとしては、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボン酸メチル、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-メタノール、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4-カルボン酸、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸無水物、5-ノルボルネン-2-カルボン酸メチル、2-メチル-5-ノルボルネン-2-カルボン酸メチル、酢酸5-ノルボルネン-2-イル、5-ノルボルネン-2-メタノール、5-ノルボルネン-2-オール、5-ノルボルネン-2-カルボニトリル、2-アセチル-5-ノルボルネン、7-オキサ-2-ノルボルネンなどが挙げられる。 Examples of norbornene-based monomers containing a polar group include tetracyclo [6.2.1.1 3,6 . 0 2,7 ] methyl dodeca-9-ene-4-carboxylate, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4-methanol, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4-carboxylic acid, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4,5-dicarboxylic acid, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-9-ene-4,5-dicarboxylic anhydride, methyl 5-norbornene-2-carboxylate, methyl 2-methyl-5-norbornene-2-carboxylate, 5-norbornene-2 acetate -Yl, 5-norbornene-2-methanol, 5-norbornene-2-ol, 5-norbornene-2-carbonitrile, 2-acetyl-5-norbornene, 7-oxa-2-norbornene and the like.
  また、本発明においては、シクロブテン、シクロペンテン、シクロオクテン、シクロドデセン、1,5-シクロオクタジエンなどの単環シクロオレフィン、及び置換基を有するそれらの誘導体を上記ノルボルネン系モノマーに添加して重合に供することができる。
 以上のシクロオレフィンモノマーは1種単独で、又は2種以上を組み合わせて用いることができる。2種以上のモノマーを併用し、その量比を変化させることで、得られる樹脂成形体のガラス転移温度や溶融温度を制御することが可能である。なお、前記単環シクロオレフィン類、及びそれらの誘導体の添加量は、シクロオレフィンモノマーの全量に対して、通常、40重量%以下、好ましくは20重量%以下である。添加量が40重量%を超えると、塊状重合により得られる重合体の耐熱性が不十分となる傾向がある。
Further, in the present invention, monocyclic cycloolefins such as cyclobutene, cyclopentene, cyclooctene, cyclododecene, 1,5-cyclooctadiene, and derivatives thereof having a substituent are added to the norbornene-based monomer for polymerization. be able to.
The above cycloolefin monomers can be used alone or in combination of two or more. It is possible to control the glass transition temperature and the melting temperature of the resulting resin molded article by using two or more monomers together and changing the quantity ratio. The addition amount of the monocyclic cycloolefins and their derivatives is usually 40% by weight or less, preferably 20% by weight or less, based on the total amount of the cycloolefin monomer. When the addition amount exceeds 40% by weight, the heat resistance of the polymer obtained by bulk polymerization tends to be insufficient.
(2)ルテニウムカルベン錯体触媒の混合物
  ルテニウムカルベン錯体触媒は、ルテニウム原子を中心にして、イオン、原子、多原子イオン、及び/又は化合物が複数結合してなる錯体であって、ルテニウム原子にカルベン炭素が二重結合した構造(Ru=C)を有するものである。
  本発明の重合性組成物を構成するルテニウムカルベン錯体触媒の混合物は、以下の式(A1)で表される構造を有する、キレート配位の環構造を持つルテニウムカルベン錯体触媒(A1)と、以下の式(A2)で表される構造を有する、キレート配位の環構造を持たないルテニウムカルベン錯体触媒(A2)との混合物である。ルテニウムカルベン錯体触媒(A1)においては、ZがRuに対しキレート配位、すなわち、Zが配位子として非共有電子対を介してRuに配位結合しており、C、A、Z及びRuにより、キレート配位の環構造が形成されている。
Figure JPOXMLDOC01-appb-C000005
(2) Mixture of ruthenium carbene complex catalyst A ruthenium carbene complex catalyst is a complex in which a plurality of ions, atoms, polyatomic ions, and / or compounds are bonded around a ruthenium atom. Has a double-bonded structure (Ru = C).
The mixture of the ruthenium carbene complex catalyst constituting the polymerizable composition of the present invention includes a ruthenium carbene complex catalyst (A1) having a chelate-coordinated ring structure having a structure represented by the following formula (A1): And a ruthenium carbene complex catalyst (A2) having a structure represented by the formula (A2) and having no chelate coordination ring structure. In the ruthenium carbene complex catalyst (A1), Z is chelate-coordinated to Ru, that is, Z is coordinated to Ru via a lone pair as a ligand, and C, A, Z and Ru Thus, a chelate coordination ring structure is formed.
Figure JPOXMLDOC01-appb-C000005
  前記式(A1)及び前記式(A2)において、Rは、水素原子、炭素原子、ハロゲン原子、又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子若しくは珪素原子のいずれかを含む基で置換された炭素数1~20の炭化水素基を表す。X及びXは、それぞれ独立に、任意のアニオン性配位子を表す。L及びLは、それぞれ独立に、中性電子供与性配位子を表す。Aは、2価、又は3価の有機基を表す。有機基は、炭素原子を含む原子団である。有機基は、格別な限定はないが、主鎖が1~5の原子よりなる構造である時、式(A1)に示される、キレート配位による環構造の形成が容易になり、好ましい。Zは、電子供与性基である。電子供与性基は、非共有電子対を持つ、少なくとも1つの原子からなる原子団である。電子供与性基としては、例えば、OR、O、PR、又はNRで表される構造を有する原子団が挙げられる。なお、R~Rは、それぞれ独立に、炭素数1~20の炭化水素基を表す。Zは、Ruに対しキレート配位する場合、式(A1)に示されるように、Lに代わってルテニウム原子の配位子として結合してもよい。 In the formula (A1) and the formula (A2), R 1 is a hydrogen atom, a carbon atom, a halogen atom, or a group containing any of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom. Represents a hydrocarbon group having 1 to 20 carbon atoms and substituted with. X 1 and X 2 each independently represents an arbitrary anionic ligand. L 1 and L 2 each independently represent a neutral electron donating ligand. A represents a divalent or trivalent organic group. An organic group is an atomic group containing a carbon atom. The organic group is not particularly limited. However, when the main chain has a structure composed of 1 to 5 atoms, the formation of a ring structure by chelate coordination as shown in the formula (A1) is preferable. Z is an electron donating group. The electron donating group is an atomic group composed of at least one atom having an unshared electron pair. Examples of the electron donating group include an atomic group having a structure represented by OR 2 , O, PR 3 R 4 , or NR 5 R 6 . R 2 to R 6 each independently represents a hydrocarbon group having 1 to 20 carbon atoms. When Z is chelate-coordinated to Ru, it may be bonded as a ligand of a ruthenium atom in place of L 2 as shown in the formula (A1).
  アニオン性配位子は、中心金属から引き離された時に負の電荷を持つ配位子である。アニオン性配位子としては、例えば、F、Cl、Br、及びIなどのハロゲン原子などを挙げることができる。これらの中でも、Cl(塩素原子)が好ましい。 Anionic ligands are ligands that have a negative charge when pulled away from the central metal. Examples of the anionic ligand include halogen atoms such as F, Cl, Br, and I. Among these, Cl (chlorine atom) is preferable.
  中性電子供与性配位子は、中心金属から引き離された時に中性の電荷を持つ配位子である。中性電子供与性配位子としては、格別の限定はなく、例えば、カルベン化合物、カルボニル、アミン類、ピリジン類、エーテル類、ニトリル類、エステル類、ホスフィン類、チオエーテル類、芳香族化合物、オレフィン類、イソシアニド類、チオシアネート類などが挙げられる。これらの中でも、カルベン化合物、ホスフィン類、エーテル類、及びピリジン類が好ましく、カルベン化合物がより好ましく、ヘテロ原子含有カルベン化合物が特に好ましい。 A neutral electron donating ligand is a ligand that has a neutral charge when pulled away from the central metal. The neutral electron donating ligand is not particularly limited, and examples thereof include carbene compounds, carbonyls, amines, pyridines, ethers, nitriles, esters, phosphines, thioethers, aromatic compounds, olefins. , Isocyanides, thiocyanates and the like. Among these, carbene compounds, phosphines, ethers, and pyridines are preferable, carbene compounds are more preferable, and heteroatom-containing carbene compounds are particularly preferable.
  前記ヘテロ原子含有カルベン化合物中のヘテロ原子とは、周期律表(長周期型周期律表による。以下、同じ。)第15族及び第16族の原子を意味し、具体的には、N、O、P、S、As、及びSeなどを挙げることができる。これらの中でも、安定なカルベン化合物が得られる観点から、N、O、P、及びSが好ましく、N(窒素原子)がより好ましい。 The heteroatom in the heteroatom-containing carbene compound means an atom belonging to Group 15 and Group 16 of the periodic table (according to the long-period type periodic table; the same shall apply hereinafter). O, P, S, As, Se, etc. can be mentioned. Among these, from the viewpoint of obtaining a stable carbene compound, N, O, P, and S are preferable, and N (nitrogen atom) is more preferable.
  ヘテロ原子含有カルベン化合物としては、カルベン炭素原子の両側にヘテロ原子が隣接して結合している構造を有するものが好ましく、さらにカルベン炭素原子とその両側のヘテロ原子を含んでなるヘテロ環が構成されているものがより好ましい。また、カルベン炭素原子に隣接するヘテロ原子は嵩高い置換基を有していることが好ましい。 The heteroatom-containing carbene compound preferably has a structure in which heteroatoms are adjacently bonded to both sides of the carbene carbon atom, and further comprises a heterocycle comprising the carbene carbon atom and heteroatoms on both sides thereof. It is more preferable. Moreover, it is preferable that the hetero atom adjacent to the carbene carbon atom has a bulky substituent.
  ヘテロ原子含有カルベン化合物としては、以下の式(D)又は式(E)で表される化合物が挙げられる。 Examples of the heteroatom-containing carbene compound include compounds represented by the following formula (D) or formula (E).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
  式(D)及び式(E)において、R~R10はそれぞれ独立して水素原子、ハロゲン原子、又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子若しくは珪素原子を含んでもよい炭素数1~20の炭化水素基を表す。また、R~R10は任意の組合せで互いに結合して環を形成していてもよい。 In the formula (D) and the formula (E), R 7 to R 10 are each independently a hydrogen atom, a halogen atom, or a carbon atom that may contain a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom. This represents a hydrocarbon group of 1 to 20. R 7 to R 10 may be bonded to each other in any combination to form a ring.
 前記式(A1)及び前記式(A2)においてAで表される、2価、又は3価の有機基としては、例えば、ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子若しくは珪素原子を含んでもよい、2価、又は3価の、炭素数1~20の炭化水素基が挙げられる。本発明において「炭化水素基」は、鎖式炭化水素基であっても、環式炭化水素基であってもよい。重合転化率を高める観点から、Aの好適例としては、窒素原子を1つ含む環式炭化水素基であって、該窒素原子のところで、ルテニウム原子に結合したカルベン炭素に結合する環式炭化水素基が挙げられる。かかる環式炭化水素基の具体例としては、以下の構造を有する基が挙げられる。
Figure JPOXMLDOC01-appb-C000007
Examples of the divalent or trivalent organic group represented by A in the formula (A1) and the formula (A2) include a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom. Examples thereof may include a divalent or trivalent hydrocarbon group having 1 to 20 carbon atoms. In the present invention, the “hydrocarbon group” may be a chain hydrocarbon group or a cyclic hydrocarbon group. From the viewpoint of increasing the polymerization conversion rate, a preferable example of A is a cyclic hydrocarbon group containing one nitrogen atom, and the cyclic hydrocarbon bonded to the carbene carbon bonded to the ruthenium atom at the nitrogen atom. Groups. Specific examples of such cyclic hydrocarbon groups include groups having the following structures.
Figure JPOXMLDOC01-appb-C000007
  本発明の重合性組成物を構成するルテニウムカルベン錯体触媒の混合物において、ルテニウムカルベン錯体触媒(A1)とルテニウムカルベン錯体触媒(A2)との組合せとしては、例えば、(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリドと、(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)ルテニウムジクロリド;(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-フタルイミド-1-イルメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリドと、(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-フタルイミド-1-イルメチレン)ルテニウムジクロリド;(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ε-カプロラクタム-1-イルメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリドと、(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ε-カプロラクタム-1-イルメチレン)ルテニウムジクロリド;等が挙げられる。 In the mixture of the ruthenium carbene complex catalyst constituting the polymerizable composition of the present invention, the combination of the ruthenium carbene complex catalyst (A1) and the ruthenium carbene complex catalyst (A2) is, for example, (1,3-dimesityl-4- Imidazoline-2-ylidene) (2-pyrrolidone-1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride and (1,3-dimesityl-4-imidazoline-2-ylidene) (2-pyrrolidone-1-ylmethylene) ruthenium dichloride (1,3-dimesityl-4-imidazoline-2-ylidene) (2-phthalimido-1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride and (1,3-dimesityl-4-imidazoline-2-ylidene) ( 2-phthalimido-1-ylmethyl (Len) ruthenium dichloride; (1,3-dimesityl-4-imidazoline-2-ylidene) (2-ε-caprolactam-1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride and (1,3-dimesityl-4-imidazoline) -2-ylidene) (2-ε-caprolactam-1-ylmethylene) ruthenium dichloride; and the like.
  前記混合物中、ルテニウムカルベン錯体触媒(A1)とルテニウムカルベン錯体触媒(A2)との量比は、モル比で、通常、(A1):(A2)=90:10~50:50、好ましくは80:20~60:40の範囲である。ルテニウムカルベン錯体触媒(A1)と(A2)の量比がこの範囲にあるとき、経時による粘度上昇を抑え、かつモノマーの重合転化率を高くするという2つの相反する特性を同時によりいっそう満足することができ、好ましい。 In the mixture, the amount ratio of the ruthenium carbene complex catalyst (A1) to the ruthenium carbene complex catalyst (A2) is usually a molar ratio of (A1) :( A2) = 90: 10 to 50:50, preferably 80. : The range is from 20 to 60:40. When the amount ratio of the ruthenium carbene complex catalyst (A1) and (A2) is in this range, the two contradictory properties of suppressing the increase in viscosity with time and increasing the polymerization conversion of the monomer are further satisfied at the same time. This is preferable.
