WO2009123090A1 - Reconfigurable integrated circuit - Google Patents

Reconfigurable integrated circuit Download PDF

Info

Publication number
WO2009123090A1
WO2009123090A1 PCT/JP2009/056451 JP2009056451W WO2009123090A1 WO 2009123090 A1 WO2009123090 A1 WO 2009123090A1 JP 2009056451 W JP2009056451 W JP 2009056451W WO 2009123090 A1 WO2009123090 A1 WO 2009123090A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
reconfigurable integrated
integrated circuit
signal
wiring
Prior art date
Application number
PCT/JP2009/056451
Other languages
French (fr)
Japanese (ja)
Inventor
崇 河並
帆平 小池
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2010505888A priority Critical patent/JP5046142B2/en
Publication of WO2009123090A1 publication Critical patent/WO2009123090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/1778Structural details for adapting physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/1778Structural details for adapting physical parameters
    • H03K19/17784Structural details for adapting physical parameters for supply voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/1778Structural details for adapting physical parameters
    • H03K19/17792Structural details for adapting physical parameters for operating speed

Definitions

  • the present invention provides a reconfiguration that achieves both high speed and low power consumption by appropriately controlling the operating characteristics of the field effect transistors that constitute the circuit during circuit operation when the reconfigurable circuit is manufactured by an integrated circuit. It relates to possible integrated circuits.
  • operation mode data threshold voltage level
  • Analyzing design data net list
  • Patent Document 2 discloses a prior control method for optimizing the body potential of a subsequent circuit by a previous circuit.
  • a circuit that is divided into a pre-stage circuit and a post-stage circuit at the time of designing a semiconductor integrated circuit by changing the body potential of the post-stage circuit according to the output signal of the pre-stage circuit, for example, when the output signal of the pre-stage circuit is at a low level,
  • the post-stage circuit is set to the low power consumption mode and the output signal of the pre-stage circuit is at the high level, the post-stage circuit is controlled to the high speed mode.
  • the body voltage can be optimized.
  • Non-Patent Document 1 As a technique for reducing power consumption in a microprocessor, as proposed in Non-Patent Document 1, for example, in terms of operating speed, based on a design policy that only a typical signal input needs to satisfy timing constraints. A critical subcircuit designed to guarantee correct values for typical signal inputs (but not for all signal inputs), and to ensure that the results are correct for all signal inputs Two error detection units are prepared, and during typical signal input, the power voltage of the main unit is lowered to reduce power consumption, and there is an atypical signal input. If a violation occurs, the process is recovered using the result of the error detection unit. This achieves low power consumption while ensuring normal operation. JP 2007-082017 A JP 2007-201236 A Daniel Ernst etal. “Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation” ACM / IEEE International Symposium on Microarchitecture (MICRO), pp.7-18, November, 2003.
  • MICRO Microarchitecture
  • the operation mode data is static (does not change during circuit operation) for each circuit configuration information.
  • wasteful power is consumed when a partial circuit whose threshold voltage is set low is inactive.
  • the present invention has been made to solve such problems, and the object of the present invention is to provide an operational characteristic of a field effect transistor constituting a circuit when a reconfigurable circuit is manufactured by an integrated circuit. It is an object of the present invention to provide a reconfigurable integrated circuit that achieves both high speed and low power consumption by adopting a configuration that allows appropriate control during circuit operation.
  • a reconfigurable integrated circuit includes a plurality of circuit configuration circuits constituting a circuit that calculates a logical function based on circuit configuration information, and a circuit that connects between the circuit configuration circuits.
  • a wiring circuit; a signal state detection circuit for detecting a change in an internal signal of the circuit configuration circuit or the circuit wiring circuit; and a state change signal detected by the signal state detection circuit in the circuit configuration circuit or the circuit wiring circuit A state change wiring circuit for transmission and an operation speed setting circuit for setting operation characteristics of the field effect transistor based on the state change signal for each of the circuit configuration circuit or the partial circuit of the circuit wiring circuit are provided.
  • the circuit configuration circuit or the circuit wiring circuit is a field programmable gate array (FPGA) including an operation speed setting circuit that sets operation characteristics of a transistor for each partial circuit.
  • the signal state detection circuit is generated by a circuit configuration circuit.
  • the signal state detection circuit is mounted in advance in the reconfigurable integrated circuit, and activation of the signal state detection circuit is controlled by a program.
  • the generation position of the signal state detection circuit or where the signal state detection circuit is activated is set by the setting software of the reconfigurable integrated circuit.
  • the generation position of the signal state detection circuit or where to activate the signal state detection circuit is set based on a logic function designed by the user.
  • the operating characteristics of the field effect transistor are configured to be controlled by changing the threshold voltage of the field effect transistor.
  • the operational characteristics of the field effect transistor are configured to be controlled by the power supply voltage.
  • the state change wiring circuit may be configured to be provided independently of the circuit wiring circuit, or the state change wiring circuit may be configured using the circuit wiring circuit.
  • the state change signal output from the signal state detection circuit is a pulse signal
  • the operation speed setting circuit has an operation mode storage device that can hold one or more operation characteristics of the transistor.
  • the operation mode storage device is configured to determine the operation speed and power consumption of the partial circuit according to the contents of the operation mode storage device.
  • the output of the operation mode storage device of the operation speed power consumption setting circuit is composed of one or more flip-flop circuits that are switched by a pulse-like state change signal, and the output of the operation mode storage device of the operation speed power consumption setting circuit. Is switched by a pulse-like state change signal, and is configured to switch operation modes stored in two or more random access memories or two or more shift registers by pulses.
  • the reconfigurable integrated circuit of the present invention in a reconfigurable integrated circuit in which the operation characteristics of the transistor can be adjusted in a programmable manner, an approach that focuses on typical signal input is applied to the signal input during circuit operation.
  • the operating speed and power consumption can be adjusted dynamically, and the transistor operating characteristics based on the operating speed and power consumption, which were always static in the conventional method (does not change during circuit operation), are It becomes possible to set appropriately.
  • the reconfigurable integrated circuit can be further reduced in power consumption or speed.
  • CLB reconfigurable logic circuit block
  • NULL general empty circuit block
  • SBLE basic logic circuit element
  • SB general switch block
  • FIG. 1 is a diagram for explaining the configuration of a reconfigurable integrated circuit according to an embodiment of the present invention.
  • 10 is a reconfigurable integrated circuit
  • 11 is a region where a logic function is realized by circuit configuration information
  • 12 is a signal state detection circuit
  • 13 is a state change signal.
  • Reference numeral 14 denotes a driven control area in which the operation speed is dynamically controlled. The driven control area 14 is controlled not only for the operation speed but also for the power consumption.
  • FIG. 2 is a diagram for explaining an example of a setting method for configuring a circuit in the reconfigurable integrated circuit of the present invention.
  • An embodiment of the configuration of the reconfigurable integrated circuit of the present invention will be described with reference to FIGS.
  • the circuit designer uses a CAD (Computer Aided Design) system to create a user design, puts critical paths (routes with no timing margin for the route including the longest route) into high-speed mode, and consumes non-critical paths with low power consumption.
  • the circuit configuration information A is generated by automatically setting the mode.
  • the circuit configuration information A is equivalent to that generated by a known optimization method as described in Patent Document 1.
  • the circuit configuration information A indicates static operation speed and power consumption.
  • the optimized circuit configuration information is obtained.
  • the dynamic control is further determined for the circuit configuration information A by two processing flows, that is, whether dynamic control is automatically determined or determined by circuit designer setting information.
  • Circuit configuration information B for performing control is obtained.
  • the processing flow that is automatically determined will be described.
  • the circuit configuration information A is analyzed, the condition for activating the critical path is found, and the insertion position of the signal state detection circuit 12 is determined.
  • the driven control area 14 is determined. Specifically, for example, as shown in FIG. 3, when a five-stage pipeline processor is realized as a logical function, when the division instruction becomes a critical path, the division instruction is read out in the instruction read (IF). In this case, the signal path detection circuit 12 is inserted into the instruction read (IF). Next, the division circuit portion of the operation execution (EX) phase, which is a critical path, is set as the driven control area 14.
  • EX operation execution
  • the signal state detection circuit 12 is inserted into the circuit configuration information A, and automatic wiring is performed from the signal state detection circuit 12 to the driven control area 14 to generate a path for transmitting the state change signal 13. Then, the time required for the operation mode to be changed in the driven control area 14 is calculated, and timing information is generated. If the time required to change the operation mode according to the generated timing information does not satisfy the timing requirement desired by the circuit designer, the driven control area 14 is reduced based on the timing information, and automatic wiring and timing are again performed. Analyze. If the timing requirement is satisfied, and if the power consumption desired by the circuit designer is satisfied, circuit configuration information B based on the circuit configuration is generated. If not, the signal state detection circuit 12 is again or newly generated. And the driven control area 14 are determined, and this process is repeated until the required power consumption is satisfied.
  • the processing flow determined by the circuit designer is the same as the processing flow automatically determined as described above. Only the procedure for determining the insertion position of the signal state detection circuit 12 and the initial region of the driven control region 14 is different.
  • the signal state detection circuit 12 provided in the region 11 in which the logic function on the reconfigurable integrated circuit 10 is realized monitors the change of the critical path signal, and when the state changes, the driven control region 14
  • the circuit is configured so that the operation speed and the power consumption can be controlled dynamically by transmitting the state change signal 13 to.
  • FIG. 4 is a diagram for explaining a configuration example of the reconfigurable integrated circuit 10.
  • 12 is a signal state detection circuit
  • 15 is a circuit configuration circuit
  • 16 is a circuit wiring circuit
  • 17 is a circuit wiring
  • 18 is a state change signal wiring circuit
  • 19 is a state change signal wiring
  • 20 is an operating speed consumption. It is a power setting circuit.
  • the circuit configuration circuit 15 is composed of circuits constituting basic logic function gates such as flip-flops, inverters, AND gates, OR gates, look-up tables, and the like, and each circuit configuration circuit constitutes the basic logic gate. Set the power supply voltage, the input voltage to the second gate of the double-gate MOS transistor, the body voltage to the SOI (Silicon On Insulator) structure and the bulk structure MOS transistor for each circuit to be configured or each of the transistors constituting them.
  • the circuit configuration controls the operating speed and power consumption.
  • the circuit wiring circuit 16 includes a plurality of circuit wirings 17 and a switch circuit that connects the circuit wirings 17 and the circuit configuration circuit 15, and is a connection switch circuit that performs connection between the circuit configuration circuits 15.
  • a power supply voltage, an input voltage to the second gate of the double gate MOS transistor, for each circuit wiring circuit, for each switch circuit constituting the circuit wiring circuit, or for each transistor constituting the circuit wiring circuit A body voltage is set to the SOI structure and bulk structure MOS transistors to control the operation speed and power consumption.
  • the state change signal wiring circuit 17 is a switch circuit that connects the plurality of state change signal wirings 18, the state change signal wiring 18, the signal state detection circuit 12, the state change signal wiring 18, and the operation speed power consumption setting circuit 20. And a connection switch circuit for performing connection between each signal state detection circuit 12 and the operation speed power consumption setting circuit 20.
  • the circuit configuration described in FIG. 1 is realized by the configuration example in FIG. This will be described.
  • the circuit configuration circuit 15, the circuit wiring circuit 16, and the circuit wiring 17 set the region 11 in which the logic function is realized as a circuit configuration.
  • the state change signal wiring circuit 18 and the state change signal wiring 19 are used.
  • a state change signal is transmitted to each operation speed power consumption setting circuit 20 to be described later in the driven control area 14.
  • the operating speed and power consumption are dynamically controlled by the transmitted state change signal.
  • the operation speed power consumption setting circuit 20 has an operation mode storage device that can hold, for example, the operation characteristics of a transistor in a high-speed operation mode or a low power consumption mode. Set the operating speed and power consumption in the circuit.
  • FIG. 5 is a diagram showing another configuration example of the reconfigurable integrated circuit 10.
  • 12 is a signal state detection circuit
  • 15 is a circuit configuration circuit
  • 20 is an operation speed power consumption setting circuit
  • 21 is a circuit wiring / state change signal wiring circuit
  • 22 is a circuit / state change signal wiring.
  • the circuit wiring / state change signal wiring circuit 21 includes a plurality of circuits / state change signal wirings 22, circuit / state change signal wirings 22, circuit configuration circuit 15, circuit / state change signal wirings 22, and signal state detection circuit 12.
  • the circuit / state change signal wiring 22 and the operation speed power consumption setting circuit 20 are connected to each other, and the circuit state circuit 15 and the signal state detection circuit 12 and the operation speed power consumption setting circuit are connected. This is a connection switch circuit for connecting 20 connections.
  • FIG. 5 it will be described next that the embodiment of the circuit configuration of FIG. 1 can be realized as in FIG.
  • the circuit configuration circuit 15, the circuit wiring / state change signal wiring circuit 21 and the circuit / state change signal wiring 22 realize the region 11 in which the logic function is realized, and the signal state detection circuit 12 is provided in the circuit configuration circuit 15.
  • the signal state detection circuit 12 generated or provided in the circuit configuration circuit 15 is activated.
  • the state change signal generated by the signal state detection circuit 12 is supplied to each operation speed power consumption setting circuit 20 in the driven control region via the circuit wiring / state change signal wiring circuit 21 and the circuit / state change signal wiring 22.
  • a state change signal is transmitted to.
  • a circuit configuration in which the operation speed and power consumption are dynamically controlled is obtained.
  • FIG. 6 is a diagram for explaining an implementation example of the signal state detection circuit.
  • FIG. 6A shows a signal state detection circuit in a sequential circuit.
  • a signal to be detected (a signal indicating a state where a specific instruction is read in FIG. 3) is input to “Data In”.
  • the upper D-type flip-flop circuit (hereinafter referred to as “D-FF”) reads the state change at the falling edge of the clock, and a signal is transmitted from “Data Out” to the subsequent circuit.
  • D-FF D-type flip-flop circuit
  • FIG. 6B shows a signal state detection circuit in the combinational circuit.
  • the operation is similar to that of the circuit of FIG. 6A, but a delay circuit is inserted instead of the absence of a clock for synchronization,
  • the signal input to “Data In” and the signal delayed by the delay circuit are compared by an exclusive OR circuit, and if the input signal changes, a pulsed state change signal is generated, and “State Change” Is output from.
  • FIG. 7 is a diagram illustrating an implementation example of an operation speed power consumption setting circuit.
  • FIG. 7A is a circuit for setting the input voltage to the second gate of the double gate MOS transistor, the body voltage to the SOI structure and the bulk structure MOS transistor, and controlling the threshold voltage of the MOS transistor. .
  • the pulse-like state change signal transmitted by the signal state detection circuit is “State Change” in FIG. 7A via the state change signal wiring circuit and the state change signal wiring, or the circuit wiring circuit and the circuit wiring. Arrives at the terminal.
  • the “State Change” signal is input to a T-type flip-flop circuit (hereinafter referred to as T-FF), and the output of the T-FF is switched.
  • T-FF T-type flip-flop circuit
  • the output is transmitted to the multiplexer via the level shifter (LS), and the N-type transistor
