WO2009119845A1 - Exhaust gas purification apparatus - Google Patents

Exhaust gas purification apparatus Download PDF

Info

Publication number
WO2009119845A1
WO2009119845A1 PCT/JP2009/056383 JP2009056383W WO2009119845A1 WO 2009119845 A1 WO2009119845 A1 WO 2009119845A1 JP 2009056383 W JP2009056383 W JP 2009056383W WO 2009119845 A1 WO2009119845 A1 WO 2009119845A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
plasma
voltage
electrode
electrodes
Prior art date
Application number
PCT/JP2009/056383
Other languages
French (fr)
Japanese (ja)
Inventor
寿仁 加藤
雄一 磯崎
内田 直喜
兼久 今井
彰一 茨木
克憲 松岡
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to JP2009529334A priority Critical patent/JPWO2009119845A1/en
Publication of WO2009119845A1 publication Critical patent/WO2009119845A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/17Exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification apparatus that reduces fine particles mainly composed of soot contained in engine exhaust gas or boiler exhaust gas.
  • Examples of the exhaust gas purification device include the following inventions. That is, (A) Japanese Patent Application Laid-Open No. 2007-245094 (Patent Document 1) discloses that a high-voltage AC voltage is applied to an electrode of a dust collecting unit in a two-stage electric dust collector having a charging unit and a dust collecting unit. Therefore, it is described that the charged particles collected by the dust collection unit are separated and re-scattered. (B) Japanese Patent Application Laid-Open No. 2002-213228 (Patent Document 2) describes a charging unit that generates plasma to charge fine particles, and a dust collection that is fixed to a ground potential to collect the charged fine particles. An exhaust gas purification device comprising a part is described. (C) Japanese Patent Laid-Open No.
  • Patent Document 3 describes that two or more plasma generating electrodes are provided in the flow direction of exhaust gas, and plasma is generated by independent power sources.
  • Patent Document 4 discloses that discharge is intermittently performed by setting a discharge period and a discharge pause period, and when the concentration of fine particles in exhaust gas increases, It is described that when the voltage and frequency are increased and the exhaust gas flow rate is increased, the discharge pause period is shortened.
  • Patent Document 1 when the function is separated into the charging unit for charging the fine particles and the dust collecting unit for collecting the charged fine particles, two sets of electrodes and a power source are required, which reduces the size and cost of the entire apparatus. There is a drawback that becomes larger. In addition, it is necessary to periodically clean the electrode that collects the fine particles.
  • Patent Document 3 there is no expression of a charging unit or a dust collecting unit, but there is a drawback that the size and cost of the entire apparatus are increased because a plurality of electrodes and a power source are used.
  • Patent Document 4 if the discharge voltage is increased when the fine particle concentration is increased, the exhaust gas purification efficiency can be increased. However, the amount of fine particles adsorbed on the electrode also increases, so the exhaust gas fine particle concentration is high. In some cases, there is a risk that fine particles accumulate on the electrode.
  • the discharge voltage is increased, the voltage applied to the electrodes and the like is increased, so that there is a disadvantage that the size and cost of the entire apparatus are increased.
  • the discharge frequency is limited to a range that does not disturb the consistency of the oscillation system between the power supply circuit including the high-frequency transformer and the electrode, the frequency range that can be selected by one set of power supply and electrode is not always sufficient.
  • non-thermal equilibrium plasma when non-thermal equilibrium plasma is generated by applying an alternating voltage having a voltage waveform close to a sine wave or a sine wave to at least a pair of electrodes through which exhaust gas containing fine particles mainly containing soot is passed, the fine particles are generated by the plasma. It is charged and attracted to the electrode surface, and a part is adsorbed on the electrode.
  • the fine particles adsorbed on the electrode surface are oxidized into gas such as CO 2 or H 2 O by ozone or NO 2 generated by plasma, and are discharged as a part of exhaust gas.
  • the present invention has been made in order to solve the above-described problems, and its object is to reduce the size and cost of the entire apparatus while reducing the concentration of fine particles in the exhaust gas. It is an object of the present invention to provide an exhaust gas purifying apparatus capable of individually controlling the oxidation action of the electrode surface due to and the amount of fine particles adhering to the electrode.
  • the exhaust gas purification apparatus of the present invention comprises at least a pair of electrodes installed in the exhaust gas, and a power source that periodically applies a high voltage for generating non-thermal equilibrium plasma between the electrodes, the power source being a high voltage
  • the power source being a high voltage
  • a voltage waveform with a short holding time and a voltage waveform with a long high voltage holding time can be output, and a voltage waveform with a short high voltage holding time and a voltage waveform with a long high voltage holding time between the electrodes can be output at a constant frequency.
  • the exhaust gas purifying apparatus of the present invention is characterized in that a power source is formed by an H bridge circuit constituted by four switching elements A P, A N , B P , and B N and a high frequency transformer.
  • the combustion mode plasma since the combustion mode plasma generates a high voltage in a pulsed manner, the time for sucking charged fine particles to the electrode is short, and the adsorption ability of the fine particles is small. Since plasma is generated when the voltage of the electrode changes, there is no problem in generating active species even if the high voltage application time is short. Therefore, even if the plasma power is increased, the oxidation capacity of the electrode surface can be increased without increasing the adsorption amount of the fine particles.
  • the plasma in the adsorption mode consumes a part of energy for accelerating the ions generated by the plasma by the electric field because the high voltage is applied for a long time.
  • the oxidation capacity of the electrode surface is slightly lower than that of plasma.
  • the adsorption capacity of the fine particles is high, the adsorption amount of the fine particles can be greatly increased by increasing the plasma power.
  • the ratio of the number of output cycles of the combustion mode plasma and the adsorption mode plasma and the total power are set individually, so that With respect to the increase / decrease of the fine particle concentration, it is possible to individually control the oxidation action of the electrode surface by the plasma and the amount of fine particles adhering to the electrode.
  • the electrode surface is not covered with fine particles, and can be continuously adsorbed and oxidized. In addition, power consumption can be kept low.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas purifying apparatus according to the present invention.
  • FIG. 2 is a diagram showing definitions of voltage waveforms in the combustion mode and the adsorption mode.
  • FIG. 3 is a diagram showing the movement of charged particles between electrodes in the combustion mode.
  • FIG. 4 is a diagram showing the movement of charged particles between the electrodes in the adsorption mode.
  • FIG. 5 is a schematic configuration diagram of an exhaust gas purifying apparatus according to the present invention including an H bridge.
  • FIG. 6 is a diagram showing the relationship between the voltage / current waveform in the combustion mode and the switching element operation.
  • FIG. 7 is a diagram (example 1) showing the relationship between the voltage / current waveform in the adsorption mode and the switching element operation.
  • FIG. 1 is a schematic configuration diagram of an exhaust gas purifying apparatus according to the present invention.
  • FIG. 2 is a diagram showing definitions of voltage waveforms in the combustion mode and the adsorption mode.
  • FIG. 8 is a diagram (example 2) illustrating the relationship between the voltage / current waveform in the adsorption mode and the switching element operation.
  • FIG. 9 is a diagram illustrating the operation of the H bridge in period 1.
  • FIG. 10 is a diagram illustrating the operation of the H bridge in period 2.
  • FIG. 11 is a diagram illustrating the operation of the H-bridge in period 3.
  • FIG. 12 is a diagram illustrating the operation of the H bridge in period 4.
  • FIG. 13 is a diagram illustrating the operation of the H bridge in period 5.
  • FIG. 14 is a diagram illustrating the operation of the H-bridge in period 6.
  • FIG. 15 is a diagram illustrating the operation of the H bridge in period 7.
  • FIG. 16 is a diagram (No.
  • FIG. 17 is a diagram (part 2) illustrating a method for controlling the oxidation action on the electrode surface and the amount of fine particles adsorbed on the electrode.
  • FIG. 18 is a view showing a stack structure of plasma electrodes.
  • FIG. 19 is a diagram showing an experimental apparatus of the example.
  • FIG. 20 is a diagram showing experimental results in the example.
  • FIG. 21 is a diagram showing a voltage waveform in the adsorption mode (in the case of 0.75 kW and 3 kHz in the electrode of the example).
  • FIG. 22 is a diagram showing a voltage waveform in the combustion mode (in the case of 0.75 kW and 3 kHz at the electrode of the example).
  • FIG. 23 is a diagram illustrating an example in which combustion mode plasma and adsorption mode plasma are alternately output in three cycles.
  • the exhaust gas purification apparatus 1 of the present invention is excellent in at least a pair of electrodes 2a and 2b and non-thermal equilibrium plasma, that is, generation of active species or charging of fine particles between the electrodes 2a and 2b.
  • a plasma having an effect for convenience, referred to as a combustion mode plasma
  • a plasma having an effect excellent in the electrical adsorption of charged fine particles for convenience, referred to as an adsorption mode plasma
  • a power supply device 3 that is generated at an arbitrary cycle ratio.
  • the electrode 2a is connected to the power supply device 3, and the electrode 2b is connected to the earth 4. Further, the electrode (electrode plate) is preferably one in which a metal plate made of SUS304 is sandwiched between two alumina ceramic plates, but is not limited thereto.
  • the combustion mode plasma is a plasma having a voltage waveform in which the voltage decreases rapidly after a high voltage is applied to the electrode in order to generate plasma. “The voltage generated at the electrode is 50% or more of the maximum value. And a voltage waveform in which the total of the period that is 50% or less of the minimum value is 30% or less in one cycle is defined (see FIG. 2).
  • the fine particles m present in the exhaust gas g are combined with electrons or ions generated in the plasma to be charged either positively or negatively and either positively or negatively by receiving a high electric field between the electrodes 2a and 2b.
  • the electrode is electrically attracted.
  • acceleration by the electric field ends before reaching the electrode surface.
  • it is moved away from the electrode which it approached earlier by the electric attractive force to the electrode on the opposite side by the plasma of the next reverse electric field. Thereafter, in order to repeat such an amplitude operation, most of the charged fine particles m pass through the electrodes without being adsorbed by the electrodes 2a and 2b.
  • the adsorption mode plasma is a plasma having a voltage waveform that maintains a high voltage for a long time after a high voltage is applied to the electrode in order to generate plasma.
  • the voltage generated at the electrode is 50% of the maximum value. It is defined as “a voltage waveform in which the sum of the above period and the period that is 50% or less of the minimum value is 70% or more in one cycle” (see FIG. 2).
  • the power supply device 3 includes at least a pair of H bridge circuit 5 configured by four switching elements A P , A N , B P , and B N and a high frequency transformer 6.
  • a power supply circuit capable of generating a periodic high voltage between the electrodes 2a and 2b is provided.
  • FIG. 6 to FIG. 8 show the relationship between the timing when the switching elements A P , A N , B P and B N are turned on / off and the voltage V P and current I P generated in the plasma electrode section.
  • the current I H inside the H bridge circuit is indicated by a dotted line in FIGS. 9 to 15 for each period indicated by a number in parentheses in FIGS. 9 to 15, the circuit is simply described by replacing the transformer 6 and the plasma electrode unit 2A, which are parts other than the H-bridge circuit shown in FIG. 5, with coils and capacitors, respectively.
  • the period 11 (the period of the numeral 11 with parentheses) to the period 17 (the period of the numeral 17 with parentheses) in FIGS. 6 to 8 are respectively the period 1 (the period of the numeral 1 with parentheses) to the period 7 (the circle).
  • the ratio of the number of output cycles of the combustion mode plasma and the adsorption mode plasma and the total power are individually set.
  • the oxidizing action of the electrode surface by the plasma and the amount of fine particles adhering to the electrode can be individually controlled with respect to the increase / decrease of the fine particle concentration in the exhaust gas.
  • the electrode surface is not covered with fine particles, and the fine particles can be continuously adsorbed and oxidized.
  • power consumption can be kept low.
  • the power P1 that is slightly larger than the power at which the particulate oxidation amount in both modes becomes 30% is selected.
  • the oxidation capacity of the electrode surface and the amount of fine particles adsorbed on the electrode are intermediate values between the two modes.
  • the combustion mode is combined with 5 cycles and the adsorption mode is combined with 2 cycles. (For convenience, it is referred to as a cycle ratio of 5: 2.)
  • the oxidation ability of the electrode surface can be made larger than the amount of fine particles adsorbed on the electrode.
  • the amount of fine particles adsorbed on the electrode is too much at the power P1 due to the plasma due to the plasma. Therefore, the electrode is eventually covered with fine particles. If the power is reduced to P3 so that the amount of fine particles adsorbed on the electrode is about 30% of the total fine particles, the electrode surface is also covered with the fine particles because the oxidation ability is also reduced on the electrode surface.
  • the oxidation power on the electrode surface can be made the same as in FIG. 16 by selecting the same power P1 as in FIG.
  • the cycle ratio remains at 5: 2
  • the amount of fine particles adsorbed on the electrode decreases.
  • the cycle ratio to 1: 3 and increasing the ratio of the adsorption mode plasma
  • the amount of fine particles adsorbed on the electrode can be kept constant without increasing the electric power.
  • a metal plate 11 made of SUS304 having a thickness of 0.05 mm sandwiched between two alumina ceramic plates 10 having a thickness of 1 mm is used as one electrode plate 12, and each of the 17 electrode plates is 1.5 mm.
  • the electrode stack 22 having a 16-layer gap (electrode space) was formed (see FIG. 18).
  • One of the electrode plates 12 a and 12 b facing each other was connected to the high voltage generation source 13 and the other was connected to the ground 14.
  • the discharge area of one electrode plate is 110 mm ⁇ 95 mm.
  • the above-described electrode stack 22 was installed in the box 20 (see FIG. 19), and the experiment was conducted by ventilating the exhaust gas g of the diesel engine.
  • a diesel engine MAC-30 (model F3L912, displacement 2.827L, output 26.5 kW, rotation speed 1500 rpm, fuel oil used is low sulfur A heavy oil) manufactured by DEUTZ (Mitsui Engineering & Machinery Service).
  • the engine was operated at an engine output of 4 kW and a part of the exhaust gas g was diverted to flow into the box 20.
  • the exhaust gas is sucked from the exhaust gas flow path on the downstream side of the electrode stack 22 by using a smoke meter, model 415S, manufactured by AVL, and the soot is converted from the darkness of the filter paper using the conversion formula recommended by the company.
  • the soot reduction rate was larger in the mixed mode in which the combustion mode and the adsorption mode were output at a ratio of 3: 3 than in the combustion mode. Examples of voltage waveforms measured at the electrode portions are shown in FIGS.