  本発明の重合性組成物の、前記混合物としてのルテニウムカルベン錯体触媒の使用量は、(ルテニウム原子:シクロオレフィンモノマー)のモル比で、通常1:2,000~1:2,000,000、好ましくは1:5,000~1:1,000,000、より好ましくは1:10,000~1:500,000の範囲である。 The use amount of the ruthenium carbene complex catalyst as the mixture of the polymerizable composition of the present invention is usually 1: 2,000 to 1: 2,000,000 in terms of a molar ratio of (ruthenium atom: cycloolefin monomer). The range is preferably 1: 5,000 to 1: 1,000,000, more preferably 1: 10,000 to 1: 500,000.
  ルテニウムカルベン錯体触媒は所望により、少量の不活性溶剤に溶解、又は懸濁して使用することができる。かかる溶媒としては、n-ペンタン、n-ヘキサン、n-ヘプタン、流動パラフィン、ミネラルスピリットなどの鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ジシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、シクロオクタンなどの脂環式炭化水素;ベンゼン、トルエン、キシレン、インデンなどの芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリルなどの含窒素炭化水素;ジエチルエーテル、テトラヒドロフランなどの含酸素炭化水素;などが挙げられる。これらの中では、工業的に汎用な芳香族炭化水素や鎖状脂肪族炭化水素、脂環式炭化水素の使用が好ましい。また、メタセシス重合触媒としての活性を低下させないものであれば、公知の、液状の老化防止剤、可塑剤やエラストマーを溶剤として用いてもよい。さらに、所望により、本発明の重合性組成物には、後述のその他の添加剤が配合されていてもよい。 The ruthenium carbene complex catalyst can be used, if desired, dissolved or suspended in a small amount of an inert solvent. Such solvents include chain aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, liquid paraffin, mineral spirits; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane , Cycloaliphatic hydrocarbons such as decahydronaphthalene, dicycloheptane, tricyclodecane, hexahydroindene and cyclooctane; aromatic hydrocarbons such as benzene, toluene, xylene and indene; nitrogen-containing compounds such as nitromethane, nitrobenzene and acetonitrile Hydrocarbons; oxygen-containing hydrocarbons such as diethyl ether and tetrahydrofuran; and the like. Among these, it is preferable to use industrially general-purpose aromatic hydrocarbons, chain aliphatic hydrocarbons, and alicyclic hydrocarbons. Moreover, as long as the activity as a metathesis polymerization catalyst is not lowered, a known liquid anti-aging agent, plasticizer or elastomer may be used as a solvent. Furthermore, the other additive mentioned later may be mix | blended with the polymeric composition of this invention if desired.
(3)重合性組成物の製造方法
  本発明の重合性組成物に含まれる、混合物としてのルテニウムカルベン錯体触媒は、以下のスキームに示す反応(a)より製造されることが好ましい。
反応(a):
Figure JPOXMLDOC01-appb-C000008
  前記式(B)及び(C)において、L、L、X、X、R、A、及びZは、前記式(A1)及び(A2)においての説明と同様である。
  反応(a)は、以下のようにして行われる。式(B)で表される構造を有する化合物(B)、及び式(C)で表される構造を有する化合物(C)を、溶媒に溶解させる。
  化合物(C)の添加量は、化合物(B)に対して、通常、2~30等量、好ましくは5~25等量、より好ましくは10~20等量の範囲である。溶媒は、ルテニウムカルベン錯体触媒(A1)と(A2)、及び化合物(B)と(C)を溶解できるものであり、ルテニウムカルベン錯体触媒に対して不活性であることが好ましい。溶媒としては、具体的には、トルエン、ベンゼン、テトラヒドロフラン、ジクロロメタン、及びクロロホルムなどが挙げられる。この中でもテトラヒドロフランとベンゼンが好ましく、テトラヒドロフランがより好ましい。溶媒の量は、ルテニウムカルベン錯体触媒(A1)と(A2)、及び化合物(B)と(C)が溶解すれば格別の限定はないが、化合物(B)100重量部に対し、通常、50~300重量部、好ましくは80~200重量部の範囲である。溶媒の量が、この範囲にあるとき化合物(B)と(C)が十分溶解し、後述する溶媒の乾燥の効率に優れ、好ましい。
  反応系内は、化合物(B)が分解しないように、不活性のガスで充填するのが好ましい。不活性のガスとして具体的には、通常、窒素、又はアルゴンガスが選択される。
  化合物(B)と(C)の溶解では、溶解の効率を上げるために所望により、撹拌及び/又は超音波処理がなされる。溶解温度は、通常、-60~+20℃、好ましくは-50~0℃、より好ましくは-40~-10℃の範囲である。溶解温度がこの範囲にある時、化合物(B)が分解せず、作業性に優れて好ましい。
  上記のようにして得られる化合物(B)と(C)の溶液に、CHCNなどの反応(a)の反応促進剤と、CH≡CR11で表される構造を有する化合物とを加えて、容器内の温度を上昇させることにより、ルテニウムカルベン錯体触媒の混合物を製造する反応を開始するのが好適である。R11としては特に限定されず、例えば、アルキル基、アルケニル基、アリール基、アルコキシ基、エーテル結合含有基、アミノ基、ニトリル基、チオール基、カルボニル基、アルデヒド基、ケトン基、カルボキシル基、エステル結合含有基、及びアミド基などが挙げられる。好ましくは、カルボキシル基である。
(3) Manufacturing method of polymeric composition It is preferable that the ruthenium carbene complex catalyst as a mixture contained in the polymeric composition of this invention is manufactured from reaction (a) shown to the following schemes.
Reaction (a):
Figure JPOXMLDOC01-appb-C000008
In the formulas (B) and (C), L 1 , L 2 , X 1 , X 2 , R 1 , A, and Z are the same as described in the formulas (A1) and (A2).
Reaction (a) is performed as follows. The compound (B) having a structure represented by the formula (B) and the compound (C) having a structure represented by the formula (C) are dissolved in a solvent.
The amount of compound (C) added is usually in the range of 2 to 30 equivalents, preferably 5 to 25 equivalents, more preferably 10 to 20 equivalents, relative to compound (B). The solvent is capable of dissolving the ruthenium carbene complex catalysts (A1) and (A2) and the compounds (B) and (C), and is preferably inert to the ruthenium carbene complex catalyst. Specific examples of the solvent include toluene, benzene, tetrahydrofuran, dichloromethane, and chloroform. Of these, tetrahydrofuran and benzene are preferable, and tetrahydrofuran is more preferable. The amount of the solvent is not particularly limited as long as the ruthenium carbene complex catalysts (A1) and (A2) and the compounds (B) and (C) are dissolved, but usually 50 parts per 100 parts by weight of the compound (B). It is in the range of ~ 300 parts by weight, preferably 80 to 200 parts by weight. When the amount of the solvent is within this range, the compounds (B) and (C) are sufficiently dissolved, and the efficiency of drying the solvent described later is excellent and preferable.
The reaction system is preferably filled with an inert gas so that the compound (B) does not decompose. Specifically, nitrogen or argon gas is usually selected as the inert gas.
In the dissolution of the compounds (B) and (C), stirring and / or sonication is performed as desired in order to increase the dissolution efficiency. The dissolution temperature is usually in the range of −60 to + 20 ° C., preferably −50 to 0 ° C., more preferably −40 to −10 ° C. When the dissolution temperature is within this range, the compound (B) does not decompose and is excellent in workability.
To the solution of the compounds (B) and (C) obtained as described above, a reaction accelerator for reaction (a) such as CH 3 CN and a compound having a structure represented by CH≡CR 11 are added. It is preferable to start the reaction for producing the ruthenium carbene complex catalyst mixture by increasing the temperature in the container. R 11 is not particularly limited, and examples thereof include alkyl groups, alkenyl groups, aryl groups, alkoxy groups, ether bond-containing groups, amino groups, nitrile groups, thiol groups, carbonyl groups, aldehyde groups, ketone groups, carboxyl groups, and esters. Examples thereof include a bond-containing group and an amide group. Preferably, it is a carboxyl group.
  反応温度は、通常-20~+50℃であり、好ましくは0~40℃の範囲である。反応温度がこの範囲にあるとき、化合物(B)が分解せず、かつ反応が遅滞なく進行して好ましい。本発明の製造方法では、反応温度を調整することにより、混合物中のルテニウムカルベン錯体触媒(A1)と(A2)の量比を所望の値に制御でき、一回の反応で効率よく、ルテニウムカルベン錯体触媒の混合物を製造することができる。この範囲の中で、特に反応温度が高い時、製造する、ルテニウムカルベン錯体触媒(A1)と(A2)の混合物中で、ルテニウムカルベン錯体触媒(A1)の比率を多くすることができ、反応温度が低い時、ルテニウムカルベン錯体触媒(A2)の比率を多くすることができる。反応時間は、目的により適宜選択されるが、通常、20分間~3時間、好ましくは1時間~2時間の範囲である。
  X、X、L、及びLについては、通常、重合活性を上げるための置換を行い、ルテニウムカルベン錯体触媒の構造をより好ましい態様に変更することができる。例えば、X、及びXを、HF、HCl、HBr、又はHIとの反応により、所望のハロゲン原子に置換することができる。また、L、及びLを、カリウム-t-ブトキシド等の存在下でヘテロ原子含有カルベン等に置換することもできる。
  反応(a)を含む、上記一連の反応により、ルテニウムカルベン錯体触媒を所望の構造に置換して、より好適な、ルテニウムカルベン錯体触媒(A1)と(A2)の混合物を製造することができる。
The reaction temperature is usually −20 to + 50 ° C., preferably 0 to 40 ° C. When the reaction temperature is within this range, it is preferable that the compound (B) does not decompose and the reaction proceeds without delay. In the production method of the present invention, by adjusting the reaction temperature, the amount ratio of the ruthenium carbene complex catalysts (A1) and (A2) in the mixture can be controlled to a desired value, and the ruthenium carbene can be efficiently performed in one reaction. Mixtures of complex catalysts can be produced. Within this range, particularly when the reaction temperature is high, the ratio of the ruthenium carbene complex catalyst (A1) can be increased in the mixture of the ruthenium carbene complex catalyst (A1) and (A2) to be produced. Is low, the ratio of the ruthenium carbene complex catalyst (A2) can be increased. The reaction time is appropriately selected depending on the purpose, but is usually in the range of 20 minutes to 3 hours, preferably 1 hour to 2 hours.
About X < 1 >, X < 2 >, L < 1 > and L < 2 >, substitution for raising polymerization activity is usually performed, and the structure of a ruthenium carbene complex catalyst can be changed to a more preferable aspect. For example, X 1 and X 2 can be replaced with the desired halogen atom by reaction with HF, HCl, HBr, or HI. Further, L 1 and L 2 can be substituted with a heteroatom-containing carbene or the like in the presence of potassium-t-butoxide or the like.
Through the series of reactions including the reaction (a), the ruthenium carbene complex catalyst can be substituted with a desired structure, and a more suitable mixture of the ruthenium carbene complex catalyst (A1) and (A2) can be produced.
  製造した、ルテニウムカルベン錯体触媒(A1)と(A2)の混合物は、通常の方法に従って、反応系内の他の化合物から単離される。単離する方法としては、反応時に使用した溶媒を減圧乾燥した後、通常、シリカを含んだカラムを通すことによる不純物の吸着、再結晶化、及び貧溶媒による析出などの方法が挙げられる。これらの中でも、貧溶媒による析出が作業性に優れ、好ましい。
  貧溶媒としては、ルテニウムカルベン錯体触媒を溶解しない溶媒であれば格別な制限はないが、例えば、メタノール、エタノール、n-ペンタン、n―ヘキサンなどが挙げられる。
  貧溶媒によりルテニウムカルベン錯体触媒を析出させる際の温度は、低い方が好ましい。
  得られた析出物を減圧乾燥することにより、貧溶媒が除去され、ルテニウムカルベン錯体触媒(A1)と(A2)の混合物を得ることができる。
  好ましくは、かかる混合物を、適当な溶媒に溶解、又は分散させて触媒液を調製し、シクロオレフィンモノマーの重合に使用する。後述の参考例1に示す通り、触媒液に溶解、又は分散させるルテニウムカルベン錯体触媒として、ルテニウムカルベン錯体触媒(A1)又は(A2)を使用しても、これらの触媒の量比が変わる平衡反応は起こらない。そのため、本発明においては、得られた混合物でのルテニウムカルベン錯体触媒(A1)と(A2)の量比を維持して、シクロオレフィンモノマーの重合を行うことができる。
 以上により得られた、ルテニウムカルベン錯体触媒(A1)と(A2)の混合物そのものを、又は触媒液の形態で、シクロオレフィンモノマー、又はシクロオレフィンモノマーを含むモノマー液と、公知の方法に従って混合することにより、本発明の重合性組成物が得られる。前記混合物とシクロオレフィンモノマーとの混合割合は、前記ルテニウムカルベン錯体触媒の使用量を考慮して、適宜決定すればよい。
  本発明の、ルテニウムカルベン錯体触媒(A1)と(A2)の混合物を含む重合性組成物の製造方法は、該混合物を一括して製造する工程を含むため、高い生産性を持つ。なお、本発明の重合性組成物は、例えば、ルテニウムカルベン錯体触媒の公知の製法、及び後述の実施例3に記載の方法を参照して、ルテニウムカルベン錯体触媒(A1)と(A2)とを別々に調製し、それらを混合してルテニウムカルベン錯体触媒の混合物を得、それをシクロオレフィンモノマーと混合することにより調製することもできる。
The produced mixture of the ruthenium carbene complex catalysts (A1) and (A2) is isolated from other compounds in the reaction system according to a usual method. Examples of the isolation method include methods such as adsorption of impurities, recrystallization, and precipitation with a poor solvent, usually after drying the solvent used in the reaction under reduced pressure and passing through a column containing silica. Among these, precipitation with a poor solvent is preferable because of excellent workability.
The poor solvent is not particularly limited as long as it does not dissolve the ruthenium carbene complex catalyst, and examples thereof include methanol, ethanol, n-pentane, and n-hexane.
