WO2009119192A1 - Cemented lens array, cemented lens and method for producing cemented lens array - Google Patents

Cemented lens array, cemented lens and method for producing cemented lens array Download PDF

Info

Publication number
WO2009119192A1
WO2009119192A1 PCT/JP2009/052766 JP2009052766W WO2009119192A1 WO 2009119192 A1 WO2009119192 A1 WO 2009119192A1 JP 2009052766 W JP2009052766 W JP 2009052766W WO 2009119192 A1 WO2009119192 A1 WO 2009119192A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens array
array
lens
optical
cemented lens
Prior art date
Application number
PCT/JP2009/052766
Other languages
French (fr)
Japanese (ja)
Inventor
和道 谷
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2009119192A1 publication Critical patent/WO2009119192A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/022Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue

Definitions

  • the present invention relates to a cemented lens array joined by stacking lens arrays, a cemented lens formed from the cemented lens array, and a method of manufacturing the cemented lens array.
  • a cemented lens array obtained by laminating and cementing a plurality of lens arrays having a plurality of optical curved surfaces is known (see Patent Document 1).
  • a plurality of key protrusions and convex portions, and a plurality of key grooves and concave portions that fit into the plurality of key protrusions and convex portions are arranged on a pair of lens arrays that are arranged to face the upper side and the lower side. are provided to achieve positioning between the lens arrays (see above).
  • the lens array is joined and positioned by providing and fitting a plurality of concave and convex portions, for example, errors in the concave and convex portions may be stacked, resulting in a larger error as a whole.
  • the shape of the uneven portion for positioning becomes complicated, there is a risk that manufacturing costs may be increased.
  • the shape of the uneven portion becomes complicated and the ratio of the uneven portion in the lens array increases, the integration density of the lens array becomes low.
  • Another problem is that, particularly when the cemented lens array is for a small lens, the portion where the plurality of lens arrays are joined and the optical surface are relatively close to each other, so an adhesive is used for joining. In such a case, the adhesive may diffuse into an optical surface such as a lens surface portion of the lens array, thereby degrading the optical performance.
  • the lens array and the other optical array can be accurately positioned in the optical axis direction, and the portion where the lens array and the other optical array are joined is close to the optical surface of the lens array.
  • a cemented lens array according to the present invention is a cemented lens array formed by stacking a plurality of optical arrays including a lens array, and each of a plurality of lens surfaces constituting the lens array. Each of which is in contact with another optical array adjacent to the lens array with respect to the optical axis direction with an adhesive interposed between the lens array and the other optical array.
  • the abutting flat surface portion for relative positioning, and at least one of the lens array and the other optical array is formed in a region sandwiched between each abutting flat surface portion and each lens surface.
  • an adhesive reservoir portion that accumulates an adhesive that oozes out as a surplus from the abutting flat surface portion by positioning in the optical axis direction.
  • the adhesive reservoir portion stores the adhesive that oozes out as a surplus during positioning, thereby suppressing a decrease in optical performance due to the diffusion of the adhesive, and the lens surface of the lens array. It is possible to increase the integration density.
  • each abutting flat surface portion is provided between each peripheral portion of the plurality of lens surfaces of the lens array and each contact portion of the other optical array that contacts the peripheral portion.
  • a concave-convex fitting that is formed as a pair of convex portions and concave portions on the outer side of the lens so as to allow the lens array and the other optical array to be fitted together and to perform relative positioning in the direction perpendicular to the optical axis by the fitting. It further comprises a joint part.
  • the uneven fitting portion is formed including the abutting flat surface portion and a side surface extending from an outer edge portion of the abutting flat surface portion.
  • one of the concave portion or the convex portion of the concave-convex fitting portion is formed by forming the convex portion or the concave portion by the abutting flat portion and the side surface corresponding to the outer edge portion.
  • the plurality of optical arrays include a first lens array corresponding to the lens array and a second lens array corresponding to the other optical array, and the abutting plane.
  • the concave / convex fitting portion perform relative positioning with respect to the plurality of lens surfaces of the first lens array and the plurality of lens surfaces of the second lens array, respectively.
  • positioning of the optical surface of the optical curved surface and the distance between the curved surfaces between the plurality of lens arrays can be performed with high accuracy.
  • the plurality of optical arrays include a diaphragm array having a plurality of diaphragms corresponding to the plurality of lens surfaces.
  • the uneven fitting portion has a cylindrical shape.
  • the concave / convex fitting portion is formed in a tapered shape.
  • relative positioning in the direction perpendicular to the optical axis can be performed by bringing a pair of convex portions and tapered surfaces formed in the concave portions into contact with each other.
  • the concave / convex fitting portion is provided with a predetermined play between a pair of convex portions and concave portions.
  • the adjustable range in the alignment operation can be increased, and for example, when the uneven fitting portion is tapered
  • the other optical array can be reliably brought into contact with the abutting flat surface portion.
  • the adhesive reservoir is formed by a stepped groove having a height of 0.03 mm to 0.05 mm and a width of 0.1 mm to 0.2 mm. It is characterized by that.
  • each adhesive reservoir has a size sufficient to reliably store the adhesive without overflowing, and can suppress a decrease in optical performance due to the diffusion of the adhesive, and the adhesive reservoir. Therefore, the size of the cemented lens array, that is, the size of the individual cemented lenses can be kept within a range that does not become too large.
  • the width of the bonding portion of the abutting flat surface portion is 1/6 or more and 1/4 or less with respect to the width of one lens unit.
  • the adhesive force at the bonding portion of each abutting flat surface portion can be maintained sufficiently, and the size of the cemented lens array, that is, the size of the individual cemented lenses can be kept within a range that does not become too large. To do.
  • the cemented lens according to the present invention is formed by cutting out from any one of the above-described cemented lens arrays, and is formed by the lens surface of the lens array and a peripheral portion of the lens surface. It is characterized by comprising a lens part and an optical element bonded by an adhesive adjacent to the lens part in the other optical array.
  • the cemented lens is formed from any one of the above-described cemented lens arrays, the positioning of the optical surface of the optical curved surface and the distance between the curved surfaces of each optical element such as a lens surface is highly accurate. Moreover, the deterioration of the optical performance due to the diffusion of the adhesive is also suppressed.
  • a method for manufacturing a cemented lens array according to the present invention is a method for manufacturing a cemented lens array formed by stacking a plurality of optical arrays including a lens array, and constitutes the lens array.
  • a positioning step including a first positioning step of performing relative positioning in the optical axis direction between the lens array and the other optical array by an abutting flat surface portion that abuts against a contact portion of the other optical array;
  • the adhesive applied between the lens array and the other optical array is cured to bond the positioned lens array and the other optical array.
  • a bonding step, and in the positioning step, the adhesive that oozes out as a surplus from the abutting plane portion is the abutting plane portion and the lens surface in at least one of the lens array and the other optical array. It is stored in the adhesive reservoir part formed in the area
  • the positioning step is performed on the outer side from the abutting plane portion between each peripheral portion of the plurality of lens surfaces of the lens array and each contact portion of the other optical array.
  • An optical axis perpendicular direction of the lens array and the other optical array is formed by a concave / convex fitting portion that is formed as a pair of convex portions and concave portions, respectively, and enables the lens array and the other optical array to be fitted to each other. It further has the 2nd positioning process which carries out relative positioning about.
  • the first positioning step relative positioning in the optical axis direction between the lens array and the other optical array is performed by the abutting flat surface portion.
  • a plurality of uneven fitting portions As a result, the lens array and the other optical array are fitted together, and relative positioning in the direction perpendicular to the optical axis is performed.
  • the positioning of the optical surface of the optical curved surface and the distance between the curved surfaces of each optical array, such as a lens array is highly accurate while having a relatively simple structure using both concave and convex fitting and flat contact. Can be done.
  • (A)-(c) is a figure explaining the cemented lens array which concerns on 1st Embodiment. It is a perspective view which shows the optical array which comprises a cemented lens array.
  • (A), (b) is a figure explaining the structure of a cemented lens.
  • (A)-(d) is sectional drawing for demonstrating the manufacturing method of a junction lens array. It is sectional drawing which shows the cemented lens array which concerns on 2nd Embodiment.
  • (A), (b) is a top view which shows the cemented lens array which concerns on 3rd Embodiment.
  • (A)-(d) is the elements on larger scale which show the cemented lens array which concerns on 4th Embodiment.
  • FIGS. 1A to 1C are views for explaining the cemented lens array 10 according to the first embodiment and the cemented lens 10a cut out from the cemented lens array 10.
  • FIG. 1A is a cross-sectional view of the cemented lens array 10
  • FIGS. 1B and 1C are a cross-sectional view and a perspective view illustrating a state in which the cemented lens 10 a is cut out from the cemented lens array 10. .
  • the cemented lens array 10 has a three-layer structure in which an optical array including a first lens array 1, a second lens array 2, and a diaphragm array 3 is laminated.
  • the arrays 1, 2, and 3 are bonded to each other by an ultraviolet curable resin or the like.
  • the lens arrays 1 and 2 are each composed of a large number of lens elements LP1 and LP2, and the aperture array 3 is composed of a large number of aperture elements DP.
  • the lens elements LP1, the lens elements LP2, and the diaphragm elements DP are all connected by a peripheral portion SS.
  • the cutting margin CO is a portion that is scraped during a cutting operation for cutting out the cemented lens 10 a from the cemented lens array 10.
  • various methods can be considered as a cutting method. For example, it is possible to perform cutting using an end mill tool. In this case, the width of the end mill tool to be used is the width of the cutting margin CO. As shown in FIGS.
  • the cemented lens 10a is cut out in a cylindrical shape with the cutting line CT that is both ends of the cutting margin CO as a boundary portion, as shown in FIGS. 1B and 1C. .
  • the cut-out cemented lens 10a has a three-layer structure in which a first lens portion 1a, a second lens portion 2a, and a diaphragm portion 3a corresponding to each of the arrays 1, 2, and 3 of the cemented lens array 10 are stacked.
  • the lens unit includes a pair of lens elements LP1 and LP2 and a diaphragm element DP.
  • the cemented lens 10a is used as an optical component incorporated in an imaging device of a mobile phone or a camera.
  • FIG. 2 is a perspective view showing the first lens array 1, the second lens array 2, and the aperture array 3 before being stacked.
  • optical elements such as lens elements LP1 are arranged in a matrix at positions corresponding to each other on each plane.
  • FIGS 3A and 3B are diagrams for explaining in detail the structure of the cemented lens 10a cut out from the cemented lens array 10, and FIG. 3A is a cross-sectional view of the cemented lens 10a.
  • FIG. 3B is a plan view of the cemented lens 10a.
  • the cemented lens 10a is composed of the first lens portion 1a composed of a transparent resin that transmits light, the second lens portion 2a that is also composed of a transparent resin, and a black resin that blocks light. It has a three-layer structure in which the constricted diaphragm portion 3a is laminated.
  • the first lens portion 1a includes an abutting flat surface portion CLa and a side surface portion CPa in addition to the lens element LP1 which is a main optical element.
  • the abutting flat surface portion CLa is a flat surface that is arranged in a ring shape around the lens surface LS1 of the lens element LP1 and is formed perpendicular to the optical axis AX.
  • the side surface portion CPa is a side surface that extends perpendicularly to the abutting flat surface portion CLa from the outer edge portion of the abutting flat surface portion CLa and is formed in a cylindrical shape.
  • the side surface portion CPa forms a concave portion CC for fitting with the second lens portion 2a together with the abutting flat surface portion CLa.
  • the second lens portion 2a is a flat contact that is a contact portion that contacts the abutting flat surface portion CLa on the lower side in the drawing, that is, on the first lens portion 1a side.
  • the contact surface CL and the fitting surface portion CP that is fitted to the side surface portion CPa are provided. That is, the fitting surface portion CP forms a convex portion CV for fitting with the first lens portion 1a together with the contact surface CL.
  • the concave portion CC of the first lens portion 1a and the corresponding convex portion CV of the second lens portion 2a function as a pair of concave-convex fitting portions FP.
  • the second lens portion 2a is formed in a cylindrical shape on the upper side in the drawing, that is, on the diaphragm portion 3a side, at the abutting flat portion CLa formed at the peripheral portion of the lens surface LS2 and at the end of the abutting flat portion CLa. And a side surface CPa.
  • the diaphragm portion 3a includes a contact surface CL and a fitting surface portion CP corresponding to the abutting flat surface portion CLa and the side surface portion CPa on the lower side in the drawing, that is, the second lens portion 2a side. Thereby, a pair of concave and convex fitting portions FP to be fitted is formed also in the second lens portion 2a and the aperture portion 3a.
  • any of the contact surfaces CL of the second lens portion 2a and the diaphragm portion 3a a region inside the contact portion, that is, a region sandwiched between the abutting flat surface portion CLa and the lens surfaces LS1 and LS2 is illustrated.
  • the adhesive BD an acrylic or epoxy ultraviolet curable adhesive is used here.
  • the adhesive BD is cured by being irradiated with ultraviolet rays and exhibits an adhesive action.
  • the diaphragm portion 3a includes a diaphragm element DP as a main optical element, and an opening PO is formed first from the tip portion DPe, and the lens element LP2 of the second lens portion 2a is exposed.
  • the cemented lens 10a has the three-layer structure in which the first lens portion 1a, the second lens portion 2a, and the diaphragm portion 3a are stacked, and the lens elements LP1, LP2 and the diaphragm element DP, which are main optical elements, are uneven.
  • the fitting portion FP is configured to be aligned and fixed with the optical axis AX as a reference.
  • an adhesive BD is interposed between the first lens array 1 and the second lens array 2, and these are bonded.
  • the adhesive BD is applied to either the abutting flat surface portion CLa that is the contact location of the first lens array 1 or the side surface portion CPa that is the fitting location (adhesive supply step).
