JP2001046910A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine

Info

Publication number
JP2001046910A
JP2001046910A JP22203099A JP22203099A JP2001046910A JP 2001046910 A JP2001046910 A JP 2001046910A JP 22203099 A JP22203099 A JP 22203099A JP 22203099 A JP22203099 A JP 22203099A JP 2001046910 A JP2001046910 A JP 2001046910A
Authority
JP
Japan
Prior art keywords
exhaust gas
high voltage
discharge
discharge electrodes
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22203099A
Other languages
Japanese (ja)
Inventor
Hiroyuki Katsuta
浩幸 勝田
Miyao Arakawa
宮男 荒川
Nobuhiko Sugie
信彦 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP22203099A priority Critical patent/JP2001046910A/en
Publication of JP2001046910A publication Critical patent/JP2001046910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Electrostatic Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the electric power controlling method for a discharge type exhaust emission control device. SOLUTION: In this exhaust emission control device, the exhaust gas of an internal combustion engine is purified by passing to a flow passage formed between at least a pair of discharge electrodes and applying AC high voltage between the discharge electrodes. In the device, all of pulse of the AC high voltage are applied between the discharge electrodes in high loading where an exhaust gas flow rate is maximum. In middle/low loading where the exhaust gas flow rate is lower than that of high loading, the pulse of the AC high voltage is intermittently thinned out in accordance with the exhaust gas flow rate. In such a way, power supply is lowered in accordance with the exhaust gas flow rate without lowering the applied voltage (discharge capacity) between the discharge electrodes. In the case when the exhaust gas flow rate is low, not only the probability that the exhaust gas meets with the discharge but also the exhaust gas purifying efficiency are not changed so much even if the generating ratio of the discharge is lowered by thinning out the pulse of the AC high voltage since the flow velocity of the exhaust gas passing between the discharge electrodes is lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電エネルギで排
気ガスの浄化を促進する内燃機関の排気浄化装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, which purifies exhaust gas with discharge energy.

【0002】[0002]

【従来の技術】近年、放電エネルギを利用して排気ガス
を浄化する新たな排気ガス浄化技術が研究されている。
この技術は、例えば特開平5−59934号公報、特開
平6−10652号公報に記載されているように、内燃
機関の排気ガスを、少なくとも1対の放電電極間に形成
された流路に流し、該放電電極間に交流高電圧電源から
交流高電圧を印加して放電を発生させることで、排気ガ
スを浄化するようにしている。尚、特開平5−5993
4号公報では、交流高電圧電源について具体的な記載は
ないが、特開平6−10652号公報では、矩形波の交
流高電圧電源と正弦波の交流高電圧電源が開示されてい
る。
2. Description of the Related Art In recent years, a new exhaust gas purifying technique for purifying exhaust gas using discharge energy has been studied.
According to this technique, as described in, for example, JP-A-5-59934 and JP-A-6-10652, exhaust gas of an internal combustion engine is caused to flow through a flow path formed between at least one pair of discharge electrodes. The exhaust gas is purified by applying an AC high voltage from an AC high voltage power supply between the discharge electrodes to generate a discharge. Incidentally, Japanese Patent Application Laid-Open No. 5-5993
Japanese Patent Application Laid-Open No. 6-10652 discloses a rectangular high-voltage power supply and a sine-wave high-voltage power supply.

【0003】[0003]

【発明が解決しようとする課題】このような構成の排気
浄化装置を用いて排気ガスを効率良く浄化するには、放
電電極間に印加する交流高電圧のパルスを、放電が発生
しやすい電圧以上(例えば10kV以上)に素早く立ち
上げる必要がある。矩形波の交流高電圧電源は、周波数
が低くても、電圧波形の立ち上がりが瞬間的に起こるた
め、放電電極間の印加電圧を放電が発生しやすい電圧以
上に素早く立ち上げることができ、排気浄化効率を高め
ることができる。しかし、矩形波の交流高電圧電源で、
例えば10kV以上の高電圧の矩形波パルスを発生させ
るためには、非常に高価な高耐圧・高速スイッチが必要
となり、製品価格が非常に高価格になってしまい、実用
化は困難である。
In order to efficiently purify the exhaust gas by using the exhaust gas purifying apparatus having such a structure, it is necessary to apply an AC high voltage pulse applied between the discharge electrodes to a voltage higher than a voltage at which discharge is likely to occur. (For example, 10 kV or more). Even if the frequency of the rectangular high-voltage AC power supply is low, the voltage waveform rises instantaneously, so that the applied voltage between the discharge electrodes can be quickly raised to a voltage higher than the voltage at which discharge is likely to occur. Efficiency can be increased. However, with a square wave AC high voltage power supply,
For example, in order to generate a high-voltage rectangular wave pulse of 10 kV or more, an extremely expensive high-voltage / high-speed switch is required, and the product price becomes extremely high, and it is difficult to put it into practical use.