The temperature at which the ruthenium carbene complex catalyst is precipitated with a poor solvent is preferably lower.
By drying the obtained precipitate under reduced pressure, the poor solvent is removed, and a mixture of the ruthenium carbene complex catalysts (A1) and (A2) can be obtained.
Preferably, such a mixture is dissolved or dispersed in an appropriate solvent to prepare a catalyst solution, which is used for polymerization of cycloolefin monomer. As shown in Reference Example 1 described later, even when the ruthenium carbene complex catalyst (A1) or (A2) is used as the ruthenium carbene complex catalyst dissolved or dispersed in the catalyst solution, the equilibrium reaction in which the amount ratio of these catalysts changes. Does not happen. Therefore, in the present invention, the cycloolefin monomer can be polymerized while maintaining the quantitative ratio of the ruthenium carbene complex catalysts (A1) and (A2) in the obtained mixture.
Mixing the ruthenium carbene complex catalyst (A1) and (A2) itself obtained in the above or in the form of a catalyst solution with a cycloolefin monomer or a monomer solution containing a cycloolefin monomer according to a known method. Thus, the polymerizable composition of the present invention is obtained. The mixing ratio of the mixture and the cycloolefin monomer may be appropriately determined in consideration of the amount of the ruthenium carbene complex catalyst used.
Since the manufacturing method of the polymeric composition containing the mixture of the ruthenium carbene complex catalyst (A1) and (A2) of this invention includes the process of manufacturing this mixture collectively, it has high productivity. In addition, the polymerizable composition of the present invention comprises, for example, a ruthenium carbene complex catalyst (A1) and (A2) with reference to a known production method of a ruthenium carbene complex catalyst and a method described in Example 3 described later. It can also be prepared by preparing separately and mixing them to obtain a mixture of ruthenium carbene complex catalysts which are mixed with cycloolefin monomer.
(4)その他の添加剤
  本発明の重合性組成物には、各種の添加剤、例えば、重合反応遅延剤、連鎖移動剤、架橋剤、ラジカル架橋遅延剤、改質剤、酸化防止剤、難燃剤、充填剤、着色剤、光安定剤などを含有させることができる。これらは、本発明の重合性組成物を製造する際、例えば、モノマー液、又は触媒液に予め溶解、又は分散させて用いることができる。
(4) Other additives In the polymerizable composition of the present invention, various additives such as polymerization reaction retarders, chain transfer agents, crosslinking agents, radical crosslinking retarders, modifiers, antioxidants, difficulty A flame retardant, a filler, a colorant, a light stabilizer and the like can be contained. These can be used by, for example, dissolving or dispersing in advance in a monomer liquid or a catalyst liquid when the polymerizable composition of the present invention is produced.
  重合反応遅延剤としては、例えば、トリフェニルホスフィン、トリブチルホスフィン、トリメチルホスフィン、トリエチルホスフィンなどのホスフィン類;アニリン、ピリジンなどのルイス塩基;が挙げられる。中でも、本発明の重合性組成物の可使時間を効率よく制御でき、重合反応の阻害が少ないので、ホスフィン類が好ましい。
  また、シクロオレフィンモノマーのうち、分子内に1,5-ジエン構造や1,3,5-トリエン構造を有するモノマーは重合反応遅延剤としても機能する。このような化合物としては、1,5-シクロオクタジエン、5-ビニル-2-ノルボルネンなどが挙げられる。
Examples of the polymerization reaction retarder include phosphines such as triphenylphosphine, tributylphosphine, trimethylphosphine, and triethylphosphine; Lewis bases such as aniline and pyridine. Among these, phosphines are preferred because the pot life of the polymerizable composition of the present invention can be controlled efficiently and the inhibition of the polymerization reaction is small.
Among cycloolefin monomers, a monomer having a 1,5-diene structure or a 1,3,5-triene structure in the molecule also functions as a polymerization reaction retarder. Examples of such compounds include 1,5-cyclooctadiene and 5-vinyl-2-norbornene.
  連鎖移動剤としては、通常、置換基を有していてもよい鎖状のオレフィン類を用いることができる。
  具体的には、1-ヘキセン、2-ヘキセンなどの脂肪族オレフィン類;スチレン、ジビニルベンゼン、スチルベンなどの芳香族基を有するオレフィン類;ビニルシクロヘキサンなどの脂環式炭化水素基を有するオレフィン類;エチルビニルエーテルなどのビニルエーテル類;メチルビニルケトン、1,5-ヘキサジエン-3-オン、2-メチル-1,5-ヘキサジエン-3-オンなどのビニルケトン類;アクリル酸スチリル、エチレングリコールジアクリレート;アリルトリビニルシラン、アリルメチルジビニルシラン、アリルジメチルビニルシラン;アクリル酸グリシジル、アリルグリシジルエーテル;アリルアミン、2-(ジエチルアミノ)エタノールビニルエーテル、2-(ジエチルアミノ)エチルアクリレート、4-ビニルアニリン;などが挙げられる。
As the chain transfer agent, chain olefins which may have a substituent can be usually used.
Specifically, aliphatic olefins such as 1-hexene and 2-hexene; olefins having an aromatic group such as styrene, divinylbenzene and stilbene; olefins having an alicyclic hydrocarbon group such as vinylcyclohexane; Vinyl ethers such as ethyl vinyl ether; vinyl ketones such as methyl vinyl ketone, 1,5-hexadien-3-one, 2-methyl-1,5-hexadien-3-one; styryl acrylate, ethylene glycol diacrylate; allyltri Vinylsilane, allylmethyldivinylsilane, allyldimethylvinylsilane; glycidyl acrylate, allylglycidyl ether; allylamine, 2- (diethylamino) ethanol vinyl ether, 2- (diethylamino) ethyl acrylate, 4-vinylaniline And the like.
  これらの連鎖移動剤の中でも、式(F):CH=CH-Y-OCO-CR12=CHで表される化合物が好ましい。式(F)中のYはアルキレン基、R12は水素原子又はメチル基である。アルキレン基の炭素数は特に制限されないが、通常1~20、好ましくは4~12である。この構造の連鎖移動剤を用いることで、より強度の高い架橋体を得ることが可能になる。
  式(F)で表される化合物としては、メタクリル酸アリル、メタクリル酸3-ブテン-1-イル、アクリル酸アリル、アクリル酸3-ブテン-1-イル、メタクリル酸ウンデセニル、メタクリル酸ヘキセニルなどが挙げられる。中でも、メタクリル酸ウンデセニル及びメタクリル酸ヘキセニルが特に好ましい。
Among these chain transfer agents, compounds represented by the formula (F): CH 2 ═CH—Y—OCO—CR 12 ═CH 2 are preferable. Y in the formula (F) is an alkylene group, and R 12 is a hydrogen atom or a methyl group. The number of carbon atoms of the alkylene group is not particularly limited, but is usually 1 to 20, preferably 4 to 12. By using a chain transfer agent having this structure, it is possible to obtain a crosslinked product having higher strength.
Examples of the compound represented by the formula (F) include allyl methacrylate, 3-buten-1-yl methacrylate, allyl acrylate, 3-buten-1-yl acrylate, undecenyl methacrylate, hexenyl methacrylate, and the like. It is done. Of these, undecenyl methacrylate and hexenyl methacrylate are particularly preferred.
  連鎖移動剤の添加量は、シクロオレフィンモノマーの全量に対して、通常、0.01~10重量%、好ましくは0.1~5重量%である。連鎖移動剤の添加量がこの範囲であるときに、メタセシス重合の反応率が高く、しかも架橋剤により架橋可能な樹脂成形体を効率よく得ることができる。 The addition amount of the chain transfer agent is usually 0.01 to 10% by weight, preferably 0.1 to 5% by weight, based on the total amount of the cycloolefin monomer. When the addition amount of the chain transfer agent is within this range, a resin molded product having a high metathesis polymerization reaction rate and capable of being crosslinked by the crosslinking agent can be efficiently obtained.
  重合性組成物は、塊状重合後に架橋可能な樹脂成形体とするために、さらに架橋剤を含有することが好ましい。架橋剤は樹脂成形体において架橋反応を誘起し得る化合物である。架橋剤としては、例えば、ラジカル発生剤、エポキシ化合物、イソシアネート基含有化合物、カルボキシル基含有化合物、酸無水物基含有化合物、アミノ基含有化合物、ルイス酸などが挙げられる。これらは1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、ラジカル発生剤、エポキシ化合物、イソシアネート基含有化合物、カルボキシル基含有化合物、及び酸無水物基含有化合物の使用が好ましく、ラジカル発生剤、エポキシ化合物、及びイソシアネート基含有化合物の使用がより好ましく、ラジカル発生剤の使用が特に好ましい。 It is preferable that the soot polymerizable composition further contains a crosslinking agent in order to obtain a resin molded body that can be crosslinked after bulk polymerization. The crosslinking agent is a compound that can induce a crosslinking reaction in the resin molded body. Examples of the crosslinking agent include radical generators, epoxy compounds, isocyanate group-containing compounds, carboxyl group-containing compounds, acid anhydride group-containing compounds, amino group-containing compounds, Lewis acids, and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. Among these, the use of radical generators, epoxy compounds, isocyanate group-containing compounds, carboxyl group-containing compounds, and acid anhydride group-containing compounds is preferred, and the use of radical generators, epoxy compounds, and isocyanate group-containing compounds is more preferred. The use of radical generators is particularly preferred.
  ラジカル発生剤としては、有機過酸化物、ジアゾ化合物、非極性ラジカル発生剤などが挙げられる。
  有機過酸化物としては、例えば、t-ブチルヒドロペルオキシド、p-メンタンヒドロペルオキシド、クメンヒドロペルオキシドなどのヒドロペルオキシド類;ジクミルペルオキシド、t-ブチルクミルペルオキシド、α,α’-ビス(t-ブチルペルオキシ-m-イソプロピル)ベンゼン、ジ-t-ブチルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)-3-ヘキシン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサンなどのジアルキルペルオキシド類;ジプロピオニルペルオキシド、ベンゾイルペルオキシドなどのジアシルペルオキシド類;2,2-ジ(t-ブチルペルオキシ)ブタン、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)-2-メチルシクロヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサンなどのペルオキシケタール類;t-ブチルペルオキシアセテート、t-ブチルペルオキシベンゾエートなどのペルオキシエステル類;t-ブチルペルオキシイソプロピルカルボナート、ジ(イソプロピルペルオキシ)ジカルボナートなどのペルオキシカルボナート;t-ブチルトリメチルシリルペルオキシドなどのアルキルシリルペルオキシド類;などが挙げられる。中でも、メタセシス重合反応に対する障害が少ない点で、ジアルキルペルオキシド類及びペルオキシケタール類が好ましい。
Examples of the radical generator include organic peroxides, diazo compounds, and nonpolar radical generators.
Examples of the organic peroxide include hydroperoxides such as t-butyl hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide; dicumyl peroxide, t-butylcumyl peroxide, α, α'-bis (t- Butylperoxy-m-isopropyl) benzene, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) -3-hexyne, 2,5-dimethyl-2,5-di ( dialkyl peroxides such as t-butylperoxy) hexane; diacyl peroxides such as dipropionyl peroxide and benzoyl peroxide; 2,2-di (t-butylperoxy) butane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) -2-methyl Peroxyketals such as cyclohexane and 1,1-di (t-butylperoxy) cyclohexane; peroxyesters such as t-butylperoxyacetate and t-butylperoxybenzoate; t-butylperoxyisopropylcarbonate, di (isopropylperoxy) And peroxycarbonates such as dicarbonate; alkylsilyl peroxides such as t-butyltrimethylsilyl peroxide; and the like. Among these, dialkyl peroxides and peroxyketals are preferable in that there are few obstacles to the metathesis polymerization reaction.
  ジアゾ化合物としては、例えば、4,4’-ビスアジドベンザル(4-メチル)シクロヘキサノン、4,4’-ジアジドカルコン、2,6-ビス(4’-アジドベンザル)シクロヘキサノン、2,6-ビス(4’-アジドベンザル)-4-メチルシクロヘキサノン、4,4’-ジアジドジフェニルスルホン、4,4’-ジアジドジフェニルメタン、2,2’-ジアジドスチルベンなどが挙げられる。 Examples of the diazo compound include 4,4′-bisazidobenzal (4-methyl) cyclohexanone, 4,4′-diazidochalcone, 2,6-bis (4′-azidobenzal) cyclohexanone, and 2,6-bis. (4′-azidobenzal) -4-methylcyclohexanone, 4,4′-diazidodiphenylsulfone, 4,4′-diazidodiphenylmethane, 2,2′-diazidostilbene and the like.
  本発明に用いられる非極性ラジカル発生剤としては、2,3-ジメチル-2,3-ジフェニルブタン、2,3-ジフェニルブタン、1,4-ジフェニルブタン、3,4-ジメチル-3,4-ジフェニルヘキサン、1,1,2,2-テトラフェニルエタン、2,2,3,3-テトラフェニルブタン、3,3,4,4-テトラフェニルヘキサン、1,1,2-トリフェニルプロパン、1,1,2-トリフェニルエタン、トリフェニルメタン、1,1,1-トリフェニルエタン、1,1,1-トリフェニルプロパン、1,1,1-トリフェニルブタン、1,1,1-トリフェニルペンタン、1,1,1-トリフェニル-2-プロペン、1,1,1-トリフェニル-4-ペンテン、1,1,1-トリフェニル-2-フェニルエタンなどが挙げられる。 Nonpolar radical generators used in the present invention include 2,3-dimethyl-2,3-diphenylbutane, 2,3-diphenylbutane, 1,4-diphenylbutane, 3,4-dimethyl-3,4- Diphenylhexane, 1,1,2,2-tetraphenylethane, 2,2,3,3-tetraphenylbutane, 3,3,4,4-tetraphenylhexane, 1,1,2-triphenylpropane, 1 1,1,2-triphenylethane, triphenylmethane, 1,1,1-triphenylethane, 1,1,1-triphenylpropane, 1,1,1-triphenylbutane, 1,1,1-triphenyl And phenylpentane, 1,1,1-triphenyl-2-propene, 1,1,1-triphenyl-4-pentene, 1,1,1-triphenyl-2-phenylethane, etc. .