  • the level shifter (LS) is not necessarily required if the output voltage of the T-FF is the same as the voltage level switched by the multiplexer.
  • two sets of voltages are switched, but two or more sets of voltages can be switched. In that case, it can be realized by combining a plurality of T-FFs in series, increasing the number of inputs of the multiplexer, and inputting the output of each T-FF to the multiplexer.
  • the T-FF has an initialization function for setting the output to a specified value. In this example, when the “Reset” terminal is enabled, the T-FF is initialized.
  • FIG. 7B is a circuit for setting the power supply voltage of a CMOS circuit composed of MOS transistors having a double gate structure, an SOI structure, or a bulk structure, and controlling the performance of the CMOS circuit.
  • the pulse-like state change signal transmitted by the signal state detection circuit is transmitted to the “State Change” terminal in FIG. 7B via the state change signal wiring circuit and the state change signal wiring, or the circuit wiring circuit and the circuit wiring. Arrive at.
  • the “State Change” signal is input to the T-FF, and the output of the T-FF is switched.
  • the output is transmitted to the multiplexer via the level shifter (LS), and a set of power supply voltages for the CMOS circuit is switched. Supply to transistor.
  • LS level shifter
  • the level shifter is not necessarily required if the output voltage of the T-FF and the voltage level switched by the multiplexer are the same. In this example, one set of voltages is switched, but one or more sets of voltages can be switched. In that case, it can be realized by combining a plurality of T-FFs in series, increasing the number of inputs of the multiplexer, and inputting the output of each T-FF to the multiplexer.
  • the T-FF has an initialization function for setting the output to a specified value. In this example, when the “Reset” terminal is enabled, the T-FF is initialized.
  • FIG. 8 is a diagram for explaining another implementation example of the operation speed power consumption setting circuit shown in FIG. FIG. 8A is a circuit for setting the input voltage to the second gate of the double gate MOS transistor and the body voltage to the SOI structure and the bulk structure MOS transistor to control the threshold voltage of the MOS transistor. is there.
  • the pulse state change signal transmitted by the signal state detection circuit is transmitted to the “State” of the circuit of FIG. 8A via the state change signal wiring circuit and the state change signal wiring, or the circuit wiring circuit and the circuit wiring. Arrives at the “Change” terminal.
  • the “State Change” signal is input to the T-FF to switch the output of the T-FF, and the output is sent to the SRAM selection multiplexer to switch the outputs of the two SRAMs.
  • the voltage is transmitted to two sets of multiplexers in the subsequent stage via the level shifter (LS), and two sets of voltages for the N-type transistor and the P-type transistor are supplied to the switching transistor.
  • the level shifter (LS) is not necessarily required as long as the output voltage of the SRAM and the level of the voltage to be switched by the subsequent multiplexer are the same.
  • two sets of voltages are switched, but two or more sets of voltages can be switched.
  • a plurality of T-FFs are combined in series, the number of SRAMs is increased as appropriate, the number of multiplexer inputs is increased, and the output of each T-FF is input to the SRAM multiplexer.
  • the T-FF has an initialization function for setting the output to a specified value. In this example, when the “Reset” terminal is enabled, the T-FF is initialized.
  • FIG. 8B is a circuit for setting the power supply voltage of a CMOS circuit composed of MOS transistors having a double gate structure, an SOI structure, or a bulk structure, and controlling the performance of the CMOS circuit.
  • the pulse-like state change signal transmitted by the signal state detection circuit is sent to the “State Change” terminal in FIG. 8B via the state change signal wiring circuit and the state change signal wiring, or the circuit wiring circuit and the circuit wiring. Arrive at.
  • the “State Change” signal is input to the T-FF, the output of the T-FF is switched, the output is sent to the SRAM selection multiplexer, and the output of the two SRAMs is switched.
  • the T-FF has an initialization function for setting the output to a specified value. In this example, when the “Reset” terminal is enabled, the T-FF is initialized.
  • FIG. 9 illustrates a circuit in which the operation speed power consumption setting circuit of FIG. 7A is applied to a CMOS inverter circuit.
  • FIG. 9A shows a CMOS inverter circuit composed of double gate MOS transistors. Two sets of voltages for the N-type transistor and P-type transistor input to the operating speed power consumption setting circuit are switched by the state change signal, and the second gate of the N-type transistor and the P-type transistor of the CMOS inverter circuit, respectively. Is applied.
  • Vb_p1 is a voltage for operating the P-type transistor in the high-speed mode
  • Vb_p2 is a voltage for operating the P-type transistor in the low power consumption mode
  • Vb_n1 is a voltage for operating the N-type transistor in the high-speed mode
  • Vb_n2 Is a voltage for operating the N-type transistor in the low power consumption mode
  • the outputs Vb_p and Vb_n of the operation speed power consumption setting circuit are set to the high-speed mode (Vb_p1 and Vb_p1 and Vb_p) every time the “State Change” signal is input.
  • Vb_n1 and the low power consumption mode (Vb_p2 and Vb_n2) are switched, the current drive capability and leakage current of the CMOS inverter circuit are controlled, and the operation speed and power consumption are similarly controlled.
  • a circuit configuration using a double gate MOS transistor is shown, but as another circuit configuration, the substrate potential of a MOS transistor having an SOI structure or a bulk structure is changed as in the circuit configuration of FIG. 9B. It may be configured as follows.
  • FIGS. 10A and 10B illustrate an example of a circuit adapted to a power supply circuit of a CMOS inverter circuit in which the operation speed power consumption setting circuit of FIG. 7B is configured by a double gate MOS transistor. Yes.
  • Two sets of voltages input to the operating speed power consumption setting circuit are switched by a “State Change” signal and connected to the power supply terminal Vdd of the CMOS inverter circuit.
  • Vdd1 is a voltage for operating the CMOS circuit in the high speed mode
  • Vdd2 is a voltage for operating the CMOS circuit in the low power consumption mode
  • the output Vdd of the operation speed power consumption setting circuit is “State Change”.
  • the mode is switched between the high speed mode (Vdd1) and the low power consumption mode (Vdd2).
  • Vdd1 the high speed mode
  • Vdd2 the low power consumption mode
  • FIGS. 11 (a) and 11 (b) an SOI type or bulk type MOS transistor is used.
  • a circuit configuration for changing the power supply voltage may be used.
  • FIG. 12 is a schematic diagram of an island style FPGA.
  • the FPGA is mainly composed of three types of CLB (Configurable Logic Block) tiles in the reconfigurable logic circuit block in the central part, IOB (Input / Output Block) tiles in the peripheral I / O circuit block, and NULL tiles in the empty circuit block. Is done.
  • FIG. 13 shows the basic structure of the CLB tile.
  • the CLB tile includes a vertical circuit wiring channel, a horizontal circuit wiring channel, a reconfigurable logic circuit CLB constituting a logic function, and a wiring channel for these two circuits and a reconfigurable logic circuit (CLB).
  • CLB reconfigurable logic circuit
  • FIG. 14 is a diagram illustrating an example of a basic structure of an IOB tile.
  • An input / output circuit block IOB that performs input / output between the vertical circuit wiring channel and the horizontal circuit wiring channel and the outside of the chip, and a switch circuit that connects the two circuit wiring channels and the input / output circuit block IOB. It consists of block SB.
  • FIG. 15 shows an example of the basic structure of the NULL tile of the empty circuit block. Only the switch circuit block SB for connecting the vertical circuit wiring channel, the horizontal circuit wiring channel, and the two circuit wiring channels is formed.
  • FIG. 16 shows a basic structure example of a general reconfigurable logic circuit CLB.
  • the reconfigurable logic circuit CLB includes a basic logic circuit element BLE (Basic Logic Element), a local multiplexer LMUX (Local Multiplexer), an input signal multiplexer IMUX (Input Multiplexer), and an output signal multiplexer OMUX (Output Multiplexer).
  • the basic logic circuit element BLE corresponds to the circuit configuration circuit 15 of the reconfigurable integrated circuit in FIGS. 4 and 5, and a general structure is a look-up table (LUT) and a flip-flop ( D-FF) is a circuit constituting a logic gate.
  • LUT look-up table
  • D-FF flip-flop
  • the local multiplexer LMUX is a switch circuit that connects the basic logic circuit elements BLE and the input signal multiplexer IMUX and the basic logic circuit element BLE, and the input signal multiplexer IMUX is a switch circuit that connects inputs from the switch circuit block SB, and an output signal
  • the multiplexer OMUX is a switch circuit for connecting the output to the switch circuit block SB.
  • FIG. 18 shows a basic structure example of a general switch circuit block SB.
  • the switch circuit block SB is composed of a plurality of switch matrices SM (Switch Matrix), and each switch matrix SM has a vertical circuit wiring channel and a horizontal circuit wiring channel and a reconfigurable logic circuit block CLB or an input / output circuit. It is composed of a switch circuit for connecting the block IOB.
  • switch Matrix switch Matrix
  • FIG. 19 shows an example of the basic structure of a reconfigurable logic circuit block CLB tile according to the present invention.
  • PSB Power Switch Block
  • a power wiring switch circuit block PSB for transmitting a state change signal (State Change signal) is added, and the state generated from the reconfigurable logic circuit block CLB
  • the change signal can be transmitted to the entire FPGA via the power wiring switch circuit block PSB and the power wiring channel, and the state change signal arriving at the power wiring switch circuit block PSB is transmitted to the switch circuit block SB and the reconfigurable logic circuit. Sent to block CLB.
  • FIG. 20 and 21 are diagrams showing examples of the basic structure of the reconfigurable logic circuit block CLB in the present invention.
  • a power supply output multiplexer POMUX Power
  • POMUX Power
  • Output Multiplexer a power supply input multiplexer PIMUX (Power Input Multiplexer) that receives a state change signal from the power wiring switch circuit block PSB is provided, and the state change signal selected by the power supply input multiplexer PIMUX is sent to the operation speed power consumption setting circuit.
  • PIMUX Power Input Multiplexer
  • the operation mode of the entire reconfigurable logic circuit block CLB is controlled, and in the case of FIG. 21, the operation mode is controlled for each element in the reconfigurable logic circuit block CLB.
  • FIG. 20 and FIG. 21 two operation speed and power consumption control methods are shown, but it is not necessary to fix to this and it is also possible to control in various ranges.
  • the switch circuit block SB includes a supply power input multiplexer PIMUX that receives a state change signal from a plurality of switch matrices SM and a power wiring switch circuit block PSB and an operation speed power consumption setting circuit.
  • Each switch matrix SM is for a vertical circuit.
  • the wiring channel, the lateral circuit wiring channel, and the switch circuit for connecting the reconfigurable logic circuit block CLB or the input / output circuit block IOB.
  • the state change signal selected by the supply power input multiplexer PIMUX is sent to the operation speed power consumption setting circuit.
  • the operation mode of the entire SB is controlled, and in the case of FIG. 23, the operation mode is controlled for each SM in the SB.
  • FIG. 22 and FIG. 23 two control methods for the operation speed and the power consumption are shown, but it is not necessary to fix to this and the control can be performed in various ranges.
  • FIG. 24 shows an example of the basic structure of the power wiring switch circuit block PSB in the present invention.
  • the power wiring switch circuit block PSB is composed of a plurality of power wiring switch matrices PSM (Power Switch Matrix), and each power wiring switch matrix PSM includes a vertical power wiring channel, a horizontal power wiring channel, and a reconfigurable logic circuit block. It is composed of a switch circuit connecting the CLB or the switch circuit block SB.
  • PSM Power Switch Matrix
  • FIG. 25 is a diagram showing a basic structure example of another reconfigurable logic circuit block CLB tile according to the present invention.
  • a vertical circuit wiring channel, a horizontal circuit wiring channel, a reconfigurable logic circuit block CLB constituting a logic function, and a switch for connecting the two circuit wiring channels to the reconfigurable logic circuit block CLB It consists of a circuit block SB.
  • the state change signal (State Change signal) can be transmitted to the entire FPGA via the switch circuit block SB and the circuit wiring channel, and the state change signal arriving at the switch circuit block SB is reconfigurable logic circuit block CLB. Sent to.
  • 26 and 27 show an example of the basic structure of another reconfigurable logic circuit block CLB in the present invention.
  • a supply power input multiplexer PIMUX that receives a state change signal from the switch circuit block SB is provided, and the state change signal selected by the supply power input multiplexer PIMUX is an operation speed.
  • the operation mode of the entire reconfigurable logic circuit block CLB is controlled
  • the operation mode of each element in the reconfigurable logic circuit block CLB is controlled. Control is performed.
  • FIG. 26 and FIG. 27 two control methods for operating speed and power consumption are shown, but it is not necessary to be fixed to this and it is also possible to control in various ranges.
  • the switch circuit block SB includes a plurality of switch matrices SM and a supply power input multiplexer PIMUX that receives a state change signal (State Change signal) output from the switch matrix SM, and an operation speed power consumption setting circuit.
  • the circuit includes a directional circuit wiring channel, a lateral circuit wiring channel, and a switch circuit that connects the reconfigurable logic circuit block CLB or the input / output circuit block IOB.
  • the state change signal selected by the supply power input multiplexer PIMUX is sent to the operation speed power consumption setting circuit.
  • the operation mode of the entire switch circuit block SB is controlled.
  • the operation mode is controlled for each switch matrix SM in the block SB.
  • FIG. 28 and FIG. 29 two control methods of the operation speed and power consumption are shown, but it is not necessary to fix to this and it is also possible to control in various ranges.
  • FIG. 30 and 31 are diagrams showing examples of the basic structure of another CLB tile according to the present invention.
  • the state change signal from the power wiring switch circuit block PSB is not the reconfigurable logic circuit block CLB, but directly supplied power input multiplexer PIMUX.
  • the state change signal from the switch circuit block SB is not directly transmitted via the supply power input multiplexer PIMUX but the reconfigurable logic circuit block CLB. It is connected to the operating speed power consumption setting circuit. As a result, the operation mode is controlled in units of tiles.
  • FIG. 32 is a diagram showing an example of the structure of the basic logic circuit element BLE in the present invention.
  • 32A outputs a normal data signal or a state change signal (State Change signal) by inserting a demultiplexer after the last stage (two-input multiplexer) of the basic logic circuit element BLE shown in FIG. can do.
  • FIG. 32B is obtained by incorporating the state detection circuit shown in FIG. 6A in the subsequent stage of the D-FF of the basic logic circuit element BLE shown in FIG.
  • the state detection circuit can be activated or disconnected by the memory (SR).
  • SR memory
  • FIG. 33 is a diagram showing a reconfigurable logic circuit block CLB in which the basic logic circuit element BLE of FIG. 32A is applied to the basic logic circuit element BLE of the reconfigurable logic circuit block CLB of FIG. 20 or FIG. .
  • the illustration relating to the supply power input multiplexer PIMUX and the operation speed power consumption setting circuit is omitted.
  • FIG. 34 is a diagram for explaining a method for realizing a signal state detection circuit equivalent to FIG. 6A in the reconfigurable logic circuit block CLB of FIG.
  • the path through which the data has passed is indicated by a solid arrow, and the path through which the clock has passed is indicated by a dashed arrow.
  • the portion “A” corresponds to the D-FF to which the first “Data In” signal in FIG. 6A is input.
  • the state change is read at the falling edge of the clock from the “B” point.
  • Data is output to the SB as “Data Out”, and at the same time, the “C” point lookup table (LUT) is set to pass the data as it is, and “A” to the D-FF at the “D” point.
  • LUT point lookup table
  • the output of the point arrives as it is, and the output of the “A” point is held at the rising timing of the clock. Since the output of the D-FF at the “D” point holds the output of the D-FF at the “A” point of the previous generation, the output of the D-FF at the “D” point and the output of the “A” point.
  • the exclusive OR of the outputs of the D-FF is taken by the LUT at the “E” point, and the output is switched to the supply power output multiplexer POMUX by the demultiplexer at the “F” point. (State Change signal) can be output.
  • FIG. 35 is a diagram showing a reconfigurable logic circuit block CLB in which the basic logic circuit element BLE of FIG. 32B is applied to the basic logic circuit element BLE of the reconfigurable logic circuit block CLB of FIG. 20 or FIG. .
  • the illustration relating to the supply power input multiplexer PIMUX and the operation speed power consumption setting circuit is omitted.
  • FIG. 36 is a diagram for explaining a method for realizing a signal state change detection circuit equivalent to FIG. 6A in the reconfigurable logic circuit block CLB of FIG.
  • SR memory
  • FIG. 6A By turning on the output of the memory (SR) at the “H” point, a signal state detection circuit equivalent to that in FIG. 6A is configured in one BLE, and the state is set via the supply power output multiplexer POMUX.
  • a change signal (State Change signal) is output.
  • a reconfigurable logic circuit includes a system LSI having a reconfigurable integrated circuit such as an FPGA as one core, and mobile terminals, digital home appliances, communication devices, servers, storages, which are major application fields thereof. Available for supercomputers.