  • the first lens array 1 and the second lens array 2 are brought into contact with each other and fitted, and the alignment operation between the lens element LP1 and the lens element LP2 is performed.
  • the abutting flat surface portion CLa to which the adhesive BD is supplied is brought into contact with the contact surface CL, and at this time, the first lens array 1 and the second lens which is another optical array.
  • Relative positioning in the direction of the optical axis AX with the array 2 is performed (first positioning step).
  • the side surface portion CPa and the fitting surface portion CP are fitted, and at this time, the relative positioning of the first lens array 1 and the second lens array 2 in the plane perpendicular to the direction of the optical axis AX is performed. (Second positioning step).
  • the first lens array 1 and the second lens array 2 that have been positioned are joined by curing the adhesive BD that has been applied by irradiating ultraviolet rays (not shown) to the adhesion location (joining process). .
  • the structure is a simple structure in which the lens element LP1 and the lens element LP2 are fitted by a set of concave / convex fitting portions FP disposed so as to surround them.
  • a range of allowable errors in the set of concave and convex fitting portions FP that is, the side surface portion CPa and the fitting surface portion CP. It is possible to reduce the play that can be made between the two, and the positioning can be made with higher accuracy.
  • the surplus portion of the applied adhesive BD may protrude from the contact portion of the abutting flat surface portion CLa or the side surface portion CPa.
  • the adhesive BD that has oozed out from the contact portion to the inside, that is, the lens surface LS1 side accumulates in the adhesive reservoir BA, and inside the adhesive reservoir BA in the joining process without affecting the lens element LP1. Harden. Note that the adhesive BD that protrudes outward from the contact location accumulates in the gap GA between the arrays 1, 2, and 3, and does not affect the lens element LP1.
  • the second lens array 2 and the aperture array 3 among the plurality of optical arrays are joined. That is, the abutting flat surface portion CLa and the side surface portion CPa of the second lens array 2 and the contact surface CL and the fitting surface portion CP of the corresponding diaphragm array 3 are respectively in a direction parallel to and perpendicular to the optical axis AX. While abutting and fitting in a state of being positioned with high accuracy, they are bonded to each other by an adhesive BD.
  • the separated cemented lens 10a shown in FIG. 4D is formed.
  • the lens elements LP1, LP2 and the diaphragm element DP which are the main optical elements in the first lens section 1a, the second lens section 2a, and the diaphragm section 3a constituting the cemented lens 10a, are arranged with high accuracy as described above. It has become a thing.
  • the cemented lens 10a has a height a with respect to the adhesive reservoir BA formed as a stepped groove with respect to the outer diameter D of the lens unit as shown in FIG. 4D, for example.
  • the width be in the range of 1/40 to 1/100 and the width b be in the range of 1/30 to 1/10.
  • various modes can be considered for the cemented lens 10a.
  • the adhesive reservoir BA has a height. It is desirable that the value of a is in the range of 0.03 to 0.05 mm and the value of width b is in the range of 0.1 to 0.2 mm.
  • the adhesive reservoir BA has a size large enough to reliably accumulate the adhesive without overflowing, and the optical performance of the lens element LP1 and the like due to diffusion of the adhesive BD can be suppressed.
  • the size of the joint portion including the adhesive reservoir BD can be prevented from increasing, and the size of the cemented lens 10 can be kept within the above range.
  • the size of the cemented lens 10a is maintained within the above range, and sufficient adhesive force at the bonding portion can be maintained. It is desirable that the width c of the bonded portion is in the range of 1/6 to 1/4 with respect to the lens unit width D.
  • the adhesive BD has a viscosity value in the range of 500 to 2500 mPa ⁇ s so that it does not flow out from the adhesive reservoir BA and is suitable for workability.
  • the cemented lens array 110 of the second embodiment is a modification of the cemented lens array 10 of the first embodiment.
  • FIG. 5 is an enlarged cross-sectional view of one unit of the cemented lens array 110.
  • the cemented lens array 110 has a two-layer structure in which a lens array 101 and a diaphragm array 103 are laminated.
  • the arrays 101 and 103 are bonded by an adhesive BD that is an ultraviolet curable resin, as will be described in detail later.
  • One lens array 101 is configured by a lens element LP1
  • the other aperture array 103 is configured by a diaphragm element DP having a stepped shape corresponding to the lens element LP1.
  • the abutting flat surface portion CLa is a flat surface that is formed in a ring shape in the peripheral portion SS of the lens element LP1 and is perpendicular to the optical axis AX.
  • the side surface portion CPa ′ forms a tapered surface that spreads conically from the end of the abutting flat surface portion CLa.
  • the contact surface CL is formed flat so as to contact the abutting flat surface portion CLa, and the fitting surface portion CP ′ is formed on the side surface portion CPa ′.
  • the taper-shaped surface which spreads similarly to side surface part CPa 'is formed.
  • the concave / convex fitting portion FP formed by the concave portion formed by the flat surface portion CLa and the side surface portion CPa ′ and the convex portion formed by the contact surface CL and the fitting surface portion CP ′ is fitted by the tapered surface. It has become.
  • the cemented lens array 110 also has the flat surface portion CLa and the contact surface CL in contact with each other, and the side surface portion CPa ′ and the side surface portion formed in a tapered shape. By fitting with CPa, positioning with high accuracy in the optical axis AX direction is possible.
  • an play with weak fitting may be formed by providing a slight gap between the side surface portion CPa and the fitting surface CP. Furthermore, a slight gap may be provided between the peripheral surface CQa ′ located outside the side surface portion CPa ′ and the corresponding peripheral surface CQa ′. By providing a slight gap at these locations, the amount by which the positional relationship between the lens array 101 and the aperture array 103 can be adjusted is increased, and the abutting flat surface portion CLa and the abutting surface CL can be reliably brought into contact with each other. it can.
  • the cemented lens array 110 is cut out along a cutting line CT passing over the abutting flat surface portion CLa.
  • the tapered surface formed by the fitting surface portion CP and the side surface portion CPa used for highly accurate alignment is included in the region of the cutting margin CO, and is joined after being cut out at the cutting line CT. It will not remain in the lens.
  • the lens element LP1 and the diaphragm element DP which are the main optical elements of the cemented lens cut out with the cutting line CT as a boundary, are tapered by the fitting surface portion CP and the side surface portion CPa. It is arranged with high accuracy in the direction perpendicular to the optical axis AX by alignment on the surface.
  • the cemented lens array of the third embodiment is a modification of the cemented lens arrays 10 and 110 of the first and second embodiments.
  • 6 (a) and 6 (b) are plan views for explaining the cemented lenses 210a and 310a cut out from the cemented lens array of the present embodiment, respectively.
  • 6 (a) and 6 (b) correspond to the plan view of the cemented lens 10a shown in FIG. 3 (b). That is, the cemented lens 210a shown in FIG. 6A has a regular hexagonal shape when viewed from the outside, that is, the cutting line CT, and has a hexagonal column shape.
  • the cemented lens 310a shown in FIG. 6B is also different from the cemented lens 10a and the cemented lens 210a in that the appearance is a square in plan view and has a rectangular parallelepiped shape.
  • the side surface portion CPa and the fitting surface portion CP corresponding to the side surface portion CPa may have a regular hexagonal shape in plan view.
  • cemented lens array according to the fourth embodiment is a modification of the cemented lens arrays 10 and 110 according to the first to third embodiments, only the parts having different shapes will be described, and the other parts will be omitted.
  • FIGS. 7A to 7D are partially enlarged views showing modified examples of the cemented lens arrays 10 and 110 according to the present embodiment.
  • FIG. 7A is a modified example of the cemented lens array 10, and the structure is different in that the adhesive reservoir BA is formed on the abutting flat surface CLa side. That is, in the example of FIG. 3 and the like, the adhesive reservoir BA is formed on the contact surface CL side, but instead of this, as shown in FIG. 7A, the protrusion corresponding to the contact surface CL.
  • a similar adhesive reservoir portion BA may be provided in the contact flat portion CLa.
  • FIG. 7B is a modified example of the cemented lens array 10, and the structure is different in that the relationship between the pair of concave portions and convex portions is reversed. That is, in the example of FIG. 4 and the like, the side surface portion CPa and the abutting flat surface portion CLa form the concave portion CC, and the fitting surface portion CP and the contact surface CL form the convex portion CV. Conversely, as shown in FIG. 7B, the side surface portion CPa and the abutting flat surface portion CLa may form a convex portion, and the fitting surface portion CP and the contact surface CL may form a concave portion. In addition to this, an adhesive reservoir BA may be provided on the abutting flat surface CLa side as shown in FIG.
  • FIG. 7D is a modified example of the cemented lens array 110, in which the adhesive reservoir portion BA is formed on the abutting flat surface portion CLa side and the relationship between the pair of concave portions and convex portions is reversed.
  • the structure is different.
  • the cemented lens array 110 shown in FIG. 5 can be modified in the same manner as the modified examples shown in FIGS. [Fifth Embodiment]
  • FIG. 8 is a sectional view of the cemented lens array 400
  • FIG. 9 is a sectional view of the cemented lens 40a.
  • the cemented lens array 400 includes an optical array of a first spacer array 41, a first lens array 42, a second spacer array 43, a second lens array 44, and an aperture array 45, and has a five-layer structure. And it adhere
  • the first spacer array 41 is in contact with a solid-state image sensor such as a CCD (Charge Coupled Devices) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor (not shown), and the first lens array 42 and the solid-state image sensor.
  • a solid-state image sensor such as a CCD (Charge Coupled Devices) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor (not shown)
  • the distance between the device and the optical axis is kept constant.
  • the second spacer array 43 keeps the distance between the first lens array 42 and the second lens array 44 in the optical axis direction constant.
  • the first spacer array 41 and the second spacer array 43 are made of black resin.
  • the cemented lens 40a as shown in FIG. 9 is cut out using the cutting line CT that is the both ends of the CO as a boundary portion.
  • the cemented lens 40a includes a first spacer portion 41a, a first lens portion 42a, a second spacer portion 43a, a second lens portion 44a, and a diaphragm portion 45a. And each has the abutting plane part CLa which positions in the direction of the optical axis AX. Although positioning in the vertical direction with respect to the optical axis AX is not shown, it is provided at the end of each optical array and is not in the vicinity of each lens surface. However, since the optical arrays are bonded to each other with an adhesive in the state of the cemented lens array 400, each lens portion or the like is not displaced in the vertical direction with respect to the optical axis AX even if the cemented lens 40a is cut out. Absent.
  • the adhesive reservoir BA is a step between the abutting flat surface portion CLa and the lens surfaces 42aL and 44aL of each optical array. It is formed in a shape.
  • the adhesive reservoir portion BA is formed in the first spacer portion 41a, the first lens portion 42a, the second spacer portion 43a, and the aperture portion 45a. It may be formed anywhere as long as it is a portion on the axis AX side. That is, the adhesive reservoir portion BA may be formed on the first spacer portion 41a side of the first lens portion 42a without being formed on the first spacer portion 41a.
  • the adhesive reservoir BA may be formed on the first lens portion 42a side of the second spacer portion 43a without being formed on the first lens portion 42a.
  • the adhesive reservoir BA may be formed on the second spacer portion 43a side of the second lens portion 44a without being formed on the second spacer portion 43a.
  • the adhesive reservoir BA may be formed on the diaphragm 45a side of the second lens unit 44a without being formed on the diaphragm 45a.
  • the cemented lens array 500 in the present embodiment includes an optical array of a spacer array 51, a first lens array 52, a second lens array 53, and an aperture array 54, and has a four-layer structure. And it adhere
  • the spacer array 51 is in contact with a solid-state image sensor such as a CCD image sensor or a CMOS image sensor (not shown), and maintains a constant distance in the optical axis direction between the first lens array 52 and the solid-state image sensor.
  • the spacer array 51 is made of a black resin.
  • the first lens array 52 and the second lens array 53 are lens blocks in which lens portions made of resin are respectively formed on the object side surface and the image side surface of a parallel plate made of glass, and are manufactured by a replica method or the like. .
  • the cemented lens 50a as shown in FIG. 11 is cut out using the cutting line CT which is both ends of the CO as a boundary portion.
  • the cemented lens 50a includes a spacer part 51a, a first lens part 52a, a second lens part 53a, and a diaphragm part 54a.
  • first lens portion 52a an eleventh lens portion 52a2 and a twelfth lens portion 52a3 are formed on both surfaces of the parallel plate 52a1, and a second lens portion 53a is formed on both surfaces of the parallel plate 53a1. 22 lens part 53a3 is formed.
  • Each part of the cemented lens 50a has an abutting flat surface part CLa for positioning in the direction of the optical axis AX. Although positioning in the vertical direction with respect to the optical axis AX is not shown, it is provided at the end of each optical array and is not in the vicinity of each lens surface. However, since the optical arrays are bonded to each other with an adhesive in the state of the cemented lens array 500, each lens unit or the like is not displaced in the vertical direction with respect to the optical axis AX even if the cemented lens 50a is cut out. Absent.
  • the adhesive reservoir BA is a step between the abutting flat surface portion CLa of each optical array and the lens surfaces 52aL and 53aL. It is formed in a shape.
  • the adhesive reservoir BA is formed in the spacer 51a, the twelfth lens 52a3 of the first lens 52a, and the stop 54a, but the optical axis of the opposed abutting flat surface CLa. As long as it is a part on the AX side, it may be formed anywhere. That is, the adhesive reservoir portion BA may be formed on the spacer portion 51a side of the eleventh lens portion 52a2 without being formed on the spacer portion 51a.
  • the adhesive reservoir BA may not be formed on the twelfth lens portion 52a3 but may be formed on the twelfth lens portion 52a3 side of the twenty-first lens portion 53a2. Furthermore, the adhesive reservoir BA may be formed on the diaphragm 54a side of the twenty-second lens section 53a3 without being formed on the diaphragm 54a.
  • the laminated structure is three layers or two layers.
  • the present invention is not limited to this, and the present invention can be applied to a cemented lens array having more layers.
  • an ultraviolet curable resin is used as the adhesive, it is not limited to this as long as it has an appropriate viscosity, and may be a material having thermosetting properties, for example.
  • various cutting methods other than those using an end mill tool are conceivable. For example, cutting with a laser, a dicer, a hole saw, or the like is conceivable. When a laser is used, the laser diameter is cut to CO.