  これらのラジカル発生剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2種以上のラジカル発生剤を併用し、その量比を変化させることで、得られる樹脂成形体及び架橋樹脂成形体のガラス転移温度や溶融状態を制御することが可能である。 ラ ジ カ ル These radical generators may be used alone or in combination of two or more. It is possible to control the glass transition temperature and the molten state of the resin molded body and cross-linked resin molded body obtained by using two or more kinds of radical generators together and changing the quantity ratio thereof.
  架橋剤の量は、シクロオレフィンモノマー100重量部に対して、通常、0.1~10重量部、好ましくは0.5~5重量部である。架橋剤の量があまりに少ないと架橋が不十分となり、高い架橋密度の架橋体が得られなくなるおそれがある。架橋剤の量が多すぎる場合には、架橋効果が飽和する一方で、所望の物性を有する樹脂成形体及び架橋樹脂成形体が得られなくなるおそれがある。 量 The amount of the crosslinking agent is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the cycloolefin monomer. If the amount of the crosslinking agent is too small, crosslinking may be insufficient, and a crosslinked product having a high crosslinking density may not be obtained. When the amount of the crosslinking agent is too large, the crosslinking effect is saturated, but there is a possibility that a resin molded body and a crosslinked resin molded body having desired physical properties cannot be obtained.
  また本発明においては、架橋剤としてラジカル発生剤を用いた場合、その架橋反応を促進させるために、架橋助剤を使用することができる。架橋助剤としては、ジイソプロペニルベンゼンなどのイソプロペニル基を2以上有する炭化水素化合物;ラウリルメタクリレート、トリメチロールプロパントリメタクレートなどのメタクリレート化合物;トリアリルシアヌレート、トリアリルイソシアヌレートなどのシアヌル酸化合物;マレイミドなどのイミド化合物;などが挙げられる。架橋助剤の量は特に制限されないが、シクロオレフィンモノマー100重量部に対して、通常0~100重量部、好ましくは0~50重量部である。 In the present invention, when a radical generator is used as a crosslinking agent, a crosslinking aid can be used to promote the crosslinking reaction. Crosslinking aids include hydrocarbon compounds having two or more isopropenyl groups such as diisopropenylbenzene; methacrylate compounds such as lauryl methacrylate and trimethylolpropane trimethacrylate; cyanuric acids such as triallyl cyanurate and triallyl isocyanurate Compounds; imide compounds such as maleimide; and the like. The amount of the crosslinking aid is not particularly limited, but is usually 0 to 100 parts by weight, preferably 0 to 50 parts by weight with respect to 100 parts by weight of the cycloolefin monomer.
  ラジカル架橋遅延剤としては、アルコキシフェノール類、カテコール類、ベンゾキノン類が挙げられ、3,5-ジ-t-ブチル-4-ヒドロキシアニソールなどのアルコキシフェノール類が好ましい。 Examples of radical crosslinking retarders include alkoxyphenols, catechols, and benzoquinones, and alkoxyphenols such as 3,5-di-t-butyl-4-hydroxyanisole are preferred.
  難燃剤としては、リン系難燃剤、窒素系難燃剤、ハロゲン系難燃剤、水酸化アルミニウムなどの金属水酸化物系難燃剤、三酸化アンチモンなどのアンチモン化合物、などが挙げられる。難燃剤は単独で用いてもよいが、2種以上を組合せて用いてもよい。 Examples of flame retardants include phosphorus flame retardants, nitrogen flame retardants, halogen flame retardants, metal hydroxide flame retardants such as aluminum hydroxide, and antimony compounds such as antimony trioxide. Although a flame retardant may be used independently, you may use it in combination of 2 or more type.
  充填剤は、シクロオレフィンモノマー、及び所望により使用される溶媒に不溶であれば、有機、無機を問わず種々の材料を使用可能である。充填剤は、得られる樹脂成形体、及び架橋樹脂成形体の用途に応じて適宜選択される。また、形状の制限もなく、球状、不定形状、樹枝状、針状、棒状、扁平状等いかなる形状であってもよい。平均粒子径も特に限定されないが、レーザー散乱回折式粒度分布計で測定した全充填剤の50体積%が含まれるメディアン径で、通常、0.001~70μm、好ましくは0.01~50μm、より好ましくは0.05~15μmである。
  無機充填剤としては、ガラス、セラミック、シリカなどが挙げられる。有機充填剤としては、ポリオレフィン、各種エラストマー、廃プラスチック等が挙げられる。
  また、上記の他にチョップストランド、ミルドファイバー等の短繊維状の充填剤を用いることもできる。繊維の種類としては、ガラス繊維、カーボン繊維、金属繊維等の無機繊維、又はアラミド繊維、ナイロン繊維、ジュート繊維、ケナフ繊維、竹繊維、ポリエチレン繊維、ポリプロピレン繊維等の有機繊維が挙げられる。
  これら充填剤は、単独で、又は2種類以上を組合せて用いてもよい。充填剤としては、シランカップリング剤等で表面処理したものを用いることもできる。充填剤の量は、シクロオレフィンモノマー100重量部に対し、通常、0~600重量部、好ましくは50~500重量部、より好ましくは50~300重量部である。
As the filler, various materials can be used regardless of whether they are organic or inorganic as long as they are insoluble in the cycloolefin monomer and the solvent used as required. A filler is suitably selected according to the use of the resin molding obtained and a crosslinked resin molding. Moreover, there is no restriction | limiting of a shape, Any shapes, such as spherical shape, indefinite shape, dendritic shape, needle shape, rod shape, flat shape, may be sufficient. Although the average particle diameter is not particularly limited, it is usually a median diameter containing 50% by volume of the total filler measured with a laser scattering diffraction particle size distribution meter, and is usually 0.001 to 70 μm, preferably 0.01 to 50 μm, more The thickness is preferably 0.05 to 15 μm.
Examples of the inorganic filler include glass, ceramic, silica and the like. Examples of the organic filler include polyolefin, various elastomers, waste plastics and the like.
In addition to the above, short fiber fillers such as chopped strands and milled fibers can also be used. Examples of the fiber include inorganic fibers such as glass fibers, carbon fibers, and metal fibers, or organic fibers such as aramid fibers, nylon fibers, jute fibers, kenaf fibers, bamboo fibers, polyethylene fibers, and polypropylene fibers.
These fillers may be used alone or in combination of two or more. As the filler, one that has been surface-treated with a silane coupling agent or the like can also be used. The amount of the filler is usually 0 to 600 parts by weight, preferably 50 to 500 parts by weight, and more preferably 50 to 300 parts by weight with respect to 100 parts by weight of the cycloolefin monomer.
  着色剤としては、染料、顔料などが用いられる。染料の種類は多様であり、公知のものを適宜選択して使用できる。 As the colorant, dyes, pigments and the like are used. There are various kinds of dyes, and known dyes can be appropriately selected and used.
  本発明の重合性組成物は、ルテニウムカルベン錯体触媒を適当な溶媒に溶解、又は分散させた液(触媒液)を調製し、別にシクロオレフィンモノマーに、その他の添加剤を所望により配合した液(モノマー液)を調製し、該モノマー液に触媒液を添加し、攪拌することによって調製するのが好適である。ルテニウムカルベン錯体触媒の添加は次に述べる塊状重合を行う直前に行うことが好ましい。また、連鎖移動剤、ラジカル発生剤、ラジカル架橋遅延剤などは、モノマー液と触媒液を混合する前にモノマー液及び/又は触媒液に予め添加しておいてもよいし、モノマー液と触媒液とを、混合するのと同時に、又は混合した後、に添加してもよい。 The polymerizable composition of the present invention is prepared by preparing a liquid (catalyst liquid) in which a ruthenium carbene complex catalyst is dissolved or dispersed in an appropriate solvent, and separately adding other additives to a cycloolefin monomer as required ( It is preferable to prepare a monomer liquid) by adding a catalyst liquid to the monomer liquid and stirring. The addition of the ruthenium carbene complex catalyst is preferably performed immediately before the bulk polymerization described below. Further, the chain transfer agent, radical generator, radical crosslinking retarder, etc. may be added in advance to the monomer liquid and / or catalyst liquid before mixing the monomer liquid and catalyst liquid, or the monomer liquid and catalyst liquid. May be added simultaneously with or after mixing.
(樹脂成形体の製造方法)
  本発明の樹脂成形体は、上記重合性組成物を、実質的に溶剤を用いずに塊状重合することにより得られる。本発明の重合性組成物を塊状重合して樹脂成形体を得る方法に限定はないが、例えば、(a)重合性組成物を支持体上に塗布し、次いで塊状重合する方法、(b)重合性組成物を成形型の空間部に注入し、次いで塊状重合する方法、(c)重合性組成物を繊維状強化材に含浸させ、次いで塊状重合する方法などが挙げられる。
(Production method of resin molding)
The resin molded product of the present invention can be obtained by bulk polymerization of the polymerizable composition substantially without using a solvent. Although there is no limitation on the method of obtaining a resin molded body by bulk polymerization of the polymerizable composition of the present invention, for example, (a) a method of coating the polymerizable composition on a support, and then bulk polymerization, (b) Examples thereof include a method in which the polymerizable composition is injected into the space of the mold and then bulk polymerization, and (c) a method in which the fibrous composition is impregnated with the polymerizable composition and then bulk polymerization.
  本発明の重合性組成物は粘度が低いので、(a)の方法における塗布は円滑に実施でき、(b)の方法における注入は複雑形状の空間部であっても迅速に泡かみを起こさずに行き渡らせることが可能であり、(c)の方法においては繊維状強化材に対して速やかに満遍なく含浸させることができる。 Since the polymerizable composition of the present invention has a low viscosity, the application in the method (a) can be smoothly carried out, and the injection in the method (b) does not rapidly cause foaming even in a complex-shaped space. In the method (c), the fibrous reinforcing material can be impregnated quickly and uniformly.
  (a)の方法によれば、フィルム状、板状等の樹脂成形体が得られる。該成形体の厚みは、通常、15mm以下、好ましくは5mm以下、より好ましくは0.5mm以下、最も好ましくは0.1mm以下である。支持体としては、例えば、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリエチレンナフタレート、ポリアリレート、及びナイロンなどの樹脂からなるフィルムや板;鉄、ステンレス、銅、アルミニウム、ニッケル、クロム、金、及び銀などの金属材料からなるフィルムや板;などが挙げられる。なかでも、金属箔又は樹脂フィルムの使用が好ましい。これらの金属箔又は樹脂フィルムの厚みは、作業性などの観点から、通常、1~150μm、好ましくは2~100μm、より好ましくは3~75μmである。 According to the method of) (a), a resin molded body such as a film or plate can be obtained. The thickness of the molded body is usually 15 mm or less, preferably 5 mm or less, more preferably 0.5 mm or less, and most preferably 0.1 mm or less. Examples of the support include films and plates made of resins such as polyethylene terephthalate, polypropylene, polyethylene, polycarbonate, polyethylene naphthalate, polyarylate, and nylon; iron, stainless steel, copper, aluminum, nickel, chromium, gold, and silver. And films and plates made of metal materials such as Especially, use of metal foil or a resin film is preferable. The thickness of these metal foils or resin films is usually 1 to 150 μm, preferably 2 to 100 μm, more preferably 3 to 75 μm from the viewpoint of workability and the like.
  支持体上に本発明の重合性組成物を塗布する方法としては、スプレーコート法、ディップコート法、ロールコート法、カーテンコート法、ダイコート法、及びスリットコート法などの公知の塗布方法が挙げられる。 Examples of the method for applying the polymerizable composition of the present invention on the support include known coating methods such as spray coating, dip coating, roll coating, curtain coating, die coating, and slit coating. .
  支持体上に塗布された重合性組成物を所望により乾燥させ、次いで塊状重合する。塊状重合するために重合性組成物を加熱する。加熱方法としては、加熱プレート上に支持体に塗布された重合性組成物を載せて加熱する方法、プレス機を用いて加圧しながら加熱(熱プレス)する方法、熱したローラーを押圧する方法、加熱炉を用いる方法などが挙げられる。 重合 The polymerizable composition coated on the support is optionally dried and then bulk polymerized. The polymerizable composition is heated for bulk polymerization. As a heating method, a method of placing and heating the polymerizable composition applied to a support on a heating plate, a method of heating while applying pressure using a press (hot pressing), a method of pressing a heated roller, Examples include a method using a heating furnace.
  (b)の方法によって得られる樹脂成形体の形状は、成形型により任意に設定できる。例えば、フィルム状、柱状、その他の任意の立体形状などが挙げられる。成形型の形状、材質、大きさなどは特に制限されない。かかる成形型としては、従来公知の成形型、例えば、割型構造、すなわちコア型とキャビティー型を有する成形型;2枚の板の間にスペーサーを設けた成形型;などを用いることができる。 The shape of the resin molding obtained by the method of (b) can be arbitrarily set by a molding die. For example, a film shape, a column shape, other arbitrary three-dimensional shapes, etc. are mentioned. The shape, material, size, etc. of the mold are not particularly limited. As such a mold, a conventionally known mold, for example, a split mold structure, that is, a mold having a core mold and a cavity mold; a mold having a spacer between two plates; and the like can be used.
  成形型の空間部(キャビティー)に本発明の重合性組成物を注入する圧力(射出圧)は、通常、0.01~10MPa、好ましくは0.02~5MPaである。注入圧力が低すぎると、充填が不十分になり、キャビティー内面に形成された転写面の転写が良好に行われないおそれがあり、注入圧力が高すぎると、成形型は剛性が高いものが必要となり経済的ではない。型締圧力は、通常、0.01~10MPaの範囲内である。 The pressure (injection pressure) for injecting the polymerizable composition of the present invention into the space (cavity) of the mold is usually 0.01 to 10 MPa, preferably 0.02 to 5 MPa. If the injection pressure is too low, the filling may be insufficient and the transfer surface formed on the inner surface of the cavity may not be transferred well.If the injection pressure is too high, the mold may have high rigidity. Needed and not economical. The mold clamping pressure is usually in the range of 0.01 to 10 MPa.