【0004】一方、正弦波の交流高電圧電源は、高電圧
トランスを用いて比較的安価・軽量に構成できる利点が
あり、自動車に搭載する場合に要求される低価格・軽量
の要求を満たすことができる。しかし、従来の正弦波の
交流高電圧電源は、供給電力を制御する面で問題があ
る。すなわち、交流高電圧電源の定格電力は、排気ガス
流量が最大となる高負荷・高回転時でも、排気ガス全体
を浄化できるように設定されるが、この定格電力を常時
供給し続けると、排気ガス流量が少なくなる中負荷・低
負荷時に、電力が供給過剰となり、電力を無駄に消費す
ることになる。従って、内燃機関の運転状態(排気ガス
流量)に応じて供給電力を変化させることが好ましい。
On the other hand, a sine-wave AC high-voltage power supply has the advantage of being relatively inexpensive and light-weight using a high-voltage transformer. Can be. However, the conventional sine-wave AC high-voltage power supply has a problem in controlling the supplied power. In other words, the rated power of the AC high-voltage power supply is set so that the entire exhaust gas can be purified even at a high load and a high speed where the exhaust gas flow rate is maximized. At medium load and low load when the gas flow rate is low, power is excessively supplied, and power is wasted. Therefore, it is preferable to change the supplied power according to the operating state of the internal combustion engine (exhaust gas flow rate).

【0005】一般に、正弦波の交流高電圧電源で供給電
力を制御する場合、印加電圧を変化させて供給電力を調
整したり、或は、正弦波の周波数を変化させて供給電力
を調整する方法が採られている。しかし、印加電圧を低
下させると、放電電極間で放電が発生しにくくなり、排
気ガスの浄化能力そのものが低下してしまう。従って、
浄化能力確保(印加電圧確保)の観点から電圧調整によ
る電力制御は採用できない。一方、正弦波の周波数を変
化させて供給電力を調整すると、高電圧トランスの効率
が低下する欠点がある。しかも、正弦波の周波数を低く
すると、電圧波形の立ち上がりが遅くなって、印加電圧
を放電が発生しやすい電圧以上に素早く立ち上げること
ができなくなり、排気浄化効率が低下するという欠点が
ある。
In general, when controlling the supply power with a sine-wave AC high-voltage power supply, a method of adjusting the supply power by changing the applied voltage, or adjusting the supply power by changing the frequency of the sine wave. Is adopted. However, when the applied voltage is reduced, it becomes difficult to generate a discharge between the discharge electrodes, and the purification performance of the exhaust gas itself is reduced. Therefore,
From the viewpoint of ensuring purification performance (securing applied voltage), power control by voltage adjustment cannot be adopted. On the other hand, when the supply power is adjusted by changing the frequency of the sine wave, there is a disadvantage that the efficiency of the high-voltage transformer decreases. In addition, when the frequency of the sine wave is reduced, the rise of the voltage waveform is delayed, so that the applied voltage cannot be quickly raised to a voltage higher than the voltage at which discharge is likely to occur, and the exhaust gas purification efficiency is reduced.