Abstract

Disclosed is an exhaust gas purification apparatus that separately controls the oxidizing action of plasma on an electrode surface and the number of microparticles that attach onto electrodes, with respect to the increase and decrease of microparticle concentration within the exhaust gas. The exhaust gas purification apparatus is provided with at least one pair of electrodes (2a, 2b) that are disposed within the exhaust gas (g), and a power supply (3) that periodically applies high voltage in order to generate thermal nonequilibrium plasma between the electrodes (2a, 2b). The power supply can output a voltage waveform with a short high-voltage holding time and a voltage waveform with a long high-voltage holding time, and generates, at a constant frequency, voltage waveforms with both short and long high-voltage holding times between the two electrodes at any cycle rate.

Description

排ガス浄化装置Exhaust gas purification device
 本発明は、エンジンの排ガス、或いは、ボイラの排ガスなどに含まれるススを主とする微粒子を削減する排ガス浄化装置に関するものである。 The present invention relates to an exhaust gas purification apparatus that reduces fine particles mainly composed of soot contained in engine exhaust gas or boiler exhaust gas.
 排ガス浄化装置としては、例えば、下記の発明を挙げることができる。すなわち、
 (a)日本国特開2007-245094号公報(特許文献1)には、帯電部と集塵部を備えた二段構成の電気集塵機において、集塵部の電極に高圧の交流電圧を加えることにより、集塵部で集塵された帯電粒子が剥離され、再飛散することを抑制することが記載されている。
 (b)日本国特開2002-213228号公報(特許文献2)には、プラズマを発生させて微粒子を帯電させる帯電部と、帯電した微粒子を集塵するためにアース電位に固定された集塵部とを備えた排ガス浄化装置が記載されている。
 (c)日本国特開2006-261040号公報(特許文献3)には、排ガスの流れ方向に2つ以上のプラズマ発生電極を設け、それぞれ独立した電源でプラズマを発生させることが記載されている。
 (d)日本国特開2007-23861号公報(特許文献4)には、放電期間と放電休止期間を設定して放電を間欠的に行い、排ガス中の微粒子濃度が増加した場合には、放電電圧と周波数を高くし、また、排ガス流量が増加した場合には、放電休止期間を短くして対応することが記載されている。
Examples of the exhaust gas purification device include the following inventions. That is,
(A) Japanese Patent Application Laid-Open No. 2007-245094 (Patent Document 1) discloses that a high-voltage AC voltage is applied to an electrode of a dust collecting unit in a two-stage electric dust collector having a charging unit and a dust collecting unit. Therefore, it is described that the charged particles collected by the dust collection unit are separated and re-scattered.
(B) Japanese Patent Application Laid-Open No. 2002-213228 (Patent Document 2) describes a charging unit that generates plasma to charge fine particles, and a dust collection that is fixed to a ground potential to collect the charged fine particles. An exhaust gas purification device comprising a part is described.
(C) Japanese Patent Laid-Open No. 2006-261040 (Patent Document 3) describes that two or more plasma generating electrodes are provided in the flow direction of exhaust gas, and plasma is generated by independent power sources. .
(D) Japanese Patent Application Laid-Open No. 2007-23861 (Patent Document 4) discloses that discharge is intermittently performed by setting a discharge period and a discharge pause period, and when the concentration of fine particles in exhaust gas increases, It is described that when the voltage and frequency are increased and the exhaust gas flow rate is increased, the discharge pause period is shortened.
 しかし、特許文献1のように、微粒子を帯電させる帯電部と、帯電した微粒子を集塵する集塵部に機能分離した場合、電極と電源が2組必要になり、装置全体のサイズとコストが大きくなる欠点がある。また、微粒子を集塵した電極の定期的清掃も必要になる。 However, as in Patent Document 1, when the function is separated into the charging unit for charging the fine particles and the dust collecting unit for collecting the charged fine particles, two sets of electrodes and a power source are required, which reduces the size and cost of the entire apparatus. There is a drawback that becomes larger. In addition, it is necessary to periodically clean the electrode that collects the fine particles.
 特許文献2のように、集塵部に電源を用いない場合、電源を複数用意する必要はないが、電極が帯電部と集塵部に分かれるため、構造が複雑になる。また、集塵部に集塵した微粒子の酸化除去能力は、上流側の帯電部のプラズマで生成された活性物質の量に依存するが、活性物質の量を増やすために帯電部のプラズマを強くすると、集塵部に集塵される微粒子の量も増えるため、排ガス中の微粒子濃度が高い場合には、集塵部に微粒子が堆積する危険がある。 As in Patent Document 2, when a power source is not used for the dust collecting portion, it is not necessary to prepare a plurality of power sources, but the structure is complicated because the electrode is divided into a charging portion and a dust collecting portion. In addition, the ability to oxidize and remove the fine particles collected in the dust collection part depends on the amount of active material generated by the upstream charging part plasma, but the charging part plasma is strongly strengthened to increase the amount of active substance. As a result, the amount of fine particles collected in the dust collection portion also increases, and there is a risk that fine particles accumulate in the dust collection portion when the concentration of fine particles in the exhaust gas is high.
 特許文献3には、帯電部や集塵部という表現がないが、電極と電源を複数使うため、装置全体のサイズとコストが大きくなる欠点がある。特許文献4のように、微粒子濃度が増加した場合に放電電圧を高くすると、排ガスの浄化効率を高めることができるが、電極に吸着される微粒子量も増えてしまうため、排ガスの微粒子濃度が高い場合には、電極に微粒子が堆積していく危険がある。また、放電電圧を高くすると、電極などに印加される電圧が高くなるため、装置全体のサイズとコストが大きくなる欠点がある。 In Patent Document 3, there is no expression of a charging unit or a dust collecting unit, but there is a drawback that the size and cost of the entire apparatus are increased because a plurality of electrodes and a power source are used. As in Patent Document 4, if the discharge voltage is increased when the fine particle concentration is increased, the exhaust gas purification efficiency can be increased. However, the amount of fine particles adsorbed on the electrode also increases, so the exhaust gas fine particle concentration is high. In some cases, there is a risk that fine particles accumulate on the electrode. In addition, when the discharge voltage is increased, the voltage applied to the electrodes and the like is increased, so that there is a disadvantage that the size and cost of the entire apparatus are increased.
 また、放電周波数を変化させる場合、電力を一定にするためには、放電電圧やバースト期間を変化させる必要があるので、制御が複雑になる。また、放電周波数は、高周波トランスを含めた電源回路と電極との発振系の整合性を乱さない範囲に制限されるため、1組の電源と電極で選択できる周波数範囲は必ずしも十分ではない。 Also, when changing the discharge frequency, it is necessary to change the discharge voltage and the burst period in order to make the power constant, so that the control becomes complicated. Further, since the discharge frequency is limited to a range that does not disturb the consistency of the oscillation system between the power supply circuit including the high-frequency transformer and the electrode, the frequency range that can be selected by one set of power supply and electrode is not always sufficient.