  空間部に充填された重合性組成物を加熱することによって塊状重合させることができる。重合性組成物の加熱方法としては、成形型に配設された電熱器、スチームなどの加熱手段を利用する方法、成形型を電気炉内で加熱する方法などが挙げられる。 Bulk polymerization can be performed by heating the polymerizable composition filled in the heel space. Examples of the method for heating the polymerizable composition include a method using a heating means such as an electric heater and steam disposed in a mold, and a method for heating the mold in an electric furnace.
  (c)の方法によって得られる樹脂成形体としては、例えば、塊状重合体が繊維状強化材のすき間に充填されて成るプリプレグなどが挙げられる。繊維状強化材としては、無機系及び/又は有機系の繊維が使用でき、例えば、ガラス繊維、金属繊維、セラミック繊維、炭素繊維、アラミド繊維、ポリエチレンテレフタレート繊維、ビニロン繊維、ポリエステル繊維、アミド繊維、及びポリアリレートなどの液晶繊維などの公知のものが挙げられる。これらは1種単独で用いてもよいし、2種以上を組合せて用いてもよい。繊維状強化材の形状としては、例えば、マット、クロス、不織布などが挙げられる。 Examples of the resin molded product obtained by the method of c) (c) include a prepreg formed by filling a bulk polymer with a gap between fibrous reinforcing materials. As the fibrous reinforcing material, inorganic and / or organic fibers can be used, such as glass fibers, metal fibers, ceramic fibers, carbon fibers, aramid fibers, polyethylene terephthalate fibers, vinylon fibers, polyester fibers, amide fibers, And known ones such as liquid crystal fibers such as polyarylate. These may be used individually by 1 type and may be used in combination of 2 or more type. Examples of the shape of the fibrous reinforcing material include mats, cloths, and nonwoven fabrics.
  繊維状強化材に本発明の重合性組成物を含浸させるには、例えば、該重合性組成物の所定量を、繊維状強化材製のクロス、マット等の上に注ぎ、所望によりその上に保護フィルムを重ね、上方からローラーなどで押圧することにより行うことができる。繊維状強化材に該重合性組成物を含浸させた後に、所定温度に加熱して、得られた含浸物を塊状重合させることにより樹脂の含浸したプリプレグを得ることができる。加熱方法としては、例えば、含浸物を支持体上に設置して前記(a)の方法のようにして加熱する方法、予め型内に繊維状強化材をセットしておき、重合性組成物を含浸させてから前記(b)の方法のようにして加熱する方法などが用いられる。 In order to impregnate the fibrous reinforcing material with the polymerizable composition of the present invention, for example, a predetermined amount of the polymerizable composition is poured onto a fibrous reinforcing material cloth, mat, etc. It can be performed by stacking protective films and pressing with a roller or the like from above. A prepreg impregnated with a resin can be obtained by impregnating the polymerizable composition into a fibrous reinforcing material and then heating to a predetermined temperature to cause the resulting impregnated product to undergo bulk polymerization. As a heating method, for example, a method in which an impregnated material is placed on a support and heated as in the method (a) above, a fibrous reinforcing material is set in a mold in advance, and a polymerizable composition is used. After impregnation, a method of heating as in the method (b) is used.
  上記(a)、(b)及び(c)のいずれの方法においても、重合性組成物を塊状重合させるための加熱温度((b)の方法においては金型温度)は、通常、30~250℃、好ましくは50~200℃である。重合時間は適宜選択すればよいが、通常、1秒間~20分間、好ましくは10秒間~5分間以内である。 In any of the above methods (a), (b) and (c), the heating temperature for bulk polymerization of the polymerizable composition (the mold temperature in the method (b)) is usually 30 to 250. ° C, preferably 50 to 200 ° C. The polymerization time may be appropriately selected, but is usually 1 second to 20 minutes, preferably 10 seconds to 5 minutes or less.
  重合性組成物を所定温度に加熱することにより塊状重合反応が開始する。塊状重合反応が開始すると、重合性組成物の温度は反応熱により急激に上昇し、短時間(例えば、10秒~5分程度)でピーク温度に到達する。さらに塊状重合反応は進むが、重合反応は次第に収まり、温度が低下していく。ピーク温度を、この重合反応により得られる樹脂成形体を構成する重合体のガラス転移温度以上になるように制御すると、完全に重合が進行するので好ましい。ピーク温度は加熱温度により制御できる。また、連鎖移動剤を配合した重合性組成物から得られる樹脂成形体の場合、重合体の重合反応率は、通常、80%以上、好ましくは90%以上、より好ましくは95%以上である。なお、重合体の重合反応率は、例えば、重合体を溶剤に溶解して得られた溶液をガスクロマトグラフィーにより分析することで求めることができる。塊状重合がほぼ完全に進行している重合体は、残留モノマーが少なく、臭気の発生が実質的にない。 塊 The bulk polymerization reaction is started by heating the polymerizable composition to a predetermined temperature. When the bulk polymerization reaction starts, the temperature of the polymerizable composition rapidly increases due to the heat of reaction, and reaches the peak temperature in a short time (eg, about 10 seconds to 5 minutes). Further, the bulk polymerization reaction proceeds, but the polymerization reaction gradually stops and the temperature decreases. It is preferable to control the peak temperature so as to be equal to or higher than the glass transition temperature of the polymer constituting the resin molded body obtained by this polymerization reaction, since the polymerization proceeds completely. The peak temperature can be controlled by the heating temperature. Moreover, in the case of the resin molding obtained from the polymeric composition which mix | blended the chain transfer agent, the polymerization reaction rate of a polymer is 80% or more normally, Preferably it is 90% or more, More preferably, it is 95% or more. The polymerization reaction rate of the polymer can be determined, for example, by analyzing a solution obtained by dissolving the polymer in a solvent by gas chromatography. A polymer in which bulk polymerization has proceeded almost completely has little residual monomer and substantially no odor.
  重合性組成物が架橋剤を含有する場合には、塊状重合反応時のピ-ク温度が高くなりすぎると、塊状重合反応のみならず、一挙に架橋反応も進行してしまうおそれがある。したがって、塊状重合反応のみを完全に進行させ、架橋反応が進行しないようにするためには、塊状重合における重合性組成物のピーク温度を、通常、200℃未満に制御することが好ましい。ただし、生産性等の観点から、塊状重合反応と架橋反応とを同時に進行させてもよい。架橋剤としてラジカル発生剤を含有する重合性組成物を用いる場合、塊状重合でのピーク温度をラジカル発生剤の1分間半減期温度以下とすることが好ましい。 In the case where the polymerizable composition contains a crosslinking agent, if the peak temperature during the bulk polymerization reaction becomes too high, not only the bulk polymerization reaction but also the crosslinking reaction may progress all at once. Therefore, in order to completely advance only the bulk polymerization reaction and prevent the crosslinking reaction from proceeding, it is usually preferable to control the peak temperature of the polymerizable composition in the bulk polymerization to less than 200 ° C. However, from the viewpoint of productivity and the like, the bulk polymerization reaction and the crosslinking reaction may proceed simultaneously. When using a polymerizable composition containing a radical generator as a crosslinking agent, it is preferable that the peak temperature in bulk polymerization is not more than the 1 minute half-life temperature of the radical generator.
(架橋樹脂成形体の製造方法)
  本発明の架橋樹脂成形体は、架橋剤を含有する重合性組成物を用いて得られた本発明の樹脂成形体を加熱して架橋させることにより得られるものである。樹脂成形体を加熱して架橋させるときの温度は、通常、170~250℃、好ましくは180~220℃である。この温度は、前記塊状重合でのピーク温度より高いことが好ましく、20℃以上高いことがより好ましい。また、加熱して架橋させる時間は特に制約されないが、通常、1分間~10時間である。
(Method for producing crosslinked resin molded body)
The crosslinked resin molded article of the present invention is obtained by heating and crosslinking the resin molded article of the present invention obtained using a polymerizable composition containing a crosslinking agent. The temperature at which the resin molded body is crosslinked by heating is usually 170 to 250 ° C., preferably 180 to 220 ° C. This temperature is preferably higher than the peak temperature in the bulk polymerization, and more preferably 20 ° C. or higher. The time for crosslinking by heating is not particularly limited, but is usually 1 minute to 10 hours.
  樹脂成形体を加熱して架橋させる方法は特に制約されない。樹脂成形体がフィルム状である場合は、所望によりそれを複数枚積層し、熱プレスにより加熱と同時に圧力を加える方法が好ましい。熱プレスする時の圧力は、通常、0.5~20MPa、好ましくは3~10MPaである。 The method for heating and crosslinking the plastic molded body is not particularly limited. When the resin molded body is in the form of a film, a method of laminating a plurality of sheets if desired and applying pressure simultaneously with heating by hot pressing is preferable. The pressure during hot pressing is usually 0.5 to 20 MPa, preferably 3 to 10 MPa.
  なお、上述したように、生産性等の観点から、塊状重合反応と架橋反応とを同時に進行させて、重合性組成物から直接架橋樹脂成形体を得ても良い。重合性組成物を加熱し、重合、架橋する方法は特に制約されない。たとえば、重合性組成物を型枠内に注入し、熱プレスにより加熱と同時に圧力を加える方法が好ましい。熱プレスする時の圧力は、通常、0.5~20MPa、好ましくは3~10MPaである。 As described above, from the viewpoint of productivity and the like, the bulk polymerization reaction and the crosslinking reaction may be simultaneously performed to obtain a crosslinked resin molded body directly from the polymerizable composition. The method for heating, polymerizing and crosslinking the polymerizable composition is not particularly limited. For example, a method of injecting a polymerizable composition into a mold and applying pressure simultaneously with heating by a hot press is preferable. The pressure during hot pressing is usually 0.5 to 20 MPa, preferably 3 to 10 MPa.
  上記樹脂成形体又は架橋樹脂成形体は、積層体として用いても良い。積層体は、上記樹脂成形体又は架橋樹脂成形体からなる構成層を有し、より具体的には、少なくとも二以上の層を有し、その少なくとも一の層が上記の樹脂成形体又は架橋樹脂成形体で形成されている。このような積層体のさらに具体的な例としては、銅箔などの基体材料と、本発明の樹脂成形体又は架橋樹脂成形体から形成される構成層を含む積層体が挙げられる。また、積層体は、多層積層基板のように、銅箔などの基体材料と、樹脂成形体又は架橋樹脂成形体からなる樹脂層とが交互に積層されてなる複合材料であってもよい。ここで、樹脂成形体又は架橋樹脂成形体からなる樹脂層が複数含まれている場合には、それぞれの樹脂層の組成は同一であっても異なっていてもよい。 The resin molded body or the crosslinked resin molded body may be used as a laminate. The laminate has a constituent layer composed of the resin molded body or the crosslinked resin molded body, more specifically, has at least two or more layers, and at least one of the layers is the resin molded body or the crosslinked resin. It is formed of a molded body. A more specific example of such a laminate includes a laminate including a base material such as a copper foil and a constituent layer formed from the resin molded body or the crosslinked resin molded body of the present invention. Further, the laminated body may be a composite material in which a base material such as a copper foil and a resin layer made of a resin molded body or a crosslinked resin molded body are alternately laminated like a multilayer laminated substrate. Here, when a plurality of resin layers made of a resin molded body or a crosslinked resin molded body are included, the composition of each resin layer may be the same or different.
  上記基体材料としては、銅箔、アルミ箔、ニッケル箔、クロム箔、金箔、及び銀箔などの金属箔;プリント配線板製造用基板;ポリテトラフルオロエチレン(PTFE)性フィルムや導電性ポリマーフィルム等の樹脂フィルム;ノイズ抑制シート、電波吸収体などが挙げられる。また、基体材料の表面はシラン系カップリング剤、チオール系カップリング剤、チタネート系カップリング剤、及び各種接着剤などで処理されていてもよい。 Examples of the base material include metal foils such as copper foil, aluminum foil, nickel foil, chrome foil, gold foil, and silver foil; substrates for manufacturing printed wiring boards; polytetrafluoroethylene (PTFE) films, conductive polymer films, etc. Resin film; Noise suppression sheet, radio wave absorber and the like. The surface of the base material may be treated with a silane coupling agent, a thiol coupling agent, a titanate coupling agent, various adhesives, or the like.
  積層体を得る方法に格別な制限はなく、本発明の樹脂成形体を構成層に含む積層体を得る場合には、たとえば本発明の重合性組成物を用いて得られた樹脂成形体を適当な基体材料に重ね合わせて積層体を得てもよく、また樹脂成形体同士を重ね合わせて積層体を得てもよい。さらに重合性組成物を適当な基体材料又は樹脂成形体上に塗工し、該重合性組成物を重合して積層体を得ることもできる。 There is no particular limitation on the method of obtaining the laminate, and when obtaining a laminate comprising the resin molded product of the present invention in the constituent layers, for example, a resin molded product obtained using the polymerizable composition of the present invention is suitable. A laminate may be obtained by superimposing on a base material, or a laminate may be obtained by superimposing resin molded bodies on each other. Furthermore, a polymerizable composition can be coated on a suitable base material or resin molded body, and the polymerizable composition can be polymerized to obtain a laminate.
  また、本発明の架橋樹脂成形体からなる構成層を含む積層体を得る場合には、例えば(1)架橋剤を含有する重合性組成物を用いて得られた樹脂成形体を、基体材料に重ね合わせ、次いで加熱して架橋させる、(2)重合性組成物を基体材料上に積層し、塊状重合及び架橋反応を進行させる、(3)架橋剤を含有する重合性組成物を用いて得られた樹脂成形体を、2枚以上重ね合わせ、次いで加熱して架橋させる、という方法が挙げられる。 Moreover, when obtaining the laminated body containing the structural layer which consists of the crosslinked resin molding of this invention, for example, (1) The resin molding obtained using the polymeric composition containing a crosslinking agent is used for base material. Superposed, then heated to crosslink, (2) Laminate polymerizable composition on substrate material, proceed with bulk polymerization and crosslinking reaction, (3) Obtained using polymerizable composition containing crosslinking agent There is a method in which two or more obtained resin molded bodies are superposed and then heated to crosslink.