【0006】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、排気浄化効率を低下
させずに供給電力を制御でき、排気浄化効率の向上と消
費電力低減とを両立させることができる内燃機関の排気
浄化装置を提供することにある。
The present invention has been made in view of such circumstances, and accordingly, an object of the present invention is to control the supply power without lowering the exhaust purification efficiency, and to improve the exhaust purification efficiency and reduce the power consumption. An object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine that can achieve both.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関の排気浄化装置は、放
電電極間に印加する交流高電圧のパルスを間欠的に間引
いたり、間引かずに全パルスを印加することが可能であ
り、且つ、該交流高電圧のパルス間引き率を内燃機関の
運転状態に応じて電力制御手段によって変化させるよう
にしたものである。このように、放電電極間に印加する
交流高電圧のパルスを間欠的に間引くと、放電電極間の
印加電圧(放電能力)を低下させずに供給電力を低減で
きる。しかも、交流高電圧のパルスを間欠的に間引いて
も、放電電極間に印加するパルス波形は、全パルス印加
時と同じであるため、電圧波形の立ち上がりが遅くなら
ず、印加電圧を全パルス印加時と同じ電圧まで素早く立
ち上げることができ、全パルス印加時と同じ排気浄化効
率を得ることができる。従って、交流高電圧のパルス間
引き率を内燃機関の運転状態に応じて変化させれば、排
気浄化効率を低下させずに内燃機関の運転状態に応じて
供給電力を制御でき、排気浄化効率向上と消費電力低減
とを両立させることができる。
According to a first aspect of the present invention, there is provided an exhaust gas purifying apparatus for an internal combustion engine, comprising: intermittently thinning out alternating high voltage pulses applied between discharge electrodes; All pulses can be applied without thinning, and the pulse thinning rate of the AC high voltage is changed by the power control means according to the operating state of the internal combustion engine. As described above, when the AC high voltage pulse applied between the discharge electrodes is intermittently thinned out, the supplied power can be reduced without lowering the applied voltage (discharge capability) between the discharge electrodes. Moreover, even if the AC high voltage pulse is intermittently thinned out, the pulse waveform applied between the discharge electrodes is the same as when all the pulses are applied, so that the rising of the voltage waveform does not become slow and the applied voltage is applied to all the pulses. It is possible to quickly start up to the same voltage as at the time, and to obtain the same exhaust gas purification efficiency as at the time of applying all the pulses. Therefore, if the pulse thinning rate of the AC high voltage is changed according to the operation state of the internal combustion engine, the supply power can be controlled according to the operation state of the internal combustion engine without lowering the exhaust purification efficiency, and the exhaust purification efficiency can be improved. Power consumption can be reduced at the same time.

【0008】この場合、請求項2のように、排気ガス流
量が少なくなるほど、交流高電圧のパルス間引き率を大
きくするように制御すると良い。交流高電圧のパルス間
引き率を大きくすると、放電の発生率が低下するが、排
気ガス流量が少ないときは、放電電極間を流れる排気ガ
スの流速が低下するため、交流高電圧のパルスを間引い
て放電の発生率が低下しても、排気ガスが放電に遭遇す
る確率、ひいては排気浄化効率はそれほど変化しない。
この点を考慮して、排気ガス流量が少なくなるほど、交
流高電圧のパルス間引き率を大きくすれば、排気ガスが
放電に遭遇する確率をほぼ一定に保ったまま、排気ガス
流量に応じて供給電力を必要最小限に制御することがで
きる。
In this case, it is preferable to control the pulse thinning rate of the AC high voltage to increase as the exhaust gas flow rate decreases. Increasing the AC high voltage pulse thinning rate decreases the discharge occurrence rate, but when the exhaust gas flow rate is low, the flow rate of the exhaust gas flowing between the discharge electrodes decreases, so the AC high voltage pulse is thinned out. Even if the rate of occurrence of discharge decreases, the probability that exhaust gas encounters discharge, and thus the exhaust gas purification efficiency, does not change much.
In consideration of this point, if the pulse thinning rate of the AC high voltage is increased as the flow rate of the exhaust gas decreases, the supply power according to the flow rate of the exhaust gas is maintained while the probability that the exhaust gas encounters the discharge is kept almost constant. Can be controlled to the minimum necessary.

【0009】本発明は、矩形波の電圧パルスを放電電極
間に印加する排気浄化装置にも適用可能であるが、請求
項3のように、放電電極間に正弦波のパルスを印加する
ようにした方が良い。正弦波の交流高電圧電源は、高電
圧トランスを用いて比較的低価格・軽量に構成できる利
点があり、自動車に搭載する場合に要求される低価格・
軽量の条件を満たすことができる。
The present invention can be applied to an exhaust gas purifying apparatus for applying a rectangular wave voltage pulse between discharge electrodes. However, as in claim 3, a sine wave pulse is applied between discharge electrodes. It is better to do. A sine wave AC high-voltage power supply has the advantage of being relatively inexpensive and lightweight using a high-voltage transformer.
Can meet light weight requirements.