Abstract

Provided is a reconfigurable integrated circuit formed by a field effect transistor (FET) having an operation characteristic which is appropriately controlled upon a circuit operation, thereby simultaneously realizing a high speed and a low power consumption. The reconfigurable integrated circuit includes: a plurality of circuit-constituting circuits which constitute a circuit for calculating a logic function by using circuit configuration information; a circuit-wiring circuit which makes connections between the circuit constituting circuits; a signal state detection circuit which detects a change of an internal signal of the circuit-constituting circuits or the circuit-wiring circuit; a state change wiring circuit which transmits the state change signal detected by the signal state detection circuit to the circuit-constituting circuits or the circuit-wiring circuit; and an operation speed setting circuit which sets the operation characteristic of the FET for each of partial circuits of the circuit-constituting circuits or the circuit-wiring circuit.

Description

再構成可能集積回路Reconfigurable integrated circuit
 本発明は、再構成可能回路を集積回路により作製する場合に、回路を構成する電界効果トランジスタの動作特性を回路動作時に適切に制御することによって、高速性と低消費電力性を両立した再構成可能集積回路に関するものである。 The present invention provides a reconfiguration that achieves both high speed and low power consumption by appropriately controlling the operating characteristics of the field effect transistors that constitute the circuit during circuit operation when the reconfigurable circuit is manufactured by an integrated circuit. It relates to possible integrated circuits.
 従来、トランジスタの動作特性をプログラマブルに調整できる再構成可能集積回路においては、例えば、特許文献1に開示されるように、動作モードデータ(しきい値電圧の高低)は論理機能を設計する際に設計データ(ネットリスト)を分析し、高速に動作させなければならない領域とそうでない領域を区別し、回路構成情報が回路構成用記憶装置に転送されるのに併せて、動作モード制御用記憶装置に転送する構成とする。このような構成とすることにより、高速性と低消費電力性を同時に実現できる再構成可能集積回路が開発されている。 Conventionally, in a reconfigurable integrated circuit that can adjust the operation characteristics of a transistor in a programmable manner, for example, as disclosed in Patent Document 1, operation mode data (threshold voltage level) is used when designing a logic function. Analyzing design data (net list), distinguishing between areas that must be operated at high speed and areas that do not, and transferring circuit configuration information to the storage device for circuit configuration. It is set as the structure transferred to. With such a configuration, a reconfigurable integrated circuit that can simultaneously realize high speed and low power consumption has been developed.
 MOS(Metal Oxided Semiconductor)トランジスタのボディ電位最適化の手法として、特許文献2では、前段回路によって後段回路のボディ電位を最適化する先行制御方法が開示されている。半導体集積回路の設計時に前段回路と後段回路にあらかじめ分けられた回路において、後段回路のボディ電位を前段回路の出力信号により可変とすることで、例えば、前段回路の出力信号がローレベルのときには、後段回路を低消費電力モードに、前段回路の出力信号がハイレベルのときには、後段回路を高速モードに制御する。これにより、ボディ電圧の最適化を行うことができる。 As a technique for optimizing the body potential of a MOS (Metal Oxidized Semiconductor) transistor, Patent Document 2 discloses a prior control method for optimizing the body potential of a subsequent circuit by a previous circuit. In a circuit that is divided into a pre-stage circuit and a post-stage circuit at the time of designing a semiconductor integrated circuit, by changing the body potential of the post-stage circuit according to the output signal of the pre-stage circuit, for example, when the output signal of the pre-stage circuit is at a low level, When the post-stage circuit is set to the low power consumption mode and the output signal of the pre-stage circuit is at the high level, the post-stage circuit is controlled to the high speed mode. Thereby, the body voltage can be optimized.
 マイクロプロセッサにおける低消費電力化手法としては、非特許文献1に提案されているように、典型的な信号入力にのみタイミング制約を満たせばよいという設計方針に基づいて、例えば、動作速度の点でクリティカルな部分回路を、典型的な信号入力では正しい値を保証するように(ただし、すべての信号入力に対して保証はしない)設計したメイン部と、すべての信号入力において結果が正しいことを保証するエラー検出部の二つを用意し、典型的な信号入力時にはメイン部の電源電圧を低電圧化することによって、低消費電力化を行い、非典型的な信号入力があり、メイン部でタイミング違反が発生した場合は、エラー検出部の結果を用いて、処理を回復させる。これにより、正常動作を保証しつつ、低消費電力化を実現している。
特開2007-082017号公報 特開2007-201236号公報 Daniel Ernst etal. "Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation"ACM/IEEE International Symposium on Microarchitecture (MICRO), pp.7-18, November, 2003.
As a technique for reducing power consumption in a microprocessor, as proposed in Non-Patent Document 1, for example, in terms of operating speed, based on a design policy that only a typical signal input needs to satisfy timing constraints. A critical subcircuit designed to guarantee correct values for typical signal inputs (but not for all signal inputs), and to ensure that the results are correct for all signal inputs Two error detection units are prepared, and during typical signal input, the power voltage of the main unit is lowered to reduce power consumption, and there is an atypical signal input. If a violation occurs, the process is recovered using the result of the error detection unit. This achieves low power consumption while ensuring normal operation.
JP 2007-082017 A JP 2007-201236 A Daniel Ernst etal. "Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation" ACM / IEEE International Symposium on Microarchitecture (MICRO), pp.7-18, November, 2003.
 特許文献1に記載されているように、従来タイプのしきい値電圧をプログラマブルに調整できる再構成可能集積回路では、回路構成情報ごとに動作モードデータが静的(回路動作時は変化しない)であり、しきい値電圧が低く設定されている部分回路が不活性時において、無駄な電力が消費されてしまうという問題があった。 As described in Patent Document 1, in a reconfigurable integrated circuit that can adjust the threshold voltage of a conventional type in a programmable manner, the operation mode data is static (does not change during circuit operation) for each circuit configuration information. There is a problem that wasteful power is consumed when a partial circuit whose threshold voltage is set low is inactive.
 本発明は、このような問題点を解決するためになされたものであり、本発明の目的は、再構成可能回路を集積回路により作製する場合に、回路を構成する電界効果トランジスタの動作特性を回路動作時に適切に制御できるような構成とすることにより、高速性と低消費電力性を両立した再構成可能集積回路を提供することにある。 The present invention has been made to solve such problems, and the object of the present invention is to provide an operational characteristic of a field effect transistor constituting a circuit when a reconfigurable circuit is manufactured by an integrated circuit. It is an object of the present invention to provide a reconfigurable integrated circuit that achieves both high speed and low power consumption by adopting a configuration that allows appropriate control during circuit operation.
 上記のような目的を達成するため、本発明による再構成可能集積回路は、回路構成情報により論理関数を演算する回路を構成する複数の回路構成回路と、前記回路構成回路の間を接続する回路配線回路と、前記回路構成回路または前記回路配線回路の内部信号の変化を検出する信号状態検出回路と、前記信号状態検出回路により検出された状態変化信号を前記回路構成回路または前記回路配線回路に伝送する状態変化配線回路と、前記回路構成回路または前記回路配線回路の部分回路ごとに前記状態変化信号に基づいて電界効果トランジスタの動作特性を設定する動作速度設定回路を備えることを特徴とする。 In order to achieve the above object, a reconfigurable integrated circuit according to the present invention includes a plurality of circuit configuration circuits constituting a circuit that calculates a logical function based on circuit configuration information, and a circuit that connects between the circuit configuration circuits. A wiring circuit; a signal state detection circuit for detecting a change in an internal signal of the circuit configuration circuit or the circuit wiring circuit; and a state change signal detected by the signal state detection circuit in the circuit configuration circuit or the circuit wiring circuit A state change wiring circuit for transmission and an operation speed setting circuit for setting operation characteristics of the field effect transistor based on the state change signal for each of the circuit configuration circuit or the partial circuit of the circuit wiring circuit are provided.
 この場合に、再構成可能集積回路において、前記回路構成回路または前記回路配線回路は、部分回路ごとにトランジスタの動作特性を設定する動作速度設定回路を備えたフィールドプログラマブルゲートアレイ(FPGA)であり、また、前記信号状態検出回路が回路構成回路によって生成される。 In this case, in the reconfigurable integrated circuit, the circuit configuration circuit or the circuit wiring circuit is a field programmable gate array (FPGA) including an operation speed setting circuit that sets operation characteristics of a transistor for each partial circuit. The signal state detection circuit is generated by a circuit configuration circuit.
 また、この再構成可能集積回路において、前記信号状態検出回路があらかじめ再構成可能集積回路に実装されており、前記信号状態検出回路の活性化がプログラムにより制御されるように構成される。 In this reconfigurable integrated circuit, the signal state detection circuit is mounted in advance in the reconfigurable integrated circuit, and activation of the signal state detection circuit is controlled by a program.
 この場合に、信号状態検出回路の生成位置、あるいは、信号状態検出回路のどこを活性化するか否かは、再構成可能集積回路の設定ソフトウェアによって設定されるように構成される。または、信号状態検出回路の生成位置、あるいは、信号状態検出回路のどこを活性化するか否かは、ユーザによりデザインされた論理機能に基づいて設定されるように構成される。 In this case, the generation position of the signal state detection circuit or where the signal state detection circuit is activated is set by the setting software of the reconfigurable integrated circuit. Alternatively, the generation position of the signal state detection circuit or where to activate the signal state detection circuit is set based on a logic function designed by the user.
 また、再構成可能集積回路において、電界効果トランジスタの動作特性は、電界効果トランジスタのしきい値電圧の変更によって制御されるように構成される。または、電界効果トランジスタの動作特性は、電源電圧によって制御されるように構成される。 Also, in the reconfigurable integrated circuit, the operating characteristics of the field effect transistor are configured to be controlled by changing the threshold voltage of the field effect transistor. Alternatively, the operational characteristics of the field effect transistor are configured to be controlled by the power supply voltage.
 状態変化配線回路は、前記回路配線回路とは独立に設けるように構成されても良く、または、状態変化配線回路は、前記回路配線回路を用いて構成されるように構成されてもよい。この場合に、例えば、信号状態検出回路が出力した状態変化信号は、パルス信号であり、動作速度設定回路は、トランジスタの動作特性を1つ以上保持できる動作モード記憶装置を有しており、前記動作モード記憶装置の内容によって部分回路の動作速度と消費電力を決定するように構成される。 The state change wiring circuit may be configured to be provided independently of the circuit wiring circuit, or the state change wiring circuit may be configured using the circuit wiring circuit. In this case, for example, the state change signal output from the signal state detection circuit is a pulse signal, and the operation speed setting circuit has an operation mode storage device that can hold one or more operation characteristics of the transistor. The operation mode storage device is configured to determine the operation speed and power consumption of the partial circuit according to the contents of the operation mode storage device.
 また、動作速度消費電力設定回路の動作モード記憶装置の出力は、パルス状の状態変化信号によって切り替えられる1つ以上のフリップフロップ回路で構成され、動作速度消費電力設定回路の動作モード記憶装置の出力は、パルス状の状態変化信号によって切り替えられるものであり、二つ以上のランダムアクセスメモリまたは二つ以上のシフトレジスタに記憶された動作モードをパルスによって切り替えるように構成される。 The output of the operation mode storage device of the operation speed power consumption setting circuit is composed of one or more flip-flop circuits that are switched by a pulse-like state change signal, and the output of the operation mode storage device of the operation speed power consumption setting circuit. Is switched by a pulse-like state change signal, and is configured to switch operation modes stored in two or more random access memories or two or more shift registers by pulses.
 本発明の再構成可能集積回路によれば、トランジスタの動作特性をプログラマブルに調整可能な再構成可能集積回路において、典型的な信号入力に着目したアプローチを応用することによって、回路動作時に信号入力に応じて動作速度と消費電力を動的に調整することができ、従来手法では常に静的(回路動作時は変化しない)であった動作速度と消費電力に基づくトランジスタの動作特性を、回路動作時に適切に設定することができるようになる。これにより、再構成可能集積回路をさらに低消費電力化または高速化することが可能となる。 According to the reconfigurable integrated circuit of the present invention, in a reconfigurable integrated circuit in which the operation characteristics of the transistor can be adjusted in a programmable manner, an approach that focuses on typical signal input is applied to the signal input during circuit operation. The operating speed and power consumption can be adjusted dynamically, and the transistor operating characteristics based on the operating speed and power consumption, which were always static in the conventional method (does not change during circuit operation), are It becomes possible to set appropriately. As a result, the reconfigurable integrated circuit can be further reduced in power consumption or speed.
本発明の一実施例に係る再構成可能集積回路の構成を説明する図である。It is a figure explaining the structure of the reconfigurable integrated circuit which concerns on one Example of this invention. 本発明の再構成可能集積回路において回路を構成するための設定方法の一例を説明する図である。It is a figure explaining an example of the setting method for comprising a circuit in the reconfigurable integrated circuit of this invention. 5ステージパイプラインプロセッサにおける実装例である。It is an example of implementation in a 5-stage pipeline processor. 再構成可能集積回路の構成例の一例を示す図である。It is a figure which shows an example of a structural example of a reconfigurable integrated circuit. 再構成可能集積回路の構成例の他の例を示す図である。It is a figure which shows the other example of a structural example of a reconfigurable integrated circuit. 信号状態検出回路の構成例の一例を示す図である。It is a figure which shows an example of a structural example of a signal state detection circuit. 動作速度消費電力設定回路の構成例の一例を示す図である。It is a figure which shows an example of a structural example of an operating speed power consumption setting circuit. 動作速度消費電力設定回路の構成例の他の例を示す図である。It is a figure which shows the other example of a structural example of an operating speed power consumption setting circuit. 動作速度消費電力設定回路をCMOSインバータ回路に適用例の一例を示す図である。It is a figure which shows an example of an application example of an operating speed power consumption setting circuit to a CMOS inverter circuit. 動作速度消費電力設定回路をCMOSインバータ回路に適用例の他の例を示す図である。It is a figure which shows the other example of the example of application of an operating speed power consumption setting circuit to a CMOS inverter circuit. 動作速度消費電力設定回路をCMOSインバータ回路に適用例の他の例を示す図である。It is a figure which shows the other example of the example of application of an operating speed power consumption setting circuit to a CMOS inverter circuit. 一般的なアイランドスタイルFPGAの構成例の一例を示す図である。It is a figure which shows an example of a structural example of a general island style FPGA. 一般的な再構成可能論理回路ブロック(CLB)タイルの構造例の一例を示す図である。It is a figure which shows an example of the structural example of a general reconfigurable logic circuit block (CLB) tile. 一般的な入出力回路ブロックタイルの構造例の一例を示す図である。It is a figure which shows an example of the structural example of a general input / output circuit block tile. 一般的な空回路ブロック(NULL)タイルの構造例の一例を示す図である。It is a figure which shows an example of the structural example of a general empty circuit block (NULL) tile. 一般的な再構成可能論理ブロックの構造例の一例を示す図である。It is a figure which shows an example of the structural example of a general reconfigurable logic block. 一般的な基本論理回路要素(BLE)の構造例の一例を示す図である。It is a figure which shows an example of the structural example of a general basic logic circuit element (BLE). 一般的なスイッチブロック(SB)の構造例の一例を示す図である。It is a figure which shows an example of the structural example of a general switch block (SB). 本発明の再構成可能論理回路ブロックタイルの構造例の一例を示す図である。It is a figure which shows an example of the structural example of the reconfigurable logic circuit block tile of this invention. 本発明の再構成可能論理回路ブロックの構造例の一例を示す図である。It is a figure which shows an example of the structural example of the reconfigurable logic circuit block of this invention. 本発明の再構成可能論理回路ブロックの構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the reconfigurable logic circuit block of this invention. 本発明のスイッチ回路ブロックの構造例の一例を示す図である。It is a figure which shows an example of the structural example of the switch circuit block of this invention. 本発明のスイッチ回路ブロックの構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the switch circuit block of this invention. 本発明の電力スイッチ回路ブロック(PSB)の構造例の一例を示す図である。It is a figure which shows an example of the structural example of the power switch circuit block (PSB) of this invention. 本発明の再構成可能論理回路ブロックタイルの構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the reconfigurable logic circuit block tile of this invention. 本発明の再構成可能論理回路ブロックの構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the reconfigurable logic circuit block of this invention. 本発明の再構成可能論理回路ブロックの構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the reconfigurable logic circuit block of this invention. 本発明のスイッチ回路ブロックの構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the switch circuit block of this invention. 本発明のスイッチ回路ブロックの構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the switch circuit block of this invention. 本発明の再構成可能論理回路ブロックタイルの構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the reconfigurable logic circuit block tile of this invention. 本発明の再構成可能論理回路ブロックタイルの構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the reconfigurable logic circuit block tile of this invention. 本発明の基本論理回路要素の構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the basic logic circuit element of this invention. 本発明の再構成可能論理回路ブロックの構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the reconfigurable logic circuit block of this invention. 本発明の再構成可能論理回路ブロックの構造例において信号状態検出回路を実現した例を示す図である。It is a figure which shows the example which implement | achieved the signal state detection circuit in the structural example of the reconfigurable logic circuit block of this invention. 本発明の再構成可能論理回路ブロックの構造例の他の例を示す図である。It is a figure which shows the other example of the structural example of the reconfigurable logic circuit block of this invention. 本発明の再構成可能論理回路ブロックの構造例において信号状態検出回路を実現した例を示す図である。It is a figure which shows the example which implement | achieved the signal state detection circuit in the structural example of the reconfigurable logic circuit block of this invention.