  前記(1)の方法により積層体を得るには、例えば、樹脂成形体と、基体材料としての金属箔とを重ね合わせて熱プレスなどによって加熱することにより架橋させて、金属箔と強固に密着した金属箔張積層板を得ることができる。得られる金属箔張積層板の金属箔の引き剥がし強さは、金属箔として銅箔を用いた場合、JIS    C6481に基づいて測定した値で、厚さ12μmの表面処理F0銅箔を用いて、0.2kN/mを超える、好ましくは0.4kN/mを超える、より好ましくは0.6kN/mを超える。 In order to obtain a laminate by the method of (1), for example, a resin molded body and a metal foil as a base material are overlapped and heated by hot pressing or the like to be cross-linked and firmly adhered to the metal foil. A metal foil-clad laminate can be obtained. When the copper foil is used as the metal foil, the peel strength of the metal foil of the obtained metal foil-clad laminate is a value measured based on JIS C 6481, using a surface-treated F0 copper foil having a thickness of 12 μm, More than 0.2 kN / m, preferably more than 0.4 kN / m, more preferably more than 0.6 kN / m.
  前記(2)の方法により積層体を得るためには、重合性組成物の塊状重合温度を高く設定して架橋反応も起きる温度で加熱する。しかし、前記(1)の方法のように、一旦樹脂成形体の段階を経る方が界面の引き剥がし強さが大きくなる。 を 得 In order to obtain a laminate by the method (2), the bulk polymerization temperature of the polymerizable composition is set high and heating is performed at a temperature at which a crosslinking reaction occurs. However, as in the method (1), once the resin molded body is passed through, the peel strength at the interface increases.
  かかる積層体を、さらに複数積層してもよい。例えば、金属箔、架橋樹脂成形体及び樹脂成形体がこの順に積層されてなる積層体を用いると、多層回路基板を容易に得ることができる。その具体的な方法としては、先ず該積層体の金属箔の層をパターニングして導体回路を形成する。金属箔をパターニングする方法は、特に制限されず、フォトリソグラフィー法や、レーザー加工法などが挙げられる。 A plurality of such laminates may be further laminated. For example, when a laminate in which a metal foil, a crosslinked resin molded product, and a resin molded product are laminated in this order is used, a multilayer circuit board can be easily obtained. As a specific method, first, a conductive circuit is formed by patterning the metal foil layer of the laminate. The method for patterning the metal foil is not particularly limited, and examples thereof include a photolithography method and a laser processing method.
  次に架橋体の層及び樹脂成形体の層を貫通させると共に底面に上記導体回路が露出するビアホールを形成する。そして、上記ビアホールに導体を付与して導体回路から樹脂成形体層側に電気的に導通された配線を設けて、多層回路基板用片面回路基板を得る。ビアホールの形成方法は特に制限されず、レーザー穿孔法、ペースト印刷法などが挙げられる。ビアホール形成後、レーザー穿孔法で発生するレーザースミアを除去するために、過マンガン酸デスミア法を行うことができる。 Next, a via hole is formed through the cross-linked body layer and the resin molded body layer and exposing the conductor circuit on the bottom surface. Then, a conductor is provided to the via hole and a wiring electrically connected from the conductor circuit to the resin molded body layer side is provided to obtain a single-sided circuit board for a multilayer circuit board. A method for forming the via hole is not particularly limited, and examples thereof include a laser drilling method and a paste printing method. After forming the via hole, a permanganate desmear method can be performed in order to remove laser smear generated by the laser drilling method.
  また、ビアホールに導体を付与する方法は、特に制限されず、スクリーン印刷法によりビアホールに導電性ペーストを充填する方法が挙げられる。スクリーン印刷法で用いた保護フィルムを取り除くと導電性ペーストが樹脂成形体層の表面から突き出した、導電性バンプを形成できる。導電性バンプの高さは、通常、5~100μmである。また、導電性ペーストの充填に代えて、ビアホールにめっきにより導体を付与してもよい。 In addition, a method for applying a conductor to the via hole is not particularly limited, and a method of filling the via hole with a conductive paste by a screen printing method may be used. When the protective film used in the screen printing method is removed, a conductive bump in which the conductive paste protrudes from the surface of the resin molded body layer can be formed. The height of the conductive bump is usually 5 to 100 μm. Further, instead of filling the conductive paste, a conductor may be applied to the via hole by plating.
  前記多層回路基板用片面回路基板を、2枚以上重ね合わせるか又は他の回路基板と重ね合わせ、熱プレスして積層することで、内層配線と表面配線を有する多層回路基板が得られる。熱プレスによって、樹脂成形体層が溶融し、回路基板の凹凸に応じて変形する。樹脂成形体層では、さらに加熱すると架橋反応が進行し、密着性が向上する。 (2) A multilayer circuit board having an inner layer wiring and a surface wiring can be obtained by stacking two or more single-sided circuit boards for the multilayer circuit board or by stacking them with another circuit board and hot pressing. By the hot press, the resin molded body layer is melted and deformed according to the unevenness of the circuit board. When the resin molded body layer is further heated, a cross-linking reaction proceeds and adhesion is improved.
  本発明の樹脂成形体及び架橋樹脂成形体は、塊状重合により製造可能であり、従来のキャスト法のような大量の溶剤を揮散させる工程などが不要なので極めて簡便に製造できる利点を有する。 樹脂 The resin molded body and the crosslinked resin molded body of the present invention can be produced by bulk polymerization and have an advantage that they can be produced very easily because a step of evaporating a large amount of solvent as in the conventional casting method is unnecessary.
  本発明の重合性組成物は、高い重合転化率での重合が可能であるため、製造される樹脂成形体にはベタツキがなく作業性に優れ、モノマーに由来する臭気がなく使用環境にも優れる。 Since the polymerizable composition of the present invention can be polymerized at a high polymerization conversion rate, the produced resin molded article has no stickiness and excellent workability, and has no odor derived from the monomer and excellent in the use environment. .
  本発明の重合性組成物は、経時の粘度上昇が非常に少なく、繊維状強化材への均一な含浸が行えるなど、常に安定した性状の樹脂成形体を製造することができる。 重合 The polymerizable composition of the present invention has a very small increase in viscosity over time, and can uniformly impregnate a fibrous reinforcing material, and can always produce a resin molded product having stable properties.
  本発明の重合性組成物は、特定の構造を有する、2種類のルテニウムカルベン錯体触媒の混合物を一括して製造することにより、複数のルテニウムカルベン錯体触媒を使用しながら、高い生産性で製造することができる。
  本発明の樹脂成形体、及び架橋樹脂成形体は、低誘電正接などの優れた電気特性を有する上、従来の樹脂成形体等に比べて線膨張率が低く、また機械的強度が高く、金属箔等の他の支持体への接着性も高い。
The polymerizable composition of the present invention is produced with high productivity while using a plurality of ruthenium carbene complex catalysts by collectively producing a mixture of two types of ruthenium carbene complex catalysts having a specific structure. be able to.
The resin molded body and cross-linked resin molded body of the present invention have excellent electrical characteristics such as low dielectric loss tangent, and have a lower linear expansion coefficient and higher mechanical strength than conventional resin molded bodies, etc. Adhesion to other supports such as foil is also high.
  このような特徴を有する本発明の樹脂成形体及び架橋樹脂成形体は、プリプレグ;樹脂付き銅箔;プリント配線板、絶縁シート、層間絶縁膜、オーバーコート、アンテナ基板、電磁波吸収体、電磁波シールドなどの電子部品材料として好適である。 The resin molded body and the crosslinked resin molded body of the present invention having such characteristics include a prepreg; a copper foil with resin; a printed wiring board, an insulating sheet, an interlayer insulating film, an overcoat, an antenna substrate, an electromagnetic wave absorber, an electromagnetic wave shield, and the like. It is suitable as an electronic component material.
  以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例及び比較例における部及び%は、特に断りのない限り重量基準である。実施例及び比較例における各特性は、以下の方法に従い測定した。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, the part and% in an Example and a comparative example are a basis of weight unless there is particular notice. Each characteristic in an Example and a comparative example was measured in accordance with the following method.
(粘度上昇率)
  調製直後の重合性組成物1.5mLについて、E型粘度計を用いて、20℃、回転数10rpmで粘度を測定した。該重合性組成物を20℃に保持した恒温槽内で保管し、60分後の粘度を同様に測定し、以下の式:
粘度上昇率(%)=〔(60分後の粘度/調製直後の粘度)-1〕×100
により粘度の上昇率を求め、以下の評価基準で評価した。
(評価基準)
    A:粘度上昇率が20%未満
    B:20%以上、100%未満
    C:100%以上
(Viscosity increase rate)
About 1.5 mL of polymeric compositions immediately after preparation, the viscosity was measured at 20 degreeC and rotation speed 10rpm using the E-type viscosity meter. The polymerizable composition was stored in a thermostatic bath maintained at 20 ° C., the viscosity after 60 minutes was measured in the same manner, and the following formula:
Viscosity increase rate (%) = [(viscosity after 60 minutes / viscosity immediately after preparation) -1] × 100
The viscosity increase rate was determined by the following evaluation criteria.
(Evaluation criteria)
A: Viscosity increase rate is less than 20% B: 20% or more, less than 100% C: 100% or more
(繊維強化材への含浸性)
  プリプレグを任意に3箇所で切断して生じた断面を目視により観察し、重合性組成物のガラスクロスへの含浸性を以下の評価基準で評価した。
(評価基準)
    A:プリプレグに空隙が見られなかった。
    B:プリプレグに空隙が見られた。
    C:ガラスクロスへ含浸出来ず、プリプレグを作製出来なかった。
(Impregnation into fiber reinforcement)
The cross section produced by arbitrarily cutting the prepreg at three locations was visually observed, and the impregnation property of the polymerizable composition into the glass cloth was evaluated according to the following evaluation criteria.
(Evaluation criteria)
A: No void was found in the prepreg.
B: A void was observed in the prepreg.
C: The glass cloth could not be impregnated and a prepreg could not be produced.
(重合転化率)
  プリプレグの中央部分を一部切り取り、トルエンに溶解後、溶解成分を抽出し、ガスクロマトグラフィーで残留モノマー量を測定した。測定した残留モノマー量から重合転化率を算出し、以下の評価基準で評価した。
(評価基準)
    A:重合転化率が98%以上
    B:95%以上、98%未満
    C:90%以上、95%未満
    D:90%未満
(Polymerization conversion)
A part of the central part of the prepreg was cut out and dissolved in toluene, and then the dissolved components were extracted, and the residual monomer amount was measured by gas chromatography. The polymerization conversion rate was calculated from the measured residual monomer amount and evaluated according to the following evaluation criteria.
(Evaluation criteria)
A: Polymerization conversion rate is 98% or more B: 95% or more, less than 98% C: 90% or more, less than 95% D: less than 90%
(ルテニウムカルベン錯体触媒混合物の量比)
  ルテニウムカルベン錯体触媒混合物(粉末)をCDClに溶解し、H-NMRを用いて、ルテニウムカルベン錯体触媒(A1)、及びルテニウムカルベン錯体触媒(A2)のカルベン部分の水素ピークの面積比から算出した。
(Ratio of ruthenium carbene complex catalyst mixture)
The ruthenium carbene complex catalyst mixture (powder) was dissolved in CDCl 3 and calculated from the area ratio of hydrogen peaks of the carbene part of the ruthenium carbene complex catalyst (A1) and the ruthenium carbene complex catalyst (A2) using 1 H-NMR. did.
[参考例1]
  ルテニウムカルベン錯体触媒(A2)である(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド〔(A1/A2)=(0/100)(モル/モル)〕を、0.05モル/リットルとなるように、インデン中に溶解させた。得られた溶解液を2つに分け、一方を40℃で24時間保存し、もう一方を80℃で10分間保存した後、インデンを乾燥、除去し、得られた粉末におけるルテニウムカルベン錯体触媒(A1)と(A2)の量比をH-NMRにて測定、算出したところ、両方の条件で量比が(A1/A2)=(0/100)(モル/モル)で、保存前との変化がなく、非特許文献1で論じられるような平衡反応は起こらなかった。
[Reference Example 1]
Ruthenium carbene complex catalyst (A2) (1,3-Dimesityl-4-imidazoline-2-ylidene) (2-pyrrolidone-1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride [(A1 / A2) = (0 / 100) (mol / mol)] was dissolved in indene to a concentration of 0.05 mol / liter. The obtained solution was divided into two, one was stored at 40 ° C. for 24 hours, and the other was stored at 80 ° C. for 10 minutes, then indene was dried and removed, and the ruthenium carbene complex catalyst ( The quantity ratio between A1) and (A2) was measured and calculated by 1 H-NMR. Under both conditions, the quantity ratio was (A1 / A2) = (0/100) (mol / mol). The equilibrium reaction as discussed in Non-Patent Document 1 did not occur.