 ところで、ススを主とする微粒子を含む排ガスを通気した少なくとも一対の電極に、サイン波またはサイン波に近い電圧波形の交番電圧を印加して非熱平衡プラズマを発生させた場合、微粒子は、プラズマによって帯電して電極表面に吸引され、一部が電極に吸着する。電極表面に吸着した微粒子は、プラズマによって生成されたオゾンやNOによってCOやHOなどに酸化されてガス化し、排ガスの一部として排出される。 By the way, when non-thermal equilibrium plasma is generated by applying an alternating voltage having a voltage waveform close to a sine wave or a sine wave to at least a pair of electrodes through which exhaust gas containing fine particles mainly containing soot is passed, the fine particles are generated by the plasma. It is charged and attracted to the electrode surface, and a part is adsorbed on the electrode. The fine particles adsorbed on the electrode surface are oxidized into gas such as CO 2 or H 2 O by ozone or NO 2 generated by plasma, and are discharged as a part of exhaust gas.
 排ガス中の微粒子濃度が高い場合、プラズマによる電極表面の酸化能力を超える多量の微粒子が電極表面に吸着し、やがて電極表面が微粒子で被われてしまう。そうなると、正常な非熱平衡プラズマを発生させることが難しくなる。プラズマによる電極表面の酸化能力を高めようとしてプラズマ電力を大きくすると、電極に電気的に吸着する微粒子の量も増えるので、プラズマ電力だけで電極表面の酸化能力と、吸着する微粒子の量の大小関係を変えることが難しい。
日本国特開2007-245094号公報 日本国特開2002-213228号公報 日本国特開2006-261040号公報 日本国特開2007-23861号公報
When the concentration of fine particles in the exhaust gas is high, a large amount of fine particles exceeding the oxidizing ability of the electrode surface by plasma are adsorbed on the electrode surface, and eventually the electrode surface is covered with the fine particles. Then, it becomes difficult to generate a normal non-thermal equilibrium plasma. Increasing the plasma power to increase the electrode surface's ability to oxidize the plasma also increases the amount of fine particles that are electrically adsorbed to the electrode. Is difficult to change.
Japanese Unexamined Patent Publication No. 2007-245094 Japanese Unexamined Patent Publication No. 2002-213228 Japanese Unexamined Patent Publication No. 2006-261040 Japanese Unexamined Patent Publication No. 2007-23861
 本発明は、上記のような問題を解消するためになされたものであり、その目的とするところは、装置全体のサイズとコストを抑制する一方、排ガス中の微粒子濃度の増減に対して、プラズマによる電極表面の酸化作用と、電極に付着する微粒子の量とを個別に制御することができる排ガス浄化装置を提供することにある。 The present invention has been made in order to solve the above-described problems, and its object is to reduce the size and cost of the entire apparatus while reducing the concentration of fine particles in the exhaust gas. It is an object of the present invention to provide an exhaust gas purifying apparatus capable of individually controlling the oxidation action of the electrode surface due to and the amount of fine particles adhering to the electrode.
 本発明の排ガス浄化装置は、排ガス中に設置する少なくとも一対の電極と、該電極間に非熱平衡プラズマを発生させるための高電圧を周期的に印加する電源とを備え、該電源は、高電圧保持時間が短い電圧波形と高電圧保持時間が長い電圧波形とを出力することができ、かつ、前記電極間に高電圧保持時間が短い電圧波形と高電圧保持時間が長い電圧波形とを一定周波数において任意のサイクル比率で発生させることを特徴とするものである。 The exhaust gas purification apparatus of the present invention comprises at least a pair of electrodes installed in the exhaust gas, and a power source that periodically applies a high voltage for generating non-thermal equilibrium plasma between the electrodes, the power source being a high voltage A voltage waveform with a short holding time and a voltage waveform with a long high voltage holding time can be output, and a voltage waveform with a short high voltage holding time and a voltage waveform with a long high voltage holding time between the electrodes can be output at a constant frequency. Are generated at an arbitrary cycle ratio.
 本発明の排ガス浄化装置は、電源を、4個のスイッチング素子AP、、B、Bによって構成されたHブリッジ回路と高周波トランスにより形成したことを特徴とするものである。 The exhaust gas purifying apparatus of the present invention is characterized in that a power source is formed by an H bridge circuit constituted by four switching elements A P, A N , B P , and B N and a high frequency transformer.
 本発明によれば、燃焼モードのプラズマは、高電圧をパルス的に発生させるため、帯電した微粒子を電極へ吸引する時間が短く、微粒子の吸着能力が小さい。プラズマは、電極の電圧が変化する時に発生するため、高電圧印加時間が短くても活性種の生成に不都合がない。従って、プラズマ電力を大きくしても微粒子の吸着量をあまり増やすことなく、電極表面の酸化能力を高めることができる。 According to the present invention, since the combustion mode plasma generates a high voltage in a pulsed manner, the time for sucking charged fine particles to the electrode is short, and the adsorption ability of the fine particles is small. Since plasma is generated when the voltage of the electrode changes, there is no problem in generating active species even if the high voltage application time is short. Therefore, even if the plasma power is increased, the oxidation capacity of the electrode surface can be increased without increasing the adsorption amount of the fine particles.
 一方、吸着モードのプラズマは、高電圧を印加している時間が長いため、プラズマによって生成されたイオンを電界によって加速することにエネルギーの一部を消費するため、同じ電力で比較した燃焼モードのプラズマよりも電極表面の酸化能力は、若干、低い。しかし、微粒子の吸着能力が高いため、プラズマ電力を大きくすると、微粒子の吸着量を大きく増やすことができる。 On the other hand, the plasma in the adsorption mode consumes a part of energy for accelerating the ions generated by the plasma by the electric field because the high voltage is applied for a long time. The oxidation capacity of the electrode surface is slightly lower than that of plasma. However, since the adsorption capacity of the fine particles is high, the adsorption amount of the fine particles can be greatly increased by increasing the plasma power.
 この燃焼モードのプラズマと吸着モードのプラズマを出力サイクル毎に選択できる電源を用い、燃焼モードのプラズマと吸着モードのプラズマの出力サイクル数の比率と、合計電力を個別に設定することで、排ガス中の微粒子濃度の増減に対して、プラズマによる電極表面の酸化作用と、電極に付着する微粒子の量とを個別に制御することができる。 By using a power source that can select the combustion mode plasma and adsorption mode plasma for each output cycle, the ratio of the number of output cycles of the combustion mode plasma and the adsorption mode plasma and the total power are set individually, so that With respect to the increase / decrease of the fine particle concentration, it is possible to individually control the oxidation action of the electrode surface by the plasma and the amount of fine particles adhering to the electrode.
 その結果、微粒子濃度が高い排ガスを処理した場合でも、電極表面が微粒子で被われることがなく、連続的に微粒子を吸着して酸化することができる。また、消費電力を低く抑えることができる。 As a result, even when exhaust gas having a high concentration of fine particles is treated, the electrode surface is not covered with fine particles, and can be continuously adsorbed and oxidized. In addition, power consumption can be kept low.
図1は本発明に係る排ガス浄化装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an exhaust gas purifying apparatus according to the present invention. 図2は燃焼モードおよび吸着モードの電圧波形の定義を示す図である。FIG. 2 is a diagram showing definitions of voltage waveforms in the combustion mode and the adsorption mode. 図3は燃焼モード時の電極間の帯電粒子の動きを示す図である。FIG. 3 is a diagram showing the movement of charged particles between electrodes in the combustion mode. 図4は吸着モード時の電極間の帯電粒子の動きを示す図である。FIG. 4 is a diagram showing the movement of charged particles between the electrodes in the adsorption mode. 図5はHブリッジを含む本発明に係る排ガス浄化装置の概略構成図である。FIG. 5 is a schematic configuration diagram of an exhaust gas purifying apparatus according to the present invention including an H bridge. 図6は燃焼モードの電圧電流波形とスイッチング素子動作の関係を示す図である。FIG. 6 is a diagram showing the relationship between the voltage / current waveform in the combustion mode and the switching element operation. 図7は吸着モードの電圧電流波形とスイッチング素子動作の関係を示す図(例1)である。FIG. 7 is a diagram (example 1) showing the relationship between the voltage / current waveform in the adsorption mode and the switching element operation. 