符号の説明Explanation of symbols
10 再構成可能集積回路
11 論理関数が実現された領域
12 信号状態検出回路
13 状態変化信号
14 被動的制御領域
15 回路構成回路
16 回路配線回路
17 回路用配線
18 状態変化信号配線回路
19 状態変化信号用配線
20 動作速度消費電力設定回路
21 回路配線・状態変化信号配線回路
22 回路・状態変化信号用配線
DESCRIPTION OF SYMBOLS 10 Reconfigurable integrated circuit 11 Area | region where logic function was implement | achieved 12 Signal state detection circuit 13 State change signal 14 Passive control area 15 Circuit configuration circuit 16 Circuit wiring circuit 17 Circuit wiring 18 State change signal wiring circuit 19 State change signal Wiring 20 operation speed power consumption setting circuit 21 circuit wiring / state change signal wiring circuit 22 circuit / state change signal wiring
 図1は本発明の一実施例に係る再構成可能集積回路の構成を説明する図である。図1において、10は再構成可能集積回路、11は回路構成情報により論理関数が実現される領域、12は信号状態検出回路、13は状態変化信号である。また、14は動的に動作速度が制御される被動的制御領域を示す。この被動的制御領域14は、動作速度が制御されると共に電力消費についても制御される。 FIG. 1 is a diagram for explaining the configuration of a reconfigurable integrated circuit according to an embodiment of the present invention. In FIG. 1, 10 is a reconfigurable integrated circuit, 11 is a region where a logic function is realized by circuit configuration information, 12 is a signal state detection circuit, and 13 is a state change signal. Reference numeral 14 denotes a driven control area in which the operation speed is dynamically controlled. The driven control area 14 is controlled not only for the operation speed but also for the power consumption.
 図2は本発明の再構成可能集積回路において回路を構成するための設定方法の一例を説明する図である。図1および図2を参照して、本発明の再構成可能集積回路の構成の一実施例について説明する。回路設計者はCAD(Computer Aided Design)システムを用いて、ユーザデザインを作成し、クリティカルパス(最長経路を含む経路に対してタイミング余裕のない経路)を高速モードに、非クリティカルパスを低消費電力モードに自動的に設定して、回路構成情報Aを生成する。回路構成情報Aは、特許文献1に記載されているような公知の最適化手法で生成されたものと同等なものであり、例えば、回路構成情報Aにより、静的な動作速度と消費電力の最適化が行われた回路構成情報が得られる。 FIG. 2 is a diagram for explaining an example of a setting method for configuring a circuit in the reconfigurable integrated circuit of the present invention. An embodiment of the configuration of the reconfigurable integrated circuit of the present invention will be described with reference to FIGS. The circuit designer uses a CAD (Computer Aided Design) system to create a user design, puts critical paths (routes with no timing margin for the route including the longest route) into high-speed mode, and consumes non-critical paths with low power consumption. The circuit configuration information A is generated by automatically setting the mode. The circuit configuration information A is equivalent to that generated by a known optimization method as described in Patent Document 1. For example, the circuit configuration information A indicates static operation speed and power consumption. The optimized circuit configuration information is obtained.
 本発明の再構成可能集積回路においては、回路構成情報Aに対して、動的制御を自動的に決定するか、回路設計者の設定情報により決定するかの2つの処理フローにより、さらに動的制御を行うための回路構成情報Bを得る。 In the reconfigurable integrated circuit of the present invention, the dynamic control is further determined for the circuit configuration information A by two processing flows, that is, whether dynamic control is automatically determined or determined by circuit designer setting information. Circuit configuration information B for performing control is obtained.
 まず、自動的に決定する処理フローについて説明する。CADシステムにおいては、回路構成情報Aを解析し、クリティカルパスを活性化する条件を見つけて信号状態検出回路12の挿入位置を決定する。と共に、被動的制御領域14を決定する。具体例で説明すると、例えば、図3に示すように、5段パイプラインプロセッサを論理関数として実現する場合、除算命令がクリティカルパスになる場合には、命令読み出し(IF)において除算命令が読み出しされた場合にクリティカルパスを活性化すればよいことから、命令読み出し(IF)内に信号状態検出回路12を挿入する。次に、クリティカルパスである演算実行(EX)フェーズの除算回路部分を、被動的制御領域14とする。 First, the processing flow that is automatically determined will be described. In the CAD system, the circuit configuration information A is analyzed, the condition for activating the critical path is found, and the insertion position of the signal state detection circuit 12 is determined. At the same time, the driven control area 14 is determined. Specifically, for example, as shown in FIG. 3, when a five-stage pipeline processor is realized as a logical function, when the division instruction becomes a critical path, the division instruction is read out in the instruction read (IF). In this case, the signal path detection circuit 12 is inserted into the instruction read (IF). Next, the division circuit portion of the operation execution (EX) phase, which is a critical path, is set as the driven control area 14.
 次に、回路構成情報Aに対して信号状態検出回路12を挿入し、信号状態検出回路12から被動的制御領域14に自動配線を行って、状態変化信号13の伝送する経路を生成する。そして、被動的制御領域14において、動作モードが変更されるために要する時間を計算し、タイミング情報を生成する。生成したタイミング情報により動作モードを変更するために要する時間が、回路設計者が望むタイミング要求を満たしていなければ、そのタイミング情報に基づいて被動的制御領域14を縮小し、再度、自動配線およびタイミング解析を行う。タイミング要求が満たされていれば、そして、回路設計者が望む消費電力を満たしていれば、その回路構成による回路構成情報Bを生成し、満たしていなければ、再度もしくは新たに信号状態検出回路12と被動的制御領域14を決定し、要求された消費電力を満たすまで、この処理を繰り返す。 Next, the signal state detection circuit 12 is inserted into the circuit configuration information A, and automatic wiring is performed from the signal state detection circuit 12 to the driven control area 14 to generate a path for transmitting the state change signal 13. Then, the time required for the operation mode to be changed in the driven control area 14 is calculated, and timing information is generated. If the time required to change the operation mode according to the generated timing information does not satisfy the timing requirement desired by the circuit designer, the driven control area 14 is reduced based on the timing information, and automatic wiring and timing are again performed. Analyze. If the timing requirement is satisfied, and if the power consumption desired by the circuit designer is satisfied, circuit configuration information B based on the circuit configuration is generated. If not, the signal state detection circuit 12 is again or newly generated. And the driven control area 14 are determined, and this process is repeated until the required power consumption is satisfied.
 回路設計者が決定する処理フローは、前述した自動的に決定する処理フローと同様である。信号状態検出回路12の挿入位置と被動的制御領域14の初期領域を決定する手順のみが異なっている。 The processing flow determined by the circuit designer is the same as the processing flow automatically determined as described above. Only the procedure for determining the insertion position of the signal state detection circuit 12 and the initial region of the driven control region 14 is different.
 このように、再構成可能集積回路10上の論理関数が実現された領域11中に設けられた信号状態検出回路12は、クリティカルパス信号の変化を監視し、状態が変化すると被動的制御領域14に対して状態変化信号13を送信し、動的に動作速度と消費電力とが制御できるように回路を構成する。 As described above, the signal state detection circuit 12 provided in the region 11 in which the logic function on the reconfigurable integrated circuit 10 is realized monitors the change of the critical path signal, and when the state changes, the driven control region 14 The circuit is configured so that the operation speed and the power consumption can be controlled dynamically by transmitting the state change signal 13 to.
 図4は、再構成可能集積回路10の一構成例を説明する図である。図4において、12は信号状態検出回路、15は回路構成回路、16は回路配線回路、17は回路用配線、18は状態変化信号配線回路、19は状態変化信号用配線、20は動作速度消費電力設定回路である。 FIG. 4 is a diagram for explaining a configuration example of the reconfigurable integrated circuit 10. In FIG. 4, 12 is a signal state detection circuit, 15 is a circuit configuration circuit, 16 is a circuit wiring circuit, 17 is a circuit wiring, 18 is a state change signal wiring circuit, 19 is a state change signal wiring, and 20 is an operating speed consumption. It is a power setting circuit.
 回路構成回路15は、フリップフロップ、インバータ、アンドゲート、オアゲート、ルックアップテーブルなど、基本的な論理機能ゲートを構成する回路から構成されており、回路構成回路ごと、前記基本的な論理ゲートを構成する回路ごと、または、それらを構成するトランジスタごとに、電源電圧、ダブルゲートMOSトランジスタの第2ゲートへの入力電圧、SOI(Silicon On Insulator)構造およびバルク構造のMOSトランジスタへのボディ電圧を設定し、動作速度と消費電力を制御する回路構成とする。 The circuit configuration circuit 15 is composed of circuits constituting basic logic function gates such as flip-flops, inverters, AND gates, OR gates, look-up tables, and the like, and each circuit configuration circuit constitutes the basic logic gate. Set the power supply voltage, the input voltage to the second gate of the double-gate MOS transistor, the body voltage to the SOI (Silicon On Insulator) structure and the bulk structure MOS transistor for each circuit to be configured or each of the transistors constituting them. The circuit configuration controls the operating speed and power consumption.
 回路配線回路16は、複数の回路用配線17および回路用配線17と回路構成回路15とを結線するスイッチ回路から構成され、それぞれの回路構成回路15の間の結線を行う結線スイッチ回路である。回路配線回路16では、回路配線回路ごと、または、前記回路配線回路を構成するスイッチ回路ごと、または、それらを構成するトランジスタごとに、電源電圧、ダブルゲートMOSトランジスタの第2ゲートへの入力電圧、SOI構造およびバルク構造のMOSトランジスタへのボディ電圧を設定し、動作速度と消費電力を制御する回路構成とする。 The circuit wiring circuit 16 includes a plurality of circuit wirings 17 and a switch circuit that connects the circuit wirings 17 and the circuit configuration circuit 15, and is a connection switch circuit that performs connection between the circuit configuration circuits 15. In the circuit wiring circuit 16, a power supply voltage, an input voltage to the second gate of the double gate MOS transistor, for each circuit wiring circuit, for each switch circuit constituting the circuit wiring circuit, or for each transistor constituting the circuit wiring circuit, A body voltage is set to the SOI structure and bulk structure MOS transistors to control the operation speed and power consumption.
 状態変化信号配線回路17は、複数の状態変化信号用配線18および状態変化信号用配線18と信号状態検出回路12および状態変化信号用配線18と動作速度消費電力設定回路20とを結線するスイッチ回路から構成され、それぞれの信号状態検出回路12と動作速度消費電力設定回路20の間の結線を行う結線スイッチ回路である。 The state change signal wiring circuit 17 is a switch circuit that connects the plurality of state change signal wirings 18, the state change signal wiring 18, the signal state detection circuit 12, the state change signal wiring 18, and the operation speed power consumption setting circuit 20. And a connection switch circuit for performing connection between each signal state detection circuit 12 and the operation speed power consumption setting circuit 20.
 図4の構成例によって図1で説明した回路構成が実現される。これについて説明する。回路構成回路15、回路配線回路16および回路用配線17によって、論理関数が実現された領域11が回路構成として設定される。回路構成回路内に信号状態検出回路12を生成し、もしくは回路構成回路内に備えてあった信号状態検出回路12を活性化すると、状態変化信号配線回路18および状態変化信号用配線19を介して、被動的制御領域14中の後述する各動作速度消費電力設定回路20に状態変化信号が伝送される。伝送された状態変化信号により動的に動作速度と消費電力が制御される。動作速度消費電力設定回路20は、例えば、高速動作モードまたは低消費電力モードのトランジスタの動作特性を、保持できる動作モード記憶装置を有しており、この動作モード記憶装置に保持された内容によって部分回路における動作速度と消費電力を設定する。 The circuit configuration described in FIG. 1 is realized by the configuration example in FIG. This will be described. The circuit configuration circuit 15, the circuit wiring circuit 16, and the circuit wiring 17 set the region 11 in which the logic function is realized as a circuit configuration. When the signal state detection circuit 12 is generated in the circuit configuration circuit or the signal state detection circuit 12 provided in the circuit configuration circuit is activated, the state change signal wiring circuit 18 and the state change signal wiring 19 are used. A state change signal is transmitted to each operation speed power consumption setting circuit 20 to be described later in the driven control area 14. The operating speed and power consumption are dynamically controlled by the transmitted state change signal. The operation speed power consumption setting circuit 20 has an operation mode storage device that can hold, for example, the operation characteristics of a transistor in a high-speed operation mode or a low power consumption mode. Set the operating speed and power consumption in the circuit.
 図5は、再構成可能集積回路10のもう一つの構成例を示す図である。図5において、12は信号状態検出回路、15は回路構成回路、20は動作速度消費電力設定回路、21は回路配線・状態変化信号用配線回路、22は回路・状態変化信号用配線を示す。 FIG. 5 is a diagram showing another configuration example of the reconfigurable integrated circuit 10. In FIG. 5, 12 is a signal state detection circuit, 15 is a circuit configuration circuit, 20 is an operation speed power consumption setting circuit, 21 is a circuit wiring / state change signal wiring circuit, and 22 is a circuit / state change signal wiring.
 回路配線・状態変化信号配線回路21は、複数の回路・状態変化信号用配線22および回路・状態変化信号用配線22と回路構成回路15および回路・状態変化信号用配線22と信号状態検出回路12および回路・状態変化信号用配線22と動作速度消費電力設定回路20とを結線するスイッチ回路から構成され、それぞれの回路構成回路15の間およびそれぞれの信号状態検出回路12と動作速度消費電力設定回路20の間の結線を行う結線スイッチ回路である。 The circuit wiring / state change signal wiring circuit 21 includes a plurality of circuits / state change signal wirings 22, circuit / state change signal wirings 22, circuit configuration circuit 15, circuit / state change signal wirings 22, and signal state detection circuit 12. In addition, the circuit / state change signal wiring 22 and the operation speed power consumption setting circuit 20 are connected to each other, and the circuit state circuit 15 and the signal state detection circuit 12 and the operation speed power consumption setting circuit are connected. This is a connection switch circuit for connecting 20 connections.
 図5においても、図4と同様に図1の回路構成の実施例が実現できることを次に説明する。回路構成回路15および回路配線・状態変化信号用配線回路21および回路・状態変化信号用配線22によって、論理関数が実現された領域11を実現し、回路構成回路15内に信号状態検出回路12を生成し、もしくは回路構成回路15内に備えてあった信号状態検出回路12を活性化する。信号状態検出回路12が生成した状態変化信号は、回路配線・状態変化信号用配線回路21および回路・状態変化信号用配線22を介して、被動的制御領域中の各動作速度消費電力設定回路20に状態変化信号を送信する。これにより、動的に動作速度と消費電力が制御される回路構成となる。 In FIG. 5, it will be described next that the embodiment of the circuit configuration of FIG. 1 can be realized as in FIG. The circuit configuration circuit 15, the circuit wiring / state change signal wiring circuit 21 and the circuit / state change signal wiring 22 realize the region 11 in which the logic function is realized, and the signal state detection circuit 12 is provided in the circuit configuration circuit 15. The signal state detection circuit 12 generated or provided in the circuit configuration circuit 15 is activated. The state change signal generated by the signal state detection circuit 12 is supplied to each operation speed power consumption setting circuit 20 in the driven control region via the circuit wiring / state change signal wiring circuit 21 and the circuit / state change signal wiring 22. A state change signal is transmitted to. Thus, a circuit configuration in which the operation speed and power consumption are dynamically controlled is obtained.
 図6は信号状態検出回路の実装例を説明する図である。図6(a)は順序回路における信号状態検出回路を示したもので、「Data In」に検出すべき信号(図3でいえば特定の命令を読み込みした状態を示す信号)を入力し、「Clock」にクロックを入力することで、上段のD型フリップフロップ回路(以下、D-FF)はクロックの立下りで状態変化を読み取り、「Data Out」から後段の回路へ信号が伝送される。それと同時に、下段のD-FFでは一世代前の上段のD-FFの状態を保持していることから、排他的論理和回路からは監視中の信号状態が変化したことを示すパルス状の状態変化信号が発生し、「State Change」から出力される。図6(b)は組合せ回路における信号状態検出回路を示したもので、図6(a)の回路と動作は似ているが、同期のためのクロックが存在しない代わりに遅延回路を挿入し、「Data In」に入力された信号と遅延回路によって遅らせた信号とを排他的論理和回路で比較し、入力された信号が変化すれば、パルス状の状態変化信号が発生し、「State Change」から出力される。 FIG. 6 is a diagram for explaining an implementation example of the signal state detection circuit. FIG. 6A shows a signal state detection circuit in a sequential circuit. A signal to be detected (a signal indicating a state where a specific instruction is read in FIG. 3) is input to “Data In”. By inputting a clock to “Clock”, the upper D-type flip-flop circuit (hereinafter referred to as “D-FF”) reads the state change at the falling edge of the clock, and a signal is transmitted from “Data Out” to the subsequent circuit. At the same time, since the lower D-FF holds the state of the upper D-FF of the previous generation, a pulse-like state indicating that the signal state being monitored has changed from the exclusive OR circuit. A change signal is generated and output from “State Change”. FIG. 6B shows a signal state detection circuit in the combinational circuit. The operation is similar to that of the circuit of FIG. 6A, but a delay circuit is inserted instead of the absence of a clock for synchronization, The signal input to “Data In” and the signal delayed by the delay circuit are compared by an exclusive OR circuit, and if the input signal changes, a pulsed state change signal is generated, and “State Change” Is output from.
