JP2013087696A - Exhaust gas processing device and control method thereof - Google Patents

Exhaust gas processing device and control method thereof Download PDF

Info

Publication number
JP2013087696A
JP2013087696A JP2011229498A JP2011229498A JP2013087696A JP 2013087696 A JP2013087696 A JP 2013087696A JP 2011229498 A JP2011229498 A JP 2011229498A JP 2011229498 A JP2011229498 A JP 2011229498A JP 2013087696 A JP2013087696 A JP 2013087696A
Authority
JP
Japan
Prior art keywords
electrode
exhaust gas
current
power source
particulate matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011229498A
Other languages
Japanese (ja)
Inventor
Hisakimi Kato
寿仁 加藤
Tadashi Nozu
匡史 野津
Katsunori Matsuoka
克憲 松岡
Kanehisa Imai
兼久 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2011229498A priority Critical patent/JP2013087696A/en
Publication of JP2013087696A publication Critical patent/JP2013087696A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas processing device for maintaining PM (particulate matter) concentration in an outlet of an exhaust gas processing device (DPF) within a specific value, even when the PM concentration is significantly increased at engine start-up or the like, as well as when the PM concentration in exhaust gas is low, and to provide a control method of the exhaust gas processing device.SOLUTION: This control method of the exhaust gas processing device includes the steps of: applying an AC current to a pre-stage electrode 2 and generating thermal non-equilibrium plasma between electrode plates 4 of the pre-stage electrode 2, to charge the particulate matter (PM); and executing first control for applying a DC current to a post-stage electrode 3 to cause the electrode plates 4 of the post-stage electrode 3 to attract the particulate matter, under a first condition, and executing second control for applying the AC current to the post-stage electrode 3 and generating the thermal non-equilibrium plasma between the electrode plates 4 of the rear stage electrode 3 to oxidize the particulate matter under a second condition.

Description

本発明は、内燃機関の排気ガスを浄化する排気ガス処理装置及びその制御方法に関するものである。   The present invention relates to an exhaust gas processing apparatus for purifying exhaust gas of an internal combustion engine and a control method therefor.

従来、ガソリンエンジンやディーゼルエンジン等の内燃機関の排気ガス処理装置として、Diesel Particulate Filter(以下、DPFという)が使用されている。このDPFは、セラミックハニカムや耐熱繊維製のフィルタで構成されており、排気ガス中の粒子状物質(Particulate Matter、又はPMという)を捕集することができる。ただし、フィルタの目詰り等により、圧力損失が大きくなるという問題を有している。   Conventionally, a diesel particulate filter (hereinafter referred to as DPF) has been used as an exhaust gas treatment device for internal combustion engines such as gasoline engines and diesel engines. The DPF includes a filter made of a ceramic honeycomb or a heat-resistant fiber, and can collect particulate matter (referred to as particulate matter or PM) in the exhaust gas. However, there is a problem that pressure loss increases due to clogging of the filter and the like.

上記の問題を解決するものとして、排気ガス中のPMを帯電させ、高電圧を印加した電極に吸引、吸着して捕捉するDPFが開示されている(例えば特許文献1参照)。この特許文献1に記載のDPFは、2つの電極間に排気ガスを通過させ、この電極に交流電流を印加する構成を有している。   As a solution to the above problem, a DPF is disclosed in which PM in exhaust gas is charged and sucked, adsorbed and captured by an electrode to which a high voltage is applied (see, for example, Patent Document 1). The DPF described in Patent Document 1 has a configuration in which exhaust gas is passed between two electrodes and an alternating current is applied to the electrodes.

また、スクレーパーや加熱装置を備えたDPFが開示されている(例えば特許文献2参照)。このスクレーパー等により、DPFは電極に付着したPMを除去することができる。この構成により、DPFのPM吸着性能を維持することができる。   Moreover, DPF provided with the scraper and the heating apparatus is disclosed (for example, refer patent document 2). With this scraper or the like, the DPF can remove PM adhering to the electrode. With this configuration, the PM adsorption performance of the DPF can be maintained.

しかしながら、上記のDPFはいくつかの問題点を有している。第1に、このDPFは、エンジン始動時等のPMの濃度が高い場合に、PMを十分に捕集できないという問題を有している。これは、交流電流の印加により、帯電したPMが2つの電極の間で蛇行するためである。   However, the above DPF has several problems. First, this DPF has a problem that PM cannot be sufficiently collected when the concentration of PM is high, such as when the engine is started. This is because the charged PM meanders between the two electrodes by the application of an alternating current.

第2に、このDPFは、エンジン始動時等のPMの濃度が高い場合に、PMを十分に捕集できるような高電圧の交流電源を利用すると、DPFのコストが高くなるという問題を有している。また、PMの濃度が低い場合は、この高価な交流電源は必要以上に高い性能を有していることになり、DPFの費用対効果が低下するという問題を有している。   Secondly, this DPF has a problem that the cost of the DPF increases when a high-voltage AC power source capable of sufficiently collecting PM is used when the concentration of PM is high at the time of starting the engine. ing. Further, when the concentration of PM is low, this expensive AC power supply has a higher performance than necessary, and there is a problem that the cost effectiveness of the DPF is lowered.