図8は吸着モードの電圧電流波形とスイッチング素子動作の関係を示す図(例2)である。FIG. 8 is a diagram (example 2) illustrating the relationship between the voltage / current waveform in the adsorption mode and the switching element operation. 図9は期間1のHブリッジの動作を示す図である。FIG. 9 is a diagram illustrating the operation of the H bridge in period 1. 図10は期間2のHブリッジの動作を示す図である。FIG. 10 is a diagram illustrating the operation of the H bridge in period 2. 図11は期間3のHブリッジの動作を示す図である。FIG. 11 is a diagram illustrating the operation of the H-bridge in period 3. 図12は期間4のHブリッジの動作を示す図である。FIG. 12 is a diagram illustrating the operation of the H bridge in period 4. 図13は期間5のHブリッジの動作を示す図である。FIG. 13 is a diagram illustrating the operation of the H bridge in period 5. 図14は期間6のHブリッジの動作を示す図である。FIG. 14 is a diagram illustrating the operation of the H-bridge in period 6. 図15は期間7のHブリッジの動作を示す図である。FIG. 15 is a diagram illustrating the operation of the H bridge in period 7. 図16は電極表面の酸化作用と電極に吸着する微粒子の量とを制御する方法を示す図(その1)である。FIG. 16 is a diagram (No. 1) showing a method for controlling the oxidation action on the electrode surface and the amount of fine particles adsorbed on the electrode. 図17は電極表面の酸化作用と電極に吸着する微粒子の量とを制御する方法を示す図(その2)である。FIG. 17 is a diagram (part 2) illustrating a method for controlling the oxidation action on the electrode surface and the amount of fine particles adsorbed on the electrode. 図18はプラズマ電極のスタック構造を示す図である。FIG. 18 is a view showing a stack structure of plasma electrodes. 図19は実施例の実験装置を示す図である。FIG. 19 is a diagram showing an experimental apparatus of the example. 図20は実施例における実験結果を示す図である。FIG. 20 is a diagram showing experimental results in the example. 図21は吸着モードの電圧波形(実施例の電極にて、0.75kW、3kHzの場合。)を示す図である。FIG. 21 is a diagram showing a voltage waveform in the adsorption mode (in the case of 0.75 kW and 3 kHz in the electrode of the example). 図22は燃焼モードの電圧波形(実施例の電極にて、0.75kW、3kHzの場合。)を示す図である。FIG. 22 is a diagram showing a voltage waveform in the combustion mode (in the case of 0.75 kW and 3 kHz at the electrode of the example). 図23は燃焼モードのプラズマと吸着モードのプラズマを交互に3サイクルずつ出力した例を示す図である。FIG. 23 is a diagram illustrating an example in which combustion mode plasma and adsorption mode plasma are alternately output in three cycles.
符号の説明Explanation of symbols
 g 排ガス
 2a,2b 電極
 3 電源
g Exhaust gas 2a, 2b Electrode 3 Power supply
 以下、本発明に係る実施の形態を図面を用いて説明する。図1に示すように、本発明の排ガス浄化装置1は、少なくとも一対の電極2a,2bと、当該電極2a,2b間に非熱平衡プラズマ、つまり、活性種の生成、或いは微粒子の帯電に優れた効果を持つプラズマ(便宜的に、燃焼モードのプラズマと称する。)と、帯電した微粒子の電気的吸着に優れた効果を持つプラズマ(便宜的に、吸着モードのプラズマと称する。)とを一定周波数において任意のサイクル比率で発生させる電源装置3とを備えている。 Embodiments according to the present invention will be described below with reference to the drawings. As shown in FIG. 1, the exhaust gas purification apparatus 1 of the present invention is excellent in at least a pair of electrodes 2a and 2b and non-thermal equilibrium plasma, that is, generation of active species or charging of fine particles between the electrodes 2a and 2b. A plasma having an effect (for convenience, referred to as a combustion mode plasma) and a plasma having an effect excellent in the electrical adsorption of charged fine particles (for convenience, referred to as an adsorption mode plasma) have a constant frequency. And a power supply device 3 that is generated at an arbitrary cycle ratio.
 電極2aは、電源装置3に接続し、電極2bは、アース4に接続している。また、電極(電極板)は、2枚のアルミナ製セラミック板の間にSUS304製の金属板を挟んだものが好ましいが、これに限定されない。 The electrode 2a is connected to the power supply device 3, and the electrode 2b is connected to the earth 4. Further, the electrode (electrode plate) is preferably one in which a metal plate made of SUS304 is sandwiched between two alumina ceramic plates, but is not limited thereto.
 燃焼モードのプラズマとは、プラズマを発生させるために電極に高電圧を印加した後、速やかに電圧が低下する電圧波形を持つプラズマであり、「電極に発生する電圧が、最大値の50%以上である期間および最小値の50%以下である期間の合計が1サイクル中で30%以下である電圧波形」と定義される(図2参照。)。 The combustion mode plasma is a plasma having a voltage waveform in which the voltage decreases rapidly after a high voltage is applied to the electrode in order to generate plasma. “The voltage generated at the electrode is 50% or more of the maximum value. And a voltage waveform in which the total of the period that is 50% or less of the minimum value is 30% or less in one cycle is defined (see FIG. 2).
 このプラズマを発生させた場合、電極間に発生する高い電界によって電極間にストリーマ放電が形成され、放電によって発生した高エネルギーの電子によって各種原子のラジカルやOなどの活性物質が発生する。また、NOを含む排ガスにおいては、NOがNOに酸化されたり、或いはNOがNに還元されたりする。 When this plasma is generated, a streamer discharge is formed between the electrodes due to a high electric field generated between the electrodes, and active materials such as radicals of various atoms and O 3 are generated by high energy electrons generated by the discharge. Further, in exhaust gas containing NO X , NO is oxidized to NO 2 or NO X is reduced to N 2 .
 図3に示すように、排ガスg中に存在する微粒子mは、プラズマで発生した電子、或いは、イオンと結合して正負どちらかに帯電し、電極2a,2b間の高電界を受けて正負どちらかの電極に電気的に吸引される。しかし、高電圧印加時間が短いため、電極表面に到達する前に電界による加速が終了してしまう。そして、次の逆電界のプラズマによる反対側の電極への電気的吸引力により、先程近づいた電極から遠ざけられる。以後、このような振幅動作を繰り返すため、帯電した微粒子mの大部分が電極2a,2bに吸着されることなく、電極を通り抜ける。 As shown in FIG. 3, the fine particles m present in the exhaust gas g are combined with electrons or ions generated in the plasma to be charged either positively or negatively and either positively or negatively by receiving a high electric field between the electrodes 2a and 2b. The electrode is electrically attracted. However, since the high voltage application time is short, acceleration by the electric field ends before reaching the electrode surface. And it is moved away from the electrode which it approached earlier by the electric attractive force to the electrode on the opposite side by the plasma of the next reverse electric field. Thereafter, in order to repeat such an amplitude operation, most of the charged fine particles m pass through the electrodes without being adsorbed by the electrodes 2a and 2b.
 吸着モードのプラズマとは、プラズマを発生させるために電極に高電圧を印加した後も高い電圧を長時間保持する電圧波形を持つプラズマであり、「電極に発生する電圧が、最大値の50%以上である期間および最小値の50%以下である期間の合計が1サイクル中の70%以上である電圧波形」と定義される(図2参照。)。 The adsorption mode plasma is a plasma having a voltage waveform that maintains a high voltage for a long time after a high voltage is applied to the electrode in order to generate plasma. “The voltage generated at the electrode is 50% of the maximum value. It is defined as “a voltage waveform in which the sum of the above period and the period that is 50% or less of the minimum value is 70% or more in one cycle” (see FIG. 2).
 このプラズマを発生させた場合、図4に示すように、帯電した微粒子mが十分長い時間、電極2a,2bへと電気的に吸引されて遂には電極表面に吸着されるため、帯電した微粒子mの大部分を電極2a,2bに吸着することができる。 When this plasma is generated, as shown in FIG. 4, since the charged fine particles m are electrically attracted to the electrodes 2a and 2b for a sufficiently long time and finally adsorbed to the electrode surfaces, the charged fine particles m Can be adsorbed to the electrodes 2a and 2b.