Abstract

Provided is a cemented lens array wherein positioning can be performed relatively easily yet highly accurately with regard to the optical axes and the distance between the curved surfaces of optical curved surfaces while a degradation in optical performance due to the diffusion of adhesive can be limited. Also provided is a method for producing a cemented lens array, and a cemented lens formed of a cemented lens array. An abutting planar portion (CLa) coated with adhesive (BD) and an abutting surface (CL) are made to abut on each other and, at the same time, a side surface portion (CPa) and a fitting surface portion (CP) are fitted to each other, thus performing relative positioning. Subsequently, a first lens array (1) and a second lens array (2) thus positioned are bonded by curing the adhesive (BD). Seeped-out adhesive (BD) stays in an adhesive sump (BA), and cures in the adhesive sump (BA) during a bonding process without affecting a lens element (LP1).

Description

接合レンズアレイ、接合レンズ及び接合レンズアレイの製造方法Bonded lens array, cemented lens, and method of manufacturing cemented lens array
 本発明は、レンズアレイを積層して接合された接合レンズアレイ、該接合レンズアレイから形成される接合レンズ、及び接合レンズアレイの製造方法に関する。 The present invention relates to a cemented lens array joined by stacking lens arrays, a cemented lens formed from the cemented lens array, and a method of manufacturing the cemented lens array.
 複数の光学曲面を有した複数のレンズアレイを積層して接合することによって得られる接合レンズアレイが知られている(特許文献1参照)。この接合レンズアレイでは、上側と下側に対向して配置される一対のレンズアレイに、複数のキー突起及び凸部と、当該複数のキー突起及び凸部に嵌合する複数のキー溝及び凹部とがそれぞれ設けられていることにより、レンズアレイ間の位置決めが達成されている(同上参照)。
特開2003-329808号公報
A cemented lens array obtained by laminating and cementing a plurality of lens arrays having a plurality of optical curved surfaces is known (see Patent Document 1). In this cemented lens array, a plurality of key protrusions and convex portions, and a plurality of key grooves and concave portions that fit into the plurality of key protrusions and convex portions are arranged on a pair of lens arrays that are arranged to face the upper side and the lower side. Are provided to achieve positioning between the lens arrays (see above).
Japanese Patent Laid-Open No. 2003-329808
 しかしながら、複数の凹凸部を設けて嵌合させることによりレンズアレイを接合させるとともに位置決めする場合、例えば各凹凸部における誤差が積み重なって全体としての誤差がより大きなものとなる可能性がある。また、位置決めのための凹凸部の形状が複雑になると、製作コストがかかるおそれがある。また、当該凹凸部の形状が複雑になり、レンズアレイ中に占める凹凸部の割合が大きくなると、レンズアレイの集積密度が低いものとなってしまう。また、別の問題として、特に接合レンズアレイが小型のレンズについてのものであると、複数のレンズアレイが接合される部分と光学面とが比較的近接するので、接合のために接着剤を用いた場合に、接着剤がレンズアレイのレンズ面の部分等の光学面に拡散し、光学性能を低下させるおそれもある。 However, when the lens array is joined and positioned by providing and fitting a plurality of concave and convex portions, for example, errors in the concave and convex portions may be stacked, resulting in a larger error as a whole. Further, if the shape of the uneven portion for positioning becomes complicated, there is a risk that manufacturing costs may be increased. Further, when the shape of the uneven portion becomes complicated and the ratio of the uneven portion in the lens array increases, the integration density of the lens array becomes low. Another problem is that, particularly when the cemented lens array is for a small lens, the portion where the plurality of lens arrays are joined and the optical surface are relatively close to each other, so an adhesive is used for joining. In such a case, the adhesive may diffuse into an optical surface such as a lens surface portion of the lens array, thereby degrading the optical performance.
 そこで、本発明では、レンズアレイと他の光学アレイの光軸方向の位置決めを精度良く行なうことができ、レンズアレイと他の光学アレイとが接合される部分とレンズアレイの光学面とが近接しても接着剤の拡散による光学性能の低下を抑制できる接合レンズアレイ、該接合レンズアレイから形成される接合レンズ、及び接合レンズアレイの製造方法を提供することを目的とする。 Therefore, in the present invention, the lens array and the other optical array can be accurately positioned in the optical axis direction, and the portion where the lens array and the other optical array are joined is close to the optical surface of the lens array. However, it is an object of the present invention to provide a cemented lens array that can suppress a decrease in optical performance due to diffusion of an adhesive, a cemented lens formed from the cemented lens array, and a method of manufacturing the cemented lens array.
 上記課題を解決するため、本発明に係る接合レンズアレイは、レンズアレイを含む複数の光学アレイを積層して形成される接合レンズアレイであって、前記レンズアレイを構成する複数のレンズ面のそれぞれの周辺部分に設けられ、接着剤を介在させて前記レンズアレイに対して光軸方向に関して隣接する他の光学アレイにそれぞれ当接し、前記レンズアレイと前記他の光学アレイとの光軸方向についての相対的な位置決めをする突き当て平面部と、前記レンズアレイと前記他の光学アレイとの少なくとも一方において各突き当て平面部と各レンズ面との間に挟まれる領域に形成され、各光学アレイ間の光軸方向の位置決めにより前記突き当て平面部から余剰分として浸み出す接着剤を溜める接着剤溜まり部とを備えることを特徴とする。 In order to solve the above problems, a cemented lens array according to the present invention is a cemented lens array formed by stacking a plurality of optical arrays including a lens array, and each of a plurality of lens surfaces constituting the lens array. Each of which is in contact with another optical array adjacent to the lens array with respect to the optical axis direction with an adhesive interposed between the lens array and the other optical array. The abutting flat surface portion for relative positioning, and at least one of the lens array and the other optical array is formed in a region sandwiched between each abutting flat surface portion and each lens surface. And an adhesive reservoir portion that accumulates an adhesive that oozes out as a surplus from the abutting flat surface portion by positioning in the optical axis direction.
 上記接合レンズアレイでは、突き当て平面部によりレンズアレイと他の光学アレイとの光軸方向についての相対的な位置決めがなされる。これにより、比較的簡易な構成でありながらも、レンズアレイ等の各光学アレイの光軸方向の位置決めを精度良く行なうことが出来る。また、上記接合レンズアレイでは、接着剤溜まり部により、位置決めの際に余剰分として浸み出す接着剤を溜めることで、接着剤の拡散による光学性能の低下を抑制でき、レンズアレイのレンズ面の集積密度を上げることが可能となる。 In the above cemented lens array, relative positioning in the optical axis direction between the lens array and the other optical array is performed by the abutting flat surface portion. Thereby, although it is a comparatively simple structure, positioning of each optical array, such as a lens array, in the optical axis direction can be performed with high accuracy. Further, in the above-mentioned cemented lens array, the adhesive reservoir portion stores the adhesive that oozes out as a surplus during positioning, thereby suppressing a decrease in optical performance due to the diffusion of the adhesive, and the lens surface of the lens array. It is possible to increase the integration density.
 本発明の具体的な態様では、前記レンズアレイの前記複数のレンズ面の各周辺部分と当該各周辺部分に当接する前記他の光学アレイの各当接部分との間において、各突き当て平面部から外側に一対の凸部及び凹部としてそれぞれ形成され、前記レンズアレイと前記他の光学アレイとの嵌合を可能にするとともに、嵌合によって光軸垂直方向についての相対的な位置決めをする凹凸嵌合部をさらに備えることを特徴とする。 In a specific aspect of the present invention, each abutting flat surface portion is provided between each peripheral portion of the plurality of lens surfaces of the lens array and each contact portion of the other optical array that contacts the peripheral portion. A concave-convex fitting that is formed as a pair of convex portions and concave portions on the outer side of the lens so as to allow the lens array and the other optical array to be fitted together and to perform relative positioning in the direction perpendicular to the optical axis by the fitting. It further comprises a joint part.
 この場合、上記突き当て平面部によりレンズアレイと他の光学アレイとの光軸方向についての相対的な位置決めなされ、さらに、凹凸嵌合部によりレンズアレイと他の光学アレイとの嵌合を行なうとともに、光軸垂直方向についての相対的な位置決めがなされる。これにより、凹凸の嵌合と平面の当接とを併用した比較的簡易な構造でありながらも、レンズアレイ等の各光学アレイの光学曲面の光軸及び曲面間距離についての位置決めを高精度に行うことができる。また、レンズアレイを構成する1つのレンズ素子につき1組の凹凸によって嵌合する簡易な構造とすることで、当該1組の凹凸の嵌合における許容誤差の範囲を小さくすることができ、位置決めをより高精度なものにできる。なお、各突き当て平面部は、各凹凸嵌合部に近接して設けられることにより、接合のためのスペースがレンズアレイ中に占める割合を小さくすることができる。 In this case, relative positioning in the optical axis direction between the lens array and the other optical array is performed by the abutting flat portion, and the lens array and the other optical array are fitted by the concave / convex fitting portion. The relative positioning in the direction perpendicular to the optical axis is performed. This enables highly accurate positioning of the optical surface of each optical array such as a lens array and the distance between the curved surfaces, while having a relatively simple structure that uses both concave and convex fitting and flat contact. It can be carried out. Further, by adopting a simple structure in which one lens element constituting the lens array is fitted by one set of projections and depressions, the allowable error range in the fitting of the one set of projections and depressions can be reduced, and positioning can be performed. Higher accuracy can be achieved. In addition, each abutting plane part is provided in proximity to each concave-convex fitting part, so that the ratio of the space for joining in the lens array can be reduced.
 本発明の別の具体的な態様では、凹凸嵌合部は、前記突き当て平面部と当該突き当て平面部の外縁部から延びる側面とを含んでそれぞれ形成されることを特徴とする。 In another specific aspect of the present invention, the uneven fitting portion is formed including the abutting flat surface portion and a side surface extending from an outer edge portion of the abutting flat surface portion.
 この場合、突き当て平面部とこの外縁部に対応する側面とにより凸部又は凹部を形成することで凹凸嵌合部のうちの凹部又は凸部の一方が構成される。 In this case, one of the concave portion or the convex portion of the concave-convex fitting portion is formed by forming the convex portion or the concave portion by the abutting flat portion and the side surface corresponding to the outer edge portion.
 本発明のさらに別の具体的な態様では、前記複数の光学アレイは、前記レンズアレイに相当する第1レンズアレイと、前記他の光学アレイに相当する第2レンズアレイを含み、前記突き当て平面部及び前記凹凸嵌合部は、それぞれに対応する前記第1レンズアレイの前記複数のレンズ面と、前記第2レンズアレイの複数のレンズ面とについての相対的な位置決めをすることを特徴とする。 In yet another specific aspect of the present invention, the plurality of optical arrays include a first lens array corresponding to the lens array and a second lens array corresponding to the other optical array, and the abutting plane. And the concave / convex fitting portion perform relative positioning with respect to the plurality of lens surfaces of the first lens array and the plurality of lens surfaces of the second lens array, respectively. .
 この場合、複数のレンズアレイ間での光学曲面の光軸及び曲面間距離についての位置決めを高精度に行うことができる。 In this case, positioning of the optical surface of the optical curved surface and the distance between the curved surfaces between the plurality of lens arrays can be performed with high accuracy.
 本発明のさらに別の態様では、前記複数の光学アレイは、前記複数のレンズ面に対応する複数の絞りを有する絞りアレイを含むことを特徴とする。 In still another aspect of the present invention, the plurality of optical arrays include a diaphragm array having a plurality of diaphragms corresponding to the plurality of lens surfaces.
 この場合、レンズアレイの各レンズ面と、これに対応する絞りアレイの各絞りとについての相対的な位置決めを高精度に行うことが可能となる。 In this case, relative positioning between each lens surface of the lens array and each diaphragm of the diaphragm array corresponding to the lens surface can be performed with high accuracy.
 本発明のさらに別の態様では、前記凹凸嵌合部は、円筒形状を有することを特徴とする。 In still another aspect of the present invention, the uneven fitting portion has a cylindrical shape.
 これにより、光軸垂直方向についての相対的な位置決めのためのアライメント動作を容易に行うことができる。 This makes it possible to easily perform an alignment operation for relative positioning in the optical axis vertical direction.
 本発明のさらに別の態様では、前記凹凸嵌合部は、テーパ状に形成されることを特徴とする。 In still another aspect of the present invention, the concave / convex fitting portion is formed in a tapered shape.
 この場合、一対の凸部と凹部に形成されるテーパ面を当接させることによって、光軸垂直方向についての相対的な位置決めを行うことができる。 In this case, relative positioning in the direction perpendicular to the optical axis can be performed by bringing a pair of convex portions and tapered surfaces formed in the concave portions into contact with each other.
 本発明のさらに別の態様では、前記凹凸嵌合部は、一対の凸部と凹部との間に所定のあそびを設けていることを特徴とする。 In still another aspect of the present invention, the concave / convex fitting portion is provided with a predetermined play between a pair of convex portions and concave portions.
 この場合、当該あそびを設けることで、光軸垂直方向についての相対的な位置決めにおいて、アライメント動作での調整可能な範囲を大きくすることができ、また、例えば凹凸嵌合部がテーパ状である場合にも、突き当て平面部に他の光学アレイを確実に当接させることができる。 In this case, by providing the play, in the relative positioning in the vertical direction of the optical axis, the adjustable range in the alignment operation can be increased, and for example, when the uneven fitting portion is tapered In addition, the other optical array can be reliably brought into contact with the abutting flat surface portion.
 本発明のさらに別の態様では、前記接着剤溜まり部は、0.03mm以上0.05mm以下の高さを有し0.1mm以上0.2mm以下の幅を有する段差状の溝により形成されることを特徴とする。 In still another aspect of the present invention, the adhesive reservoir is formed by a stepped groove having a height of 0.03 mm to 0.05 mm and a width of 0.1 mm to 0.2 mm. It is characterized by that.
 この場合、各接着剤溜まり部が、確実に接着剤を溢れさせることなく溜めるのに十分な大きさを有するものであり、接着剤の拡散による光学性能の低下を抑制できるとともに、接着剤溜まり部を含む接合部分のサイズが大きくなることを防ぎ、接合レンズアレイの大きさ即ち個々の接合レンズの大きさが大きくなりすぎない範囲に留めることができる。 In this case, each adhesive reservoir has a size sufficient to reliably store the adhesive without overflowing, and can suppress a decrease in optical performance due to the diffusion of the adhesive, and the adhesive reservoir. Therefore, the size of the cemented lens array, that is, the size of the individual cemented lenses can be kept within a range that does not become too large.
 本発明のさらに別の態様では、前記突き当て平面部の接着部分の幅は、1つのレンズユニットの幅に対して1/6以上1/4以下であることを特徴とする。 In yet another aspect of the present invention, the width of the bonding portion of the abutting flat surface portion is 1/6 or more and 1/4 or less with respect to the width of one lens unit.
 この場合、各突き当て平面部の接着部分での接着力を十分に保ち、かつ、接合レンズアレイの大きさ即ち個々の接合レンズの大きさが大きくなりすぎない範囲に留めることができることを特徴とする。 In this case, the adhesive force at the bonding portion of each abutting flat surface portion can be maintained sufficiently, and the size of the cemented lens array, that is, the size of the individual cemented lenses can be kept within a range that does not become too large. To do.
 また、本発明の具体的な態様として、本発明に係る接合レンズは、上記いずれかの接合レンズアレイから切り出されて形成され、前記レンズアレイのレンズ面及び当該レンズ面の周辺部分によって形成されるレンズ部と、前記他の光学アレイのうちレンズ部に隣接して接着剤によって接合される光学要素とを備えることを特徴とする。 As a specific aspect of the present invention, the cemented lens according to the present invention is formed by cutting out from any one of the above-described cemented lens arrays, and is formed by the lens surface of the lens array and a peripheral portion of the lens surface. It is characterized by comprising a lens part and an optical element bonded by an adhesive adjacent to the lens part in the other optical array.
 この場合、接合レンズは、上記いずれかの接合レンズアレイから形成されるので、レンズ面等の各光学要素についての光学曲面の光軸及び曲面間距離についての位置決めが高精度なものとなっており、また、接着剤の拡散による光学性能の低下も抑制されている。 In this case, since the cemented lens is formed from any one of the above-described cemented lens arrays, the positioning of the optical surface of the optical curved surface and the distance between the curved surfaces of each optical element such as a lens surface is highly accurate. Moreover, the deterioration of the optical performance due to the diffusion of the adhesive is also suppressed.