第3に、このDPFは、耐久性が低いという問題を有している。これは、スクレーパーでDPFに付着したPMを削り落とす際に、フィルタの摩耗及び損傷が発生するためである。また、加熱装置や燃料噴霧によりPMを燃焼させる際に、フィルタが高温となり、フィルタの損傷が発生するためである。   Thirdly, this DPF has a problem of low durability. This is because when the scraper removes PM adhering to the DPF, the filter is worn and damaged. Further, when PM is burned by a heating device or fuel spray, the filter becomes high temperature and the filter is damaged.

特開2004−66063号公報JP 2004-66063 A 特開2007−216193号公報JP 2007-216193 A

本発明は、上記の問題を鑑みてなされたものであり、その目的は、排気ガス中の粒子状物質(PM)の濃度が低い場合に加え、エンジン始動時等、PMの濃度が飛躍的に高まった場合であっても、排気ガス処理装置(DPF)の出口におけるPMの濃度を一定値以下に維持することができる排気ガス処理装置及びその制御方法を提供することにある。また
、DPFの損傷等を防止し、DPFの長寿命化を実現したDPFを提供することにある。
The present invention has been made in view of the above problems, and its object is to dramatically increase the concentration of PM, such as when the engine is started, in addition to when the concentration of particulate matter (PM) in the exhaust gas is low. An object of the present invention is to provide an exhaust gas treatment device that can maintain the PM concentration at the outlet of the exhaust gas treatment device (DPF) at a predetermined value or less, and a control method therefor, even if it is high. It is another object of the present invention to provide a DPF that prevents the DPF from being damaged and realizes a long life of the DPF.

上記の目的を達成するための本発明に係る排気ガス処理装置の制御方法は、2枚の電極板と、前記電極板に電圧を印加する電源を有し、前記電極板の間を通過する排気ガス中に含まれる粒子状物質を吸着する排気ガス処理装置で、前記排気ガス処理装置が、前段電極及び後段電極を有しており、前記前段電極が、間に排気ガスを通過させるように構成した2枚の向かい合う電極板と、前記電極板に交流電流を印加する交流電源を有しており、前記後段電極が、間に排気ガスを通過させるように構成した2枚の向かい合う電極板と、前記電極板に交流電流を印加する交流電源と、前記電極板に直流電流を印加する直流電源と、前記交流電源と前記直流電源を切り替えるスイッチを有した排気ガス処理装置の制御方法であって、前記前段電極に交流電流を印加し、前記前段電極の前記電極板の間に非熱平衡プラズマを発生させ前記粒子状物質を帯電させるステップと、第1の条件下では、前記後段電極に直流電流を印加し、前記後段電極の前記電極板に前記粒子状物質を吸着する第1制御を行い、第2の条件下では、前記後段電極に交流電流を印加し、前記後段電極の前記電極板の間に非熱平衡プラズマを発生させ前記粒子状物質を酸化する第2制御を行うステップを有することを特徴とする。   In order to achieve the above object, a method for controlling an exhaust gas treatment apparatus according to the present invention includes two electrode plates and a power source for applying a voltage to the electrode plates, and the exhaust gas passes between the electrode plates. The exhaust gas treatment device that adsorbs the particulate matter contained in the exhaust gas treatment device, wherein the exhaust gas treatment device has a front electrode and a rear electrode, and the front electrode is configured to allow exhaust gas to pass between them. Two opposed electrode plates, an alternating current power source for applying an alternating current to the electrode plates, and the latter electrode configured to allow exhaust gas to pass therebetween, and the electrodes A control method for an exhaust gas treatment apparatus, comprising: an AC power source that applies an AC current to a plate; a DC power source that applies a DC current to the electrode plate; and a switch that switches between the AC power source and the DC power source. Interchange with electrode Applying a current to generate a non-thermal equilibrium plasma between the electrode plates of the front electrode to charge the particulate matter; and under a first condition, a direct current is applied to the rear electrode, The first control for adsorbing the particulate matter to the electrode plate is performed, and under the second condition, an AC current is applied to the rear electrode, and non-thermal equilibrium plasma is generated between the electrode plates of the rear electrode to generate the particles. A step of performing a second control for oxidizing the particulate material.