 上記の電源装置3は、図5に示すように、4個のスイッチング素子A、A、B、Bによって構成されたHブリッジ回路5と高周波トランス6との組み合わせにより、少なくとも一対の電極2a,2b間に周期的な高電圧を発生させることができる電源回路を具備することになる。 As shown in FIG. 5, the power supply device 3 includes at least a pair of H bridge circuit 5 configured by four switching elements A P , A N , B P , and B N and a high frequency transformer 6. A power supply circuit capable of generating a periodic high voltage between the electrodes 2a and 2b is provided.
 上記のスイッチング素子A、A、B、BをOn/Offするタイミングをコンピュータ(制御装置)によって適切に設定することにより、少なくとも一対の電極2a,2b、つまり、プラズマ電極部2Aに発生する高電圧波形および一定周波数におけるサイクル比率を容易に変えることができる。 By appropriately setting on / off timing of the switching elements A P , A N , B P , and B N by a computer (control device), at least the pair of electrodes 2a and 2b, that is, the plasma electrode unit 2A The generated high voltage waveform and the cycle ratio at a constant frequency can be easily changed.
 スイッチング素子A、A、B、BをOn/Offするタイミングと、プラズマ電極部に発生する電圧V、電流Iの関係を図6~図8に示す。また、図6~図8の図中に丸括弧付き数字で示した各期間について、Hブリッジ回路内部の電流Iを図9~図15の点線で示す。なお、図9~図15では、図5に示したHブリッジ回路以外の部分であるトランス6とプラズマ電極部2Aを、それぞれコイルとコンデンサに置き換えて回路を簡略に記述した。 FIG. 6 to FIG. 8 show the relationship between the timing when the switching elements A P , A N , B P and B N are turned on / off and the voltage V P and current I P generated in the plasma electrode section. In addition, the current I H inside the H bridge circuit is indicated by a dotted line in FIGS. 9 to 15 for each period indicated by a number in parentheses in FIGS. 9 to 15, the circuit is simply described by replacing the transformer 6 and the plasma electrode unit 2A, which are parts other than the H-bridge circuit shown in FIG. 5, with coils and capacitors, respectively.
 ところで、図6~図8の期間11(丸括弧付き数字11の期間)~期間17(丸括弧付き数字17の期間)は、それぞれ期間1(丸括弧付き数字1の期間)~期間7(丸括弧付き数字7の期間)の逆位相に該当する。すなわち、図9~図15の説明文中のAをBに、BをAに、AをBに、BをAに、それぞれ読み替えることで、コイルとコンデンサに流れる電流IH の向きが逆になるスイッチング動作を説明する図になる。 By the way, the period 11 (the period of the numeral 11 with parentheses) to the period 17 (the period of the numeral 17 with parentheses) in FIGS. 6 to 8 are respectively the period 1 (the period of the numeral 1 with parentheses) to the period 7 (the circle). This corresponds to the reverse phase of the period 7 in parentheses. That is, the legend of A P in FIGS. 9 to 15 in B P, the B P to A P, the A N on B N, the B N to A N, the replaced it respectively, the current flowing through the coil and a capacitor It is a figure explaining the switching operation in which the direction of IH is reversed.
 (a)期間1(丸括弧付き数字1の期間)のHブリッチ回路の動作は、AとBがOnとなり、図9に示すように、電源電圧によりコンデンサが充電されてコンデンサの電圧が上昇する。 (A) Operation of H Buritchi circuit period 1 (period parentheses subscript 1), A P and B N are On next, as shown in FIG. 9, the capacitor is charged voltage of the capacitor by the power supply voltage To rise.
 (b)期間2(丸括弧付き数字2の期間)のHブリッチ回路の動作は、AとBがOnとなり、図10に示すように、B側を短絡すると同時に、A側に電源電圧を印加してコンデンサの電圧を急速に逆転させる。 (B) Operation of H Buritchi circuit period 2 (period parentheses subscript 2), A P and B N are On next, as shown in FIG. 10, at the same time Shorting B N side, the A P side Apply power supply voltage to quickly reverse capacitor voltage.
 (c)期間3(丸括弧付き数字3の期間)のHブリッチ回路の動作は、BのみがOnとなり、図11に示すように、電源電圧を遮断してもコイルのインダクタンスにより、暫くは図のループ電力が流れる。電流がゼロになるまでコンデンサの電圧が上昇する。 (C) Operation of H Buritchi circuit period 3 (period parentheses subscript 3), only the B N is On next, as shown in FIG. 11, the inductance of the coil even if the power supply is cut off voltage, for a while The loop power in the figure flows. The capacitor voltage rises until the current is zero.
 (d)期間4(丸括弧付き数字4の期間)のHブリッチ回路の動作は、全てのトランジスタ(スイッチング素子)がOffとなり、図12に示すように、コンデンサの高電圧が保持される(実際には、トランス二次側は、一次側とは隔離されたLCループ構造なので、時定数に応じてゆっくりとコンデンサの電圧が低下する。)。 (D) In the operation of the H-blitch circuit in period 4 (period 4 with parentheses), all the transistors (switching elements) are turned off, and the high voltage of the capacitor is maintained as shown in FIG. (The secondary side of the transformer is an LC loop structure isolated from the primary side, so that the voltage of the capacitor slowly decreases according to the time constant.)
 (e)期間5(丸括弧付き数字5の期間)のHブリッチ回路の動作は、BのみがOnとなり、図13に示すように、LC共振周波数から求まる周期の凡そ1/4時間(半波の半分)だけコンデンサを放電し、コイルにエネルギーを蓄える。 (E) In the operation of the H-blitch circuit in period 5 (period 5 with parentheses), only BP is turned on, and, as shown in FIG. Discharge the capacitor by half the wave) and store energy in the coil.
 (f)期間6(丸括弧付き数字6の期間)のHブリッチ回路の動作は、全てのトランジスタ(スイッチング素子)がOffとなり、図14に示すように、コイルに蓄えたエネルギーを電源回路のコンデンサCに回生する。Cは容量が大きいので、Cの電圧上昇は小さい。 (F) The operation of the H-blitch circuit in period 6 (the period of the number 6 with parentheses) is that all transistors (switching elements) are turned off, and the energy stored in the coil is stored in the capacitor of the power supply circuit as shown in FIG. regenerated to C 0. Since C 0 has a large capacity, the voltage rise of C 0 is small.
 (g)期間7(丸括弧付き数字7の期間)のHブリッチ回路の動作は、全てのトランジスタ(スイッチング素子)がOffとなり、図15に示すように、電圧ゼロが保持される(電圧が僅かに残ることもある。)。 (G) In the operation of the H-blitch circuit in period 7 (period 7 with parentheses), all the transistors (switching elements) are turned off, and as shown in FIG. May remain.)
 上記のように、燃焼モードのプラズマと吸着モードのプラズマとを出力サイクル毎に選択できる電源装置3を用い、燃焼モードのプラズマと吸着モードのプラズマの出力サイクル数の比率と、合計電力とを個別に設定することで、排ガス中の微粒子濃度の増減に対して、プラズマによる電極表面の酸化作用と、電極に付着する微粒子の量とを個別に制御することができる。その結果、微粒子濃度が高い排ガスを処理した場合でも、電極表面が微粒子で被われることがなく、連続的に微粒子を吸着して酸化することができる。また、消費電力を低く抑えることができる。 As described above, using the power supply device 3 that can select the combustion mode plasma and the adsorption mode plasma for each output cycle, the ratio of the number of output cycles of the combustion mode plasma and the adsorption mode plasma and the total power are individually set. By setting to, the oxidizing action of the electrode surface by the plasma and the amount of fine particles adhering to the electrode can be individually controlled with respect to the increase / decrease of the fine particle concentration in the exhaust gas. As a result, even when exhaust gas having a high fine particle concentration is treated, the electrode surface is not covered with fine particles, and the fine particles can be continuously adsorbed and oxidized. In addition, power consumption can be kept low.