[実施例1]
  内部を窒素雰囲気としたガラス製フラスコ内に、(ビストリシクロヘキシルホスフィン)ルテニウムジクロリドヒドリド錯体粉末2.3部を加え、これにテトラヒドロフラン200部をシリンジにて、注入した。恒温槽を用いて、ガラス製フラスコ内の温度を0℃に調整し、アセトニトリル0.3部、プロピオル酸0.2部、1規定塩化水素/エタノール溶液3.3部及びN-ビニルピロリドン3.7部を順次添加した。これを3時間攪拌し、反応させた。その後、カリウム-t-ブトキシド0.2部、1,3-ビス(2,4,6-トリメチルフェニル)イミダゾリウムクロリド0.5部を添加し、3時間攪拌した後、減圧乾燥を行った。ガラス製フラスコ内の温度を-80℃に保持し、n-ペンタンを添加し、錯体混合物を析出させ、大気下で濾取し、ルテニウムカルベン錯体触媒(A1)である(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)ルテニウムジクロリドと、ルテニウムカルベン錯体触媒(A2)である(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリドとの混合物を得た。その量比は(A1/A2)=(20/80)(モル/モル)であった。
  ルテニウムカルベン錯体触媒の混合物を、テトラヒドロフランに窒素中で溶解させて、ルテニウム濃度が0.05モル/リットルの触媒液を調製した。
[Example 1]
In a glass flask whose inside was a nitrogen atmosphere, 2.3 parts of (bistricyclohexylphosphine) ruthenium dichloride hydride complex powder was added, and 200 parts of tetrahydrofuran was added thereto with a syringe. Using a thermostatic bath, the temperature in the glass flask was adjusted to 0 ° C., 0.3 parts of acetonitrile, 0.2 parts of propiolic acid, 3.3 parts of 1N hydrogen chloride / ethanol solution, and N-vinylpyrrolidone 3. Seven parts were added sequentially. This was stirred for 3 hours to react. Thereafter, 0.2 part of potassium tert-butoxide and 0.5 part of 1,3-bis (2,4,6-trimethylphenyl) imidazolium chloride were added and stirred for 3 hours, followed by drying under reduced pressure. The temperature in the glass flask was kept at −80 ° C., n-pentane was added, the complex mixture was precipitated, and collected by filtration under the atmosphere, and the ruthenium carbene complex catalyst (A1) (1,3-dimesityl- 4-Imidazoline-2-ylidene) (2-pyrrolidone-1-ylmethylene) ruthenium dichloride and ruthenium carbene complex catalyst (A2) (1,3-dimesityl-4-imidazoline-2-ylidene) (2-pyrrolidone- A mixture with 1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride was obtained. The quantitative ratio was (A1 / A2) = (20/80) (mol / mol).
A mixture of the ruthenium carbene complex catalyst was dissolved in tetrahydrofuran in nitrogen to prepare a catalyst solution having a ruthenium concentration of 0.05 mol / liter.
  ガラス瓶に、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン 100部、充填剤としてシリカ(SO-E2;アドマテックス社製)100部、難燃剤として三酸化アンチモン(PATOX-M;日本精鉱社製)27部、及びエタン-1,2-ビス(ペンタブロモフェニル)(SAYTEX8010;ALBEMARLE社製)13部を入れ、均一に混合した。これに、連鎖移動剤としてメタクリル酸ウンデセニル(エコノマーML;新中村化学社製)2.8部、及びラジカル発生剤としてジ-t-ブチルパーオキサイド(カヤブチルD;化薬アクゾ社製)1部を攪拌しながら加え、モノマー液を得た。このモノマー液に、前記触媒液0.3部を加えて、触媒液が均一に分散するように攪拌し、重合性組成物を調製した。
  調製から60分経過後に、前記重合性組成物70部を、ポリエチレンナフタレートフィルム(タイプQ51;厚さ75μm;帝人デュポンフィルム社製)の上に流延し、その上にガラスクロス(2116-シランカップリング剤処理品;厚さ75μm)を敷き、さらにその上に上記重合性組成物70部を流延した。その上からさらにポリエチレンナフタレートフィルムをかぶせて、ローラーを用いて重合性組成物をガラスクロス全体に含浸させた。140℃に熱した加熱炉中で、2分間加熱し、重合性組成物を塊状重合させた。ポリエチレンナフタレートフィルムを剥して、樹脂成形体を得た。60分経過後の重合性組成物の粘度上昇率、ガラスクロスへの含浸性、及びプリプレグの作製に使用したモノマーの重合転化率の評価結果を表1に示す。
In a glass bottle, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-4-ene 100 parts, silica (SO-E2; manufactured by Admatechs) 100 parts as a filler, antimony trioxide (PATOX-M; manufactured by Nippon Seiko Co., Ltd.) 27 parts as a flame retardant, And 13 parts of ethane-1,2-bis (pentabromophenyl) (SAYTEX 8010; manufactured by ALBEMARLE) were mixed uniformly. To this, 2.8 parts of undecenyl methacrylate (Economer ML; manufactured by Shin-Nakamura Chemical Co., Ltd.) as a chain transfer agent and 1 part of di-t-butyl peroxide (Kayabutyl D; manufactured by Kayaku Akzo) as a radical generator are added. The monomer solution was obtained while stirring. To this monomer solution, 0.3 part of the catalyst solution was added and stirred so that the catalyst solution was uniformly dispersed to prepare a polymerizable composition.
After 60 minutes from the preparation, 70 parts of the polymerizable composition was cast on a polyethylene naphthalate film (type Q51; thickness 75 μm; manufactured by Teijin DuPont Films), and a glass cloth (2116-silane) was formed thereon. A coupling agent-treated product (thickness: 75 μm) was laid, and 70 parts of the polymerizable composition was cast thereon. Further, a polyethylene naphthalate film was covered thereon, and the entire glass cloth was impregnated with the polymerizable composition using a roller. The polymerizable composition was subjected to bulk polymerization by heating for 2 minutes in a heating furnace heated to 140 ° C. The polyethylene naphthalate film was peeled off to obtain a resin molded body. Table 1 shows the evaluation results of the rate of increase in the viscosity of the polymerizable composition after 60 minutes, the impregnation into glass cloth, and the polymerization conversion rate of the monomers used for preparing the prepreg.
[実施例2]
  ルテニウムカルベン錯体触媒混合物作製時の反応温度を0℃から40℃に変更する以外は、実施例1と同様にして、ルテニウムカルベン錯体触媒(A1)である(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)ルテニウムジクロリドと、ルテニウムカルベン錯体触媒(A2)である(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリドとの混合物を得た。その量比は(A1/A2)=(40/60)(モル/モル)であった。
  ルテニウムカルベン錯体触媒の混合物を、テトラヒドロフランに窒素中で溶解させて、ルテニウム濃度が0.05モル/リットルの触媒液を調製した。その後は、実施例1と同様に重合性組成物を作製し、プリプレグを得た。評価結果を表1に示す。
[Example 2]
A ruthenium carbene complex catalyst (A1) (1,3-dimesityl-4-imidazoline-) was obtained in the same manner as in Example 1 except that the reaction temperature during the preparation of the ruthenium carbene complex catalyst mixture was changed from 0 ° C. to 40 ° C. 2-Ilidene) (2-pyrrolidone-1-ylmethylene) ruthenium dichloride and ruthenium carbene complex catalyst (A2) (1,3-dimesityl-4-imidazoline-2-ylidene) (2-pyrrolidone-1-ylmethylene) A mixture with (tricyclohexylphosphine) ruthenium dichloride was obtained. The quantitative ratio was (A1 / A2) = (40/60) (mol / mol).
A mixture of the ruthenium carbene complex catalyst was dissolved in tetrahydrofuran in nitrogen to prepare a catalyst solution having a ruthenium concentration of 0.05 mol / liter. Thereafter, a polymerizable composition was prepared in the same manner as in Example 1 to obtain a prepreg. The evaluation results are shown in Table 1.
[実施例3]
  実施例1で得たルテニウムカルベン錯体触媒の混合物10部と、CuCl 2部とを、塩化メチレン200部に溶解し、室温で2時間撹拌した。ルテニウムカルベン錯体触媒(A2)中で、ルテニウムに配位するホスフィンとCuClが反応して固形の生成物が沈殿した。これを濾過し、減圧乾燥、及び貧溶媒であるメタノールによる単離を行い、ルテニウムカルベン錯体触媒(A1)である(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)ルテニウムジクロリドを得た。
  ベンジリデン-ビス(トリシクロヘキシルホスフィン)ルテニウムジクロリド(Grubbs  Catalyst  1st  Generation;Sigma  Aldrich)2.3部、1,3-ジメシチルイミダゾリジンクロリド 3部、及びカリウム-t-ブトキシド 0.2部を、テトラヒドロフラン中に溶解し、室温で2時間撹拌した。次いで、N-ビニルピロリドン 3.7部を溶解し、40℃で3時間撹拌した後、減圧乾燥を行った。温度を-80℃とし、n-ペンタンを添加し、錯体を析出させ、大気下で濾取し、ルテニウムカルベン錯体触媒(A2)であるルテニウムカルベン錯体触媒(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド  を得た。
  得られた2種類のルテニウムカルベン錯体触媒を、量比が(A1/A2)=(20/80)(モル/モル)となるように混合し、これを窒素中でテトラヒドロフランに溶解させて、ルテニウム濃度が0.05モル/リットルの触媒液を調製した。
  上記以外は、実施例1と同様に重合性組成物を作製し、プリプレグを得た。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000009
[Example 3]
10 parts of the ruthenium carbene complex catalyst mixture obtained in Example 1 and 2 parts of CuCl were dissolved in 200 parts of methylene chloride and stirred at room temperature for 2 hours. In the ruthenium carbene complex catalyst (A2), phosphine coordinated to ruthenium and CuCl reacted to precipitate a solid product. This was filtered, dried under reduced pressure, and isolated with methanol as a poor solvent to obtain (1,3-dimesityl-4-imidazoline-2-ylidene) (2-pyrrolidone-1) which is a ruthenium carbene complex catalyst (A1). -Ilmethylene) ruthenium dichloride was obtained.
Benzylidene-bis (tricyclohexylphosphine) ruthenium dichloride (Grubbs Catalyst 1st Generation; Sigma Aldrich) 2.3 parts, 1,3-dimesitylimidazolidine chloride 3 parts, and potassium-t-butoxide 0.2 part, tetrahydrofuran Dissolved in and stirred at room temperature for 2 hours. Next, 3.7 parts of N-vinylpyrrolidone was dissolved, stirred at 40 ° C. for 3 hours, and then dried under reduced pressure. The temperature was set to −80 ° C., n-pentane was added, the complex was precipitated, and collected by filtration in the atmosphere. The ruthenium carbene complex catalyst (A2), ruthenium carbene complex catalyst (1,3-dimesityl-4-imidazoline- 2-Ilidene) (2-pyrrolidone-1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride was obtained.
The obtained two kinds of ruthenium carbene complex catalysts were mixed so that the quantitative ratio was (A1 / A2) = (20/80) (mol / mol), and this was dissolved in tetrahydrofuran in nitrogen to obtain ruthenium. A catalyst solution having a concentration of 0.05 mol / liter was prepared.
Except for the above, a polymerizable composition was prepared in the same manner as in Example 1 to obtain a prepreg. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
 表1より、実施例1~3の重合性組成物はいずれも、経時の粘度上昇抑制と高い重合転化率を示しており、良好な樹脂成形体が得られることが分かる。実施例1~3で得られたプリプレグシートのそれぞれを6枚ずつ重ね、さらに12μmF2銅箔(シランカップリング剤処理電解銅箔、粗度Rz=1,600nm、古河サーキットホイル社製)で、積層したプリプレグシートを挟み、205℃で20分間、3MPaにて加熱プレスを行い積層体を得れば、かかる積層体はいずれも、電気回路基板に使用する電気材料として、優れた、電気絶縁性、密着性、機械的強度、耐熱性、及び誘電特性を示す。 From Table 1, it can be seen that all of the polymerizable compositions of Examples 1 to 3 exhibit a viscosity increase inhibition with time and a high polymerization conversion rate, and a good resin molded product can be obtained. Six prepreg sheets obtained in Examples 1 to 3 were stacked one on top of another, and further laminated with 12 μm F2 copper foil (silane coupling agent-treated electrolytic copper foil, roughness Rz = 1,600 nm, manufactured by Furukawa Circuit Foil Co., Ltd.). If the laminated body is obtained by sandwiching the prepared prepreg sheet and heating press at 3 MPa for 20 minutes at 205 ° C., all such laminated bodies are excellent as electrical materials used for the electric circuit board, It exhibits adhesion, mechanical strength, heat resistance, and dielectric properties.
[比較例1]
  ベンジリデン-ビス(トリシクロヘキシルホスフィン)ルテニウムジクロリド(Grubbs  Catalyst  1st  Generation;Sigma  Aldrich)2.3部、1,3-ジメシチルイミダゾリジンクロリド 3部、及びカリウム-t-ブトキシド 0.2部を、テトラヒドロフラン中に溶解し、室温で2時間撹拌した。次いで、N-ビニルピロリドン 3.7部を溶解し、40℃で3時間撹拌した後、減圧乾燥を行った。温度を-80℃とし、n-ペンタンを添加し、錯体を析出させ、大気下で濾取し、ルテニウムカルベン錯体触媒(A2)である(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリドを得た。
  得られたルテニウムカルベン錯体触媒を、テトラヒドロフランに窒素中で溶解させて、ルテニウム濃度が0.05モル/リットルの触媒液を調製した。
  ルテニウムカルベン錯体触媒の触媒液に上記のものを使用した以外は、実施例1と同様にして重合性組成物を調製した。しかし、該重合性組成物は、調製から60分後には粘度が高くなりすぎてガラスクロスへの含浸が出来ず、プリプレグを作製することが出来なかった。そのため、重合転化率を測定できなかった。評価結果を表2に示す。
[Comparative Example 1]
Benzylidene-bis (tricyclohexylphosphine) ruthenium dichloride (Grubbs Catalyst 1st Generation; Sigma Aldrich) 2.3 parts, 1,3-dimesitylimidazolidine chloride 3 parts, and potassium-t-butoxide 0.2 part, tetrahydrofuran Dissolved in and stirred at room temperature for 2 hours. Next, 3.7 parts of N-vinylpyrrolidone was dissolved, stirred at 40 ° C. for 3 hours, and then dried under reduced pressure. The temperature is set to −80 ° C., n-pentane is added, the complex is precipitated, and is collected by filtration under the atmosphere, and is ruthenium carbene complex catalyst (A2) (1,3-dimesityl-4-imidazoline-2-ylidene) (2-Pyrrolidone-1-ylmethylene) (tricyclohexylphosphine) ruthenium dichloride was obtained.
The obtained ruthenium carbene complex catalyst was dissolved in tetrahydrofuran in nitrogen to prepare a catalyst solution having a ruthenium concentration of 0.05 mol / liter.
A polymerizable composition was prepared in the same manner as in Example 1 except that the above-described catalyst solution was used for the ruthenium carbene complex catalyst. However, the viscosity of the polymerizable composition became too high after 60 minutes from the preparation, so that the glass cloth could not be impregnated and a prepreg could not be produced. Therefore, the polymerization conversion rate could not be measured. The evaluation results are shown in Table 2.