この構成により、排気ガス処理装置(DPF)は、エンジン始動時など、排気ガス中に含まれる粒子状物質(PM)の量が、予め定めた閾値よりも多い場合(第1の条件)であっても、十分にPMを吸着し、排気ガス処理装置の出口におけるPMの濃度を一定値以下に維持することができる。また、排気ガス中のPMの量が予め定めた閾値よりも少ない場合(第2の条件)であっても、後段電極でPMを直接酸化させながら、DPFの再生を行うことができる。   With this configuration, the exhaust gas treatment device (DPF) is used when the amount of particulate matter (PM) contained in the exhaust gas is larger than a predetermined threshold (first condition), such as when the engine is started. However, it is possible to sufficiently adsorb PM and maintain the concentration of PM at the outlet of the exhaust gas treatment device below a certain value. Further, even when the amount of PM in the exhaust gas is smaller than a predetermined threshold (second condition), it is possible to regenerate the DPF while directly oxidizing the PM at the rear electrode.

上記の目的を達成するための本発明に係る排気ガス処理装置は、2枚の電極板と、前記電極板に電圧を印加する電源を有し、前記電極板の間を通過する排気ガス中に含まれる粒子状物質を吸着する排気ガス処理装置において、前記排気ガス処理装置が、前段電極及び後段電極を有しており、前記前段電極が、間に排気ガスを通過させるように構成した2枚の向かい合う電極板と、前記電極板に交流電流を印加する交流電源を有しており、前記後段電極が、間に排気ガスを通過させるように構成した2枚の向かい合う電極板と、前記電極板に交流電流を印加する交流電源と、前記電極板に直流電流を印加する直流電源と、前記交流電源と前記直流電源を切り替えるスイッチを有しており、前記前段電極に交流電流を印加し、前記前段電極の前記電極板の間に非熱平衡プラズマを発生させ前記粒子状物質を帯電させ、第1の条件下では、前記後段電極に直流電流を印加し、前記後段電極の前記電極板に前記粒子状物質を吸着する第1制御を行い、第2の条件下では、前記後段電極に交流電流を印加し、前記後段電極の前記電極板の間に非熱平衡プラズマを発生させ前記粒子状物質を酸化する第2制御を行うように構成したことを特徴とする。この構成により、上記と同様の作用効果を得ることができる。   In order to achieve the above object, an exhaust gas treatment apparatus according to the present invention includes two electrode plates and a power source for applying a voltage to the electrode plates, and is included in the exhaust gas passing between the electrode plates. In the exhaust gas treatment apparatus that adsorbs particulate matter, the exhaust gas treatment apparatus has a front electrode and a rear electrode, and the front electrode is configured to pass two sheets of exhaust gas between them. An electrode plate and an AC power source for applying an AC current to the electrode plate, the back electrode being configured to allow exhaust gas to pass between, and two opposed electrode plates, and an AC to the electrode plate An AC power source for applying a current; a DC power source for applying a DC current to the electrode plate; and a switch for switching between the AC power source and the DC power source. An AC current is applied to the front electrode, and the front electrode Of the above A non-thermal equilibrium plasma is generated between the electrode plates to charge the particulate matter. Under a first condition, a direct current is applied to the latter electrode, and the particulate matter is adsorbed to the electrode plate of the latter electrode. 1 control is performed, and under the second condition, an AC current is applied to the rear electrode, and non-thermal equilibrium plasma is generated between the electrode plates of the rear electrode to perform second control to oxidize the particulate matter. It is characterized by comprising. With this configuration, the same effects as described above can be obtained.

本発明による排気ガス処理装置によれば、排気ガス中の粒子状物質(PM)の濃度が低い場合に加え、エンジン始動時等、PMの濃度が飛躍的に高まった場合であっても、排気ガス処理装置(DPF)の出口におけるPMの濃度を一定値以下に維持することができる排気ガス処理装置を提供することができる。   According to the exhaust gas treatment device of the present invention, the exhaust gas is exhausted not only when the concentration of particulate matter (PM) in the exhaust gas is low, but also when the concentration of PM is dramatically increased at the time of engine start. It is possible to provide an exhaust gas processing apparatus capable of maintaining the PM concentration at the outlet of the gas processing apparatus (DPF) at a certain value or less.

本発明に係る実施の形態の排気ガス処理装置の概略を示した図である。It is the figure which showed the outline of the exhaust-gas processing apparatus of embodiment which concerns on this invention. 本発明に係る実施の形態の排気ガス処理装置の概略を示した図である。It is the figure which showed the outline of the exhaust-gas processing apparatus of embodiment which concerns on this invention. 本発明に係る異なる実施の形態の排気ガス処理装置の概略を示した図である。It is the figure which showed the outline of the exhaust gas processing apparatus of different embodiment which concerns on this invention. 本発明に係る異なる実施の形態の排気ガス処理装置の概略を示した図である。It is the figure which showed the outline of the exhaust gas processing apparatus of different embodiment which concerns on this invention.

以下、本発明に係る実施の形態の排気ガス処理装置(DPF)について、図面を参照しながら説明する。図1に、本発明に係る実施の形態の排気ガス処理装置(DPF)の概略を示す。DPF1は、前段電極2と、後段電極3を有している。この前段電極2は、間に排気ガスを通過させる2枚の向かい合う電極板4と、電極板4に交流電流を印加する交流電源5を有している。   Hereinafter, an exhaust gas treatment device (DPF) according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an exhaust gas processing apparatus (DPF) according to an embodiment of the present invention. The DPF 1 has a front electrode 2 and a rear electrode 3. The front electrode 2 has two opposing electrode plates 4 that allow exhaust gas to pass between them, and an AC power source 5 that applies an AC current to the electrode plates 4.