【0010】[0010]

【発明の実施の形態】以下、本発明をガソリンエンジン
に適用した一実施形態を図面に基づいて説明する。図2
に示すように、内燃機関(エンジン)の排気管11の途
中に排気浄化装置12が設けられている。この排気浄化
装置12は、複数枚の放電電極13,14を排気ガスの
流れに沿って平行に配置し、放電電極13,14間に
は、多数の誘電体粒15が収容され、この誘電体粒15
の隙間を排気ガスが通過するようになっている。この誘
電体粒15の表面には、排気ガスの浄化反応を促進する
触媒がコーティングされている。尚、放電電極13,1
4間に誘電体粒15を収容せずに空間としても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a gasoline engine will be described below with reference to the drawings. FIG.
As shown in FIG. 1, an exhaust purification device 12 is provided in the exhaust pipe 11 of an internal combustion engine (engine). In the exhaust gas purification apparatus 12, a plurality of discharge electrodes 13 and 14 are arranged in parallel along the flow of exhaust gas, and a large number of dielectric particles 15 are accommodated between the discharge electrodes 13 and 14. Grain 15
Exhaust gas passes through the gap. The surface of the dielectric particles 15 is coated with a catalyst that promotes a purification reaction of exhaust gas. The discharge electrodes 13, 1
The space may be formed without accommodating the dielectric particles 15 between the four.

【0011】対向する放電電極13,14間には、交流
高電圧発生装置16で発生した高周波数の交流高電圧が
印加され、誘電体粒15間で放電が発生する。これによ
り、誘電体粒15の隙間を流れる排気ガスが放電場に晒
されて、その放電エネルギと誘電体粒15の表面の触媒
とによって排気ガス中のNOx、CO、HC等の浄化反
応が促進される。尚、放電電極13,14間に誘電体粒
15を収容しない構成とした場合には、放電電極13,
14間で発生する放電によって排気ガス中のNOx、C
O、HC等の浄化反応が促進される。
A high frequency AC high voltage generated by an AC high voltage generator 16 is applied between the opposed discharge electrodes 13 and 14, and a discharge occurs between the dielectric particles 15. As a result, the exhaust gas flowing through the gap between the dielectric particles 15 is exposed to the discharge field, and the discharge energy and the catalyst on the surface of the dielectric particles 15 accelerate the purification reaction of NOx, CO, HC, etc. in the exhaust gas. Is done. If the dielectric particles 15 are not accommodated between the discharge electrodes 13 and 14, the discharge electrodes 13 and
NOx, C in the exhaust gas by the discharge generated between
The purification reaction of O, HC, etc. is promoted.

【0012】次に、交流高電圧発生装置16の構成を図
1に基づいて説明する。この交流高電圧発生装置16
は、車両に搭載された電源17から供給される12Vの
直流電圧をインバータ回路18によって高周波数(例え
ば10〜20kHz)の交流高電圧(例えば10kV)
に変換し、放電電極13,14間に印加する。本実施形
態のインバータ回路18は、例えばセンタタップトラン
ス型の構成であり、高電圧トランス19の一次側のセン
タタップに電源17のプラス端子側の電源線を接続し、
該一次巻線の両端をそれぞれMOSFET等の半導体ス
イッチング素子A,Bを介してグランド側に接続してい
る。各スイッチング素子A,Bのオン/オフは、制御部
20(電力制御手段)によって制御される。
Next, the configuration of the AC high voltage generator 16 will be described with reference to FIG. This AC high voltage generator 16
The inverter circuit 18 converts a 12 V DC voltage supplied from a power supply 17 mounted on a vehicle to a high frequency (for example, 10 to 20 kHz) AC high voltage (for example, 10 kV).
And applied between the discharge electrodes 13 and 14. The inverter circuit 18 of the present embodiment is, for example, of a center tap transformer type, in which a power line on the positive terminal side of the power supply 17 is connected to a center tap on the primary side of the high voltage transformer 19,
Both ends of the primary winding are respectively connected to the ground via semiconductor switching elements A and B such as MOSFETs. ON / OFF of each of the switching elements A and B is controlled by the control unit 20 (power control unit).

【0013】制御部20は、吸入空気量、エンジン回転
数等から排気ガス流量を判定し、排気ガス流量が最大と
なる高負荷時には、図3(a)に示すように、交流高電
圧の全パルスを出力する。この全パルス出力時には、交
流高電圧の周波数に同期して2つのスイッチング素子
A,Bを交互にオンさせることで、高電圧トランス19
の二次側から交流高電圧を連続して出力する。
The control unit 20 determines the exhaust gas flow rate from the intake air amount, the engine speed, and the like. When the exhaust gas flow rate is maximized and the load is high, as shown in FIG. Output pulse. At the time of outputting all the pulses, the two switching elements A and B are alternately turned on in synchronization with the frequency of the AC high voltage, so that the high-voltage transformer 19 is turned on.
AC high voltage is continuously output from the secondary side of.