 更に、図16を用いて微粒子濃度の高い排ガスの微粒子を処理する例を説明する。棒グラフで示す全体粒子量の約30%であるハッチングを施した部分を処理したい場合、両モードの微粒子酸化量が30%になる電力よりも若干大きな電力P1を選択する。両モードを混在して出力すると、電極表面の酸化能力と電極に吸着する微粒子の量は、両モードの中間的な値になるため、例えば、燃焼モードを5サイクル、吸着モードを2サイクルの組み合わせで(便宜的に、サイクル比率5:2と称する。)プラズマを出力すると、電極表面の酸化能力を電極に吸着する微粒子の量より大きくすることができる。 Further, an example of processing exhaust gas particles having a high particle concentration will be described with reference to FIG. When it is desired to process a hatched portion that is about 30% of the total particle amount shown in the bar graph, the power P1 that is slightly larger than the power at which the particulate oxidation amount in both modes becomes 30% is selected. When both modes are output together, the oxidation capacity of the electrode surface and the amount of fine particles adsorbed on the electrode are intermediate values between the two modes. For example, the combustion mode is combined with 5 cycles and the adsorption mode is combined with 2 cycles. (For convenience, it is referred to as a cycle ratio of 5: 2.) When plasma is output, the oxidation ability of the electrode surface can be made larger than the amount of fine particles adsorbed on the electrode.
 若し、燃焼モードのプラズマ、あるいは燃焼モードと類似波形のプラズマしか出力できない電源装置を用いている場合、電力P1では、望みの微粒子処理量を得ることができないため、より大きな電力P2を投入しなければならない。 If a power supply device that can output only plasma in combustion mode or plasma having a waveform similar to that in combustion mode is used, the desired amount of fine particle processing cannot be obtained with power P1, so a larger power P2 is input. There must be.
 また、吸着モードのプラズマ、あるいは吸着モードと類似波形のプラズマしか出力できない電源装置を用いている場合、電力P1ではプラズマによるで電極表面の酸化作用に比べて電極に吸着する微粒子の量が多すぎるため、やがて、電極は、微粒子で被われてしまう。電極に吸着する微粒子の量が全微粒子の約30%になるように電力をP3まで減らすと、電極表面に酸化能力も減少するため、やはり、電極は微粒子で被われてしまう。 In addition, when a power supply device that can output only adsorption mode plasma or plasma having a waveform similar to that of the adsorption mode is used, the amount of fine particles adsorbed on the electrode is too much at the power P1 due to the plasma due to the plasma. Therefore, the electrode is eventually covered with fine particles. If the power is reduced to P3 so that the amount of fine particles adsorbed on the electrode is about 30% of the total fine particles, the electrode surface is also covered with the fine particles because the oxidation ability is also reduced on the electrode surface.
 エンジンの運転状態が変わって、排ガスの微粒子濃度が図16から図17の状態へと低くなった場合を考える。電極で酸化除去する微粒子の量を一定に保つ場合には、図16と同じ電力P1を選択することで、電極表面の酸化能力を図16と同じにすることができる。 Suppose that the operating state of the engine has changed and the particulate concentration of the exhaust gas has decreased from the state of FIG. 16 to the state of FIG. When the amount of fine particles to be oxidized and removed by the electrode is kept constant, the oxidation power on the electrode surface can be made the same as in FIG. 16 by selecting the same power P1 as in FIG.
 しかし、サイクル比率が5:2のままでは、電極に吸着する微粒子の量が少なくなってしまうので、例えば、サイクル比率を1:3に設定して吸着モードのプラズマの割合を増やすことで、プラズマ電力を増加させることなく、電極に吸着する微粒子の量を一定に保つことができる。 However, if the cycle ratio remains at 5: 2, the amount of fine particles adsorbed on the electrode decreases. For example, by setting the cycle ratio to 1: 3 and increasing the ratio of the adsorption mode plasma, The amount of fine particles adsorbed on the electrode can be kept constant without increasing the electric power.
 若し、サイクル比率が5:2のプラズマ、あるいは、電極表面の酸化能力と電極に吸着する微粒子の量がサイクル比率が5:2のプラズマと同等のプラズマしか出力できない電源装置を用いている場合、電極で酸化除去する微粒子の量を一定に保つためには、より大きな電力P4を投入しなければならない。 When using a power supply device that can output only a plasma with a cycle ratio of 5: 2 or a plasma whose oxidation capacity on the electrode surface and the amount of fine particles adsorbed to the electrode are equivalent to a plasma with a cycle ratio of 5: 2. In order to keep the amount of fine particles to be oxidized and removed by the electrode constant, it is necessary to input a larger electric power P4.
 なお、上記の説明では、本装置で酸化除去する微粒子の量を一定に保つ場合について説明したが、本装置を出た後の排ガス中の微粒子量(棒グラフの白い部分。)を一定に保つ制御を行う場合にも、同様の考え方を適用することができる。 In the above description, the case where the amount of fine particles to be oxidized and removed by the present apparatus is kept constant, but control for keeping the amount of fine particles in the exhaust gas (white portion of the bar graph) after leaving the present apparatus constant. The same way of thinking can be applied to the above.
 厚さ1mmの2枚のアルミナ製セラミック板10の間に厚さ0.05mmのSUS304製の金属板11を挟んだものを1枚の電極板12とし、この電極板17枚をそれぞれ1.5mmのギャップを設けて積層し、16層のギャップ(電極空間)を持つ電極スタック22を形成した(図18参照。)。また、互いに向かい合う電極板12a,12bの一方を高電圧発生源13に接続し、他方をアース14に接続した。電極板1枚の放電面積は、110mm×95mmである。 A metal plate 11 made of SUS304 having a thickness of 0.05 mm sandwiched between two alumina ceramic plates 10 having a thickness of 1 mm is used as one electrode plate 12, and each of the 17 electrode plates is 1.5 mm. The electrode stack 22 having a 16-layer gap (electrode space) was formed (see FIG. 18). One of the electrode plates 12 a and 12 b facing each other was connected to the high voltage generation source 13 and the other was connected to the ground 14. The discharge area of one electrode plate is 110 mm × 95 mm.
 上記電極スタック22を函体20内に設置し(図19参照。)、ディーゼルエンジン排ガスgを通気して実験を行った。実験には、DEUTZ社(三井造船マシナリーサービス社)製のディーゼル機関MAC-30(型式F3L912、排気量2.827L、出力26.5kW、回転数1500rpm、使用燃料油は低硫黄A重油。)を使用し、エンジン出力4kWで運転して排ガスgの一部を分流して函体20に流した。 The above-described electrode stack 22 was installed in the box 20 (see FIG. 19), and the experiment was conducted by ventilating the exhaust gas g of the diesel engine. In the experiment, a diesel engine MAC-30 (model F3L912, displacement 2.827L, output 26.5 kW, rotation speed 1500 rpm, fuel oil used is low sulfur A heavy oil) manufactured by DEUTZ (Mitsui Engineering & Machinery Service). The engine was operated at an engine output of 4 kW and a part of the exhaust gas g was diverted to flow into the box 20.
 微粒子濃度として、本実施例では、AVL社のスモークメータ、形式415Sを用いて電極スタック22の下流側排ガス流路から排ガスを吸引し、ろ紙の濃色度から同社推奨の換算式を用いてスス濃度(mg/Nm)を算出した。また、スス低減率をプラズマを発生させた時のスス濃度をA(mg/Nm)、プラズマを発生させない時のスス濃度をB(mg/Nm)として、次式で求めた。なお、Bの値は、各実験でおよそ5(mg/Nm)であった。
 スス低減率(%)=((B-A)÷B)×100
As the fine particle concentration, in this embodiment, the exhaust gas is sucked from the exhaust gas flow path on the downstream side of the electrode stack 22 by using a smoke meter, model 415S, manufactured by AVL, and the soot is converted from the darkness of the filter paper using the conversion formula recommended by the company. The concentration (mg / Nm 3 ) was calculated. Further, the soot reduction rate was determined by the following equation, assuming that the soot concentration when plasma was generated was A (mg / Nm 3 ), and the soot concentration when plasma was not generated was B (mg / Nm 3 ). The value of B was approximately 5 (mg / Nm 3 ) in each experiment.
Soot reduction rate (%) = ((BA) ÷ B) × 100
 実験結果を[表1]および図20に示す。 The experimental results are shown in [Table 1] and FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 同じプラズマ電力で比較すると、燃焼モードよりも、燃焼モードと吸着モードを3:3の比率で出力した混合モードの方がスス低減率が大きくなった。電極部で測定した電圧波形の例を図21~図23に示す。 When compared with the same plasma power, the soot reduction rate was larger in the mixed mode in which the combustion mode and the adsorption mode were output at a ratio of 3: 3 than in the combustion mode. Examples of voltage waveforms measured at the electrode portions are shown in FIGS.