後段電極3は、間に排気ガスを通過させる2枚の向かい合う電極板4と、電極板4に交流電流を印加する交流電源5と、電極板4に直流電流を印加する直流電源6と、交流電源5と直流電源6を切り替えるスイッチ7を有している。ここで、2枚の向かい合う電極板4の間隔は、例えば1.0mm〜3.0mm程度とする。   The rear electrode 3 includes two opposed electrode plates 4 that allow exhaust gas to pass between them, an AC power source 5 that applies an AC current to the electrode plate 4, a DC power source 6 that applies a DC current to the electrode plate 4, and an AC current A switch 7 for switching between the power supply 5 and the DC power supply 6 is provided. Here, the interval between the two electrode plates 4 facing each other is, for example, about 1.0 mm to 3.0 mm.

次に、電極板4について説明する。この電極板4は、例えば金属板等の電気伝導体11と、電気伝導体11を両側から挟むように配置したアルミナ、セラミック等の誘電体12を有している。この誘電体12の少なくとも一方は、複数の貫通孔13を有している。この電極板4は、電極板4の間に非熱平衡プラズマを発生するように構成していれば、上記の構成に限られない。   Next, the electrode plate 4 will be described. The electrode plate 4 includes, for example, an electric conductor 11 such as a metal plate, and a dielectric 12 such as alumina or ceramic disposed so as to sandwich the electric conductor 11 from both sides. At least one of the dielectrics 12 has a plurality of through holes 13. The electrode plate 4 is not limited to the above configuration as long as it is configured to generate non-thermal equilibrium plasma between the electrode plates 4.

次に、非熱平衡プラズマの発生原理について説明する。まず、電極板4の間に誘電体バリア放電によりプラズマを発生させる。この誘電体バリア放電とは電極(電気伝導体11)の少なくとも一方を誘電体13で覆い、高電界の印加により電子を加速して電極板4の間の空間の中性原子に衝突させ、電子なだれによる多数の電子やイオンを生成する放電形態である。この誘電体バリア放電により生成された電子集団は陰極側から陽極側へと高速で移動するストリーマ(繊維状の放電)を形成するが、電気伝導体11の表面に誘電体(絶縁体)13を配しているため電気伝導体11からプラズマ空間に電流が注入されず、アーク放電には至らない。この電気伝導体11に印加する電圧の変化が終了するとストリーマの生成は終了する。電界の方向を逆転させると、逆方向の電子なだれが発生する。高周波電源によって、電界の方向を高速で変化させれば電子に比べ重いイオンはほとんど移動できずに電子のみが動くため、電子温度のみが高い低温プラズマ(非熱平衡プラズマ)を発生させることができる。   Next, the generation principle of non-thermal equilibrium plasma will be described. First, plasma is generated between the electrode plates 4 by dielectric barrier discharge. In this dielectric barrier discharge, at least one of the electrodes (electrical conductor 11) is covered with a dielectric 13, and electrons are accelerated by application of a high electric field to collide with neutral atoms in the space between the electrode plates 4, and electrons It is a discharge form that generates a large number of electrons and ions by avalanche. The electron population generated by this dielectric barrier discharge forms a streamer (fibrous discharge) that moves at high speed from the cathode side to the anode side, and a dielectric (insulator) 13 is formed on the surface of the electric conductor 11. Therefore, no current is injected from the electric conductor 11 into the plasma space, and arc discharge does not occur. When the change of the voltage applied to the electric conductor 11 is finished, the generation of the streamer is finished. When the direction of the electric field is reversed, avalanche in the reverse direction occurs. If the direction of the electric field is changed at high speed by a high-frequency power source, ions that are heavier than electrons can hardly move and only the electrons move. Therefore, low-temperature plasma (non-thermal equilibrium plasma) having only a high electron temperature can be generated.

なお、白抜き矢印はエンジン又は発電機等から排出される排気ガスの流れる方向を示し、PMは排気ガス中に含まれている粒子状物質(PM)を模式的に示している。PMに付してある+又は−の記号は、PMが帯電された状態を示している。また、前段電極2及び後段電極3は、複数枚の電極板4を積層させて構成することができる。   In addition, a white arrow shows the direction through which the exhaust gas discharged | emitted from an engine or a generator etc. flows, and PM has shown typically the particulate matter (PM) contained in exhaust gas. The symbol “+” or “−” attached to PM indicates that PM is charged. Further, the front-stage electrode 2 and the rear-stage electrode 3 can be configured by laminating a plurality of electrode plates 4.