 上記課題を解決するため、本発明に係る接合レンズアレイの製造方法は、レンズアレイを含む複数の光学アレイを積層して形成される接合レンズアレイの製造方法であって、前記レンズアレイを構成するレンズ面の周辺部分と、当該周辺部分に当接する他の光学アレイの当接部分との間に接着剤を供給する接着剤供給工程と、前記レンズアレイの前記レンズ面の周辺部分に設けられて前記他の光学アレイの当接部分に当接する突き当て平面部によって、前記レンズアレイと前記他の光学アレイとの光軸方向についての相対的な位置決めをする第1位置決め工程を有する位置決め工程と、前記レンズアレイと前記他の光学アレイとの間に塗布された接着剤を硬化させて、位置決めのなされた前記レンズアレイと前記他の光学アレイとを接合する接合工程とを有し、前記位置決め工程において、前記突き当て平面部から余剰分として浸み出す接着剤は、前記レンズアレイと前記他の光学アレイとの少なくとも一方において前記突き当て平面部とレンズ面との間に挟まれる領域に形成される接着剤溜まり部に溜められることを特徴とする。 In order to solve the above problems, a method for manufacturing a cemented lens array according to the present invention is a method for manufacturing a cemented lens array formed by stacking a plurality of optical arrays including a lens array, and constitutes the lens array. An adhesive supplying step of supplying an adhesive between a peripheral portion of the lens surface and a contact portion of another optical array that contacts the peripheral portion; and provided in a peripheral portion of the lens surface of the lens array. A positioning step including a first positioning step of performing relative positioning in the optical axis direction between the lens array and the other optical array by an abutting flat surface portion that abuts against a contact portion of the other optical array; The adhesive applied between the lens array and the other optical array is cured to bond the positioned lens array and the other optical array. A bonding step, and in the positioning step, the adhesive that oozes out as a surplus from the abutting plane portion is the abutting plane portion and the lens surface in at least one of the lens array and the other optical array. It is stored in the adhesive reservoir part formed in the area | region pinched | interposed between.
 上記接合レンズアレイの製造方法では、まず、第1位置決め工程において、突き当て平面部によりレンズアレイと他の光学アレイとの光軸方向についての相対的な位置決めがなされる。これにより、比較的簡易な構造でありながらも、レンズアレイ等の各光学アレイの光学曲面の曲面間距離についての位置決めを高精度に行うことができる。また、位置決め工程において、接着剤溜まり部により、位置決めの際に余剰分として浸み出す接着剤を溜めることで、接着剤の拡散による光学性能の低下を抑制できる。 In the method for manufacturing a cemented lens array, first, in the first positioning step, relative positioning in the optical axis direction between the lens array and another optical array is performed by the abutting flat surface portion. Thereby, although it is a comparatively simple structure, it can position with respect to the distance between curved surfaces of the optical curved surface of each optical array, such as a lens array, with high precision. Further, in the positioning step, by storing the adhesive that oozes out as a surplus during positioning by the adhesive reservoir, it is possible to suppress a decrease in optical performance due to the diffusion of the adhesive.
 本発明の具体的な態様では、前記位置決め工程は、前記レンズアレイの前記複数のレンズ面の各周辺部分と前記他の光学アレイの各当接部分との間において、前記突き当て平面部から外側に一対の凸部及び凹部としてそれぞれ形成されて前記レンズアレイと前記他の光学アレイとの嵌合を可能にする凹凸嵌合部によって、前記レンズアレイと前記他の光学アレイとの光軸垂直方向についての相対的な位置決めをする第2位置決め工程をさらに有することを特徴とする。 In a specific aspect of the present invention, the positioning step is performed on the outer side from the abutting plane portion between each peripheral portion of the plurality of lens surfaces of the lens array and each contact portion of the other optical array. An optical axis perpendicular direction of the lens array and the other optical array is formed by a concave / convex fitting portion that is formed as a pair of convex portions and concave portions, respectively, and enables the lens array and the other optical array to be fitted to each other. It further has the 2nd positioning process which carries out relative positioning about.
 この場合、上記第1位置決め工程において、突き当て平面部によりレンズアレイと他の光学アレイとの光軸方向についての相対的な位置決めがなされ、さらに、第2位置決め工程において、複数の凹凸嵌合部によりレンズアレイと他の光学アレイとの嵌合を行なうとともに、光軸垂直方向についての相対的な位置決めがなされる。これにより、凹凸の嵌合と平面の当接とを併用した比較的簡易な構造でありながらも、レンズアレイ等の各光学アレイについての光学曲面の光軸及び曲面間距離についての位置決めを高精度に行うことができる。 In this case, in the first positioning step, relative positioning in the optical axis direction between the lens array and the other optical array is performed by the abutting flat surface portion. Further, in the second positioning step, a plurality of uneven fitting portions As a result, the lens array and the other optical array are fitted together, and relative positioning in the direction perpendicular to the optical axis is performed. As a result, the positioning of the optical surface of the optical curved surface and the distance between the curved surfaces of each optical array, such as a lens array, is highly accurate while having a relatively simple structure using both concave and convex fitting and flat contact. Can be done.
(a)~(c)は、第1実施形態に係る接合レンズアレイを説明する図である。(A)-(c) is a figure explaining the cemented lens array which concerns on 1st Embodiment. 接合レンズアレイを構成する光学アレイを示す斜視図である。It is a perspective view which shows the optical array which comprises a cemented lens array. (a)、(b)は、接合レンズの構造を説明する図である。(A), (b) is a figure explaining the structure of a cemented lens. (a)~(d)は、接合レンズアレイの製造方法を説明するための断面図である。(A)-(d) is sectional drawing for demonstrating the manufacturing method of a junction lens array. 第2実施形態に係る接合レンズアレイを示す断面図である。It is sectional drawing which shows the cemented lens array which concerns on 2nd Embodiment. (a)、(b)は、第3実施形態に係る接合レンズアレイを示す平面図である。(A), (b) is a top view which shows the cemented lens array which concerns on 3rd Embodiment. (a)~(d)は、第4実施形態に係る接合レンズアレイを示す部分拡大図である。(A)-(d) is the elements on larger scale which show the cemented lens array which concerns on 4th Embodiment. 接合レンズアレイの断面図である。It is sectional drawing of a cemented lens array. 接合レンズの断面図である。It is sectional drawing of a cemented lens. 接合レンズアレイの断面図である。It is sectional drawing of a cemented lens array. 接合レンズの断面図である。It is sectional drawing of a cemented lens.
符号の説明Explanation of symbols
 10、110、400、500…接合レンズアレイ
 10a、40a、50a…接合レンズ
 1、42、52…第1レンズアレイ
 2、44、53…第2レンズアレイ
 3、45、54…絞りアレイ
 LP1、LP2…レンズ素子
 DP…絞り素子
 CLa…突き当て平面部
 CL…当接面
 CPa…側面部
 CP…嵌合面部
 BA…接着剤溜まり部
10, 110, 400, 500 ... cemented lens array 10a, 40a, 50a ... cemented lens 1, 42, 52 ... first lens array 2, 44, 53 ... second lens array 3, 45, 54 ... aperture array LP1, LP2 ... Lens element DP ... Diaphragm element CLa ... Abutting plane part CL ... Contact surface CPa ... Side part CP ... Fitting surface part BA ... Adhesive reservoir part
 〔第1実施形態〕
 図1(a)~(c)は、第1実施形態に係る接合レンズアレイ10と、接合レンズアレイ10から切り出された接合レンズ10aとを説明するための図である。図1(a)は、接合レンズアレイ10の断面図であり、図1(b)及び1(c)は、接合レンズアレイ10から接合レンズ10aを切り出した様子を示す断面図及び斜視図である。
[First Embodiment]
FIGS. 1A to 1C are views for explaining the cemented lens array 10 according to the first embodiment and the cemented lens 10a cut out from the cemented lens array 10. FIG. FIG. 1A is a cross-sectional view of the cemented lens array 10, and FIGS. 1B and 1C are a cross-sectional view and a perspective view illustrating a state in which the cemented lens 10 a is cut out from the cemented lens array 10. .
 この接合レンズアレイ10は、図1(a)に示すように、第1レンズアレイ1と、第2レンズアレイ2と、絞りアレイ3とからなる光学アレイを積層した3層構造を有し、各アレイ1、2、3は、詳しくは後述するが、紫外線硬化樹脂等によって相互に接着されている。なお、レンズアレイ1、2は多数のレンズ素子LP1、LP2でそれぞれ構成され、絞りアレイ3は多数の絞り素子DPで構成されている。また、各レンズ素子LP1間、各レンズ素子LP2間及び各絞り素子DP間は、いずれも周辺部分SSによって連結されている。さらに、レンズ素子LP1とレンズ素子LP2とのアライメントや、レンズ素子LP2と絞り素子DPとのアライメントのために、それぞれ凹凸嵌合部FPが形成されている。接合レンズアレイ10のうち、切断しろCOは、接合レンズアレイ10から接合レンズ10aを切り出すための切削動作の際に削られる部分である。ここで、切削の方法としては、種々の方法が考えられるが、例えばエンドミル工具を用いて切削することが可能であり、この場合、用いるエンドミル工具の幅が切断しろCOの幅となる。切断しろCOの部分が削られることにより、図1(b)及び1(c)に示すように、切断しろCOの両端である切断線CTを境界部分として、接合レンズ10aが円筒状に切り出される。切り出された接合レンズ10aは、接合レンズアレイ10の各アレイ1、2、3に対応する第1レンズ部1aと、第2レンズ部2aと、絞り部3aとを積層した3層構造を有しており、一組のレンズ素子LP1、LP2及び絞り素子DPにより構成されるレンズユニットとなっている。接合レンズ10aは、携帯電話やカメラの撮像装置に組み込まれる光学部品として使用される。なお、図2は、積層される前の第1レンズアレイ1、第2レンズアレイ2及び絞りアレイ3を示す斜視図である。図示のように、第1レンズアレイ1、第2レンズアレイ2及び絞りアレイ3は、それぞれの平面上において、レンズ素子LP1等の各光学要素が互いに対応した位置でマトリックス状に配置されている。 As shown in FIG. 1A, the cemented lens array 10 has a three-layer structure in which an optical array including a first lens array 1, a second lens array 2, and a diaphragm array 3 is laminated. Although described in detail later, the arrays 1, 2, and 3 are bonded to each other by an ultraviolet curable resin or the like. The lens arrays 1 and 2 are each composed of a large number of lens elements LP1 and LP2, and the aperture array 3 is composed of a large number of aperture elements DP. Further, the lens elements LP1, the lens elements LP2, and the diaphragm elements DP are all connected by a peripheral portion SS. Further, a concave / convex fitting portion FP is formed for alignment between the lens element LP1 and the lens element LP2 and alignment between the lens element LP2 and the aperture element DP. In the cemented lens array 10, the cutting margin CO is a portion that is scraped during a cutting operation for cutting out the cemented lens 10 a from the cemented lens array 10. Here, various methods can be considered as a cutting method. For example, it is possible to perform cutting using an end mill tool. In this case, the width of the end mill tool to be used is the width of the cutting margin CO. As shown in FIGS. 1B and 1C, the cemented lens 10a is cut out in a cylindrical shape with the cutting line CT that is both ends of the cutting margin CO as a boundary portion, as shown in FIGS. 1B and 1C. . The cut-out cemented lens 10a has a three-layer structure in which a first lens portion 1a, a second lens portion 2a, and a diaphragm portion 3a corresponding to each of the arrays 1, 2, and 3 of the cemented lens array 10 are stacked. The lens unit includes a pair of lens elements LP1 and LP2 and a diaphragm element DP. The cemented lens 10a is used as an optical component incorporated in an imaging device of a mobile phone or a camera. FIG. 2 is a perspective view showing the first lens array 1, the second lens array 2, and the aperture array 3 before being stacked. As illustrated, in the first lens array 1, the second lens array 2, and the aperture array 3, optical elements such as lens elements LP1 are arranged in a matrix at positions corresponding to each other on each plane.
 図3(a)及び図3(b)は、接合レンズアレイ10から切り出された接合レンズ10aの構造について詳しく説明するための図であり、図3(a)は、接合レンズ10aの断面図であり、図3(b)は、接合レンズ10aの平面図である。既述のように、接合レンズ10aは、光を透過する透明樹脂によって構成される第1レンズ部1aと、同じく透明樹脂によって構成される第2レンズ部2aと、光を遮断する黒色の樹脂によって構成される絞り部3aとを積層した3層構造を有している。これらのうち、まず、第1レンズ部1aは、主たる光学要素であるレンズ素子LP1に加え、突き当て平面部CLaと、側面部CPaとを備える。突き当て平面部CLaは、レンズ素子LP1のレンズ面LS1の周辺部分SSに輪帯状に配置され、光軸AXに対して垂直に形成される平坦面である。側面部CPaは、突き当て平面部CLaの外縁部から突き当て平面部CLaに対して垂直に延びて円筒状に形成される側面である。つまり、側面部CPaは、突き当て平面部CLaとともに第2レンズ部2aと嵌合するための凹部CCを形成している。次に、第2レンズ部2aは、主たる光学要素であるレンズ素子LP2に加え、図中下側即ち第1レンズ部1a側において、突き当て平面部CLaに当接する当接部分である平坦な当接面CLと、側面部CPaに嵌合する嵌合面部CPとを備える。つまり、嵌合面部CPは、当接面CLとともに第1レンズ部1aと嵌合するための凸部CVを形成している。この結果、第1レンズ部1aの凹部CCと、これに対応する第2レンズ部2aの凸部CVとは、一対の嵌合する凹凸嵌合部FPとして機能する。 3A and 3B are diagrams for explaining in detail the structure of the cemented lens 10a cut out from the cemented lens array 10, and FIG. 3A is a cross-sectional view of the cemented lens 10a. FIG. 3B is a plan view of the cemented lens 10a. As described above, the cemented lens 10a is composed of the first lens portion 1a composed of a transparent resin that transmits light, the second lens portion 2a that is also composed of a transparent resin, and a black resin that blocks light. It has a three-layer structure in which the constricted diaphragm portion 3a is laminated. Among these, first, the first lens portion 1a includes an abutting flat surface portion CLa and a side surface portion CPa in addition to the lens element LP1 which is a main optical element. The abutting flat surface portion CLa is a flat surface that is arranged in a ring shape around the lens surface LS1 of the lens element LP1 and is formed perpendicular to the optical axis AX. The side surface portion CPa is a side surface that extends perpendicularly to the abutting flat surface portion CLa from the outer edge portion of the abutting flat surface portion CLa and is formed in a cylindrical shape. That is, the side surface portion CPa forms a concave portion CC for fitting with the second lens portion 2a together with the abutting flat surface portion CLa. Next, in addition to the lens element LP2, which is the main optical element, the second lens portion 2a is a flat contact that is a contact portion that contacts the abutting flat surface portion CLa on the lower side in the drawing, that is, on the first lens portion 1a side. The contact surface CL and the fitting surface portion CP that is fitted to the side surface portion CPa are provided. That is, the fitting surface portion CP forms a convex portion CV for fitting with the first lens portion 1a together with the contact surface CL. As a result, the concave portion CC of the first lens portion 1a and the corresponding convex portion CV of the second lens portion 2a function as a pair of concave-convex fitting portions FP.
 また、第2レンズ部2aと、絞り部3aとの間においても同様の構造が形成されている。つまり、第2レンズ部2aは、図中上側即ち絞り部3a側において、レンズ面LS2の周辺部分に形成される突き当て平面部CLaと突き当て平面部CLaの端部において円筒状に形成される側面部CPaとを備える。一方、絞り部3aは、図中下側即ち第2レンズ部2a側において、突き当て平面部CLa及び側面部CPaにそれぞれ対応する当接面CL及び嵌合面部CPを備える。これにより、第2レンズ部2aと絞り部3aとにおいても、一対の嵌合する凹凸嵌合部FPが形成されている。 Also, a similar structure is formed between the second lens portion 2a and the aperture portion 3a. That is, the second lens portion 2a is formed in a cylindrical shape on the upper side in the drawing, that is, on the diaphragm portion 3a side, at the abutting flat portion CLa formed at the peripheral portion of the lens surface LS2 and at the end of the abutting flat portion CLa. And a side surface CPa. On the other hand, the diaphragm portion 3a includes a contact surface CL and a fitting surface portion CP corresponding to the abutting flat surface portion CLa and the side surface portion CPa on the lower side in the drawing, that is, the second lens portion 2a side. Thereby, a pair of concave and convex fitting portions FP to be fitted is formed also in the second lens portion 2a and the aperture portion 3a.
 また、第2レンズ部2a及び絞り部3aのいずれの当接面CLにおいても、当接箇所より内側の領域即ち突き当て平面部CLaとレンズ面LS1、LS2との間に挟まれる領域に、図1等に示す各アレイ1、2、3の接合時に余剰分として浸み出す接着剤BDを溜めるために、環状の接着剤溜まり部BAが段差状に形成されている。なお、接着剤BDとして、ここでは、アクリル系又はエポキシ系の紫外線硬化性のものを用いる。接着剤BDは、紫外線が照射されることにより硬化して接着作用を示す。 Further, in any of the contact surfaces CL of the second lens portion 2a and the diaphragm portion 3a, a region inside the contact portion, that is, a region sandwiched between the abutting flat surface portion CLa and the lens surfaces LS1 and LS2 is illustrated. In order to store the adhesive BD that oozes out as a surplus when the arrays 1, 2, and 3 shown in FIG. Here, as the adhesive BD, an acrylic or epoxy ultraviolet curable adhesive is used here. The adhesive BD is cured by being irradiated with ultraviolet rays and exhibits an adhesive action.