 図7は、動作速度消費電力設定回路の実装例を説明する図である。図7(a)はダブルゲートMOSトランジスタの第2ゲートへの入力電圧、SOI構造およびバルク構造のMOSトランジスタへのボディ電圧を設定し、MOSトランジスタのしきい値電圧を制御するための回路である。信号状態検出回路が送信したパルス状の状態変化信号は、状態変化信号配線回路および状態変化信号用配線、または、回路配線回路および回路用配線を介して、図7(a)の「State Change」端子に到着する。「State Change」信号は、T型フリップフロップ回路(以下、T-FF)へ入力され、T-FFの出力を切り替え、その出力はレベルシフタ(LS)を介してマルチプレクサへと送信され、N型トランジスタ用とP型トランジスタ用の各2組の電圧を切り替え、各電圧をトランジスタへ供給する。なお、T-FFの出力電圧とマルチプレクサで切り替えを行う電圧のレベルが同一であれば必ずしもレベルシフタ(LS)は必要としない。また、この例では、各2組の電圧を切り替えているが、2組以上の電圧を切り替えることもできる。その場合は、T-FFを直列に複数段組み合わせ、かつ、マルチプレクサの入力数を増やし、それぞれのT-FFの出力をマルチプレクサに入力することで実現することができる。また、T-FFは出力を規定の値にする初期化機能を有しており、この例では「Reset」端子がイネーブルになるとT-FFは初期化される。 FIG. 7 is a diagram illustrating an implementation example of an operation speed power consumption setting circuit. FIG. 7A is a circuit for setting the input voltage to the second gate of the double gate MOS transistor, the body voltage to the SOI structure and the bulk structure MOS transistor, and controlling the threshold voltage of the MOS transistor. . The pulse-like state change signal transmitted by the signal state detection circuit is “State Change” in FIG. 7A via the state change signal wiring circuit and the state change signal wiring, or the circuit wiring circuit and the circuit wiring. Arrives at the terminal. The “State Change” signal is input to a T-type flip-flop circuit (hereinafter referred to as T-FF), and the output of the T-FF is switched. The output is transmitted to the multiplexer via the level shifter (LS), and the N-type transistor Two sets of voltages for the transistor and the P-type transistor are switched, and each voltage is supplied to the transistor. Note that the level shifter (LS) is not necessarily required if the output voltage of the T-FF is the same as the voltage level switched by the multiplexer. In this example, two sets of voltages are switched, but two or more sets of voltages can be switched. In that case, it can be realized by combining a plurality of T-FFs in series, increasing the number of inputs of the multiplexer, and inputting the output of each T-FF to the multiplexer. The T-FF has an initialization function for setting the output to a specified value. In this example, when the “Reset” terminal is enabled, the T-FF is initialized.
 図7(b)はダブルゲート構造、または、SOI構造、または、バルク構造のMOSトランジスタで構成されるCMOS回路の電源電圧を設定し、CMOS回路の性能を制御するための回路である。信号状態検出回路が送信したパルス状の状態変化信号は、状態変化信号配線回路および状態変化信号用配線、または、回路配線回路および回路用配線を介して図7(b)の「State Change」端子へと到着する。「State Change」信号はT-FFへ入力され、T-FFの出力を切り替え、その出力はレベルシフタ(LS)を介して、マルチプレクサへと送信され、CMOS回路用の1組の電源電圧を切り替え、トランジスタへ供給する。なお、T-FFの出力電圧とマルチプレクサで切り替えを行う電圧のレベルが、同一であれば、必ずしもレベルシフタ(LS)は必要としない。また、この例では1組の電圧を切り替えているが、1組以上の電圧を切り替えることもできる。その場合には、T-FFを直列に複数段組み合わせ、かつ、マルチプレクサの入力数を増やし、それぞれのT-FFの出力をマルチプレクサに入力することで実現することができる。また、T-FFは、出力を規定の値にする初期化機能を有しており、この例では「Reset」端子がイネーブルになると、T-FFは初期化される。 FIG. 7B is a circuit for setting the power supply voltage of a CMOS circuit composed of MOS transistors having a double gate structure, an SOI structure, or a bulk structure, and controlling the performance of the CMOS circuit. The pulse-like state change signal transmitted by the signal state detection circuit is transmitted to the “State Change” terminal in FIG. 7B via the state change signal wiring circuit and the state change signal wiring, or the circuit wiring circuit and the circuit wiring. Arrive at. The “State Change” signal is input to the T-FF, and the output of the T-FF is switched. The output is transmitted to the multiplexer via the level shifter (LS), and a set of power supply voltages for the CMOS circuit is switched. Supply to transistor. Note that the level shifter (LS) is not necessarily required if the output voltage of the T-FF and the voltage level switched by the multiplexer are the same. In this example, one set of voltages is switched, but one or more sets of voltages can be switched. In that case, it can be realized by combining a plurality of T-FFs in series, increasing the number of inputs of the multiplexer, and inputting the output of each T-FF to the multiplexer. The T-FF has an initialization function for setting the output to a specified value. In this example, when the “Reset” terminal is enabled, the T-FF is initialized.
 図8は、図7で示した動作速度消費電力設定回路のもう一つの実装例を説明する図である。図8(a)はダブルゲートMOSトランジスタの第2ゲートへの入力電圧や、SOI構造およびバルク構造のMOSトランジスタへのボディ電圧を設定し、MOSトランジスタのしきい値電圧を制御するための回路である。信号状態検出回路が送信したパルス状の状態変化信号は、状態変化信号配線回路および状態変化信号用配線、または、回路配線回路および回路用配線を介して、図8(a)の回路の「State Change」端子へと到着する。「State Change」信号は、T-FFへ入力されT-FFの出力を切り替え、その出力はSRAM選択用マルチプレクサへと送信されて、2つのSRAMの出力を切り替え、このSRAMのどちらかの出力は、レベルシフタ(LS)を介して、後段の2組のマルチプレクサへ送信され、N型トランジスタ用とP型トランジスタ用の各2組の電圧を切り替えトランジスタへ供給する。なお、SRAMの出力電圧と後段のマルチプレクサで切り替えを行う電圧のレベルが同一であれば、必ずしもレベルシフタ(LS)は必要としない。また、この例では各2組の電圧を切り替えているが、2組以上の電圧を切り替えることもできる。その場合は、T-FFを直列に複数段組み合わせ、かつ、SRAMを適宜増加させ、かつ、マルチプレクサの入力数を増やし、それぞれのT-FFの出力をSRAM用マルチプレクサに入力することで実現する。また、T-FFは出力を規定の値にする初期化機能を有しており、この例では「Reset」端子がイネーブルになるとT-FFは初期化される。 FIG. 8 is a diagram for explaining another implementation example of the operation speed power consumption setting circuit shown in FIG. FIG. 8A is a circuit for setting the input voltage to the second gate of the double gate MOS transistor and the body voltage to the SOI structure and the bulk structure MOS transistor to control the threshold voltage of the MOS transistor. is there. The pulse state change signal transmitted by the signal state detection circuit is transmitted to the “State” of the circuit of FIG. 8A via the state change signal wiring circuit and the state change signal wiring, or the circuit wiring circuit and the circuit wiring. Arrives at the “Change” terminal. The “State Change” signal is input to the T-FF to switch the output of the T-FF, and the output is sent to the SRAM selection multiplexer to switch the outputs of the two SRAMs. The voltage is transmitted to two sets of multiplexers in the subsequent stage via the level shifter (LS), and two sets of voltages for the N-type transistor and the P-type transistor are supplied to the switching transistor. Note that the level shifter (LS) is not necessarily required as long as the output voltage of the SRAM and the level of the voltage to be switched by the subsequent multiplexer are the same. In this example, two sets of voltages are switched, but two or more sets of voltages can be switched. In such a case, a plurality of T-FFs are combined in series, the number of SRAMs is increased as appropriate, the number of multiplexer inputs is increased, and the output of each T-FF is input to the SRAM multiplexer. The T-FF has an initialization function for setting the output to a specified value. In this example, when the “Reset” terminal is enabled, the T-FF is initialized.
 図8(b)はダブルゲート構造、または、SOI構造、または、バルク構造のMOSトランジスタで構成されるCMOS回路の電源電圧を設定し、CMOS回路の性能を制御するための回路である。信号状態検出回路が送信したパルス状の状態変化信号は、状態変化信号配線回路および状態変化信号用配線、または、回路配線回路および回路用配線を介して図8(b)の「State Change」端子へと到着する。「State Change」信号はT-FFへ入力され、T-FFの出力を切り替え、その出力はSRAM選択用マルチプレクサへと送信され2つのSRAMの出力を切り替え、このSRAMのどちらかの出力は、レベルシフタ(LS)を介して後段のマルチプレクサへ送信され、CMOS回路用の電源電圧を切り替え、トランジスタへ供給する。なお、SRAMの出力電圧と後段のマルチプレクサで切り替えを行う電圧のレベルが同一であれば、必ずしもレベルシフタ(LS)は必要としない。また、この例では、1組の電圧を切り替えているが、2組以上の電圧を切り替えることもできる。その場合は、T-FFを直列に複数段組み合わせ、かつ、SRAMを適宜増加させ、かつ、マルチプレクサの入力数を増やし、それぞれのT-FFの出力をSRAM用マルチプレクサに入力することで実現することができる。また、T-FFは出力を規定の値にする初期化機能を有しており、この例において「Reset」端子がイネーブルになるとT-FFは初期化される。 FIG. 8B is a circuit for setting the power supply voltage of a CMOS circuit composed of MOS transistors having a double gate structure, an SOI structure, or a bulk structure, and controlling the performance of the CMOS circuit. The pulse-like state change signal transmitted by the signal state detection circuit is sent to the “State Change” terminal in FIG. 8B via the state change signal wiring circuit and the state change signal wiring, or the circuit wiring circuit and the circuit wiring. Arrive at. The “State Change” signal is input to the T-FF, the output of the T-FF is switched, the output is sent to the SRAM selection multiplexer, and the output of the two SRAMs is switched. (LS) is sent to the subsequent multiplexer, and the power supply voltage for the CMOS circuit is switched and supplied to the transistor. Note that the level shifter (LS) is not necessarily required as long as the output voltage of the SRAM and the level of the voltage to be switched by the subsequent multiplexer are the same. In this example, one set of voltages is switched, but two or more sets of voltages can be switched. In that case, it is realized by combining multiple stages of T-FFs in series, increasing the number of SRAMs appropriately, increasing the number of multiplexer inputs, and inputting the output of each T-FF to the SRAM multiplexer. Can do. The T-FF has an initialization function for setting the output to a specified value. In this example, when the “Reset” terminal is enabled, the T-FF is initialized.
 図9は、図7(a)の動作速度消費電力設定回路をCMOSインバータ回路に適応した回路を例示している。なお、簡単化のため動作速度消費電力設定回路の「Reset」端子の記載は以後省略する。図9(a)は、ダブルゲートMOSトランジスタで構成されたCMOSインバータ回路である。動作速度消費電力設定回路へ入力されたN型トランジスタ用とP型トランジスタ用の各2組の電圧をState Change信号によって切り替え、CMOSインバータ回路のそれぞれN型トランジスタ、および、P型トランジスタの第二ゲートへ印加している。例えば、Vb_p1がP型トランジスタを高速モードで動作させるための電圧、Vb_p2がP型トランジスタを低消費電力モードで動作させるための電圧、Vb_n1がN型トランジスタを高速モードで動作させるための電圧、Vb_n2がN型トランジスタを低消費電力モードで動作させるための電圧であった場合、動作速度消費電力設定回路の出力Vb_pとVb_nは、「State Change」信号が入力されるごとに、高速モード(Vb_p1およびVb_n1)と低消費電力モード(Vb_p2およびVb_n2)に切り替わり、CMOSインバータ回路の電流駆動能力と漏れ電流が制御され、動作速度と消費電力が同様に制御される。ここでは、ダブルゲートMOSトランジスタを用いる回路構成を示しているが、他の回路構成として、図9(b)の回路構成のように、SOI構造またはバルク構造のMOS型トランジスタの基板電位を変化させるように構成されても良い。 FIG. 9 illustrates a circuit in which the operation speed power consumption setting circuit of FIG. 7A is applied to a CMOS inverter circuit. For the sake of simplification, description of the “Reset” terminal of the operation speed power consumption setting circuit is omitted hereinafter. FIG. 9A shows a CMOS inverter circuit composed of double gate MOS transistors. Two sets of voltages for the N-type transistor and P-type transistor input to the operating speed power consumption setting circuit are switched by the state change signal, and the second gate of the N-type transistor and the P-type transistor of the CMOS inverter circuit, respectively. Is applied. For example, Vb_p1 is a voltage for operating the P-type transistor in the high-speed mode, Vb_p2 is a voltage for operating the P-type transistor in the low power consumption mode, Vb_n1 is a voltage for operating the N-type transistor in the high-speed mode, Vb_n2 Is a voltage for operating the N-type transistor in the low power consumption mode, the outputs Vb_p and Vb_n of the operation speed power consumption setting circuit are set to the high-speed mode (Vb_p1 and Vb_p1 and Vb_p) every time the “State Change” signal is input. Vb_n1) and the low power consumption mode (Vb_p2 and Vb_n2) are switched, the current drive capability and leakage current of the CMOS inverter circuit are controlled, and the operation speed and power consumption are similarly controlled. Here, a circuit configuration using a double gate MOS transistor is shown, but as another circuit configuration, the substrate potential of a MOS transistor having an SOI structure or a bulk structure is changed as in the circuit configuration of FIG. 9B. It may be configured as follows.
 図10(a)および図10(b)は、図7(b)の動作速度消費電力設定回路をダブルゲートMOSトランジスタで構成したCMOSインバータ回路の電源供給回路に適応した回路の例を例示している。動作速度消費電力設定回路へ入力された2組の電圧を、「State Change」信号によって切り替え、CMOSインバータ回路の電源端子Vddへ接続している。例えば、Vdd1がCMOS回路を高速モードで動作させるための電圧、Vdd2がCMOS回路を低消費電力モードで動作させるための電圧であった場合、動作速度消費電力設定回路の出力Vddは、「State Change」信号が入力されるごとに、高速モード(Vdd1)と低消費電力モード(Vdd2)に切り替わる。これにより、CMOSインバータ回路の電圧振幅が変化し、動作速度と消費電力が同様に制御される。この例では、ダブルゲートMOSトランジスタを用いる回路構成を示しているが、他の回路構成の例として、図11(a)および図11(b)のように、SOI構造またはバルク構造のMOS型トランジスタの電源電圧を変化させる回路構成でも良い。 FIGS. 10A and 10B illustrate an example of a circuit adapted to a power supply circuit of a CMOS inverter circuit in which the operation speed power consumption setting circuit of FIG. 7B is configured by a double gate MOS transistor. Yes. Two sets of voltages input to the operating speed power consumption setting circuit are switched by a “State Change” signal and connected to the power supply terminal Vdd of the CMOS inverter circuit. For example, when Vdd1 is a voltage for operating the CMOS circuit in the high speed mode, and Vdd2 is a voltage for operating the CMOS circuit in the low power consumption mode, the output Vdd of the operation speed power consumption setting circuit is “State Change”. Each time the signal is input, the mode is switched between the high speed mode (Vdd1) and the low power consumption mode (Vdd2). As a result, the voltage amplitude of the CMOS inverter circuit changes, and the operation speed and power consumption are similarly controlled. In this example, a circuit configuration using a double gate MOS transistor is shown. As another example of the circuit configuration, as shown in FIGS. 11 (a) and 11 (b), an SOI type or bulk type MOS transistor is used. A circuit configuration for changing the power supply voltage may be used.
 次に、再構成可能集積回路の具体的な一例としてFPGAを用いた構成の実施例について説明する。図12は、アイランドスタイルFPGAの概略図である。FPGAは主に中心部の再構成可能論理回路ブロックのCLB(Configurable Logic Block)タイル、周辺部の入出力回路ブロックのIOB(Input/Output Block)タイル、空回路ブロックのNULLタイルの3種類で構成される。図13にCLBタイルの基本構造を示している。CLBタイルは、縦方向の回路用配線チャネルおよび横方向の回路用配線チャネルおよび論理機能を構成する再構成可能論理回路CLBおよびこれら2つの回路用配線チャネルと再構成可能論理回路(CLB)との接続を行うスイッチ回路ブロックSB(Switch Block)から構成される。図14は、IOBタイルの基本構造の一例を示す図である。縦方向の回路用配線チャネルおよび横方向の回路用配線チャネルとチップ外部との入出力を行う入出力回路ブロックIOBおよび前記2つの回路用配線チャネルと入出力回路ブロックIOBとの接続を行うスイッチ回路ブロックSBから構成される。図15に、空回路ブロックのNULLタイルの基本構造の一例を示している。縦方向の回路用配線チャネルおよび横方向の回路用配線チャネルおよび前記2つの回路用配線チャネルとの接続を行うスイッチ回路ブロックSBのみから構成される。 Next, an example of a configuration using an FPGA as a specific example of a reconfigurable integrated circuit will be described. FIG. 12 is a schematic diagram of an island style FPGA. The FPGA is mainly composed of three types of CLB (Configurable Logic Block) tiles in the reconfigurable logic circuit block in the central part, IOB (Input / Output Block) tiles in the peripheral I / O circuit block, and NULL tiles in the empty circuit block. Is done. FIG. 13 shows the basic structure of the CLB tile. The CLB tile includes a vertical circuit wiring channel, a horizontal circuit wiring channel, a reconfigurable logic circuit CLB constituting a logic function, and a wiring channel for these two circuits and a reconfigurable logic circuit (CLB). It is composed of a switch circuit block SB (Switch Block) for connection. FIG. 14 is a diagram illustrating an example of a basic structure of an IOB tile. An input / output circuit block IOB that performs input / output between the vertical circuit wiring channel and the horizontal circuit wiring channel and the outside of the chip, and a switch circuit that connects the two circuit wiring channels and the input / output circuit block IOB. It consists of block SB. FIG. 15 shows an example of the basic structure of the NULL tile of the empty circuit block. Only the switch circuit block SB for connecting the vertical circuit wiring channel, the horizontal circuit wiring channel, and the two circuit wiring channels is formed.
 図16に一般的な再構成可能論理回路CLBの基本構造例を示す。再構成可能論理回路CLBは基本論理回路要素BLE(Basic Logic Element)およびローカルマルチプレクサLMUX(Local Multiplexer)および入力信号マルチプレクサIMUX(Input Multiplexer)および出力信号マルチプレクサOMUX(Output Multiplexer)から構成される。基本論理回路要素BLEは、図4および図5における再構成可能集積回路の回路構成回路15に相当し、一般的な構造は、図17に示されるようなルックアップテーブル(LUT)およびフリップフロップ(D-FF)を有する論理ゲートを構成する回路である。ローカルマルチプレクサLMUXは、それぞれの基本論理回路要素BLE間および入力信号マルチプレクサIMUXと基本論理回路要素BLEを結線するスイッチ回路、入力信号マルチプレクサIMUXはスイッチ回路ブロックSBからの入力を結線するスイッチ回路、出力信号マルチプレクサOMUXはスイッチ回路ブロックSBへの出力を結線するスイッチ回路である。 FIG. 16 shows a basic structure example of a general reconfigurable logic circuit CLB. The reconfigurable logic circuit CLB includes a basic logic circuit element BLE (Basic Logic Element), a local multiplexer LMUX (Local Multiplexer), an input signal multiplexer IMUX (Input Multiplexer), and an output signal multiplexer OMUX (Output Multiplexer). The basic logic circuit element BLE corresponds to the circuit configuration circuit 15 of the reconfigurable integrated circuit in FIGS. 4 and 5, and a general structure is a look-up table (LUT) and a flip-flop ( D-FF) is a circuit constituting a logic gate. The local multiplexer LMUX is a switch circuit that connects the basic logic circuit elements BLE and the input signal multiplexer IMUX and the basic logic circuit element BLE, and the input signal multiplexer IMUX is a switch circuit that connects inputs from the switch circuit block SB, and an output signal The multiplexer OMUX is a switch circuit for connecting the output to the switch circuit block SB.