【0014】制御部20は、高負荷時より排気ガス流量
が低下する中・低負荷時には、図3(b),(c)に示
すように、放電電極13,14間に印加する交流高電圧
のパルスを間欠的に間引く。パルスを間引く際には、2
つのスイッチング素子A,Bを共にオフ状態に維持する
ことで、高電圧トランス19の一次電流を遮断し、高電
圧トランス19の二次側にパルスを発生させない。
The controller 20 controls the AC high voltage applied between the discharge electrodes 13 and 14 at medium and low loads when the exhaust gas flow rate is lower than at high loads, as shown in FIGS. 3 (b) and 3 (c). Pulse is intermittently thinned out. When thinning out pulses, 2
By keeping both of the switching elements A and B in the off state, the primary current of the high-voltage transformer 19 is cut off, and no pulse is generated on the secondary side of the high-voltage transformer 19.

【0015】この場合、制御部20は、排気ガス流量が
少なくなるほど、交流高電圧のパルス間引き率を大きく
するように(つまり出力するパルス数を少なくするよう
に)制御する。排気ガス流量は、中負荷時よりも低負荷
時の方が少なくなるため、パルス間引き率は、中負荷時
よりも低負荷時の方が大きくなり、出力するパルス数
は、中負荷時よりも低負荷時の方が少なくなる。パルス
を間引く場合、図3(a)のに示すように、均等にパ
ルスを間引いても良いが、に示すように、出力するパ
ルスと間引くパルスとをそれぞれ所定数ずつ連続させる
ようにしても良い。これは、排気ガスの流速と比較して
パルスの周波数(放電の発生周波数)が遥かに高いた
め、排気ガスが放電に遭遇する確率がパルスの間引き方
の影響を受けないためである。
In this case, the control unit 20 controls the pulse thinning rate of the AC high voltage to increase (that is, to reduce the number of output pulses) as the exhaust gas flow rate decreases. Since the exhaust gas flow rate is lower at low load than at medium load, the pulse thinning rate is higher at low load than at medium load, and the number of output pulses is higher than at medium load. Less at low load. In the case of thinning out the pulses, the pulses may be evenly thinned out as shown in FIG. 3A, but as shown in FIG. 3A, the output pulses and the thinned out pulses may be continued by a predetermined number, respectively. . This is because the pulse frequency (discharge generation frequency) is much higher than the flow rate of the exhaust gas, so that the probability of the exhaust gas encountering the discharge is not affected by the pulse thinning method.

【0016】また、交流高電圧のパルス間引き率を大き
くすると、放電の発生率が低下するが、排気ガス流量が
少ないときは、放電電極13,14間を流れる排気ガス
の流速が低下するため、交流高電圧のパルスを間引いて
放電の発生率が低下しても、排気ガスが放電に遭遇する
確率、ひいては排気浄化効率はそれほど変化しない。こ
の点を考慮して、排気ガス流量が少なくなるほど、交流
高電圧のパルス間引き率を大きくすれば、排気ガスが放
電に遭遇する確率をほぼ一定に保ったまま、排気ガス流
量に応じて供給電力を必要最小限に制御することができ
る。
When the pulse thinning rate of the AC high voltage is increased, the rate of occurrence of discharge is reduced. However, when the flow rate of exhaust gas is small, the flow rate of exhaust gas flowing between the discharge electrodes 13 and 14 is reduced. Even if the generation rate of discharge is reduced by thinning out the pulses of the AC high voltage, the probability that the exhaust gas encounters the discharge, and consequently the exhaust purification efficiency does not change so much. In consideration of this point, if the pulse thinning rate of the AC high voltage is increased as the flow rate of the exhaust gas decreases, the supply power according to the flow rate of the exhaust gas is maintained while the probability that the exhaust gas encounters the discharge is kept almost constant. Can be controlled to the minimum necessary.