Claims (2)

  1.  排ガス中に設置する少なくとも一対の電極と、該電極間に非熱平衡プラズマを発生させるための高電圧を周期的に印加する電源とを備え、該電源は、高電圧保持時間が短い電圧波形と高電圧保持時間が長い電圧波形とを出力することができ、かつ、前記電極間に高電圧保持時間が短い電圧波形と高電圧保持時間が長い電圧波形とを一定周波数において任意のサイクル比率で発生させることを特徴とする排ガス浄化装置。 And at least a pair of electrodes installed in the exhaust gas, and a power source that periodically applies a high voltage for generating non-thermal equilibrium plasma between the electrodes. A voltage waveform having a long voltage holding time can be output, and a voltage waveform having a short high voltage holding time and a voltage waveform having a long high voltage holding time can be generated between the electrodes at an arbitrary cycle ratio at a constant frequency. An exhaust gas purification apparatus characterized by that.
  2.  電源を、4個のスイッチング素子AP、、B、Bによって構成されたHブリッジ回路と高周波トランスにより形成したことを特徴とする請求項1記載の排ガス浄化装置。 The exhaust gas purifying apparatus according to claim 1, wherein the power source is formed by an H bridge circuit constituted by four switching elements A P, A N , B P , and B N and a high frequency transformer.
PCT/JP2009/056383 2008-03-28 2009-03-27 Exhaust gas purification apparatus WO2009119845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009529334A JPWO2009119845A1 (en) 2008-03-28 2009-03-27 Exhaust gas purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-087075 2008-03-28
JP2008087075 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119845A1 true WO2009119845A1 (en) 2009-10-01