次に、排気ガス処理装置(DPF)1の動作について説明する。まず、エンジン等を始動し、排気ガス中に含まれるPMの量が、予め定めた閾値よりも多い場合(第1の条件下)に行う第1制御(以下、吸着制御という)について説明する。   Next, the operation of the exhaust gas treatment device (DPF) 1 will be described. First, the first control (hereinafter referred to as adsorption control) performed when the engine or the like is started and the amount of PM contained in the exhaust gas is larger than a predetermined threshold value (first condition) will be described.

DPF1の吸着制御の際、前段電極2に交流電流を印加する。この交流電流により、前段電極2の電極板4の間に非熱平衡プラズマが発生し、PMが帯電する。以上のように、前段電極2では、主にPMの帯電を行う。なお、前段電極2では、PMの帯電の他に、電極板4へのPMの吸着、及びPMの酸化も行っている。この前段電極2において、帯電されたPMは、交流電流の周波数の周期に合わせて、2つの電極板4の間で進行方向を反転しながら進む。   An alternating current is applied to the front electrode 2 during the adsorption control of the DPF 1. Due to this alternating current, non-thermal equilibrium plasma is generated between the electrode plates 4 of the front electrode 2, and the PM is charged. As described above, the pre-stage electrode 2 is mainly charged with PM. In addition to the charging of PM, the front electrode 2 also performs adsorption of PM to the electrode plate 4 and oxidation of PM. In the former electrode 2, the charged PM proceeds while reversing the traveling direction between the two electrode plates 4 in accordance with the frequency cycle of the alternating current.

他方、DPF1の吸着制御の際、スイッチ7により電極板4と直流電源6を接続し、後段電極3に直流電流を印加する。この直流電流により、後段電極3は電極板4の間を通過するPMを電極板4に吸着する。この後段電極3において、帯電されたPMは、進行方向を反転することなく、対応する電極板4の方向に引寄せられる。   On the other hand, in the adsorption control of the DPF 1, the electrode plate 4 and the DC power source 6 are connected by the switch 7, and a DC current is applied to the rear electrode 3. Due to this direct current, the rear electrode 3 adsorbs the PM passing between the electrode plates 4 to the electrode plate 4. In the subsequent electrode 3, the charged PM is attracted toward the corresponding electrode plate 4 without reversing the traveling direction.

次に、エンジン等が定常運転に移行し、排気ガス中に含まれるPMの量が、予め定めた閾値よりも少ない場合(第2の条件下)に行う第2制御(以下、再生制御という)について説明する。図2に、再生制御の際のDPF1の様子を示す。   Next, the second control (hereinafter referred to as regeneration control) performed when the engine or the like shifts to steady operation and the amount of PM contained in the exhaust gas is smaller than a predetermined threshold (second condition). Will be described. FIG. 2 shows the state of the DPF 1 during regeneration control.

DPF1の再生制御の際、前段電極2に、吸着制御と同様交流電流を印加する。他方、スイッチ7により電極板4と交流電源5を接続し、後段電極3に交流電流を印加する。この交流電流により、後段電極3は、電極板4に吸着したPMを直接酸化する。つまり、後段電極3のPMは、電子の放出により酸化され、DPF1から除去される。以上より、後段電極3では主にPMを直接酸化し、DPF1(後段電極3)の再生を行う。なお、再生制御の際の後段電極3では、PMの酸化の他に、排気ガス中のPMの吸着も行っている。   In the regeneration control of the DPF 1, an alternating current is applied to the front electrode 2 as in the adsorption control. On the other hand, the electrode plate 4 and the AC power source 5 are connected by the switch 7, and an AC current is applied to the rear electrode 3. Due to this alternating current, the rear electrode 3 directly oxidizes the PM adsorbed on the electrode plate 4. That is, the PM of the rear electrode 3 is oxidized by the emission of electrons and removed from the DPF 1. From the above, the post-stage electrode 3 mainly oxidizes PM directly to regenerate the DPF 1 (the post-stage electrode 3). It should be noted that the post-stage electrode 3 in the regeneration control performs adsorption of PM in the exhaust gas in addition to PM oxidation.

上記の構成により、本発明の排気ガス処理装置(DPF1)は、以下の作用効果を得ることができる。第1に、DPF1は、エンジン始動時など、排気ガス中に含まれるPMの量が、予め定めた閾値よりも多い場合であっても、DPF1の出口におけるPMの量を一定量以下に維持することができる。これは、直流電流を印加した後段電極3でPMを十分に吸着することができるからである(図1参照)。   With the above configuration, the exhaust gas treatment device (DPF1) of the present invention can obtain the following effects. First, the DPF 1 maintains the amount of PM at the outlet of the DPF 1 below a certain amount even when the amount of PM contained in the exhaust gas is larger than a predetermined threshold, such as when the engine is started. be able to. This is because PM can be sufficiently adsorbed by the post-stage electrode 3 to which a direct current is applied (see FIG. 1).