[比較例2]
  触媒液 0.3部に、トリフェニルホスフィン 0.05部(ルテニウム:ホスフィンのモル比=1:5)をさらに加えた以外は、比較例1と同様にして重合性組成物を調製した。該重合性組成物は、粘度が高くなりすぎてガラスクロスへの含浸が出来ず、プリプレグを作製することが出来なかった。そのため、重合転化率を測定できなかった。評価結果を表2に示す。
[Comparative Example 2]
A polymerizable composition was prepared in the same manner as in Comparative Example 1 except that 0.05 part of triphenylphosphine (ruthenium: phosphine molar ratio = 1: 5) was further added to 0.3 part of the catalyst solution. The polymerizable composition was too high in viscosity to impregnate glass cloth, and a prepreg could not be produced. Therefore, the polymerization conversion rate could not be measured. The evaluation results are shown in Table 2.
[比較例3]
  トリフェニルホスフィンの量を1部(ルテニウム:ホスフィンのモル比=1:100)とした以外は、比較例2と同様にして重合性組成物を調製した。しかし、加熱後も重合が進行せず、未反応のモノマーに由来する異臭がした。評価結果を表2に示す。
[Comparative Example 3]
A polymerizable composition was prepared in the same manner as in Comparative Example 2, except that the amount of triphenylphosphine was 1 part (ruthenium: phosphine molar ratio = 1: 100). However, polymerization did not proceed even after heating, and there was a strange odor derived from unreacted monomers. The evaluation results are shown in Table 2.
[比較例4]
  実施例1で得たルテニウムカルベン錯体触媒の混合物10部と、CuCl 2部とを、塩化メチレン200部に溶解し、室温で2時間撹拌した。ルテニウムカルベン錯体触媒(A2)中で、ルテニウムに配位するホスフィンとCuClが反応して固形の生成物が沈殿した。これを濾過し、減圧乾燥、及び貧溶媒であるメタノールによる単離を行い、ルテニウムカルベン錯体触媒(A1)である(1,3-ジメシチル-4-イミダゾリン-2-イリデン)(2-ピロリドン-1-イルメチレン)ルテニウムジクロリドを得た。
  得られたルテニウムカルベン錯体触媒を、テトラヒドロフランに窒素中で溶解させて、ルテニウム濃度が0.05モル/リットルの触媒液を調製した。
  ルテニウムカルベン錯体触媒の触媒液として上記のものを使用すること以外は、実施例1と同様にして重合性組成物を調製した。しかし、加熱後も重合が進行せず、プリプレグを作製することができなかった。また、未反応のモノマーに由来する異臭がした。評価結果を表2に示す。
[Comparative Example 4]
10 parts of the ruthenium carbene complex catalyst mixture obtained in Example 1 and 2 parts of CuCl were dissolved in 200 parts of methylene chloride and stirred at room temperature for 2 hours. In the ruthenium carbene complex catalyst (A2), phosphine coordinated to ruthenium and CuCl reacted to precipitate a solid product. This was filtered, dried under reduced pressure, and isolated with methanol as a poor solvent to obtain (1,3-dimesityl-4-imidazoline-2-ylidene) (2-pyrrolidone-1) which is a ruthenium carbene complex catalyst (A1). -Ilmethylene) ruthenium dichloride was obtained.
The obtained ruthenium carbene complex catalyst was dissolved in tetrahydrofuran in nitrogen to prepare a catalyst solution having a ruthenium concentration of 0.05 mol / liter.
A polymerizable composition was prepared in the same manner as in Example 1 except that the above catalyst solution was used as the catalyst solution for the ruthenium carbene complex catalyst. However, polymerization did not proceed even after heating, and a prepreg could not be produced. Moreover, there was a strange odor derived from unreacted monomers. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Claims (10)

  1.   式(A1)で表される構造を有するルテニウムカルベン錯体触媒(A1)と、式(A2)で表される構造を有するルテニウムカルベン錯体触媒(A2)との混合物、及びシクロオレフィンモノマーを含有する重合性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(A1)及び式(A2)において、
      L及びLは、中性電子供与性配位子であり;
      X及びXは、アニオン性配位子であり;
      Rは、水素原子、炭素原子、ハロゲン原子、又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子若しくは珪素原子のいずれかを含む基で置換された炭素数1~20の炭化水素基であり;
      Aは、2価、又は3価の有機基であり;
     Zは、電子供与性基である。)
    Polymer containing a mixture of a ruthenium carbene complex catalyst (A1) having a structure represented by the formula (A1) and a ruthenium carbene complex catalyst (A2) having a structure represented by the formula (A2), and a cycloolefin monomer Sex composition.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (A1) and Formula (A2),
    L 1 and L 2 are neutral electron donating ligands;
    X 1 and X 2 are anionic ligands;
    R 1 represents a hydrogen atom, a carbon atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms substituted with a group containing any of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom Is;
    A is a divalent or trivalent organic group;
    Z is an electron donating group. )
  2.   ルテニウムカルベン錯体触媒の前記混合物を構成する(A1)及び(A2)が、式(B)で表される構造を有する化合物(B)と、式(C)で表される構造を有する化合物(C)とを反応させて得られるものである請求項1記載の重合性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(B)及び式(C)において、
      L及びLは、中性電子供与性配位子であり;
      X及びXは、アニオン性配位子であり;
      Rは、水素原子、炭素原子、ハロゲン原子、又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子若しくは珪素原子のいずれかを含む基で置換された炭素数1~20の炭化水素基であり;
      Aは、2価、又は3価の有機基であり;
      Zは、電子供与性基である。)
    (A1) and (A2) constituting the mixture of the ruthenium carbene complex catalyst are a compound (B) having a structure represented by the formula (B) and a compound having a structure represented by the formula (C) (C The polymerizable composition according to claim 1, which is obtained by reacting
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (B) and Formula (C),
    L 1 and L 2 are neutral electron donating ligands;
    X 1 and X 2 are anionic ligands;
    R 1 represents a hydrogen atom, a carbon atom, a halogen atom, or a hydrocarbon group having 1 to 20 carbon atoms substituted with a group containing any of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom Is;
    A is a divalent or trivalent organic group;
    Z is an electron donating group. )
  3.   前記式(A1)及び前記式(A2)において、Lがヘテロ原子含有カルベン配位子である請求項1又は2記載の重合性組成物。 The polymerizable composition according to claim 1 or 2, wherein, in the formula (A1) and the formula (A2), L 1 is a heteroatom-containing carbene ligand.
  4.   前記ルテニウムカルベン錯体触媒(A1)と、前記ルテニウムカルベン錯体触媒(A2)とのモル比が、(A1):(A2)=90:10~50:50の範囲である請求項1~3いずれか記載の重合性組成物。 The molar ratio of the ruthenium carbene complex catalyst (A1) to the ruthenium carbene complex catalyst (A2) is in the range of (A1) :( A2) = 90: 10 to 50:50. The polymerizable composition as described.
  5.   架橋剤を更に含んでなる請求項1~4いずれか記載の重合性組成物。 The polymerizable composition according to any one of claims 1 to 4, further comprising a cocoon crosslinking agent.
  6.   請求項5に記載の重合性組成物をメタセシス塊状重合する工程を含む、樹脂成形体の製造方法。 A method for producing a resin molded body comprising a step of metathesis bulk polymerization of the polymerizable composition according to claim 5.
  7.   請求項6に記載の製造方法で得られる樹脂成形体を架橋する工程を含む、架橋樹脂成形体の製造方法。 A method for producing a crosslinked resin molded article, comprising a step of crosslinking the resin molded article obtained by the production method according to claim 6.
  8.   請求項2に規定される、化合物(B)と化合物(C)とを反応させて、請求項1に規定される、ルテニウムカルベン錯体触媒(A1)とルテニウムカルベン錯体触媒(A2)との混合物を得る工程、及びルテニウムカルベン錯体触媒の前記混合物とシクロオレフィンモノマーとを混合する工程を含む重合性組成物の製造方法。 A mixture of the ruthenium carbene complex catalyst (A1) and the ruthenium carbene complex catalyst (A2) defined in claim 1 by reacting the compound (B) and the compound (C) defined in claim 2 And a method for producing a polymerizable composition comprising a step of obtaining and a step of mixing the mixture of the ruthenium carbene complex catalyst and the cycloolefin monomer.
  9.   請求項6に記載の製造方法により得られうる樹脂成形体。 A resin molded body obtainable by the production method according to claim 6.
  10.   請求項7に記載の製造方法で得られうる架橋樹脂成形体。 A crosslinked resin molded article obtainable by the production method according to claim 7.
PCT/JP2009/056707 2008-03-31 2009-03-31 Polymerizable composition, resin molded article, and cross-linked resin molded article WO2009123209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010505947A JP5365625B2 (en) 2008-03-31 2009-03-31 Polymerizable composition, resin molded body, and cross-linked resin molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008094013 2008-03-31
JP2008-094013 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123209A1 true WO2009123209A1 (en) 2009-10-08

Family

ID=41135577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056707 WO2009123209A1 (en) 2008-03-31 2009-03-31 Polymerizable composition, resin molded article, and cross-linked resin molded article

Country Status (2)

Country Link
JP (1) JP5365625B2 (en)
WO (1) WO2009123209A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521069A (en) * 2008-05-22 2011-07-21 リミテッド・ライアビリティ・カンパニー・”ユナイテッド・リサーチ・アンド・デベロップメント・センター” Dicyclopentadiene metathesis polymerization catalyst, its production method and polymerization method
WO2012121342A1 (en) 2011-03-08 2012-09-13 日本ゼオン株式会社 Polymerizable composition, molded resin, and laminate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135638A1 (en) * 2016-02-01 2017-08-10 서울대학교산학협력단 Transition metal complex containing sulfonamide or amide group for olefin double decomposition reaction and application thereof
KR101894765B1 (en) * 2016-10-21 2018-10-24 서울대학교산학협력단 Transition metal complex having amide group for olefin metathesis and Application thereof
KR102036525B1 (en) * 2018-02-28 2019-10-25 서울대학교산학협력단 Manufacturing method of polymer using ring opening metathesis polymerization of cyclic olefin and catalyst for the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506455A (en) * 1997-06-27 2002-02-26 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド New catalyst
JP2007530706A (en) * 2004-03-29 2007-11-01 カリフォルニア インスティテュート オブ テクノロジー Highly active latent olefin metathesis catalyst containing N-heterocyclic carbene ligand
JP2008184565A (en) * 2007-01-31 2008-08-14 Nippon Zeon Co Ltd Polymerizable composition and crosslinkable resin
WO2008105430A1 (en) * 2007-02-27 2008-09-04 Zeon Corporation Polymerizable composition
WO2008120745A1 (en) * 2007-03-30 2008-10-09 Zeon Corporation Polymerizable composition and resin molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506455A (en) * 1997-06-27 2002-02-26 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド New catalyst
JP2007530706A (en) * 2004-03-29 2007-11-01 カリフォルニア インスティテュート オブ テクノロジー Highly active latent olefin metathesis catalyst containing N-heterocyclic carbene ligand
JP2008184565A (en) * 2007-01-31 2008-08-14 Nippon Zeon Co Ltd Polymerizable composition and crosslinkable resin
WO2008105430A1 (en) * 2007-02-27 2008-09-04 Zeon Corporation Polymerizable composition
WO2008120745A1 (en) * 2007-03-30 2008-10-09 Zeon Corporation Polymerizable composition and resin molded article

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EUR. J. INORG. CHEM., 2007, pages 3988 - 4000 *
ORGANOMETALLICS, vol. 21, no. 11, 2002, pages 2153 - 64 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521069A (en) * 2008-05-22 2011-07-21 リミテッド・ライアビリティ・カンパニー・”ユナイテッド・リサーチ・アンド・デベロップメント・センター” Dicyclopentadiene metathesis polymerization catalyst, its production method and polymerization method
WO2012121342A1 (en) 2011-03-08 2012-09-13 日本ゼオン株式会社 Polymerizable composition, molded resin, and laminate

Also Published As

Publication number Publication date
JP5365625B2 (en) 2013-12-11
JPWO2009123209A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
EP2083032B1 (en) Polymerizable composition, crosslinkable resin, and manufacture methods and applications thereof
US7771834B2 (en) Method of manufacturing thermoplastic resin, crosslinked resin, and crosslinked resin composite material
EP1990364A1 (en) Molded crosslinkable-resin object, molded crosslinked-resin object, and crosslinked-resin/metal laminate
JPWO2005017033A1 (en) Crosslinkable resin composition and resin molded body thereof
JP4497094B2 (en) Polymerizable composition and molded body thereof
JPWO2005016991A1 (en) Polymerizable composition and molded article using the same
JP5365625B2 (en) Polymerizable composition, resin molded body, and cross-linked resin molded body
WO2013146660A1 (en) Polymerizable composition, crosslinkable resin molded body, crosslinked resin molded body, and laminate
WO2009107844A1 (en) Curable resin composition, molded body using the same, prepreg and laminate
JP5186770B2 (en) Polymerizable composition and crosslinkable resin
JP2008143956A (en) Polymerizable composition, crosslinkable resin and method for producing the same
US20100324247A1 (en) Polymerizable composition, crosslinkable resin, and production methods and applications thereof
JP2009242568A (en) Polymerizable composition containing dimethacrylate compound, prepreg, and laminate using it
JP5407857B2 (en) Polymerizable composition
JP5434589B2 (en) Polymerizable composition and crosslinkable resin
JP2013129716A (en) Polymerizable composition
JP2008150569A (en) Polymerizable composition and crosslinkable resin and method for producing the same
WO2016031766A1 (en) Crosslinkable resin molded body, crosslinked resin molded body and laminate
JP2008138050A (en) Polymerizable composition, crosslinkable resin and crosslinked body
KR100965018B1 (en) Processes for producing thermoplastic resins, crosslinked resins and crosslinked resin composite materials
JP2013129717A (en) Polymerizable composition
JP2015086287A (en) Polymerizable composition, crosslinkable resin, crosslinkable resin composite, crosslinked resin and crosslinked resin composition
JP2013129718A (en) Polymerizable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505947

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09727933

Country of ref document: EP

Kind code of ref document: A1