Family

ID=41114031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056383 WO2009119845A1 (en) 2008-03-28 2009-03-27 Exhaust gas purification apparatus

Country Status (2)

Country Link
JP (1) JPWO2009119845A1 (en)
WO (1) WO2009119845A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174609A1 (en) * 2013-04-24 2014-10-30 三井造船株式会社 Exhaust gas treatment device and method for controlling same
US11471556B2 (en) 2015-10-19 2022-10-18 Sealantium Medical Ltd. Fibrinogen-based tissue adhesive patch

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281231A (en) * 2003-03-14 2004-10-07 Ebara Corp Beam source and beam treatment device
JP2005036712A (en) * 2003-07-14 2005-02-10 Toyota Motor Corp Exhaust emission control device and exhaust emission control method
JP2006132483A (en) * 2004-11-08 2006-05-25 Kri Inc Exhaust emission control device, exhaust emission control method and control method
JP2006200520A (en) * 2004-12-21 2006-08-03 Ritsumeikan Purifying device, purifying method and exhaust emission control system
JP2006312921A (en) * 2005-05-07 2006-11-16 Neophotech Inc System and method for purifying exhaust gas of diesel engine
JP2008500487A (en) * 2004-05-24 2008-01-10 ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー Methods and means for chemically modifying gas or smoke

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295629A (en) * 2000-04-14 2001-10-26 Hideo Kawamura Dpf device for causing reaction and disappearance of particulate matter by means of plasma
JP4746804B2 (en) * 2001-09-28 2011-08-10 株式会社ハイデン研究所 Plasma generation method and plasma generation apparatus
JP4651470B2 (en) * 2005-07-14 2011-03-16 本田技研工業株式会社 Exhaust gas purification device
JP2007152201A (en) * 2005-12-02 2007-06-21 Honda Motor Co Ltd Gas cleaning apparatus
WO2007116668A1 (en) * 2006-03-30 2007-10-18 Ngk Insulators, Ltd. Exhaust gas purifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004281231A (en) * 2003-03-14 2004-10-07 Ebara Corp Beam source and beam treatment device
JP2005036712A (en) * 2003-07-14 2005-02-10 Toyota Motor Corp Exhaust emission control device and exhaust emission control method
JP2008500487A (en) * 2004-05-24 2008-01-10 ネイダーランゼ、オルガニザティー、ボー、トゥーゲパストナトゥールウェテンシャッペルーク、オンダーツォーク、ティーエヌオー Methods and means for chemically modifying gas or smoke
JP2006132483A (en) * 2004-11-08 2006-05-25 Kri Inc Exhaust emission control device, exhaust emission control method and control method
JP2006200520A (en) * 2004-12-21 2006-08-03 Ritsumeikan Purifying device, purifying method and exhaust emission control system
JP2006312921A (en) * 2005-05-07 2006-11-16 Neophotech Inc System and method for purifying exhaust gas of diesel engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174609A1 (en) * 2013-04-24 2014-10-30 三井造船株式会社 Exhaust gas treatment device and method for controlling same
US11471556B2 (en) 2015-10-19 2022-10-18 Sealantium Medical Ltd. Fibrinogen-based tissue adhesive patch
US11771799B2 (en) 2015-10-19 2023-10-03 Sealantium Medical Ltd Method for preparation of tissue adhesive patches

Also Published As

Publication number Publication date
JPWO2009119845A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP4476685B2 (en) Gas purification device
JP5693287B2 (en) Electric dust collector
Babaie et al. Effect of pulsed power on particle matter in diesel engine exhaust using a DBD plasma reactor
KR20050071466A (en) Nonthermal plasma air treatment system
JP2005320895A5 (en)
JP2008500487A (en) Methods and means for chemically modifying gas or smoke
WO2009119845A1 (en) Exhaust gas purification apparatus
WO2014174609A1 (en) Exhaust gas treatment device and method for controlling same
Mohapatro et al. Portable hvac and pulsed plasma sources for control of no x in diesel engine exhaust
KR101980876B1 (en) Dbd plasma exhaust gas reduction device
Bhattacharyya et al. Performance of helical and straight-wire corona electrodes for NOx abatement under AC/pulse energizations
JP3775417B2 (en) Discharge device and air purification device
KR20070076939A (en) Air cleaning system
JP2013087696A (en) Exhaust gas processing device and control method thereof
JPH05332128A (en) Exhaust emission control device
JP2001046910A (en) Exhaust emission control device of internal combustion engine
JP2001349215A (en) Exhaust emission control device for sticking/decomposing nox to/by adsorbent
KR102601482B1 (en) Apparatus for reducing nitrogen oxide for thermoelectric power plants and method for reducing nitrogen oxide by using the same
Rajanikanth et al. Solar powered high voltage energization for vehicular exhaust cleaning: A step towards possible retrofitting in vehicles
JP2004343899A (en) Power supply device for generating plasma and exhaust gas purification system
JP4269436B2 (en) Exhaust gas purification device for internal combustion engine
JP4258296B2 (en) Plasma reactor
JP3990655B2 (en) Ion generator
WO2023146407A1 (en) Plasma electrode configuration for a high-voltage non-thermal plasma system and a non-thermal plasma-based gas-treatment system comprising such plasma electrode configuration
Chen et al. Technical Analysis and Extended Application of Variable Frequency Power Supply

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009529334

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724017

Country of ref document: EP

Kind code of ref document: A1