第2に、DPF1は、既存の交流電源5及び直流電源6を使用することができるため、製造コストが抑制される。また、排気ガス中のPMの量が閾値よりも少ない場合は、後段電極3に交流電流を印加して、PMを直接酸化させながら、PMの吸着を行うことができる。つまり、DPF1の費用対効果を向上することができる。   Secondly, since the DPF 1 can use the existing AC power supply 5 and DC power supply 6, the manufacturing cost is suppressed. Further, when the amount of PM in the exhaust gas is smaller than the threshold value, it is possible to adsorb PM while directly oxidizing the PM by applying an alternating current to the rear electrode 3. That is, the cost effectiveness of the DPF 1 can be improved.

第3に、DPF1は、後段電極3に交流電流を印加して、PMを直接酸化する構成により、長寿命化を実現することができる。つまり、DPF1に付着したPMの除去を、フィルタを損傷する可能性のあるスクレーパーや加熱装置等で行う必要がないため、フィルタの傷みを防止することができる。   Thirdly, the DPF 1 can achieve a long life by applying an alternating current to the post-stage electrode 3 to directly oxidize PM. That is, it is not necessary to remove PM adhering to the DPF 1 with a scraper or a heating device that may damage the filter, so that the filter can be prevented from being damaged.

図3に、本発明に係る異なる実施の形態の排気ガス処理装置(DPF1a)の概略を示す。このDPF1aは、前段電極2と後段電極3を、見かけ上、一体のDPFとなるように、共通する筐体16aに設置している。また、前段電極2及び後段電極3は、複数枚の電極板4を積層して構成している。ここで、15は排気通路、白抜き矢印は排気ガスの進行方向を示す。   FIG. 3 shows an outline of an exhaust gas processing apparatus (DPF 1a) according to another embodiment of the present invention. In the DPF 1a, the front-stage electrode 2 and the rear-stage electrode 3 are installed in a common casing 16a so as to be an integrated DPF. The front electrode 2 and the rear electrode 3 are formed by laminating a plurality of electrode plates 4. Here, 15 is the exhaust passage, and the white arrow indicates the traveling direction of the exhaust gas.

図4に、本発明に係る異なる実施の形態の排気ガス処理装置(DPF1b)の概略を示す。このDPF1bは、図3に示した例とは異なり、前段電極2及び後段電極3をそれぞれ独立した筐体16bに設置している。更に、DPF1bは、排気通路15に沿って、後段電極3を2つ設置する構成としている。   FIG. 4 shows an outline of an exhaust gas processing apparatus (DPF 1b) according to another embodiment of the present invention. In the DPF 1b, unlike the example shown in FIG. 3, the front electrode 2 and the rear electrode 3 are installed in independent housings 16b. Further, the DPF 1 b is configured to install two rear electrodes 3 along the exhaust passage 15.

次に、DPF1bの動作について説明する。まず、排気ガス中に含まれるPMの量が予め定めた上限値よりも多い場合に、2つの後段電極3に直流電流を印加して、PMを吸着する吸着制御を行う。PMの量が予め定めた上限値と下限値の間にある場合は、2つの後段電極3のうち、一方に直流電流を印加し、他方に交流電流を印加する連続運転制御を行う。なお、この連続運転制御は、予め定めた時間を経過後に、直流電流を印加していた後段電極3を交流電流に切り替え、交流電流を印加していた後段電極3を直流電流に切り替
える制御を含むことが望ましい。PMの量が予め定めた下限値を下回る場合は、2つの後段電極3に交流電流を印加して、DPF1bの再生制御を行う。なお、後段電極3の一方の電源を切ってもよい。
上記の構成により、本発明の排気ガス処理装置(DPF1b)は、以下の作用効果を得ることができる。第1に、排気ガス中のPMの量が予め定めた上限値よりも多い場合であっても、2つの後段電極3で、PMの吸着を行うことができるため、DPF1bのPM吸着性能を更に向上することができる。
Next, the operation of the DPF 1b will be described. First, when the amount of PM contained in the exhaust gas is larger than a predetermined upper limit value, adsorption control for adsorbing PM is performed by applying a direct current to the two subsequent electrodes 3. When the amount of PM is between a predetermined upper limit value and lower limit value, continuous operation control is performed in which a direct current is applied to one of the two rear electrodes 3 and an alternating current is applied to the other. In addition, this continuous operation control includes the control which switches the back | latter stage electrode 3 which applied the direct current to alternating current, and switches the back | latter stage electrode 3 which has applied the alternating current to direct current after progress for a predetermined time. It is desirable. When the amount of PM falls below a predetermined lower limit value, an alternating current is applied to the two subsequent electrodes 3 to perform regeneration control of the DPF 1b. Note that one power source of the rear electrode 3 may be turned off.
With the above configuration, the exhaust gas treatment device (DPF 1b) of the present invention can obtain the following effects. First, even if the amount of PM in the exhaust gas is larger than a predetermined upper limit value, PM can be adsorbed by the two rear electrodes 3, so that the PM adsorption performance of the DPF 1b can be further increased. Can be improved.