 図18に一般的なスイッチ回路ブロックSBの基本構造例を示す。スイッチ回路ブロックSBは複数のスイッチマトリックスSM(Switch Matrix)から構成されており、各スイッチマトリックスSMは縦方向回路用配線チャネルおよび横方向回路用配線チャネルおよび再構成可能論理回路ブロックCLBまたは入出力回路ブロックIOBを結線するスイッチ回路から構成される。 FIG. 18 shows a basic structure example of a general switch circuit block SB. The switch circuit block SB is composed of a plurality of switch matrices SM (Switch Matrix), and each switch matrix SM has a vertical circuit wiring channel and a horizontal circuit wiring channel and a reconfigurable logic circuit block CLB or an input / output circuit. It is composed of a switch circuit for connecting the block IOB.
 図19は、本発明における再構成可能論理回路ブロックCLBタイルの基本構造例を示す。縦方向の回路用配線チャネルおよび横方向の回路用配線チャネルおよび論理機能を構成する再構成可能論理回路ブロックCLBおよび前記2つの回路用配線チャネルと再構成可能論理回路ブロックCLBとの接続を行うスイッチ回路ブロックスイッチ回路ブロックSBおよび縦方向パワー用配線チャネルおよび横方向パワー用配線チャネルおよび前記2つのパワー用配線チャネルと、再構成可能論理回路ブロックCLBとスイッチ回路ブロックSBとの接続を行う電力配線スイッチ回路ブロックPSB(Power Switch Block)からなる。図13の再構成可能論理回路ブロックCLBタイルと比べて、状態変化信号(State Change信号)を伝送する電力配線スイッチ回路ブロックPSBが追加されており、再構成可能論理回路ブロックCLBから発せられた状態変化信号は、電力配線スイッチ回路ブロックPSBおよびパワー用配線チャネルを介し、FPGA全体に送信することができ、電力配線スイッチ回路ブロックPSBに到着した状態変化信号はスイッチ回路ブロックSBおよび再構成可能論理回路ブロックCLBへ送信される。 FIG. 19 shows an example of the basic structure of a reconfigurable logic circuit block CLB tile according to the present invention. A vertical circuit wiring channel, a horizontal circuit wiring channel, a reconfigurable logic circuit block CLB constituting a logic function, and a switch for connecting the two circuit wiring channels to the reconfigurable logic circuit block CLB Power wiring switch for connecting circuit block switch circuit block SB, vertical power wiring channel, horizontal power wiring channel and the two power wiring channels, and reconfigurable logic circuit block CLB and switch circuit block SB It consists of a circuit block PSB (Power Switch Block). Compared with the reconfigurable logic circuit block CLB tile of FIG. 13, a power wiring switch circuit block PSB for transmitting a state change signal (State Change signal) is added, and the state generated from the reconfigurable logic circuit block CLB The change signal can be transmitted to the entire FPGA via the power wiring switch circuit block PSB and the power wiring channel, and the state change signal arriving at the power wiring switch circuit block PSB is transmitted to the switch circuit block SB and the reconfigurable logic circuit. Sent to block CLB.
 図20および図21は、本発明における再構成可能論理回路ブロックCLBの基本構造例を示す図である。図16に示した再構成可能論理回路ブロックCLBと比較すると、各基本論理回路要素BLEの出力が1本追加され、それらは電力配線スイッチ回路ブロックPSBと接続されている供給電力出力マルチプレクサPOMUX(Power Output Multiplexer)へ接続されている。また、電力配線スイッチ回路ブロックPSBからの状態変化信号を受け取る供給電力入力マルチプレクサPIMUX(Power Input Multiplexer)を備え、供給電力入力マルチプレクサPIMUXで選択された状態変化信号は動作速度消費電力設定回路へ送られ、図20の場合は、再構成可能論理回路ブロックCLB全体の動作モードを制御し、図21の場合は、再構成可能論理回路ブロックCLB内の要素ごとに動作モードの制御が行われる。図20および図21においては、2つの動作速度と消費電力の制御方法を示したが、これに固定する必要はなく様々な範囲で制御することもできる。 20 and 21 are diagrams showing examples of the basic structure of the reconfigurable logic circuit block CLB in the present invention. Compared with the reconfigurable logic circuit block CLB shown in FIG. 16, one output of each basic logic circuit element BLE is added, which is a power supply output multiplexer POMUX (Power) connected to the power wiring switch circuit block PSB. It is connected to Output Multiplexer. In addition, a power supply input multiplexer PIMUX (Power Input Multiplexer) that receives a state change signal from the power wiring switch circuit block PSB is provided, and the state change signal selected by the power supply input multiplexer PIMUX is sent to the operation speed power consumption setting circuit. In the case of FIG. 20, the operation mode of the entire reconfigurable logic circuit block CLB is controlled, and in the case of FIG. 21, the operation mode is controlled for each element in the reconfigurable logic circuit block CLB. In FIG. 20 and FIG. 21, two operation speed and power consumption control methods are shown, but it is not necessary to fix to this and it is also possible to control in various ranges.
 図22および図23は、本発明におけるスイッチ回路ブロックSBの基本構造例を示す図である。スイッチ回路ブロックSBは、複数のスイッチマトリックスSMおよび電力配線スイッチ回路ブロックPSBから状態変化信号を受け取る供給電力入力マルチプレクサPIMUXおよび動作速度消費電力設定回路から構成され、各スイッチマトリックスSMは、縦方向回路用配線チャネルおよび横方向回路用配線チャネルおよび再構成可能論理回路ブロックCLBまたは入出力回路ブロックIOBを結線するスイッチ回路から構成される。供給電力入力マルチプレクサPIMUXで選択された状態変化信号は動作速度消費電力設定回路へ送られる。図22の場合は、SB全体の動作モードを制御し、図23の場合は、SB内のSMごとに動作モードの制御が行われる。図22および図23では、2つの動作速度と消費電力の制御方法を示したが、これに固定する必要はなく様々な範囲で制御することもできる。 22 and 23 are diagrams showing examples of the basic structure of the switch circuit block SB in the present invention. The switch circuit block SB includes a supply power input multiplexer PIMUX that receives a state change signal from a plurality of switch matrices SM and a power wiring switch circuit block PSB and an operation speed power consumption setting circuit. Each switch matrix SM is for a vertical circuit. The wiring channel, the lateral circuit wiring channel, and the switch circuit for connecting the reconfigurable logic circuit block CLB or the input / output circuit block IOB. The state change signal selected by the supply power input multiplexer PIMUX is sent to the operation speed power consumption setting circuit. In the case of FIG. 22, the operation mode of the entire SB is controlled, and in the case of FIG. 23, the operation mode is controlled for each SM in the SB. In FIG. 22 and FIG. 23, two control methods for the operation speed and the power consumption are shown, but it is not necessary to fix to this and the control can be performed in various ranges.
 図24は、本発明における電力配線スイッチ回路ブロックPSBの基本構造例を示す。電力配線スイッチ回路ブロックPSBは複数の電力配線スイッチマトリックスPSM(Power Switch Matrix)から構成され、各電力配線スイッチマトリックスPSMは縦方向パワー用配線チャネルおよび横方向パワー用配線チャネルおよび再構成可能論理回路ブロックCLBまたはスイッチ回路ブロックSBを結線するスイッチ回路から構成される。 FIG. 24 shows an example of the basic structure of the power wiring switch circuit block PSB in the present invention. The power wiring switch circuit block PSB is composed of a plurality of power wiring switch matrices PSM (Power Switch Matrix), and each power wiring switch matrix PSM includes a vertical power wiring channel, a horizontal power wiring channel, and a reconfigurable logic circuit block. It is composed of a switch circuit connecting the CLB or the switch circuit block SB.
 図25は、本発明におけるもう一つの再構成可能論理回路ブロックCLBタイルの基本構造例を示す図である。縦方向の回路用配線チャネルおよび横方向の回路用配線チャネルおよび論理機能を構成する再構成可能論理回路ブロックCLBおよび前記2つの回路用配線チャネルと再構成可能論理回路ブロックCLBとの接続を行うスイッチ回路ブロックSBからなる。状態変化信号(State Change信号)はスイッチ回路ブロックSBおよび回路用配線チャネルを介してFPGA全体に送信することができ、また、スイッチ回路ブロックSBに到着した状態変化信号は再構成可能論理回路ブロックCLBへ送信される。 FIG. 25 is a diagram showing a basic structure example of another reconfigurable logic circuit block CLB tile according to the present invention. A vertical circuit wiring channel, a horizontal circuit wiring channel, a reconfigurable logic circuit block CLB constituting a logic function, and a switch for connecting the two circuit wiring channels to the reconfigurable logic circuit block CLB It consists of a circuit block SB. The state change signal (State Change signal) can be transmitted to the entire FPGA via the switch circuit block SB and the circuit wiring channel, and the state change signal arriving at the switch circuit block SB is reconfigurable logic circuit block CLB. Sent to.
 図26および図27は、本発明におけるもう一つの再構成可能論理回路ブロックCLBの基本構造例を示す。図16に示した再構成可能論理回路ブロックCLBと比較すると、スイッチ回路ブロックSBからの状態変化信号を受け取る供給電力入力マルチプレクサPIMUXを備え、供給電力入力マルチプレクサPIMUXで選択された状態変化信号は動作速度消費電力設定回路へ送られ、図26の場合は、再構成可能論理回路ブロックCLB全体の動作モードを制御し、図27の場合は、再構成可能論理回路ブロックCLB内の要素ごとに動作モードの制御が行われる。図26および図27においては、2つの動作速度と消費電力の制御方法を示したが、これに固定する必要はなく様々な範囲で制御することもできる。 26 and 27 show an example of the basic structure of another reconfigurable logic circuit block CLB in the present invention. Compared with the reconfigurable logic circuit block CLB shown in FIG. 16, a supply power input multiplexer PIMUX that receives a state change signal from the switch circuit block SB is provided, and the state change signal selected by the supply power input multiplexer PIMUX is an operation speed. In the case of FIG. 26, the operation mode of the entire reconfigurable logic circuit block CLB is controlled, and in the case of FIG. 27, the operation mode of each element in the reconfigurable logic circuit block CLB is controlled. Control is performed. In FIG. 26 and FIG. 27, two control methods for operating speed and power consumption are shown, but it is not necessary to be fixed to this and it is also possible to control in various ranges.
 図28および図29は、本発明におけるもう一つのスイッチ回路ブロックSBの基本構造例を示す。スイッチ回路ブロックSBは複数のスイッチマトリックスSMおよびスイッチマトリックスSMから出力される状態変化信号(State Change信号)を受け取る供給電力入力マルチプレクサPIMUXおよび動作速度消費電力設定回路から構成され、各スイッチマトリックスSMは縦方向回路用配線チャネルおよび横方向回路用配線チャネルおよび再構成可能論理回路ブロックCLBまたは入出力回路ブロックIOBを結線するスイッチ回路から構成される。供給電力入力マルチプレクサPIMUXで選択された状態変化信号は、動作速度消費電力設定回路へ送られ、図28の場合は、スイッチ回路ブロックSB全体の動作モードを制御し、図29の場合は、スイッチ回路ブロックSB内のスイッチマトリックスSMごとに動作モードの制御が行われる。図28および図29においては、2つの動作速度と消費電力の制御方法を示したが、これに固定する必要はなく様々な範囲で制御することもできる。 28 and 29 show examples of the basic structure of another switch circuit block SB according to the present invention. The switch circuit block SB includes a plurality of switch matrices SM and a supply power input multiplexer PIMUX that receives a state change signal (State Change signal) output from the switch matrix SM, and an operation speed power consumption setting circuit. The circuit includes a directional circuit wiring channel, a lateral circuit wiring channel, and a switch circuit that connects the reconfigurable logic circuit block CLB or the input / output circuit block IOB. The state change signal selected by the supply power input multiplexer PIMUX is sent to the operation speed power consumption setting circuit. In the case of FIG. 28, the operation mode of the entire switch circuit block SB is controlled. In the case of FIG. The operation mode is controlled for each switch matrix SM in the block SB. In FIG. 28 and FIG. 29, two control methods of the operation speed and power consumption are shown, but it is not necessary to fix to this and it is also possible to control in various ranges.
 図30および図31は、本発明におけるもう一つのCLBタイルの基本構造例を示す図である。図30においては、図19の再構成可能論理回路ブロックCLBタイルと比較すると、電力配線スイッチ回路ブロックPSBからの状態変化信号が再構成可能論理回路ブロックCLBではなく、直接に供給電力入力マルチプレクサPIMUXを介して動作速度消費電力設定回路へ接続されている。図31においては、図25の再構成可能論理回路ブロックCLBタイルと比較すると、スイッチ回路ブロックSBからの状態変化信号が再構成可能論理回路ブロックCLBではなく、直接に供給電力入力マルチプレクサPIMUXを介して動作速度消費電力設定回路へ接続されている。これによってタイル単位で動作モードの制御が行われる。 30 and 31 are diagrams showing examples of the basic structure of another CLB tile according to the present invention. In FIG. 30, when compared with the reconfigurable logic circuit block CLB tile of FIG. 19, the state change signal from the power wiring switch circuit block PSB is not the reconfigurable logic circuit block CLB, but directly supplied power input multiplexer PIMUX. To the operating speed power consumption setting circuit. In FIG. 31, when compared with the reconfigurable logic circuit block CLB tile of FIG. 25, the state change signal from the switch circuit block SB is not directly transmitted via the supply power input multiplexer PIMUX but the reconfigurable logic circuit block CLB. It is connected to the operating speed power consumption setting circuit. As a result, the operation mode is controlled in units of tiles.
 図32は、本発明における基本論理回路要素BLEの構造の一例を示す図である。図32(a)は、図17に示される基本論理回路要素BLEの最後段(2入力マルチプレクサ)の後にデマルチプレクサを挿入することによって、通常のデータ信号または状態変化信号(State Change信号)を出力することができる。図32(b)は、図17に示される基本論理回路要素BLEのD-FFの後段に、図6(a)に示される状態検出回路を組み込んだものであり、図32(b)中のメモリ(SR)によって、状態検出回路を活性化もしくは切り離すことができる。これら図32(a)および図32(b)の基本論理回路要素BLEを、図20や図21に示す再構成可能論理回路ブロックCLBの基本論理回路要素BLEとして適用することにより、状態検出回路をFPGAで実現することができる。 FIG. 32 is a diagram showing an example of the structure of the basic logic circuit element BLE in the present invention. 32A outputs a normal data signal or a state change signal (State Change signal) by inserting a demultiplexer after the last stage (two-input multiplexer) of the basic logic circuit element BLE shown in FIG. can do. FIG. 32B is obtained by incorporating the state detection circuit shown in FIG. 6A in the subsequent stage of the D-FF of the basic logic circuit element BLE shown in FIG. The state detection circuit can be activated or disconnected by the memory (SR). By applying the basic logic circuit elements BLE of FIG. 32A and FIG. 32B as the basic logic circuit elements BLE of the reconfigurable logic circuit block CLB shown in FIG. 20 and FIG. It can be realized by FPGA.
 図33は、図20もしくは図21の再構成可能論理回路ブロックCLBの基本論理回路要素BLEに図32(a)の基本論理回路要素BLEを適用した再構成可能論理回路ブロックCLBを示す図である。なお、図の簡単化のため供給電力入力マルチプレクサPIMUXおよび動作速度消費電力設定回路に関する図は削除して記載している。 FIG. 33 is a diagram showing a reconfigurable logic circuit block CLB in which the basic logic circuit element BLE of FIG. 32A is applied to the basic logic circuit element BLE of the reconfigurable logic circuit block CLB of FIG. 20 or FIG. . For simplification of the drawing, the illustration relating to the supply power input multiplexer PIMUX and the operation speed power consumption setting circuit is omitted.
 図34は、図33の再構成可能論理回路ブロックCLBにおいて、図6(a)と等価な信号状態検出回路を実現する方法を説明する図である。データが通過したパスは実線矢印で示し、クロックが通過したパスは破線矢印で示している。図34において「A」点の部分は、図6(a)における初めの「Data In」信号が入力されたD-FFに相当し、クロックの立下りで状態変化を読み取り「B」点から「Data Out」としてSBへデータが出力され、同時に「C」点のルックアップテーブル(LUT)では、データをそのままの状態で通過するように設定され、「D」点のD-FFへ「A」点の出力がそのまま到着し、クロックの立ち上がりのタイミングで、「A」点の出力が保持される。「D」点のD-FFの出力は、一世代前の「A」点のD-FFの出力を保持していることから、「D」点のD-FFの出力と「A」点のD-FFの出力の排他的論理和を「E」点のLUTでとり、「F」点のデマルチプレクサにより、供給電力出力マルチプレクサPOMUXへ出力を切り替えることによって、「G」点から状態変化信号(State Change信号)を出力することができる。 FIG. 34 is a diagram for explaining a method for realizing a signal state detection circuit equivalent to FIG. 6A in the reconfigurable logic circuit block CLB of FIG. The path through which the data has passed is indicated by a solid arrow, and the path through which the clock has passed is indicated by a dashed arrow. In FIG. 34, the portion “A” corresponds to the D-FF to which the first “Data In” signal in FIG. 6A is input. The state change is read at the falling edge of the clock from the “B” point. Data is output to the SB as “Data Out”, and at the same time, the “C” point lookup table (LUT) is set to pass the data as it is, and “A” to the D-FF at the “D” point. The output of the point arrives as it is, and the output of the “A” point is held at the rising timing of the clock. Since the output of the D-FF at the “D” point holds the output of the D-FF at the “A” point of the previous generation, the output of the D-FF at the “D” point and the output of the “A” point The exclusive OR of the outputs of the D-FF is taken by the LUT at the “E” point, and the output is switched to the supply power output multiplexer POMUX by the demultiplexer at the “F” point. (State Change signal) can be output.
 図35は、図20もしくは図21の再構成可能論理回路ブロックCLBの基本論理回路要素BLEに図32(b)の基本論理回路要素BLEを適用した再構成可能論理回路ブロックCLBを示す図である。なお、図の簡単化のため供給電力入力マルチプレクサPIMUXおよび動作速度消費電力設定回路に関する図は削除して記載している。 FIG. 35 is a diagram showing a reconfigurable logic circuit block CLB in which the basic logic circuit element BLE of FIG. 32B is applied to the basic logic circuit element BLE of the reconfigurable logic circuit block CLB of FIG. 20 or FIG. . For simplification of the drawing, the illustration relating to the supply power input multiplexer PIMUX and the operation speed power consumption setting circuit is omitted.
 図36は、図35の再構成可能論理回路ブロックCLBにおいて、図6(a)と等価な信号状態変化検出回路を実現する方法を説明する図である。「H」点のメモリ(SR)の出力をオン状態にすることによって、図6(a)と同等の信号状態検出回路が1つのBLE内で構成されて、供給電力出力マルチプレクサPOMUXを介して状態変化信号(State Change信号)が出力される。 FIG. 36 is a diagram for explaining a method for realizing a signal state change detection circuit equivalent to FIG. 6A in the reconfigurable logic circuit block CLB of FIG. By turning on the output of the memory (SR) at the “H” point, a signal state detection circuit equivalent to that in FIG. 6A is configured in one BLE, and the state is set via the supply power output multiplexer POMUX. A change signal (State Change signal) is output.
 本発明による再構成可能論理回路は、FPGAなどの再構成可能集積回路をひとつのコアとして有するシステムLSIや、それらの主要な応用分野である、モバイル端末、デジタル家電、通信機器、サーバ、ストレージ、スーパーコンピュータに利用できる。 A reconfigurable logic circuit according to the present invention includes a system LSI having a reconfigurable integrated circuit such as an FPGA as one core, and mobile terminals, digital home appliances, communication devices, servers, storages, which are major application fields thereof. Available for supercomputers.