【0017】以上説明した本実施形態では、排気ガス流
量が高負荷時よりも少なくなる中・低負荷時に、放電電
極13,14間に印加する交流高電圧のパルスを間欠的
に間引くようにしたので、放電電極13,14間の印加
電圧(放電能力)を低下させずに、排気ガス流量に応じ
て供給電力を低減できる。しかも、交流高電圧のパルス
を間欠的に間引いても、放電電極13,14間に印加す
るパルス波形は、全パルス印加時と同じであるため、電
圧波形の立ち上がりが遅くならず、印加電圧を全パルス
印加時と同じ電圧まで素早く立ち上げることができ、全
パルス印加時と同じ排気浄化効率を得ることができる。
従って、本実施形態のように、交流高電圧のパルス間引
き率を排気ガス流量に応じて変化させれば、排気浄化効
率を低下させずに排気ガス流量に応じて供給電力を必要
最小限に制御でき、排気浄化効率向上と消費電力低減と
を両立させることができる。
In the above-described embodiment, the pulse of the AC high voltage applied between the discharge electrodes 13 and 14 is intermittently thinned when the exhaust gas flow rate is lower or medium load than when the load is high. Therefore, the supply power can be reduced according to the exhaust gas flow rate without lowering the applied voltage (discharge capability) between the discharge electrodes 13 and 14. Moreover, even if the AC high voltage pulse is intermittently thinned out, the pulse waveform applied between the discharge electrodes 13 and 14 is the same as when all the pulses are applied. It is possible to quickly start up to the same voltage as when all pulses are applied, and to obtain the same exhaust gas purification efficiency as when all pulses are applied.
Therefore, if the pulse thinning rate of the AC high voltage is changed according to the exhaust gas flow rate as in the present embodiment, the supply power can be controlled to a necessary minimum according to the exhaust gas flow rate without lowering the exhaust gas purification efficiency. As a result, both improvement in exhaust gas purification efficiency and reduction in power consumption can be achieved.

【0018】しかも、本実施形態の交流高電圧発生装置
16は、正弦波の交流高電圧を発生する構成であるの
で、高電圧トランス19を用いて比較的低価格・軽量に
構成することができ、自動車に搭載する場合に要求され
る低価格・軽量の条件を満たすことができる。尚、交流
高電圧発生装置16は図1に示すようなセンタタップト
ランス型の構成のものに限定されず、他の方式のインバ
ータ回路を用いて良いことは言うまでもない。
Moreover, since the AC high voltage generator 16 of the present embodiment is configured to generate a sine wave AC high voltage, it can be made relatively inexpensive and lightweight by using the high voltage transformer 19. Therefore, the low-priced and lightweight conditions required for mounting on an automobile can be satisfied. The AC high voltage generator 16 is not limited to the center tap transformer type as shown in FIG. 1, and it goes without saying that another type of inverter circuit may be used.

【0019】更に、本発明は、矩形波の交流高電圧を発
生する交流高電圧発生装置を用いても良く、この場合で
も、本発明の所期の目的(排気浄化効率向上と消費電力
低減との両立)を達成することができる。
Further, the present invention may use an AC high voltage generator for generating a square wave AC high voltage. Even in this case, the intended purpose of the present invention (to improve exhaust gas purification efficiency and reduce power consumption). Can be achieved).

【0020】また、本実施形態では、交流高電圧のパル
ス間引き率を排気ガス流量に応じて変化させるようにし
たが、各種センサで検出される吸入空気量、エンジン回
転数、スロットル開度、吸気管圧力等のエンジン運転状
態パラメータのいずれか1つ以上を用いて交流高電圧の
パルス間引き率を制御するようにしても良い。これらの
エンジン運転状態パラメータは、いずれも排気ガス流量
に影響を及ぼすパラメータであるため、これらのパラメ
ータを用いてパルス間引き率を制御すれば、排気ガス流
量を用いてパルス間引き率を制御するのとほぼ同じ効果
が得られる。
In this embodiment, the pulse thinning rate of the AC high voltage is changed in accordance with the flow rate of the exhaust gas. However, the intake air amount detected by various sensors, the engine speed, the throttle opening, the intake The pulse thinning rate of the AC high voltage may be controlled using at least one of the engine operating state parameters such as the pipe pressure. Since all of these engine operating state parameters are parameters that affect the exhaust gas flow rate, controlling the pulse thinning rate using these parameters means controlling the pulse thinning rate using the exhaust gas flow rate. Almost the same effects can be obtained.

【0021】その他、本発明は、放電電極13,14の
枚数や配置形態、流路の構造等を変更したり、ディーゼ
ルエンジンの排気浄化装置に適用しても良い等、種々変
更して実施できる。
In addition, the present invention can be implemented with various changes, such as changing the number and arrangement of the discharge electrodes 13 and 14, the structure of the flow path, and the like, and applying the present invention to an exhaust gas purification device for a diesel engine. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す交流高電圧発生装置
の構成を示す回路図である。
FIG. 1 is a circuit diagram illustrating a configuration of an AC high voltage generator according to an embodiment of the present invention.

【図2】排気浄化装置の機械的構成を示す縦断面図であ
る。
FIG. 2 is a longitudinal sectional view showing a mechanical configuration of the exhaust gas purification device.