第2に、排気ガス中のPMの量が、予め定めた下限値よりも多く、且つその状態が長く続く場合であっても、DPF1bのPM吸着性能を維持することができる。これは、2つの後段電極3が、交互に吸着制御及び再生制御を繰り返すためである。なお、DPF1bの後段電極3は、3つ以上設置してもよい。   Secondly, even when the amount of PM in the exhaust gas is larger than a predetermined lower limit and the state continues for a long time, the PM adsorption performance of the DPF 1b can be maintained. This is because the two rear electrodes 3 alternately repeat the adsorption control and the regeneration control. In addition, you may install three or more back | latter stage electrodes 3 of DPF1b.

1、1a、1b 排気ガス処理装置(DPF)
2 前段電極
3 後段電極
4 電極板
5 交流電源
6 直流電源
7 スイッチ
PM 粒子状物質(PM)
1, 1a, 1b Exhaust gas treatment equipment (DPF)
2 Front electrode 3 Rear electrode 4 Electrode plate 5 AC power source 6 DC power source 7 Switch PM Particulate matter (PM)

Claims (2)

2枚の電極板と、前記電極板に電圧を印加する電源を有し、前記電極板の間を通過する排気ガス中に含まれる粒子状物質を吸着する排気ガス処理装置で、
前記排気ガス処理装置が、前段電極及び後段電極を有しており、前記前段電極が、間に排気ガスを通過させるように構成した2枚の向かい合う電極板と、前記電極板に交流電流を印加する交流電源を有しており、
前記後段電極が、間に排気ガスを通過させるように構成した2枚の向かい合う電極板と、前記電極板に交流電流を印加する交流電源と、前記電極板に直流電流を印加する直流電源と、前記交流電源と前記直流電源を切り替えるスイッチを有した排気ガス処理装置の制御方法であって、
前記前段電極に交流電流を印加し、前記前段電極の前記電極板の間に非熱平衡プラズマを発生させ前記粒子状物質を帯電させるステップと、
第1の条件下では、前記後段電極に直流電流を印加し、前記後段電極の前記電極板に前記粒子状物質を吸着する第1制御を行い、
第2の条件下では、前記後段電極に交流電流を印加し、前記後段電極の前記電極板の間に非熱平衡プラズマを発生させ前記粒子状物質を酸化する第2制御を行うステップを有することを特徴とする排気ガス処理装置の制御方法。
An exhaust gas treatment apparatus having two electrode plates and a power source for applying a voltage to the electrode plates, and adsorbing particulate matter contained in exhaust gas passing between the electrode plates;
The exhaust gas treatment apparatus has a front electrode and a rear electrode, and the front electrode applies two alternating electrode plates configured to pass exhaust gas therebetween, and an alternating current is applied to the electrode plate. Has an AC power supply
Two opposing electrode plates configured to allow the exhaust gas to pass between the latter electrode, an AC power source that applies an AC current to the electrode plate, a DC power source that applies a DC current to the electrode plate, A control method for an exhaust gas treatment apparatus having a switch for switching between the AC power source and the DC power source,
Applying an alternating current to the front electrode, generating non-thermal equilibrium plasma between the electrode plates of the front electrode, and charging the particulate matter;
Under the first condition, a direct current is applied to the latter electrode, and a first control is performed to adsorb the particulate matter on the electrode plate of the latter electrode,
Under the second condition, there is provided a step of performing a second control in which an alternating current is applied to the latter electrode, non-thermal equilibrium plasma is generated between the electrode plates of the latter electrode, and the particulate matter is oxidized. Control method for exhaust gas treatment device.
2枚の電極板と、前記電極板に電圧を印加する電源を有し、前記電極板の間を通過する排気ガス中に含まれる粒子状物質を吸着する排気ガス処理装置において、
前記排気ガス処理装置が、前段電極及び後段電極を有しており、前記前段電極が、間に排気ガスを通過させるように構成した2枚の向かい合う電極板と、前記電極板に交流電流を印加する交流電源を有しており、
前記後段電極が、間に排気ガスを通過させるように構成した2枚の向かい合う電極板と、前記電極板に交流電流を印加する交流電源と、前記電極板に直流電流を印加する直流電源と、前記交流電源と前記直流電源を切り替えるスイッチを有しており、
前記前段電極に交流電流を印加し、前記前段電極の前記電極板の間に非熱平衡プラズマを発生させ前記粒子状物質を帯電させ、
第1の条件下では、前記後段電極に直流電流を印加し、前記後段電極の前記電極板に前記粒子状物質を吸着する第1制御を行い、
第2の条件下では、前記後段電極に交流電流を印加し、前記後段電極の前記電極板の間に非熱平衡プラズマを発生させ前記粒子状物質を酸化する第2制御を行うように構成したことを特徴とする排気ガス処理装置。
In an exhaust gas treatment apparatus that has two electrode plates and a power source that applies a voltage to the electrode plates, and adsorbs particulate matter contained in exhaust gas that passes between the electrode plates,
The exhaust gas treatment apparatus has a front electrode and a rear electrode, and the front electrode applies two alternating electrode plates configured to pass exhaust gas therebetween, and an alternating current is applied to the electrode plate. Has an AC power supply
Two opposing electrode plates configured to allow the exhaust gas to pass between the latter electrode, an AC power source that applies an AC current to the electrode plate, a DC power source that applies a DC current to the electrode plate, A switch for switching between the AC power source and the DC power source;
AC current is applied to the front electrode, non-thermal equilibrium plasma is generated between the electrode plates of the front electrode, and the particulate matter is charged,
Under the first condition, a direct current is applied to the latter electrode, and a first control is performed to adsorb the particulate matter on the electrode plate of the latter electrode,
Under the second condition, an AC current is applied to the rear electrode, and non-thermal equilibrium plasma is generated between the electrode plates of the rear electrode to perform second control for oxidizing the particulate matter. Exhaust gas treatment device.
JP2011229498A 2011-10-19 2011-10-19 Exhaust gas processing device and control method thereof Pending JP2013087696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229498A JP2013087696A (en) 2011-10-19 2011-10-19 Exhaust gas processing device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229498A JP2013087696A (en) 2011-10-19 2011-10-19 Exhaust gas processing device and control method thereof