Claims (14)

  1.  回路構成情報により論理関数を演算する回路を構成する複数の回路構成回路と、
     前記回路構成回路の間を接続する回路配線回路と、
     前記回路構成回路または前記回路配線回路の内部信号の変化を検出する信号状態検出回路と、
     前記信号状態検出回路により検出された状態変化信号を前記回路構成回路または前記回路配線回路に伝送する状態変化配線回路と、
     前記回路構成回路または前記回路配線回路の部分回路ごとに前記状態変化信号に基づいて電界効果トランジスタの動作特性を設定する動作速度設定回路と、
    を備えることを特徴とする再構成可能集積回路。
    A plurality of circuit configuration circuits constituting a circuit for calculating a logical function according to circuit configuration information;
    A circuit wiring circuit for connecting the circuit constituent circuits;
    A signal state detection circuit for detecting a change in an internal signal of the circuit configuration circuit or the circuit wiring circuit;
    A state change wiring circuit for transmitting a state change signal detected by the signal state detection circuit to the circuit constituent circuit or the circuit wiring circuit;
    An operation speed setting circuit for setting operation characteristics of the field effect transistor based on the state change signal for each of the circuit configuration circuit or the partial circuit of the circuit wiring circuit;
    A reconfigurable integrated circuit comprising:
  2.  請求項1に記載の再構成可能集積回路において、
     前記回路構成回路または前記回路配線回路は、部分回路ごとにトランジスタの動作特性を設定する動作速度設定回路を備えたフィールドプログラマブルゲートアレイである
    ことを特徴とする再構成可能集積回路。
    The reconfigurable integrated circuit of claim 1, wherein
    The reconfigurable integrated circuit, wherein the circuit configuration circuit or the circuit wiring circuit is a field programmable gate array including an operation speed setting circuit for setting operation characteristics of a transistor for each partial circuit.
  3.  請求項1または2に記載の再構成可能集積回路において、
     前記信号状態検出回路が回路構成回路によって生成される
    ことを特徴とする再構成可能集積回路。
    The reconfigurable integrated circuit according to claim 1 or 2,
    A reconfigurable integrated circuit, wherein the signal state detection circuit is generated by a circuit configuration circuit.
  4.  請求項1または2に記載の再構成可能集積回路において、
     前記信号状態検出回路があらかじめ再構成可能集積回路に実装されており、前記信号状態検出回路の活性化は回路構成情報に基づいて設定される
    ことを特徴とする再構成可能集積回路。
    The reconfigurable integrated circuit according to claim 1 or 2,
    The reconfigurable integrated circuit, wherein the signal state detection circuit is mounted in advance in a reconfigurable integrated circuit, and activation of the signal state detection circuit is set based on circuit configuration information.
  5.  請求項3または4に記載の再構成可能集積回路において、
     信号状態検出回路の生成位置、あるいは、信号状態検出回路のどこを活性化するか否かは、再構成可能集積回路の設定ソフトウェアによって設定される
    ことを特徴とする再構成可能集積回路。
    Reconfigurable integrated circuit according to claim 3 or 4,
    A reconfigurable integrated circuit, wherein the generation position of the signal state detection circuit or where to activate the signal state detection circuit is set by setting software of the reconfigurable integrated circuit.
  6.  請求項3または4に記載の再構成可能集積回路において、
     信号状態検出回路の生成位置、あるいは、信号状態検出回路のどこを活性化するか否かは、ユーザによりデザインされた論理機能に基づいて設定される
    ことを特徴とする再構成可能集積回路。
    Reconfigurable integrated circuit according to claim 3 or 4,
    A reconfigurable integrated circuit characterized in that a generation position of a signal state detection circuit or where in the signal state detection circuit is activated is set based on a logic function designed by a user.
  7.  請求項1または2に記載の再構成可能集積回路において、
     電界効果トランジスタの動作特性は、電界効果トランジスタのしきい値電圧の変更によって制御される
    ことを特徴とする再構成可能集積回路。
    The reconfigurable integrated circuit according to claim 1 or 2,
    A reconfigurable integrated circuit characterized in that the operating characteristics of the field effect transistor are controlled by changing the threshold voltage of the field effect transistor.
  8.  請求項1または2に記載の再構成可能集積回路において、
     電界効果トランジスタの動作特性は、電源電圧によって制御される
    ことを特徴とする再構成可能集積回路。
    The reconfigurable integrated circuit according to claim 1 or 2,
    A reconfigurable integrated circuit characterized in that the operating characteristics of a field effect transistor are controlled by a power supply voltage.
  9.  請求項1または2に記載の再構成可能集積回路において、
     状態変化配線回路は、前記回路配線回路とは独立に設ける
    ことを特徴とする再構成可能集積回路。
    The reconfigurable integrated circuit according to claim 1 or 2,
    A reconfigurable integrated circuit, wherein the state change wiring circuit is provided independently of the circuit wiring circuit.
  10.  請求項1または2に記載の再構成可能集積回路において、
     状態変化配線回路は、前記回路配線回路を用いて構成される
    ことを特徴とする再構成可能集積回路。
    The reconfigurable integrated circuit according to claim 1 or 2,
    A reconfigurable integrated circuit, wherein the state change wiring circuit is configured using the circuit wiring circuit.
  11.  請求項1または2に記載の再構成可能集積回路において、
     信号状態検出回路が出力した状態変化信号は、パルス信号である
    ことを特徴とする再構成可能集積回路。
    The reconfigurable integrated circuit according to claim 1 or 2,
    A reconfigurable integrated circuit, wherein the state change signal output from the signal state detection circuit is a pulse signal.
  12.  請求項1または2に記載の再構成可能集積回路において、
     動作速度設定回路は、トランジスタの動作特性を1つ以上保持できる動作モード記憶装置を有しており、前記動作モード記憶装置の内容によって部分回路の動作速度と消費電力を決定する
    ことを特徴とする再構成可能集積回路。
    The reconfigurable integrated circuit according to claim 1 or 2,
    The operation speed setting circuit has an operation mode storage device capable of holding one or more operation characteristics of transistors, and determines the operation speed and power consumption of the partial circuit according to the contents of the operation mode storage device. Reconfigurable integrated circuit.
  13.  請求項12に記載の再構成可能集積回路において、
     動作速度消費電力設定回路の動作モード記憶装置の出力は、パルス状の状態変化信号によって切り替えられる1つ以上のフリップフロップ回路で構成される
    ことを特徴とする再構成可能集積回路。
    The reconfigurable integrated circuit of claim 12,
    An output of the operation mode storage device of the operation speed power consumption setting circuit is constituted by one or more flip-flop circuits which are switched by a pulse-like state change signal.
  14.  請求項12に記載の再構成可能集積回路において、
     動作速度消費電力設定回路の動作モード記憶装置の出力は、パルス状の状態変化信号によって切り替えられるものであり、二つ以上のランダムアクセスメモリまたは二つ以上のシフトレジスタに記憶された動作モードをパルスによって切り替える
    ことを特徴とする再構成可能集積回路。
    The reconfigurable integrated circuit of claim 12,
    The output of the operation mode storage device of the operation speed power consumption setting circuit is switched by a pulse-like state change signal, and the operation modes stored in two or more random access memories or two or more shift registers are pulsed. A reconfigurable integrated circuit characterized by being switched by.
PCT/JP2009/056451 2008-03-31 2009-03-30 Reconfigurable integrated circuit WO2009123090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010505888A JP5046142B2 (en) 2008-03-31 2009-03-30 Reconfigurable integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-090315 2008-03-31
JP2008090315 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123090A1 true WO2009123090A1 (en) 2009-10-08