【図3】(a)は高負荷時の交流高電圧発生装置の出力
電圧波形を示すタイムチャート、(b)の,は中負
荷時の交流高電圧発生装置の出力電圧波形の異なる例を
示すタイムチャート、(c)は低負荷時の交流高電圧発
生装置の出力電圧波形を示すタイムチャートである。
3A is a time chart showing an output voltage waveform of the AC high voltage generator under a high load, and FIG. 3B shows a different example of an output voltage waveform of the AC high voltage generator under a medium load. FIG. 3C is a time chart showing an output voltage waveform of the AC high voltage generator at a low load.

【符号の説明】[Explanation of symbols]

11…排気管、13,14…放電電極、15…誘電体
粒、16…交流高電圧発生装置、17…電源、18…イ
ンバータ回路、19…高電圧トランス、20…制御部
(電圧制御手段)、A,B…スイッチング素子。
DESCRIPTION OF SYMBOLS 11 ... Exhaust pipe, 13, 14 ... Discharge electrode, 15 ... Dielectric particles, 16 ... AC high voltage generator, 17 ... Power supply, 18 ... Inverter circuit, 19 ... High voltage transformer, 20 ... Control part (voltage control means) , A, B ... switching elements.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B03C 3/38 B01D 53/34 ZABZ F01N 3/08 B03C 3/14 C (72)発明者 杉江 信彦 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 3G091 AA02 AA17 AA18 AB14 BA14 BA15 BA19 DA01 DA02 DA03 DA04 DB10 EA01 EA05 EA06 EA07 FA12 FA13 FA14 4D002 AA08 AA12 AA34 AC10 BA05 BA06 BA07 CA07 CA20 DA70 GA01 GA03 GB01 GB20 4D054 AA03 BA01 BB05 BC02 BC13 BC14 BC25 CA03 CA20 CB10──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B03C 3/38 B01D 53/34 ZABZ F01N 3/08 B03C 3/14 C (72) Inventor Nobuhiko Sugie Aichi 1-1-1 Showa-cho, Kariya F-term in Denso Corporation (reference) 3G091 AA02 AA17 AA18 AB14 BA14 BA15 BA19 DA01 DA02 DA03 DA04 DB10 EA01 EA05 EA06 EA07 FA12 FA13 FA14 4D002 AA08 AA12 AA34 AC10 BA05 BA07 CA07 GA03 GB01 GB20 4D054 AA03 BA01 BB05 BC02 BC13 BC14 BC25 CA03 CA20 CB10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気ガスを、少なくとも1対
の放電電極間に形成された流路に流し、該放電電極間に
交流高電圧を印加して放電を発生させることで、排気ガ
スを浄化する排気浄化装置において、 前記放電電極間に印加する交流高電圧のパルスを間欠的
に間引いたり、間引かずに全パルスを印加することが可
能であり、且つ、該交流高電圧のパルス間引き率を内燃
機関の運転状態に応じて変化させる電力制御手段を備え
ていることを特徴とする内燃機関の排気浄化装置。
An exhaust gas of an internal combustion engine is caused to flow through a flow path formed between at least one pair of discharge electrodes, and a discharge is generated by applying an AC high voltage between the discharge electrodes, so that the exhaust gas is discharged. In the exhaust gas purification apparatus for purifying, it is possible to intermittently thin out pulses of the AC high voltage applied between the discharge electrodes, or to apply all the pulses without thinning out, and to thin out the pulses of the AC high voltage. An exhaust gas purification device for an internal combustion engine, comprising: power control means for changing a rate according to an operation state of the internal combustion engine.
【請求項2】 前記電力制御手段は、排気ガス流量が少
なくなるほど、前記交流高電圧のパルス間引き率を大き
くするように制御することを特徴とする請求項1に記載
の内燃機関の排気浄化装置。
2. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said power control means controls the pulse thinning rate of said AC high voltage to increase as the exhaust gas flow rate decreases. .
【請求項3】 前記放電電極間に印加する交流高電圧の
パルスは、正弦波のパルスであることを特徴とする請求
項1又は2に記載の内燃機関の排気浄化装置。
3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the AC high voltage pulse applied between the discharge electrodes is a sine wave pulse.
JP22203099A 1999-08-05 1999-08-05 Exhaust emission control device of internal combustion engine Pending JP2001046910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22203099A JP2001046910A (en) 1999-08-05 1999-08-05 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22203099A JP2001046910A (en) 1999-08-05 1999-08-05 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001046910A true JP2001046910A (en) 2001-02-20