Publications (1)

Publication Number Publication Date
JP2013087696A true JP2013087696A (en) 2013-05-13

Family

ID=48531859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229498A Pending JP2013087696A (en) 2011-10-19 2011-10-19 Exhaust gas processing device and control method thereof

Country Status (1)

Country Link
JP (1) JP2013087696A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174609A1 (en) * 2013-04-24 2014-10-30 三井造船株式会社 Exhaust gas treatment device and method for controlling same
CN104437908A (en) * 2014-11-21 2015-03-25 大连海事大学 Method and device efficiently removing ship waste gas particles
CN104847452A (en) * 2015-05-14 2015-08-19 哈尔滨工业大学 Plasma and electrostatic adsorption coupled automobile emission purifier and purification method
WO2019230245A1 (en) * 2018-05-28 2019-12-05 パナソニックIpマネジメント株式会社 Electric dust collection device, ventilation apparatus, and air cleaner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174609A1 (en) * 2013-04-24 2014-10-30 三井造船株式会社 Exhaust gas treatment device and method for controlling same
CN104437908A (en) * 2014-11-21 2015-03-25 大连海事大学 Method and device efficiently removing ship waste gas particles
CN104847452A (en) * 2015-05-14 2015-08-19 哈尔滨工业大学 Plasma and electrostatic adsorption coupled automobile emission purifier and purification method
CN104847452B (en) * 2015-05-14 2017-11-03 哈尔滨工业大学 Automobile exhaust purifier and purification method that plasma is coupled with Electrostatic Absorption
WO2019230245A1 (en) * 2018-05-28 2019-12-05 パナソニックIpマネジメント株式会社 Electric dust collection device, ventilation apparatus, and air cleaner
JPWO2019230245A1 (en) * 2018-05-28 2021-07-15 パナソニックIpマネジメント株式会社 Electrostatic precipitator, ventilator and air purifier

Similar Documents

Publication Publication Date Title
WO2014174609A1 (en) Exhaust gas treatment device and method for controlling same
JP5693287B2 (en) Electric dust collector
JP3897798B2 (en) Exhaust gas purification method and exhaust gas purification device
WO2004013469A1 (en) Exhaust gas treating apparatus
WO2006028322A1 (en) Apparatus for purifying diesel exhaust gas with coated photocatalyst layer and electrode, and manufacturing method thereof
JP4873564B2 (en) Exhaust gas purification device
JP2013087696A (en) Exhaust gas processing device and control method thereof
JP2005320895A5 (en)
JP2003038933A (en) Discharge plasma generating apparatus
JP2005232972A (en) Exhaust emission control device
JP6242059B2 (en) Discharge plasma reactor
KR100848072B1 (en) Exhaust gas treatment device for regenerating a diesel particulate filter
JP2005240738A (en) Power source for plasma reactor, plasma reactor, exhaust emission control device and exhaust emission control method
JP2002213228A (en) Exhaust emission control device for internal combustion engine
JPH067904B2 (en) Exhaust purification device
JP2004293416A (en) Exhaust emission control method of internal combustion engine and its device
JP2002129947A (en) Exhaust emission purifying device for internal combustion engine
JP2018003605A (en) Plasma reactor
JP2005106022A (en) Exhaust emission control device
JP2005232971A (en) Exhaust emission control device
JP2006026483A (en) Exhaust emission control device
JP4258296B2 (en) Plasma reactor
JP3876843B2 (en) Exhaust gas purification device
JP2006029132A (en) Exhaust emission control device
JP2005036671A (en) Exhaust emission control device