Family

ID=41135466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056451 WO2009123090A1 (en) 2008-03-31 2009-03-30 Reconfigurable integrated circuit

Country Status (2)

Country Link
JP (1) JP5046142B2 (en)
WO (1) WO2009123090A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236082A (en) * 2012-05-08 2013-11-21 Altera Corp Routing and programming for resistive switch arrays
JP2018007167A (en) * 2016-07-07 2018-01-11 日本電気株式会社 Switch circuit and semiconductor device employing the same
CN117236254A (en) * 2023-11-13 2023-12-15 中科芯磁科技(珠海)有限责任公司 Configurable logic block control method, configurable logic block and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945785A (en) * 1995-07-24 1997-02-14 Motorola Inc Threshold voltage selection method for high speed and low electric power
JP2001156261A (en) * 1999-09-13 2001-06-08 Hitachi Ltd Semiconductor integrated-circuit device
JP2004335686A (en) * 2003-05-07 2004-11-25 National Institute Of Advanced Industrial & Technology High speed low consumption power logic device
JP2005109179A (en) * 2003-09-30 2005-04-21 National Institute Of Advanced Industrial & Technology High-speed, low power consumption logic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945785A (en) * 1995-07-24 1997-02-14 Motorola Inc Threshold voltage selection method for high speed and low electric power
JP2001156261A (en) * 1999-09-13 2001-06-08 Hitachi Ltd Semiconductor integrated-circuit device
JP2004335686A (en) * 2003-05-07 2004-11-25 National Institute Of Advanced Industrial & Technology High speed low consumption power logic device
JP2005109179A (en) * 2003-09-30 2005-04-21 National Institute Of Advanced Industrial & Technology High-speed, low power consumption logic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236082A (en) * 2012-05-08 2013-11-21 Altera Corp Routing and programming for resistive switch arrays
JP2018098514A (en) * 2012-05-08 2018-06-21 アルテラ コーポレイションAltera Corporation Routing and programming for resistive switch array
US10027327B2 (en) 2012-05-08 2018-07-17 Altera Corporation Routing and programming for resistive switch arrays
JP2018007167A (en) * 2016-07-07 2018-01-11 日本電気株式会社 Switch circuit and semiconductor device employing the same
CN117236254A (en) * 2023-11-13 2023-12-15 中科芯磁科技(珠海)有限责任公司 Configurable logic block control method, configurable logic block and storage medium
CN117236254B (en) * 2023-11-13 2024-03-15 中科芯磁科技(珠海)有限责任公司 Configurable logic block control method, configurable logic block and storage medium

Also Published As

Publication number Publication date
JPWO2009123090A1 (en) 2011-07-28
JP5046142B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
US7973556B1 (en) System and method for using reconfiguration ports for power management in integrated circuits
CN107148754B (en) Circuit and method for controlling power supply in integrated circuit
US7772906B2 (en) Low power flip flop through partially gated slave clock
US7855574B2 (en) Programmable multiple supply regions with switched pass gate level converters
US7355440B1 (en) Method of reducing leakage current using sleep transistors in programmable logic device
US7477073B1 (en) Structures and methods for heterogeneous low power programmable logic device
US7548089B1 (en) Structures and methods to avoiding hold time violations in a programmable logic device
US9923555B2 (en) Fine-grained power gating in FPGA interconnects
US9246492B1 (en) Power grid architecture for voltage scaling in programmable integrated circuits
JP2006522563A (en) FPGA architecture with mixed interconnect resources
KR102038745B1 (en) Input/output circuits and methods of implementing an input/output circuit
US9337841B1 (en) Circuits for and methods of providing voltage level shifting in an integrated circuit device
JP4440723B2 (en) Reconfigurable device
JP2004536487A (en) Buffer circuit with reduced leakage current and method for reducing leakage current in field programmable device
JP2002009242A (en) Semiconductor integrated circuit, logical operation circuit and flip-flop
JP2005101540A5 (en)
JP5046142B2 (en) Reconfigurable integrated circuit
US7893712B1 (en) Integrated circuit with a selectable interconnect circuit for low power or high performance operation
US7239173B1 (en) Programmable memory element with power save mode in a programmable logic device
US7468616B1 (en) Circuit for and method of generating a delay in an input/output port of an integrated circuit device
US7370294B1 (en) Design techniques for low leakage circuits based on delay statistics
US9729153B1 (en) Multimode multiplexer-based circuit
US7948791B1 (en) Memory array and method of implementing a memory array
US9496871B1 (en) Programmable power reduction technique using transistor threshold drops
EP2382713B1 (en) A circuit for and method of reducing power consumption in input ports of an integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010505888

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09726491

Country of ref document: EP

Kind code of ref document: A1