Family

ID=16775997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22203099A Pending JP2001046910A (en) 1999-08-05 1999-08-05 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001046910A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267959A (en) * 2003-03-11 2004-09-30 Nishimatsu Constr Co Ltd Method and apparatus for treating exhaust gas
JP2007023861A (en) * 2005-07-14 2007-02-01 Honda Motor Co Ltd Exhaust emission control device
JP2010162435A (en) * 2009-01-13 2010-07-29 Japan Ae Power Systems Corp Pulse discharge method for exhaust gas treatment, and apparatus therefor
JP2015047528A (en) * 2013-08-30 2015-03-16 住友金属鉱山エンジニアリング株式会社 Power controller for electric dust collector and method
JP2015203384A (en) * 2014-04-15 2015-11-16 トヨタ自動車株式会社 Oil removing device
JP2016109039A (en) * 2014-12-05 2016-06-20 トヨタ紡織株式会社 Oil separator
JP2019179622A (en) * 2018-03-30 2019-10-17 アマノ株式会社 Discharge electrode and dust collector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267959A (en) * 2003-03-11 2004-09-30 Nishimatsu Constr Co Ltd Method and apparatus for treating exhaust gas
JP4553555B2 (en) * 2003-03-11 2010-09-29 西松建設株式会社 Exhaust gas treatment method and exhaust gas treatment apparatus
JP2007023861A (en) * 2005-07-14 2007-02-01 Honda Motor Co Ltd Exhaust emission control device
US7464538B2 (en) 2005-07-14 2008-12-16 Honda Motor Co., Ltd. Exhaust gas purifying apparatus
JP4651470B2 (en) * 2005-07-14 2011-03-16 本田技研工業株式会社 Exhaust gas purification device
DE102006032722B4 (en) * 2005-07-14 2013-08-08 Honda Motor Co., Ltd. exhaust gas purification device
JP2010162435A (en) * 2009-01-13 2010-07-29 Japan Ae Power Systems Corp Pulse discharge method for exhaust gas treatment, and apparatus therefor
JP2015047528A (en) * 2013-08-30 2015-03-16 住友金属鉱山エンジニアリング株式会社 Power controller for electric dust collector and method
JP2015203384A (en) * 2014-04-15 2015-11-16 トヨタ自動車株式会社 Oil removing device
JP2016109039A (en) * 2014-12-05 2016-06-20 トヨタ紡織株式会社 Oil separator
JP2019179622A (en) * 2018-03-30 2019-10-17 アマノ株式会社 Discharge electrode and dust collector
JP6994420B2 (en) 2018-03-30 2022-01-14 アマノ株式会社 Discharge electrode and dust collector

Similar Documents

Publication Publication Date Title
US5433832A (en) Exhaust treatment system and method
JP4074997B2 (en) Exhaust gas purification device
JP2006063973A (en) Engine ignition system
CA2364524A1 (en) Ignition system for an internal combustion engine
KR20030075472A (en) Plasma reactor and method of manufacturing the same and apparatus for decreasing exhaust gas using the same
US7464538B2 (en) Exhaust gas purifying apparatus
JP2001046910A (en) Exhaust emission control device of internal combustion engine
JP2020105990A (en) Exhaust system
JP2017115637A (en) Discharge control device, gas supply device and discharge control method
JP2001193441A (en) Exhaust emission control device for internal combustion engine
JP2001295634A (en) Exhaust emission control device
CN109869216B (en) Emission control system with position controlled induction heating and method of use thereof
JP2005240738A (en) Power source for plasma reactor, plasma reactor, exhaust emission control device and exhaust emission control method
JPH11128674A (en) Electric discharge exhaust gas cleaning device of internal combustion engine
JP4269436B2 (en) Exhaust gas purification device for internal combustion engine
JP2002129947A (en) Exhaust emission purifying device for internal combustion engine
JP2004343899A (en) Power supply device for generating plasma and exhaust gas purification system
JPS60178967A (en) Ignition device for internal-combustion engine
WO2000050746A1 (en) Vehicle power supply system
WO2009119845A1 (en) Exhaust gas purification apparatus
JP2002357119A (en) Highly efficient gas processing system using electric discharge
JP2003275541A (en) Plasma device and control method therefor
JPH06124790A (en) High pressure electric discharge lamp lighting device and electric discharge lamp lighting device
JP2003278533A (en) Exhaust emission control device
JP2004289886A (en) Pulse power supply unit