 また、絞り部3aは、主たる光学要素として絞り素子DPを備え、その先端部DPeから先に開口POが形成され、第2レンズ部2aのレンズ素子LP2が露出した状態となっている。 Further, the diaphragm portion 3a includes a diaphragm element DP as a main optical element, and an opening PO is formed first from the tip portion DPe, and the lens element LP2 of the second lens portion 2a is exposed.
 以上のように、接合レンズ10aは、第1レンズ部1a、第2レンズ部2a及び絞り部3aを積層した3層構造により、主たる光学要素であるレンズ素子LP1、LP2及び絞り素子DPを、凹凸嵌合部FPによって光軸AXを基準としてアライメントして固定した構成となっている。 As described above, the cemented lens 10a has the three-layer structure in which the first lens portion 1a, the second lens portion 2a, and the diaphragm portion 3a are stacked, and the lens elements LP1, LP2 and the diaphragm element DP, which are main optical elements, are uneven. The fitting portion FP is configured to be aligned and fixed with the optical axis AX as a reference.
 以下、図4(a)~(d)を用いて本実施形態に係る接合レンズアレイ10及び接合レンズ10aの製造方法について説明する。 Hereinafter, a method for manufacturing the cemented lens array 10 and the cemented lens 10a according to the present embodiment will be described with reference to FIGS.
 まず、図4(a)に示すように、複数の光学アレイのうち、第1レンズアレイ1と、第2レンズアレイ2との間に接着剤BDを介在させてこれらを接合する。このため、まず、第1レンズアレイ1の当接箇所である突き当て平面部CLaと、嵌合箇所である側面部CPaとのいずれかに接着剤BDを塗布する(接着剤供給工程)。次に、図4(b)に示すように、第1レンズアレイ1と第2レンズアレイ2とを当接及び嵌合させるとともに、レンズ素子LP1とレンズ素子LP2とのアライメント動作を行う。より具体的には、まず、接着剤BDの供給されている突き当て平面部CLaと当接面CLとを当接させ、この際に第1レンズアレイ1と他の光学アレイである第2レンズアレイ2との光軸AXの方向に関する相対的な位置決めを行う(第1位置決め工程)。また、これとともに、側面部CPaと嵌合面部CPとが嵌合し、この際に第1レンズアレイ1と第2レンズアレイ2との光軸AXの方向に垂直な面内に関する相対的な位置決めを行う(第2位置決め工程)。最後に、接着箇所に不図示の紫外線を照射させて塗布されている接着剤BDを硬化させることにより、位置決めされた第1レンズアレイ1と第2レンズアレイ2とが接合される(接合工程)。 First, as shown in FIG. 4A, among a plurality of optical arrays, an adhesive BD is interposed between the first lens array 1 and the second lens array 2, and these are bonded. For this reason, first, the adhesive BD is applied to either the abutting flat surface portion CLa that is the contact location of the first lens array 1 or the side surface portion CPa that is the fitting location (adhesive supply step). Next, as shown in FIG. 4B, the first lens array 1 and the second lens array 2 are brought into contact with each other and fitted, and the alignment operation between the lens element LP1 and the lens element LP2 is performed. More specifically, first, the abutting flat surface portion CLa to which the adhesive BD is supplied is brought into contact with the contact surface CL, and at this time, the first lens array 1 and the second lens which is another optical array. Relative positioning in the direction of the optical axis AX with the array 2 is performed (first positioning step). At the same time, the side surface portion CPa and the fitting surface portion CP are fitted, and at this time, the relative positioning of the first lens array 1 and the second lens array 2 in the plane perpendicular to the direction of the optical axis AX is performed. (Second positioning step). Finally, the first lens array 1 and the second lens array 2 that have been positioned are joined by curing the adhesive BD that has been applied by irradiating ultraviolet rays (not shown) to the adhesion location (joining process). .
 上記の場合、1組のレンズ素子LP1とレンズ素子LP2に対してこれらを囲むように配置された1組の凹凸嵌合部FPによって嵌合する簡易な構造となっている。これにより、例えば1つのレンズ素子につき複数の凹凸を連ねた嵌合部によって嵌合させる場合に比べ、当該1組の凹凸嵌合部FPにおける許容誤差の範囲即ち側面部CPaと嵌合面部CPとの間にできるあそびを小さくすることが可能であり、位置決めをより高精度なものにできる。 In the above case, the structure is a simple structure in which the lens element LP1 and the lens element LP2 are fitted by a set of concave / convex fitting portions FP disposed so as to surround them. Thereby, for example, compared with a case where a single lens element is fitted by a fitting portion in which a plurality of concaves and convexes are connected, a range of allowable errors in the set of concave and convex fitting portions FP, that is, the side surface portion CPa and the fitting surface portion CP. It is possible to reduce the play that can be made between the two, and the positioning can be made with higher accuracy.
 また、特に第1及び第2位置決め工程を行う際に、塗布された接着剤BDのうちの余剰分が、突き当て平面部CLaや側面部CPaの接触箇所からはみ出してくることがある。このうち、接触箇所から内側即ちレンズ面LS1側に浸み出した接着剤BDは、接着剤溜まり部BAに溜まり、レンズ素子LP1に影響を及ぼすことなく接合工程において接着剤溜まり部BAの内部で硬化する。なお、接触箇所から外側にはみ出した接着剤BDは、各アレイ1、2、3間の隙間GAに溜まり、レンズ素子LP1に影響を及ぼすことはない。 Also, particularly when performing the first and second positioning steps, the surplus portion of the applied adhesive BD may protrude from the contact portion of the abutting flat surface portion CLa or the side surface portion CPa. Among these, the adhesive BD that has oozed out from the contact portion to the inside, that is, the lens surface LS1 side, accumulates in the adhesive reservoir BA, and inside the adhesive reservoir BA in the joining process without affecting the lens element LP1. Harden. Note that the adhesive BD that protrudes outward from the contact location accumulates in the gap GA between the arrays 1, 2, and 3, and does not affect the lens element LP1.
 つぎに、図4(c)に示すように、上記と同様にして、複数の光学アレイのうち、第2レンズアレイ2と、絞りアレイ3とが接合される。つまり、第2レンズアレイ2の突き当て平面部CLa及び側面部CPaと、それぞれ対応する絞りアレイ3の当接面CL及び嵌合面部CPとが、光軸AXに平行な方向及び垂直な方向に関して高精度に位置決めされた状態で当接・嵌合するとともに、接着剤BDにより相互に接着される。 Next, as shown in FIG. 4C, in the same manner as described above, the second lens array 2 and the aperture array 3 among the plurality of optical arrays are joined. That is, the abutting flat surface portion CLa and the side surface portion CPa of the second lens array 2 and the contact surface CL and the fitting surface portion CP of the corresponding diaphragm array 3 are respectively in a direction parallel to and perpendicular to the optical axis AX. While abutting and fitting in a state of being positioned with high accuracy, they are bonded to each other by an adhesive BD.
 以上のようにして形成された接合レンズアレイ10から、切断線CTを境界として切り出されることで、図4(d)に示す個片化された接合レンズ10aが形成される。この接合レンズ10aを構成する第1レンズ部1a、第2レンズ部2a及び絞り部3aにおける主たる光学要素であるレンズ素子LP1、LP2及び絞り素子DPは、既述のように高精度に配列されたものとなっている。 By cutting out from the cemented lens array 10 formed as described above with the cutting line CT as a boundary, the separated cemented lens 10a shown in FIG. 4D is formed. The lens elements LP1, LP2 and the diaphragm element DP, which are the main optical elements in the first lens section 1a, the second lens section 2a, and the diaphragm section 3a constituting the cemented lens 10a, are arranged with high accuracy as described above. It has become a thing.
 また、ここで、接合レンズ10aは、例えば図4(d)に示すように、レンズユニットの外径寸法Dに対して、段差状の溝として形成される接着剤溜まり部BAについて、高さaが、1/40~1/100の範囲内とし、幅bを1/30~1/10の範囲内することが望ましい。つまり、接合レンズ10aについては、種々の態様が考えられるが、例えば、レンズユニット幅Dの値が2~3mm程度のサイズのものを形成している場合、接着剤溜まり部BAについては、高さaの値を0.03~0.05mmの範囲内とし、幅bの値を0.1~0.2mmの範囲内とすることが望ましい。これにより、接着剤溜まり部BAが、確実に接着剤を溢れさせることなく溜めるのに十分な大きさを有するものであり、接着剤BDの拡散によるレンズ素子LP1等の光学性能の低下を抑制できるとともに、接着剤溜まり部BDを含む接合部分のサイズが大きくなることを防ぎ、接合レンズ10の大きさを上記範囲内に保つことができる。 Here, the cemented lens 10a has a height a with respect to the adhesive reservoir BA formed as a stepped groove with respect to the outer diameter D of the lens unit as shown in FIG. 4D, for example. However, it is desirable that the width be in the range of 1/40 to 1/100 and the width b be in the range of 1/30 to 1/10. In other words, various modes can be considered for the cemented lens 10a. For example, when the lens unit width D has a value of about 2 to 3 mm, the adhesive reservoir BA has a height. It is desirable that the value of a is in the range of 0.03 to 0.05 mm and the value of width b is in the range of 0.1 to 0.2 mm. As a result, the adhesive reservoir BA has a size large enough to reliably accumulate the adhesive without overflowing, and the optical performance of the lens element LP1 and the like due to diffusion of the adhesive BD can be suppressed. At the same time, the size of the joint portion including the adhesive reservoir BD can be prevented from increasing, and the size of the cemented lens 10 can be kept within the above range.
 また、複数の突き当て平面部CLaと当接面CLとの接着部分については、接合レンズ10aの大きさを上記範囲内に保ち、かつ、接着部分での十分な接着力を維持できるように、接着部分の幅cをレンズユニット幅Dに対して1/6~1/4の範囲内とすることが望ましい。 Further, with respect to the bonding portion between the abutting flat surface portions CLa and the contact surface CL, the size of the cemented lens 10a is maintained within the above range, and sufficient adhesive force at the bonding portion can be maintained. It is desirable that the width c of the bonded portion is in the range of 1/6 to 1/4 with respect to the lens unit width D.
 また、接着剤BDについては、接着剤溜まり部BAから流れ出すことなく、かつ、作業性に適したものであるように、粘度の値を500~2500mPa・sの範囲内とすることが望ましい。 Further, it is desirable that the adhesive BD has a viscosity value in the range of 500 to 2500 mPa · s so that it does not flow out from the adhesive reservoir BA and is suitable for workability.
 〔第2実施形態〕
 以下、第2実施形態に係る接合レンズアレイ及びその製造方法について、図面を参照して説明する。第2実施形態の接合レンズアレイ110は、第1実施形態の接合レンズアレイ10を変形したものである。
[Second Embodiment]
Hereinafter, the cemented lens array and the manufacturing method thereof according to the second embodiment will be described with reference to the drawings. The cemented lens array 110 of the second embodiment is a modification of the cemented lens array 10 of the first embodiment.
 図5は、接合レンズアレイ110のうちの1ユニット分を拡大した断面図である。接合レンズアレイ110は、レンズアレイ101と絞りアレイ103とを積層した2層構造を有し、各アレイ101、103は、詳しくは後述するが、紫外線硬化樹脂である接着材BDにより接着されている。一方のレンズアレイ101は、レンズ素子LP1で構成され、他方の絞りアレイ103は、レンズ素子LP1に対応した階段状の形状を有する絞り素子DPで構成されている。ここで、レンズアレイ101において、突き当て平面部CLaは、レンズ素子LP1の周辺部分SSに輪帯状に形成され、光軸AXに対して垂直な平坦面である。これに対して、側面部CPa´は、突き当て平面部CLaの端部から円錐状に広がるテーパ状の面を形成している。一方、これらに対応して、絞りアレイ103において、当接面CLは、突き当て平面部CLaに当接するように平坦に形成されており、また、嵌合面部CP´は、側面部CPa´に嵌合すべく、側面部CPa´と同様に広がるテーパ状の面を形成している。つまり、平面部CLa及び側面部CPa´によって形成される凹部と、当接面CL及び嵌合面部CP´によって形成される凸部とによる凹凸嵌合部FPが、テーパ面によって嵌合するものとなっている。 FIG. 5 is an enlarged cross-sectional view of one unit of the cemented lens array 110. The cemented lens array 110 has a two-layer structure in which a lens array 101 and a diaphragm array 103 are laminated. The arrays 101 and 103 are bonded by an adhesive BD that is an ultraviolet curable resin, as will be described in detail later. . One lens array 101 is configured by a lens element LP1, and the other aperture array 103 is configured by a diaphragm element DP having a stepped shape corresponding to the lens element LP1. Here, in the lens array 101, the abutting flat surface portion CLa is a flat surface that is formed in a ring shape in the peripheral portion SS of the lens element LP1 and is perpendicular to the optical axis AX. On the other hand, the side surface portion CPa ′ forms a tapered surface that spreads conically from the end of the abutting flat surface portion CLa. On the other hand, in the diaphragm array 103, correspondingly, the contact surface CL is formed flat so as to contact the abutting flat surface portion CLa, and the fitting surface portion CP ′ is formed on the side surface portion CPa ′. In order to fit, the taper-shaped surface which spreads similarly to side surface part CPa 'is formed. That is, the concave / convex fitting portion FP formed by the concave portion formed by the flat surface portion CLa and the side surface portion CPa ′ and the convex portion formed by the contact surface CL and the fitting surface portion CP ′ is fitted by the tapered surface. It has become.
 接合レンズアレイ110についても、図4等に示す接合レンズアレイ10の製造方法と同様に、平面部CLaと当接面CLとが当接するとともに、テーパ状に形成された側面部CPa´と側面部CPaとが嵌合することにより、光軸AX方向に関して高精度の位置決めが可能となっている。 Similarly to the method of manufacturing the cemented lens array 10 shown in FIG. 4 and the like, the cemented lens array 110 also has the flat surface portion CLa and the contact surface CL in contact with each other, and the side surface portion CPa ′ and the side surface portion formed in a tapered shape. By fitting with CPa, positioning with high accuracy in the optical axis AX direction is possible.
 また、接合レンズアレイ110の場合、側面部CPaと嵌合面CPとの間に、若干の間隙を設けて嵌合を弱めたあそびを形成してもよい。さらに、側面部CPa´の外側に位置する周面CQa´とこれに対応する周面CQa´との間にも若干の間隙を設けていてもよい。これらの箇所に若干の間隙を設けることにより、レンズアレイ101と絞りアレイ103との位置関係を調整できる量が大きくなり、突き当て平面部CLaと当接面CLとを確実に当接させることができる。 Further, in the case of the cemented lens array 110, an play with weak fitting may be formed by providing a slight gap between the side surface portion CPa and the fitting surface CP. Furthermore, a slight gap may be provided between the peripheral surface CQa ′ located outside the side surface portion CPa ′ and the corresponding peripheral surface CQa ′. By providing a slight gap at these locations, the amount by which the positional relationship between the lens array 101 and the aperture array 103 can be adjusted is increased, and the abutting flat surface portion CLa and the abutting surface CL can be reliably brought into contact with each other. it can.
 なお、ここで、接合レンズアレイ110では、突き当て平面部CLa上を通る切断線CTにおいて切り出すものとなっている。つまり、高精度の位置合せを行うために用いられた嵌合面部CPと側面部CPaによるテーパ状の面は、切断しろCOの領域に含まれており、切断線CTにおいて切り出された後の接合レンズには残っていないことになる。しかしながら、本実施形態においても、切断線CTを境界として切り出され個片化された接合レンズの主たる光学要素であるレンズ素子LP1及び絞り素子DPは、嵌合面部CPと側面部CPaによるテーパ状の面でのアライメントにより光軸AXに垂直な方向に関して高精度に配列されたものとなっている。 Note that here, the cemented lens array 110 is cut out along a cutting line CT passing over the abutting flat surface portion CLa. In other words, the tapered surface formed by the fitting surface portion CP and the side surface portion CPa used for highly accurate alignment is included in the region of the cutting margin CO, and is joined after being cut out at the cutting line CT. It will not remain in the lens. However, also in this embodiment, the lens element LP1 and the diaphragm element DP, which are the main optical elements of the cemented lens cut out with the cutting line CT as a boundary, are tapered by the fitting surface portion CP and the side surface portion CPa. It is arranged with high accuracy in the direction perpendicular to the optical axis AX by alignment on the surface.
 〔第3実施形態〕
 以下、第3実施形態に係る接合レンズアレイ及びその製造方法について、図面を参照して説明する。第3実施形態の接合レンズアレイは、第1及び第2実施形態の接合レンズアレイ10、110を変形したものである。
[Third Embodiment]
Hereinafter, the cemented lens array and the manufacturing method thereof according to the third embodiment will be described with reference to the drawings. The cemented lens array of the third embodiment is a modification of the cemented lens arrays 10 and 110 of the first and second embodiments.
 図6(a)及び6(b)は、それぞれ本実施形態の接合レンズアレイから切り出された接合レンズ210a、310aについて説明するための平面図である。図6(a)及び6(b)は、ともに図3(b)に示す接合レンズ10aの平面図に対応するものである。つまり、図6(a)に示す接合レンズ210aは、その外観即ち切断線CTによって形成される形状が平面視正六角形であり、六角形柱状を有する点で、円筒形状を有する接合レンズ10aとは異なる。図6(b)に示す接合レンズ310aについても、その外観が平面視正方形であり、直方体形状を有する点で、接合レンズ10a及び接合レンズ210aとは異なる。この場合、正六角形及び正方形は、いずれも平面上に隙間なく敷き詰めることが可能な図形であることから、図1、2等に示す各アレイ1、2、3の配列及び切断しろCOの構成を効率的なものとすることができる。また、直線状に切る方法を用いた切削も可能となる。なお、以上において、外観とともに、側面部CPaと、これに対応する嵌合面部CPとについても平面視正六角形となるようにしてもよい。 6 (a) and 6 (b) are plan views for explaining the cemented lenses 210a and 310a cut out from the cemented lens array of the present embodiment, respectively. 6 (a) and 6 (b) correspond to the plan view of the cemented lens 10a shown in FIG. 3 (b). That is, the cemented lens 210a shown in FIG. 6A has a regular hexagonal shape when viewed from the outside, that is, the cutting line CT, and has a hexagonal column shape. Different. The cemented lens 310a shown in FIG. 6B is also different from the cemented lens 10a and the cemented lens 210a in that the appearance is a square in plan view and has a rectangular parallelepiped shape. In this case, regular hexagons and squares are figures that can be spread on a plane without any gaps. Therefore, the arrangement of arrays 1, 2, and 3 shown in FIGS. It can be efficient. In addition, cutting using a straight cutting method is also possible. In the above description, the side surface portion CPa and the fitting surface portion CP corresponding to the side surface portion CPa may have a regular hexagonal shape in plan view.
 〔第4実施形態〕
 以下、第4実施形態に係る接合レンズアレイ及びその製造方法について、図面を参照して説明する。第4実施形態の接合レンズアレイは、第1乃至第3実施形態の接合レンズアレイ10、110を変形したものであるから、形状の異なる部分のみ説明し、他の部分については省略する。
[Fourth Embodiment]
Hereinafter, the cemented lens array according to the fourth embodiment and the manufacturing method thereof will be described with reference to the drawings. Since the cemented lens array according to the fourth embodiment is a modification of the cemented lens arrays 10 and 110 according to the first to third embodiments, only the parts having different shapes will be described, and the other parts will be omitted.
 図7(a)~(d)は、いずれも、本実施形態に係る接合レンズアレイ10、110の変形例を示す一部拡大図である。 FIGS. 7A to 7D are partially enlarged views showing modified examples of the cemented lens arrays 10 and 110 according to the present embodiment.
 まず、図7(a)は、接合レンズアレイ10の変形例であり、接着剤溜まり部BAが突き当て平面部CLa側に形成されている点で構造が異なる。つまり、図3等の例では、接着剤溜まり部BAが当接面CL側に形成されていたが、これに代えて、図7(a)のように、当該当接面CLに対応する突き当て平面部CLaに同様の接着剤溜まり部BAを設けてもよい。 First, FIG. 7A is a modified example of the cemented lens array 10, and the structure is different in that the adhesive reservoir BA is formed on the abutting flat surface CLa side. That is, in the example of FIG. 3 and the like, the adhesive reservoir BA is formed on the contact surface CL side, but instead of this, as shown in FIG. 7A, the protrusion corresponding to the contact surface CL. A similar adhesive reservoir portion BA may be provided in the contact flat portion CLa.
 次に、図7(b)は、接合レンズアレイ10の変形例であり、一対の凹部及び凸部の関係が反対になっている点で構造が異なる。つまり、図4等の例では、側面部CPaと突き当て平面部CLaとが凹部CCを形成し、嵌合面部CPと当接面CLとが凸部CVを形成しているが、これとは逆に、図7(b)のように、側面部CPaと突き当て平面部CLaとが凸部を形成し、嵌合面部CPと当接面CLとが凹部を形成してもよい。また、これに加えて、図7(c)のように、突き当て平面部CLa側に接着剤溜まり部BAを設けてもよい。 Next, FIG. 7B is a modified example of the cemented lens array 10, and the structure is different in that the relationship between the pair of concave portions and convex portions is reversed. That is, in the example of FIG. 4 and the like, the side surface portion CPa and the abutting flat surface portion CLa form the concave portion CC, and the fitting surface portion CP and the contact surface CL form the convex portion CV. Conversely, as shown in FIG. 7B, the side surface portion CPa and the abutting flat surface portion CLa may form a convex portion, and the fitting surface portion CP and the contact surface CL may form a concave portion. In addition to this, an adhesive reservoir BA may be provided on the abutting flat surface CLa side as shown in FIG.
 次に、図7(d)は、接合レンズアレイ110の変形例であり、接着剤溜まり部BAが突き当て平面部CLa側に形成されている点及び一対の凹部及び凸部の関係が反対になっている点で構造が異なる。つまり、図5に示す接合レンズアレイ110についても、図7(a)~(c)に示した変形例と同様の変形を行うことが可能である。
[第5実施形態]
 以下、第5実施形態に係る接合レンズアレイ及びその製造方法について、図面を参照して説明する。図8は、接合レンズアレイ400の断面図、図9は接合レンズ40aの断面図である。
Next, FIG. 7D is a modified example of the cemented lens array 110, in which the adhesive reservoir portion BA is formed on the abutting flat surface portion CLa side and the relationship between the pair of concave portions and convex portions is reversed. The structure is different. In other words, the cemented lens array 110 shown in FIG. 5 can be modified in the same manner as the modified examples shown in FIGS.
[Fifth Embodiment]
Hereinafter, a cemented lens array and a method for manufacturing the same according to a fifth embodiment will be described with reference to the drawings. FIG. 8 is a sectional view of the cemented lens array 400, and FIG. 9 is a sectional view of the cemented lens 40a.
 本実施形態における接合レンズアレイ400は、第1スペーサアレイ41、第1レンズアレイ42、第2スペーサアレイ43、第2レンズアレイ44及び絞りアレイ45の光学アレイから構成され、5層構造を有する。そして、紫外線硬化樹脂等により交互に接着されている。 The cemented lens array 400 according to this embodiment includes an optical array of a first spacer array 41, a first lens array 42, a second spacer array 43, a second lens array 44, and an aperture array 45, and has a five-layer structure. And it adhere | attaches by ultraviolet curing resin etc. alternately.
 なお、第1スペーサアレイ41は、不図示のCCD(Charge Coupled Devices)型イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等の固体撮像素子に当接し、第1レンズアレイ42と固体撮像素子との光軸方向の間隔を一定に保持する。また、第2スペーサアレイ43は、第1レンズアレイ42と第2レンズアレイ44との光軸方向の間隔を一定に保持する。なお、第1スペーサアレイ41及び第2スペーサアレイ43は黒色の樹脂から形成されている。 The first spacer array 41 is in contact with a solid-state image sensor such as a CCD (Charge Coupled Devices) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor (not shown), and the first lens array 42 and the solid-state image sensor. The distance between the device and the optical axis is kept constant. Further, the second spacer array 43 keeps the distance between the first lens array 42 and the second lens array 44 in the optical axis direction constant. The first spacer array 41 and the second spacer array 43 are made of black resin.
 そして、前述と同様に切断しろCOの両端である切断線CTを境界部分として、図9の如き接合レンズ40aが切り出される。 Then, in the same manner as described above, the cemented lens 40a as shown in FIG. 9 is cut out using the cutting line CT that is the both ends of the CO as a boundary portion.
 接合レンズ40aは、第1スペーサ部41a、第1レンズ部42a、第2スペーサ部43a、第2レンズ部44a及び絞り部45aが積層されている。そして、各々が光軸AXの方向の位置決めを行う突き当て平面部CLaを有している。なお、光軸AXに対する垂直方向の位置決めは、不図示であるが、各光学アレイの端部に設けられていて、個々のレンズ面近傍にはない。しかし、接合レンズアレイ400の状態で各光学アレイは接着剤で互いに接合されているので、切り出されて接合レンズ40aとなっても各レンズ部等が光軸AXに対する垂直方向に位置ずれすることはない。 The cemented lens 40a includes a first spacer portion 41a, a first lens portion 42a, a second spacer portion 43a, a second lens portion 44a, and a diaphragm portion 45a. And each has the abutting plane part CLa which positions in the direction of the optical axis AX. Although positioning in the vertical direction with respect to the optical axis AX is not shown, it is provided at the end of each optical array and is not in the vicinity of each lens surface. However, since the optical arrays are bonded to each other with an adhesive in the state of the cemented lens array 400, each lens portion or the like is not displaced in the vertical direction with respect to the optical axis AX even if the cemented lens 40a is cut out. Absent.
 また、各光学アレイを接合したときに余剰分として浸み出す接着剤BDを溜めるために、各光学アレイの突き当て平面部CLaとレンズ面42aL,44aLとの間に接着剤溜まり部BAが段差状に形成されている。なお、図9においては、接着剤溜まり部BAが第1スペーサ部41a、第1レンズ部42a、第2スペーサ部43a及び絞り部45aに形成されているが、相対する突き当て平面部CLaの光軸AX側の部分であれば、どこに形成されていてもよい。即ち、接着剤溜まり部BAが第1スペーサ部41aに形成されずに第1レンズ部42aの第1スペーサ部41a側に形成されていてもよい。また、接着剤溜まり部BAが第1レンズ部42aに形成されずに第2スペーサ部43aの第1レンズ部42a側に形成されていてもよい。また、接着剤溜まり部BAが第2スペーサ部43aに形成されずに第2レンズ部44aの第2スペーサ部43a側に形成されていてもよい。更に、接着剤溜まり部BAが絞り部45aに形成されずに第2レンズ部44aの絞り部45a側に形成されていてもよい。
[第6実施形態]
 以下、第6実施形態に係る接合レンズアレイ及びその製造方法について、図面を参照して説明する。図10は、接合レンズアレイ500の断面図、図11は接合レンズ50aの断面図である。
Further, in order to collect the adhesive BD that oozes out as a surplus when each optical array is joined, the adhesive reservoir BA is a step between the abutting flat surface portion CLa and the lens surfaces 42aL and 44aL of each optical array. It is formed in a shape. In FIG. 9, the adhesive reservoir portion BA is formed in the first spacer portion 41a, the first lens portion 42a, the second spacer portion 43a, and the aperture portion 45a. It may be formed anywhere as long as it is a portion on the axis AX side. That is, the adhesive reservoir portion BA may be formed on the first spacer portion 41a side of the first lens portion 42a without being formed on the first spacer portion 41a. Further, the adhesive reservoir BA may be formed on the first lens portion 42a side of the second spacer portion 43a without being formed on the first lens portion 42a. The adhesive reservoir BA may be formed on the second spacer portion 43a side of the second lens portion 44a without being formed on the second spacer portion 43a. Further, the adhesive reservoir BA may be formed on the diaphragm 45a side of the second lens unit 44a without being formed on the diaphragm 45a.
[Sixth Embodiment]
Hereinafter, the cemented lens array and the manufacturing method thereof according to the sixth embodiment will be described with reference to the drawings. 10 is a cross-sectional view of the cemented lens array 500, and FIG. 11 is a cross-sectional view of the cemented lens 50a.
 本実施形態における接合レンズアレイ500は、スペーサアレイ51、第1レンズアレイ52、第2レンズアレイ53及び絞りアレイ54の光学アレイから構成され、4層構造を有する。そして、紫外線硬化樹脂等により交互に接着されている。 The cemented lens array 500 in the present embodiment includes an optical array of a spacer array 51, a first lens array 52, a second lens array 53, and an aperture array 54, and has a four-layer structure. And it adhere | attaches by ultraviolet curing resin etc. alternately.
 なお、スペーサアレイ51は、不図示のCCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子に当接し、第1レンズアレイ52と固体撮像素子との光軸方向の間隔を一定に保持する。また、スペーサアレイ51は黒色の樹脂から形成されている。 The spacer array 51 is in contact with a solid-state image sensor such as a CCD image sensor or a CMOS image sensor (not shown), and maintains a constant distance in the optical axis direction between the first lens array 52 and the solid-state image sensor. The spacer array 51 is made of a black resin.
 また、第1レンズアレイ52及び第2レンズアレイ53は、ガラスから成る平行平板の物体側面及び像側面に樹脂から成るレンズ部がそれぞれ形成されたレンズブロックであって、レプリカ法等によって製造される。 The first lens array 52 and the second lens array 53 are lens blocks in which lens portions made of resin are respectively formed on the object side surface and the image side surface of a parallel plate made of glass, and are manufactured by a replica method or the like. .
 そして、前述と同様に切断しろCOの両端である切断線CTを境界部分として、図11の如き接合レンズ50aが切り出される。 Then, in the same manner as described above, the cemented lens 50a as shown in FIG. 11 is cut out using the cutting line CT which is both ends of the CO as a boundary portion.
 接合レンズ50aは、スペーサ部51a、第1レンズ部52a、第2レンズ部53a及び絞り部54aが積層されている。なお、第1レンズ部52aは平行平板52a1の両面に第11レンズ部52a2及び第12レンズ部52a3が形成されており、第2レンズ部53aは平行平板53a1の両面に第21レンズ部53a2及び第22レンズ部53a3が形成されている。 The cemented lens 50a includes a spacer part 51a, a first lens part 52a, a second lens part 53a, and a diaphragm part 54a. In the first lens portion 52a, an eleventh lens portion 52a2 and a twelfth lens portion 52a3 are formed on both surfaces of the parallel plate 52a1, and a second lens portion 53a is formed on both surfaces of the parallel plate 53a1. 22 lens part 53a3 is formed.
 接合レンズ50aの各部は、各々が光軸AXの方向の位置決めを行う突き当て平面部CLaを有している。なお、光軸AXに対する垂直方向の位置決めは、不図示であるが、各光学アレイの端部に設けられていて、個々のレンズ面近傍にはない。しかし、接合レンズアレイ500の状態で各光学アレイは接着剤で互いに接合されているので、切り出されて接合レンズ50aとなっても各レンズ部等が光軸AXに対する垂直方向に位置ずれすることはない。 Each part of the cemented lens 50a has an abutting flat surface part CLa for positioning in the direction of the optical axis AX. Although positioning in the vertical direction with respect to the optical axis AX is not shown, it is provided at the end of each optical array and is not in the vicinity of each lens surface. However, since the optical arrays are bonded to each other with an adhesive in the state of the cemented lens array 500, each lens unit or the like is not displaced in the vertical direction with respect to the optical axis AX even if the cemented lens 50a is cut out. Absent.
 また、各光学アレイを接合したときに余剰分として浸み出す接着剤BDを溜めるために、各光学アレイの突き当て平面部CLaとレンズ面52aL,53aLとの間に接着剤溜まり部BAが段差状に形成されている。なお、図11においては、接着剤溜まり部BAがスペーサ部51a、第1レンズ部52aの第12レンズ部52a3、及び絞り部54aに形成されているが、相対する突き当て平面部CLaの光軸AX側の部分であれば、どこに形成されていてもよい。即ち、接着剤溜まり部BAがスペーサ部51aに形成されずに第11レンズ部52a2のスペーサ部51a側に形成されていてもよい。また、接着剤溜まり部BAが第12レンズ部52a3に形成されずに第21レンズ部53a2の第12レンズ部52a3側に形成されていてもよい。更に、接着剤溜まり部BAが絞り部54aに形成されずに第22レンズ部53a3の絞り部54a側に形成されていてもよい。 Further, in order to store the adhesive BD that oozes out as a surplus when each optical array is bonded, the adhesive reservoir BA is a step between the abutting flat surface portion CLa of each optical array and the lens surfaces 52aL and 53aL. It is formed in a shape. In FIG. 11, the adhesive reservoir BA is formed in the spacer 51a, the twelfth lens 52a3 of the first lens 52a, and the stop 54a, but the optical axis of the opposed abutting flat surface CLa. As long as it is a part on the AX side, it may be formed anywhere. That is, the adhesive reservoir portion BA may be formed on the spacer portion 51a side of the eleventh lens portion 52a2 without being formed on the spacer portion 51a. The adhesive reservoir BA may not be formed on the twelfth lens portion 52a3 but may be formed on the twelfth lens portion 52a3 side of the twenty-first lens portion 53a2. Furthermore, the adhesive reservoir BA may be formed on the diaphragm 54a side of the twenty-second lens section 53a3 without being formed on the diaphragm 54a.
 以上、実施形態に即して本発明を説明したが、本発明は上記実施形態に限定されるものではない。 As mentioned above, although this invention was demonstrated according to embodiment, this invention is not limited to the said embodiment.
 まず、上記実施形態では、積層構造を3層あるいは2層としているが、これに限らず、もっと多くの層を有する接合レンズアレイについても適用可能である。 First, in the above embodiment, the laminated structure is three layers or two layers. However, the present invention is not limited to this, and the present invention can be applied to a cemented lens array having more layers.
 また、接着剤として紫外線硬化性樹脂を用いているが、適度な粘性を有するものであれば、これに限らず、例えば熱硬化性の性質を有する素材等であってもよい。 Further, although an ultraviolet curable resin is used as the adhesive, it is not limited to this as long as it has an appropriate viscosity, and may be a material having thermosetting properties, for example.
 また、切削方法についても、エンドミル工具を用いるもの以外にも種々の方法が考えられ、例えばレーザやダイサー、ホールソー等による切削も考えられ、レーザを用いる場合、レーザの径が切断しろCOとなる。 Further, various cutting methods other than those using an end mill tool are conceivable. For example, cutting with a laser, a dicer, a hole saw, or the like is conceivable. When a laser is used, the laser diameter is cut to CO.

Claims (13)

  1.  レンズアレイを含む複数の光学アレイを積層して形成される接合レンズアレイであって、
     前記レンズアレイを構成する複数のレンズ面のそれぞれの周辺部分に設けられ、接着剤を介在させて前記レンズアレイに対して光軸方向に関して隣接する他の光学アレイにそれぞれ当接し、前記レンズアレイと前記他の光学アレイとの光軸方向についての相対的な位置決めをする突き当て平面部と、
     前記レンズアレイと前記他の光学アレイとの少なくとも一方において各突き当て平面部と各レンズ面との間に挟まれる領域に形成され、各光学アレイ間の光軸方向の位置決めにより前記突き当て平面部から余剰分として浸み出す接着剤を溜める接着剤溜まり部と
    を備えることを特徴とする接合レンズアレイ。
    A cemented lens array formed by laminating a plurality of optical arrays including a lens array,
    Provided in each peripheral portion of a plurality of lens surfaces constituting the lens array, and in contact with another optical array adjacent to the lens array in the optical axis direction with an adhesive interposed therebetween, An abutting flat surface for positioning relative to the other optical array in the optical axis direction;
    At least one of the lens array and the other optical array is formed in a region sandwiched between each abutting plane part and each lens surface, and the abutting plane part is positioned by positioning in the optical axis direction between the optical arrays. A cemented lens array comprising: an adhesive reservoir portion that accumulates an adhesive that oozes out as a surplus.
  2.  前記レンズアレイの前記複数のレンズ面の各周辺部分と当該各周辺部分に当接する前記他の光学アレイの各当接部分との間において、各突き当て平面部から外側に一対の凸部及び凹部としてそれぞれ形成され、前記レンズアレイと前記他の光学アレイとの嵌合を可能にするとともに、嵌合によって光軸垂直方向についての相対的な位置決めをする凹凸嵌合部をさらに備えることを特徴とする請求の範囲第1項記載の接合レンズアレイ。 A pair of convex portions and concave portions outward from each abutting flat surface portion between each peripheral portion of the plurality of lens surfaces of the lens array and each contact portion of the other optical array that contacts the peripheral portions. Each of the lens array and the other optical array, and further includes a concave and convex fitting portion that performs relative positioning in the vertical direction of the optical axis by fitting. The cemented lens array according to claim 1.
  3.  前記凹凸嵌合部は、前記突き当て平面部と当該突き当て平面部の外縁部から延びる側面とを含んで形成されることを特徴とする請求の範囲第2項記載の接合レンズアレイ。 3. The cemented lens array according to claim 2, wherein the concave-convex fitting portion is formed including the abutting flat surface portion and a side surface extending from an outer edge portion of the abutting flat surface portion.
  4.  前記複数の光学アレイは、前記レンズアレイに相当する第1レンズアレイと、前記他の光学アレイに相当する第2レンズアレイを含み、前記突き当て平面部及び前記凹凸嵌合部は、それぞれに対応する前記第1レンズアレイの前記複数のレンズ面と、前記第2レンズアレイの複数のレンズ面とについての相対的な位置決めをすることを特徴とする請求の範囲第2項または第3項に記載の接合レンズアレイ。 The plurality of optical arrays include a first lens array corresponding to the lens array and a second lens array corresponding to the other optical array, and the abutting flat surface portion and the concave / convex fitting portion correspond to each other. 4. The relative positioning of the plurality of lens surfaces of the first lens array and the plurality of lens surfaces of the second lens array is performed. Cemented lens array.
  5.  前記複数の光学アレイは、前記複数のレンズ面に対応する複数の絞りを有する絞りアレイを含むことを特徴とする請求の範囲第1項乃至第4項のいずれか1項に記載の接合レンズアレイ。 The cemented lens array according to any one of claims 1 to 4, wherein the plurality of optical arrays include a diaphragm array having a plurality of diaphragms corresponding to the plurality of lens surfaces. .
  6.  前記凹凸嵌合部は、円筒形状を有することを特徴とする請求の範囲第2項乃至第4項のいずれか1項に記載の接合レンズアレイ。 The cemented lens array according to any one of claims 2 to 4, wherein the concave-convex fitting portion has a cylindrical shape.
  7.  前記凹凸嵌合部は、テーパ状に形成されることを特徴とする請求の範囲第2項乃至第4項のいずれか1項に記載の接合レンズアレイ。 The cemented lens array according to any one of claims 2 to 4, wherein the concave-convex fitting portion is formed in a tapered shape.
  8.  前記凹凸嵌合部は、一対の凸部と凹部との間に所定のあそびを設けていることを特徴とする請求の範囲第2項乃至第7項のいずれか1項に記載の接合レンズアレイ。 The cemented lens array according to any one of claims 2 to 7, wherein the concave-convex fitting portion has a predetermined play between a pair of convex portions and concave portions. .
  9.  前記接着剤溜まり部は、0.03mm以上0.05mm以下の高さを有し0.1mm以上0.2mm以下の幅を有する段差状の溝により形成されることを特徴とする請求の範囲第1項乃至第8項のいずれか1項に記載の接合レンズアレイ。 The adhesive reservoir is formed by a stepped groove having a height of 0.03 mm to 0.05 mm and a width of 0.1 mm to 0.2 mm. The cemented lens array according to any one of Items 1 to 8.
  10.  前記突き当て平面部の接着部分の幅は、1つのレンズユニットの幅に対して1/6以上1/4以下であることを特徴とする請求の範囲第1項乃至第9項のいずれか1項に記載の接合レンズアレイ。 The width of the adhesion part of the said abutting flat part is 1/6 or more and 1/4 or less with respect to the width | variety of one lens unit, The any one of Claim 1 thru | or 9 characterized by the above-mentioned. The cemented lens array according to Item.
  11.  請求の範囲第1項乃至第10項のいずれか1項に記載の接合レンズアレイから切り出されて形成され、
     前記レンズアレイのレンズ面及び当該レンズ面の周辺部分によって形成されるレンズ部と、前記他の光学アレイのうち前記レンズ部に隣接して接着剤によって接合される光学要素とを備えることを特徴とする接合レンズ。
    It is formed by being cut out from the cemented lens array according to any one of claims 1 to 10.
    A lens portion formed by a lens surface of the lens array and a peripheral portion of the lens surface; and an optical element bonded by an adhesive adjacent to the lens portion in the other optical array. A cemented lens.
  12.  レンズアレイを含む複数の光学アレイを積層して形成される接合レンズアレイの製造方法であって、
     前記レンズアレイを構成するレンズ面の周辺部分と、当該周辺部分に当接する他の光学アレイの当接部分との間に接着剤を供給する接着剤供給工程と、
     前記レンズアレイの前記レンズ面の周辺部分に設けられて前記他の光学アレイの当接部分に当接する突き当て平面部によって、前記レンズアレイと前記他の光学アレイとの光軸方向についての相対的な位置決めをする第1位置決め工程を有する位置決め工程と、
     前記レンズアレイと前記他の光学アレイとの間に塗布された接着剤を硬化させて、位置決めのなされた前記レンズアレイと前記他の光学アレイとを接合する接合工程と
    を有し、
     前記位置決め工程において、前記突き当て平面部から余剰分として浸み出す接着剤は、前記レンズアレイと前記他の光学アレイとの少なくとも一方において前記突き当て平面部とレンズ面との間に挟まれる領域に形成される接着剤溜まり部に溜められることを特徴とする、接合レンズアレイの製造方法。
    A method of manufacturing a cemented lens array formed by laminating a plurality of optical arrays including a lens array,
    An adhesive supply step of supplying an adhesive between a peripheral portion of the lens surface constituting the lens array and a contact portion of another optical array that contacts the peripheral portion;
    Relative with respect to the optical axis direction of the lens array and the other optical array by an abutting flat portion provided in a peripheral portion of the lens surface of the lens array and abutting against a contact portion of the other optical array A positioning step having a first positioning step for performing proper positioning;
    A bonding step of curing the adhesive applied between the lens array and the other optical array to bond the positioned lens array and the other optical array;
    In the positioning step, the adhesive that oozes out as a surplus from the abutting plane part is a region sandwiched between the abutting plane part and the lens surface in at least one of the lens array and the other optical array. A method for manufacturing a cemented lens array, characterized in that the cemented lens array is stored in an adhesive reservoir portion formed on the substrate.
  13.  前記位置決め工程は、前記レンズアレイの前記複数のレンズ面の各周辺部分と前記他の光学アレイの各当接部分との間において、前記突き当て平面部から外側に一対の凸部及び凹部としてそれぞれ形成されて前記レンズアレイと前記他の光学アレイとの嵌合を可能にする凹凸嵌合部によって、前記レンズアレイと前記他の光学アレイとの光軸垂直方向についての相対的な位置決めをする第2位置決め工程をさらに有することを特徴とする、請求の範囲第12項記載の接合レンズアレイの製造方法。 The positioning step includes a pair of convex portions and concave portions on the outer side from the abutting flat surface portion between each peripheral portion of the plurality of lens surfaces of the lens array and each contact portion of the other optical array. A concave / convex fitting portion that is formed and enables fitting between the lens array and the other optical array is used to relatively position the lens array and the other optical array in the direction perpendicular to the optical axis. The method for manufacturing a cemented lens array according to claim 12, further comprising two positioning steps.
PCT/JP2009/052766 2008-03-26 2009-02-18 Cemented lens array, cemented lens and method for producing cemented lens array WO2009119192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008080321 2008-03-26
JP2008-080321 2008-03-26

Publications (1)

Publication Number Publication Date
WO2009119192A1 true WO2009119192A1 (en) 2009-10-01

Family

ID=41113400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052766 WO2009119192A1 (en) 2008-03-26 2009-02-18 Cemented lens array, cemented lens and method for producing cemented lens array

Country Status (1)

Country Link
WO (1) WO2009119192A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251249A (en) * 2008-04-04 2009-10-29 Sharp Corp Wafer-like optical device and manufacturing method thereof, electronic element wafer module, sensor wafer module, electronic element module, sensor module, and electronic information apparatus
WO2011102056A1 (en) * 2010-02-19 2011-08-25 コニカミノルタオプト株式会社 Image-capturing lens unit
JP2013007969A (en) * 2011-06-27 2013-01-10 Sharp Corp Imaging lens, lens array, imaging lens producing method, and imaging module
WO2014042213A1 (en) * 2012-09-14 2014-03-20 コニカミノルタ株式会社 Optical lens, optical lens unit, and imaging device
WO2014042164A1 (en) * 2012-09-11 2014-03-20 コニカミノルタ株式会社 Imaging device and lens unit
WO2014192933A1 (en) * 2013-05-31 2014-12-04 コニカミノルタ株式会社 Stacked lens array unit and image capturing device
CN109254379A (en) * 2018-11-21 2019-01-22 中国科学院上海技术物理研究所 A kind of poly-lens integrated package of cryogenic applications
CN111208617A (en) * 2018-11-21 2020-05-29 大立光电股份有限公司 Plastic lens group, imaging lens module and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0171314U (en) * 1987-10-30 1989-05-12
JPH08329508A (en) * 1995-06-02 1996-12-13 Matsushita Electric Ind Co Ltd Objective lens attaching structure for optical pickup
JP2003329808A (en) * 2002-05-16 2003-11-19 Olympus Optical Co Ltd Combined lens array
JP2003337206A (en) * 2001-05-09 2003-11-28 Nippon Sheet Glass Co Ltd Resin erecting lens array and method of making the same
JP2006139874A (en) * 2004-11-12 2006-06-01 Konica Minolta Opto Inc Lens unit and optical pickup device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0171314U (en) * 1987-10-30 1989-05-12
JPH08329508A (en) * 1995-06-02 1996-12-13 Matsushita Electric Ind Co Ltd Objective lens attaching structure for optical pickup
JP2003337206A (en) * 2001-05-09 2003-11-28 Nippon Sheet Glass Co Ltd Resin erecting lens array and method of making the same
JP2003329808A (en) * 2002-05-16 2003-11-19 Olympus Optical Co Ltd Combined lens array
JP2006139874A (en) * 2004-11-12 2006-06-01 Konica Minolta Opto Inc Lens unit and optical pickup device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251249A (en) * 2008-04-04 2009-10-29 Sharp Corp Wafer-like optical device and manufacturing method thereof, electronic element wafer module, sensor wafer module, electronic element module, sensor module, and electronic information apparatus
WO2011102056A1 (en) * 2010-02-19 2011-08-25 コニカミノルタオプト株式会社 Image-capturing lens unit
CN102763014A (en) * 2010-02-19 2012-10-31 柯尼卡美能达先进多层薄膜株式会社 Image-capturing lens unit
JPWO2011102056A1 (en) * 2010-02-19 2013-06-17 コニカミノルタアドバンストレイヤー株式会社 Imaging lens unit
JP2013007969A (en) * 2011-06-27 2013-01-10 Sharp Corp Imaging lens, lens array, imaging lens producing method, and imaging module
WO2014042164A1 (en) * 2012-09-11 2014-03-20 コニカミノルタ株式会社 Imaging device and lens unit
WO2014042213A1 (en) * 2012-09-14 2014-03-20 コニカミノルタ株式会社 Optical lens, optical lens unit, and imaging device
US10191189B2 (en) 2012-09-14 2019-01-29 Konica Minolta, Inc. Optical lens, optical lens unit, and imaging device
WO2014192933A1 (en) * 2013-05-31 2014-12-04 コニカミノルタ株式会社 Stacked lens array unit and image capturing device
JPWO2014192933A1 (en) * 2013-05-31 2017-02-23 コニカミノルタ株式会社 Multilayer lens array unit and imaging apparatus
CN109254379A (en) * 2018-11-21 2019-01-22 中国科学院上海技术物理研究所 A kind of poly-lens integrated package of cryogenic applications
CN111208617A (en) * 2018-11-21 2020-05-29 大立光电股份有限公司 Plastic lens group, imaging lens module and electronic device
CN111208617B (en) * 2018-11-21 2022-04-26 大立光电股份有限公司 Plastic lens group, imaging lens module and electronic device

Similar Documents

Publication Publication Date Title
WO2009119192A1 (en) Cemented lens array, cemented lens and method for producing cemented lens array
US7088530B1 (en) Passively aligned optical elements
TW558647B (en) Resin erecting lens array and method for fabricating the same
JP4236418B2 (en) Resin erecting lens array and manufacturing method thereof
US20100328743A1 (en) Optical system
JP2008070484A (en) Structure of lens unit
KR101694537B1 (en) Optical unit
JP2007163657A (en) Photographic lens, and optical apparatus using photographic lens
TWI432788B (en) Membrane suspended optical elements, and associated methods
JP2011221243A (en) Optical system lens and method for manufacturing the same
JP5467205B2 (en) Optical lens
JPH05333328A (en) Image display device
WO2014119646A1 (en) Laminated lens array, aperture member for laminated lens array, and related device and method
TWI454776B (en) Lens assembly
JP5003340B2 (en) Optical element unit and imaging apparatus
JP2010147917A (en) Image sensor unit and image capturing apparatus
WO2014192933A1 (en) Stacked lens array unit and image capturing device
JP2004096638A (en) Imaging device and manufacturing method therefor
JP2009282264A (en) Lens unit and camera module
JP5377880B2 (en) Lens unit, camera module, and lens unit manufacturing method
JP5544866B2 (en) Imaging device, in-vehicle imaging device, and manufacturing method of imaging device
WO2010143454A1 (en) Wafer lens assembly and lens unit
JP2004087718A (en) Imaging module
JP5646028B2 (en) Lens unit and camera module
WO2024009880A1 (en) Lens unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09724325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP