WO2009119123A1 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
WO2009119123A1
WO2009119123A1 PCT/JP2009/050055 JP2009050055W WO2009119123A1 WO 2009119123 A1 WO2009119123 A1 WO 2009119123A1 JP 2009050055 W JP2009050055 W JP 2009050055W WO 2009119123 A1 WO2009119123 A1 WO 2009119123A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
axis current
command value
identification mode
current command
Prior art date
Application number
PCT/JP2009/050055
Other languages
French (fr)
Japanese (ja)
Inventor
佳明 栗田
達夫 安藤
邦明 高塚
孝 大石
励 笠原
健 木下
健太郎 三浦
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN200980105536.7A priority Critical patent/CN101946136B/en
Publication of WO2009119123A1 publication Critical patent/WO2009119123A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration apparatus such as an air conditioner or a refrigerator, and more particularly to a refrigeration apparatus that variably controls the rotation speed of a permanent magnet synchronous motor that drives a compressor of a refrigeration cycle by an inverter device.
  • vector control for an inverter device in order to realize high-efficiency operation.
  • vector control uses motor constants (specifically, resistance, induced voltage, and inductance), it is necessary to set the motor constants in advance.
  • the motor constant varies depending on variations at the time of manufacturing the motor and operating conditions, and there is a possibility that a deviation occurs between the preset set value and the actual value.
  • a vector control apparatus has been proposed in which motor constants are identified immediately before or during actual operation and the motor constant setting value is automatically corrected (see, for example, JP 2007-49843 A).
  • a vector control device described in Japanese Patent Application Laid-Open No. 2007-49843 includes a current detector that detects a three-phase alternating current, and coordinates that convert the detected value of the three-phase alternating current into a d-axis current detection value and a q-axis current detection value.
  • a vector control for calculating a d-axis voltage command value and a q-axis voltage command value based on the set value of the motor constant, the rotational speed command value, the second d-axis current command value, and the second q-axis current command value
  • Three-phase AC between the calculation unit (voltage command calculation unit), d-axis voltage command value, and q-axis voltage command value Includes a coordinate converter for converting the voltage command values, a power
  • the d-axis current is controlled to “zero” and “a predetermined value other than zero”, and the difference between the second d-axis current command value and the difference between the d-axis current detection values in these two control states. (Or the difference between the first d-axis current command values), and the ratio between the difference between the d-axis current command values and the difference between the detected d-axis current values (or the difference between the first d-axis current command values). Is multiplied by the set value of the d-axis inductance to correct the set value of the d-axis inductance.
  • the ratio between the second q-axis current command value and the q-axis current detection value (or the first q-axis current command value) is set to the q-axis.
  • the q-axis inductance setting value is corrected by multiplying the inductance setting value.
  • the motor constant identification accuracy affects the motor control performance (specifically, drive efficiency, response speed, stability, etc.).
  • the inductance identification accuracy is related to motor maximum torque control. And driving efficiency is greatly affected.
  • the d-axis current command value is controlled to “zero” and “predetermined value other than zero”, and the difference between the second d-axis current command value and the difference between the d-axis current detection values in these two control states. Based on the above, the d-axis inductance is identified. For this reason, there is room for improvement in terms of inductance identification accuracy because it is easily affected by current ripples and phase variations.
  • An object of the present invention is to provide a refrigeration apparatus that can improve the identification accuracy of inductance and improve the operation efficiency.
  • the present invention provides a refrigeration apparatus comprising a compressor of a refrigeration cycle, a permanent magnet synchronous motor that drives the compressor, and an inverter device that variably controls the rotational speed of the motor by vector control.
  • the inverter device includes an inverter circuit that generates AC power from DC power and supplies the AC power to the motor, a current detection unit that detects an input DC current or an output AC current of the inverter circuit, and a d detected from the current detected by the current detection unit.
  • a current detection calculation unit for calculating an axis current detection value and a q-axis current detection value, and correcting the first d-axis current command value based on a deviation between the first d-axis current command value and the d-axis current detection value.
  • a first d-axis current command value is generated based on a deviation between the first q-axis current command value and the detected q-axis current value.
  • the second q-axis current finger A q-axis current command calculation unit that generates a value, a d-axis based on a motor constant setting value including an inductance setting value, a rotation speed command value, a second d-axis current command value, and a second q-axis current command value
  • a voltage command calculation unit that calculates a voltage command value and a q-axis voltage command value; an inverter control unit that controls an inverter circuit based on the d-axis voltage command value and the q-axis voltage command value; and a first q-axis current command value
  • An identification mode control unit for fixing the first d-axis current command value to a predetermined set value while fixing the rotation speed command value for a predetermined time as an identification mode during vector control operation in which ,
  • the difference between the second d-axis current command value and the first d-axis current command value in the identification mode is integrated to calculate an average value, and based on this, the correction amount
  • FIG. 1 is a schematic diagram showing a configuration of an air conditioner according to an embodiment of the present invention.
  • an air conditioner 110 has a refrigeration cycle in which a compressor 101, an indoor heat exchanger 102, an indoor expansion valve 104, an outdoor heat exchanger 105, and an accumulator 107 are sequentially connected.
  • a compressor 101 an indoor heat exchanger 102, an indoor expansion valve 104, an outdoor heat exchanger 105, and an accumulator 107 are sequentially connected.
  • the refrigerant compressed by the compressor 101 is condensed and liquefied by the outdoor heat exchanger 105, and then reduced by the indoor expansion valve 104 and evaporated by the indoor heat exchanger 102. It returns to the compressor 101.
  • the indoor heat exchanger 102 and the indoor expansion valve 104 are provided in the indoor unit 109, and the indoor unit 109 is provided with an indoor blower 103 for promoting heat exchange.
  • the compressor 101, the outdoor heat exchanger 105, the accumulator 107, and the like are provided in the outdoor unit 108, and the outdoor unit 108 is provided with an outdoor blower 106 for promoting heat exchange.
  • the compressor 101 is driven by a permanent magnet synchronous motor 111, and the rotation speed (operation frequency) of the motor 111 is variably controlled by an inverter device 210. Thereby, it respond
  • FIG. 2 is a schematic diagram showing the configuration of the inverter device 210.
  • the inverter device 210 converts the AC power from the AC power source 251 into DC power, and generates AC power from the DC power generated by the converter circuit 225 and supplies the AC power to the motor 111.
  • the inverter 221, the microcomputer 231 that controls the inverter circuit 221 via the driver circuit 232, the high voltage generated by the converter circuit 225 is adjusted to a control power supply of about 5 V or 15 V, for example, the microcomputer 231, the driver circuit 232, etc. ,
  • a voltage detection circuit 234 that detects the output DC voltage of the converter circuit 225, a current detection circuit 233 that detects the input DC current of the inverter circuit 221 using the shunt resistor 224, and an outside temperature thermistor 261.
  • a detection circuit 262 Outside temperature to detect the outside temperature using A detection circuit 262, a discharge temperature detection circuit 264 that detects the discharge temperature of the compressor 101 using the discharge temperature thermistor 263, and a discharge pressure detection circuit 266 that detects the discharge pressure of the compressor 101 using the discharge pressure sensor 265. It has.
  • the converter circuit 225 is a circuit in which a plurality of rectifying elements 226 are bridge-connected, and converts AC power from the AC power supply 251 into DC power.
  • the inverter circuit 221 is a circuit in which a plurality of switching elements 222 are connected in a three-phase bridge.
  • a flywheel element 223 is provided along with the switching element 222 so that the switching element 222 regenerates a counter electromotive force generated at the time of switching.
  • the driver circuit 232 controls a switching operation of the switching element 222 by amplifying a weak signal (a PWM signal described later) from the microcomputer 231. Thereby, AC power is generated by the inverter circuit 221 and its frequency is controlled.
  • an electromagnetic contactor 253 for operating or stopping the motor 111, a power factor improving reactor 252, and a smoothing capacitor 270 are connected. Further, an inrush current limiting resistor 254 is provided in parallel with the electromagnetic contactor 253 so that the electromagnetic contactor 253 that is closed when the power is turned on does not weld due to an excessive inrush current flowing through the smoothing capacitor 270.
  • the microcomputer 231 has a sensorless type vector control function. That is, the drive current of the motor 111 (in other words, the output AC current of the inverter circuit 221) is reproduced based on the input DC current of the inverter circuit 221 detected by the current detection circuit 233, and the AC current is A current sensor for detection is not required. Further, the rotational speed and phase (magnetic pole position) of the motor 111 are estimated, and a speed sensor and a magnetic pole position sensor are not required. Details of such vector control will be described below.
  • FIG. 3 is a block diagram showing a functional configuration of the microcomputer 231.
  • FIG. 4 is a block diagram showing the functional configuration of the speed / phase estimation unit shown in FIG. 3
  • FIG. 5 shows the functional configuration of the motor constant identification unit and vector control calculation unit shown in FIG. FIG.
  • the microcomputer 231 uses the speed / phase estimation unit 18 for estimating the rotation speed detection value ⁇ and the phase detection value ⁇ dc of the motor 111, the DC current Ish detected by the current detection circuit 233, and the like.
  • a current reproduction unit 19 that estimates 111 drive currents (current detection values of three-phase alternating current) Iu, Iv, and Iw, and current detection values Iu, Iv, and Iw of three-phase alternating current based on the phase detection value ⁇ dc.
  • the q-axis current command generation unit 12 that generates the first qc-axis current command value Iqc * and the first dc-axis current command value Idc * so that the deviation between ⁇ * and the rotational speed detection value ⁇ becomes zero .
  • D-axis current command generation to generate Generator 13, motor constant setting unit 14 for outputting motor constant setting values (specifically, resistance setting value r * , induced voltage setting value Ke * , and virtual inductance setting value L * ), and a first dc axis Calculate dc-axis voltage command value Vdc * and qc-axis voltage command value Vqc * based on current command value Idc * , first qc-axis current command value Iqc * , motor constant setting value, rotation speed command value ⁇ *, etc.
  • motor constant setting unit 14 for outputting motor constant setting values (specifically, resistance setting value r * , induced voltage setting value Ke * , and virtual inductance setting value L * )
  • a first dc axis Calculate dc-axis voltage command value Vdc * and qc-axis voltage command value Vqc * based on current command value Idc * , first qc-axis current command value Iqc * , motor constant setting
  • the vector control calculation unit 15 that performs the dc-axis voltage command value Vdc * and the qc-axis voltage command value Vqc * dc-axis voltage command value based on the phase detection value ⁇ dc and three-phase AC voltage command values Vu * , Vv * , Vw biaxial / three-phase converting unit 16 that converts to *, the voltage command value of three-phase AC Vu *, Vv *, Vw * to generate and output to the driver circuit 232, respectively proportional to the PWM signal (pulse width modulation signal) Do And a WM output unit 17.
  • the current reproduction unit 19 is based on the DC current Ish detected by the current detection circuit 233 and the three-phase AC voltage command values Vu * , Vv * , Vw * calculated by the 2-axis / 3-phase conversion unit 16.
  • the three-phase AC current detection values Iu, Iv, and Iw are estimated.
  • the three-phase / two-axis conversion unit 20 converts the three-phase AC current detection values Iu, Iv, and Iw into the dc-axis current detection value Idc and the qc-axis current based on the phase detection value ⁇ dc estimated by the speed / phase estimation unit 18.
  • the detection value Iqc is converted (see Equation 1 below). As shown in FIG.
  • the dq axis is the motor rotor axis
  • the do-qo axis is the motor maximum torque axis
  • the dc-qc axis is the estimated axis of the control system
  • the do-qo axis and dc-qc axis An axis error with respect to the axis is defined as ⁇ c.
  • the speed / phase estimation unit 18 includes an axis error calculation unit 21 that calculates an axis error ⁇ c, a zero generation unit 22 that gives a zero command to the axis error ⁇ c, a speed calculation unit 23 that estimates a rotational speed detection value ⁇ , and a phase And a phase calculator 24 for estimating the detected value ⁇ c.
  • the axis error calculation unit 21 includes a dc-axis voltage command value Vdc * , a qc-axis voltage command value Vqc * , a dc-axis current detection value Idc, a qc-axis current detection value Iqc, motor constant setting values r * , Ke * , L * , Then, the axis error ⁇ c is calculated based on the rotational speed command value ⁇ * (see the following formula 2).
  • the speed calculation unit 23 estimates the rotation speed detection value ⁇ so that the axis error ⁇ c calculated by the axis error calculation unit 21 becomes zero.
  • the zero generator 22 and the rotation speed calculator 23 constitute a PLL control circuit.
  • the speed calculation unit 23 estimates that the rotation speed detection value ⁇ is increased because the dc-qc axis of the control system is advanced from the do-qo axis of the maximum motor torque.
  • the shaft error ⁇ c is negative, for example, the dc-qc axis of the control system is delayed from the do-qo axis of the motor maximum torque, so that the rotational speed detection value ⁇ is estimated to be decreased.
  • the d-axis current command generation unit 12 is configured such that the deviation between the rotation speed detection value ⁇ estimated by the speed calculation unit 23 and the rotation speed command value ⁇ * generated by the speed command generation unit 10 becomes zero. A first qc-axis current command value is generated.
  • the phase calculation unit 24 integrates the rotational speed detection value ⁇ estimated by the speed calculation unit to calculate the phase ⁇ dc of the control system.
  • the vector control calculation unit 15 includes a q-axis current command calculation unit 31, a d-axis current command calculation unit 33, and a voltage command calculation unit 34.
  • the q-axis current command calculation unit 31 calculates the first qc-axis current command value Iqc * based on the difference between the first qc-axis current command value Iqc * calculated by the subtraction unit 30 and the qc-axis current detection value Iqc.
  • the second qc-axis current command value Iqc ** is generated by correction.
  • the d-axis current command calculation unit 33 calculates the first dc-axis current command value based on the difference between the first dc-axis current command value Idc * calculated by the subtraction unit 32 and the dc-axis current detection value Idc. Idc * is corrected to generate a second dc-axis current command value Idc ** .
  • the 2-axis / 3-phase converter 16 converts the dc-axis voltage command value Vdc * and the qc-axis current detection value Vqc * into a 3-phase AC voltage command value based on the phase detection value ⁇ dc estimated by the speed / phase estimation unit 18. Conversion into Vu * , Vv * , Vw * (see Equation 4 below).
  • the motor constant identification unit 14 includes an identification mode control unit 35, an input switching unit 36, an integration unit 37, a storage unit 38, and an addition unit 39 in order to identify the virtual inductance L described above.
  • the identification mode control unit 35 receives, for example, the rotational speed detection value ⁇ estimated by the speed / phase estimation unit 18 during the vector control mode operation of the motor 111, and the rotational speed detection value ⁇ is set to a predetermined value. It is determined whether or not ⁇ 1 has been reached. For example, when the rotational speed detection value ⁇ reaches the predetermined value ⁇ 1 (in other words, when the rotational speed detection value ⁇ rises or falls to the predetermined value ⁇ 1), the identification mode is set as the identification mode for a predetermined time, the speed command generator 10 and the d-axis current command. The generation unit 13 is instructed in the identification mode, and the input switching unit 36 is switched to the connected state. In the present embodiment, the identification mode is executed by repeating a predetermined number of times (for example, three times) set in advance.
  • the speed command generation unit 10 fixes the rotational speed command value ⁇ * to the current value in accordance with the identification mode command.
  • the d-axis current command generation unit 13 fixes the first d-axis current command value Idc * to a predetermined set value Idc * _at in accordance with the identification mode command.
  • the predetermined set value Idc * _at is preferably set to be relatively small in order to avoid the influence of the inverter eddy current and the motor magnetic saturation, and the identification accuracy is ensured while taking into account the current detection resolution and calculation error of the control device. Therefore, for example, it may be set in the range of about 1/10 to 1/2 of the rated current of the motor.
  • the addition unit 39 adds the error ⁇ L * _all stored in the storage unit 38 and the virtual inductance initial setting value L * _0, and uses this as the virtual inductance setting value L * , so that the voltage command calculation unit 34 of the vector control calculation unit 15. And output to the speed / phase estimation unit 18.
  • the inverter device 120 drives the permanent magnet synchronous motor 111 by sensorless vector control, calculates the axis error ⁇ c using the above formula 2, and estimates the phase ⁇ dc.
  • the rotational speed ⁇ of the motor 111 that is, the rotational speed N of the compressor 101
  • the motor 111 is started in three operation control modes (positioning mode, synchronous operation mode, and vector control operation mode). First, in the positioning mode, the rotor magnetic pole of the motor 111 is positioned by increasing the dc axis current while setting the qc axis current to zero.
  • the rotational speed ⁇ of the motor 111 (that is, the rotational speed N of the compressor 101) is increased while the dc-axis current is fixed.
  • the rotational speed of the motor 111 (that is, the rotational speed N of the compressor 101) reaches about the rated value of about 5 to 10
  • the mode shifts to the vector control operation mode, and the qc-axis current is increased.
  • the identification mode is set for a predetermined time,
  • the first d-axis current command value Id * is fixed to a predetermined set value Idc * _at while fixing the speed command value ⁇ * .
  • the identification accuracy of the virtual inductance L can be increased while suppressing the influence of current ripple and phase variation. Moreover, the identification accuracy of the virtual inductance L can be improved by executing the identification mode in accordance with the operating conditions such as the rotation speed of the compressor 101 and repeatedly performing the preset number of times. Therefore, the driving efficiency can be improved.
  • the identification mode control unit 35 receives the rotational speed detection value ⁇ estimated by the speed / phase estimation unit 18 and the rotational speed detection value ⁇ reaches a predetermined value ⁇ 1.
  • the identification mode may be executed when the direct current Ish reaches a predetermined value Ish1 (see FIG. 7 described above).
  • the discharge pressure Pd of the compressor 101 detected by the discharge pressure detection circuit 266 may be input, and the identification mode may be executed when the discharge pressure Pd reaches a predetermined value Pd1 (see FIG. 8).
  • the discharge temperature Td detected by the discharge temperature detection circuit 264 may be input, and the identification mode may be executed when the discharge temperature Td reaches a predetermined value Td1 (see FIG. 9).
  • the outside air temperature Ta detected by the outside air temperature detection circuit 262 may be input, and the identification mode may be executed when the outside air temperature Ta reaches a predetermined Ta1 (see FIG. 10). In these cases, the same effect as described above can be obtained.
  • the present invention is not limited to this. That is, for example, it may be fixed to predetermined setting values (Idc * _at1, Idc * _at2, Idc * _at3) that differ depending on the number of repetitions of the identification mode (for example, the first time, the second time, and the third time) (see FIG. 11). ).
  • the first dc-axis current command value Idc * is fixed to a predetermined set value Idc * _at4.
  • Idc * _at5 where Idc * _at4 ⁇ Idc * _at5
  • the d-axis current command calculation unit 33 and the q-axis current command calculation unit 31 input the inductance set value L * identified by the motor constant identification unit 14. Based on this, the control gain may be adjusted (see Equation 9 below). In this case, the same effect as described above can be obtained. While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
  • FIG. 4 is a block diagram illustrating a functional configuration of a speed / phase estimation unit illustrated in FIG. 3.
  • FIG. 4 is a block diagram illustrating a functional configuration of a motor constant identification unit and a vector control calculation unit illustrated in FIG. 3. It is a figure showing a motor rotor axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Ac Motors In General (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner comprises a permanent magnet synchronous motor for driving a compressor in a refrigeration cycle, and an inverter performing variable control of the number of revolutions of the motor by vector control, wherein a microcomputer of the inverter fixes a first d-axis current command value Id* to a predetermined set value while fixing a speed command value ω*, for a predetermined time, as identification mode during vector control operation. An average value is operated by integrating the difference of a second d-axis current command value Id** and the first d-axis current command value Id* in case of the identification mode, a correction amount ΔL* of an inductance set value L* is operated based on the average value, and then vector control operation is performed using an inductance set value L* to which the correction amount ΔL* is added.

Description

冷凍装置Refrigeration equipment
 本発明は、例えば空気調和機や冷凍機などの冷凍装置に係り、特に、冷凍サイクルの圧縮機を駆動する永久磁石同期モータの回転数をインバータ装置によって可変制御する冷凍装置に関する。 The present invention relates to a refrigeration apparatus such as an air conditioner or a refrigerator, and more particularly to a refrigeration apparatus that variably controls the rotation speed of a permanent magnet synchronous motor that drives a compressor of a refrigeration cycle by an inverter device.
 例えば空気調和機や冷凍機などの冷凍装置において、高効率な運転を実現するため、インバータ装置にベクトル制御を採用することが知られている。ベクトル制御はモータ定数(詳細には、抵抗、誘起電圧、及びインダクタンス)を用いるため、このモータ定数を予め設定する必要がある。しかし、モータ定数は、モータ製造時のバラツキや運転条件によって変動し、予め設定した設定値と実際値との間にずれが生じる恐れがある。そこで、実運転の直前や実運転中にモータ定数を同定して、モータ定数設定値を自動的に修正するベクトル制御装置が提唱されている(例えば、特開2007-49843号公報参照)。 For example, in a refrigeration apparatus such as an air conditioner or a refrigerator, it is known to employ vector control for an inverter device in order to realize high-efficiency operation. Since vector control uses motor constants (specifically, resistance, induced voltage, and inductance), it is necessary to set the motor constants in advance. However, the motor constant varies depending on variations at the time of manufacturing the motor and operating conditions, and there is a possibility that a deviation occurs between the preset set value and the actual value. In view of this, a vector control apparatus has been proposed in which motor constants are identified immediately before or during actual operation and the motor constant setting value is automatically corrected (see, for example, JP 2007-49843 A).
特開2007-49843号公報JP 2007-49843 A
 特開2007-49843号公報に記載のベクトル制御装置は、3相交流電流を検出する電流検出器と、3相交流電流の検出値をd軸電流検出値及びq軸電流検出値に変換する座標変換部と、第1のd軸電流指令値とd軸電流検出値との偏差に応じて第2のd軸電流指令値を生成するd軸電流指令演算部と、第1のq軸電流指令値とq軸電流検出値との偏差に基づいて第2のq軸電流指令値を生成するq軸電流指令演算部と、モータ定数を同定して、モータ定数設定値を修正するモータ定数同定部と、モータ定数の設定値、回転数指令値、第2のd軸電流指令値、及び第2のq軸電流指令値に基づいてd軸電圧指令値及びq軸電圧指令値を演算するベクトル制御演算部(電圧指令演算部)と、d軸電圧指令値及びq軸電圧指令値を3相交流の電圧指令値に変換する座標変換部と、3相交流の電圧指令値に比例した電圧を永久磁石同期モータに印加する電力変換器とを備えている。そして、高速域では、d軸電流を「零」と「零以外の所定値」とに制御し、それら2つの制御状態における第2のd軸電流指令値の差分とd軸電流検出値の差分(若しくは第1のd軸電流指令値の差分)をそれぞれ演算し、それらd軸電流指令値の差分とd軸電流検出値の差分(若しくは第1のd軸電流指令値の差分)との比をd軸インダクタンスの設定値に乗じて、d軸インダクタンスの設定値を修正するようになっている。また、高速域では、q軸電流が「所定値以上」であれば、第2のq軸電流指令値とq軸電流検出値(若しくは第1のq軸電流指令値)との比をq軸インダクタンスの設定値に乗じて、q軸インダクタンスの設定値を修正するようになっている。 A vector control device described in Japanese Patent Application Laid-Open No. 2007-49843 includes a current detector that detects a three-phase alternating current, and coordinates that convert the detected value of the three-phase alternating current into a d-axis current detection value and a q-axis current detection value. A conversion unit; a d-axis current command calculation unit that generates a second d-axis current command value in accordance with a deviation between the first d-axis current command value and the detected d-axis current value; and a first q-axis current command A q-axis current command calculation unit that generates a second q-axis current command value based on the deviation between the value and the q-axis current detection value, and a motor constant identification unit that identifies the motor constant and corrects the motor constant set value And a vector control for calculating a d-axis voltage command value and a q-axis voltage command value based on the set value of the motor constant, the rotational speed command value, the second d-axis current command value, and the second q-axis current command value Three-phase AC between the calculation unit (voltage command calculation unit), d-axis voltage command value, and q-axis voltage command value Includes a coordinate converter for converting the voltage command values, a power converter that is applied to the permanent magnet synchronous motor a voltage proportional to the voltage command value of three-phase AC. In the high speed range, the d-axis current is controlled to “zero” and “a predetermined value other than zero”, and the difference between the second d-axis current command value and the difference between the d-axis current detection values in these two control states. (Or the difference between the first d-axis current command values), and the ratio between the difference between the d-axis current command values and the difference between the detected d-axis current values (or the difference between the first d-axis current command values). Is multiplied by the set value of the d-axis inductance to correct the set value of the d-axis inductance. Further, in the high speed range, if the q-axis current is “predetermined value or more”, the ratio between the second q-axis current command value and the q-axis current detection value (or the first q-axis current command value) is set to the q-axis. The q-axis inductance setting value is corrected by multiplying the inductance setting value.
 モータ定数の同定精度は、モータの制御性能(詳細には、駆動効率、応答速度、安定性など)に影響を与えるが、特に、インダクタンスの同定精度は、モータ最大トルク制御に係わるので、モータ電流や駆動効率に大きな影響を与える。上記制御装置では、d軸電流指令値を「零」と「零以外の所定値」に制御し、それら2つの制御状態における第2のd軸電流指令値の差分とd軸電流検出値の差分に基づいてd軸インダクタンスを同定するようになっている。そのため、電流のリップルや位相のバラツキの影響を受けやすく、インダクタンスの同定精度の点で改善の余地があった。 The motor constant identification accuracy affects the motor control performance (specifically, drive efficiency, response speed, stability, etc.). In particular, the inductance identification accuracy is related to motor maximum torque control. And driving efficiency is greatly affected. In the above control device, the d-axis current command value is controlled to “zero” and “predetermined value other than zero”, and the difference between the second d-axis current command value and the difference between the d-axis current detection values in these two control states. Based on the above, the d-axis inductance is identified. For this reason, there is room for improvement in terms of inductance identification accuracy because it is easily affected by current ripples and phase variations.
 本発明の目的は、インダクタンスの同定精度を高めることができ、運転効率の向上を図ることができる冷凍装置を提供することにある。 An object of the present invention is to provide a refrigeration apparatus that can improve the identification accuracy of inductance and improve the operation efficiency.
 上記目的を達成するために、本発明は、冷凍サイクルの圧縮機と、圧縮機を駆動する永久磁石同期モータと、ベクトル制御によってモータの回転数を可変制御するインバータ装置とを備えた冷凍装置において、インバータ装置は、直流電力から交流電力を生成してモータに供給するインバータ回路と、インバータ回路の入力直流電流又は出力交流電流を検出する電流検出部と、電流検出部で検出された電流からd軸電流検出値及びq軸電流検出値を演算する電流検出演算部と、第1のd軸電流指令値とd軸電流検出値との偏差に基づいて第1のd軸電流指令値を補正して第2のd軸電流指令値を生成するd軸電流指令演算部と、第1のq軸電流指令値とq軸電流検出値との偏差に基づいて第1のq軸電流指令値を補正して第2のq軸電流指令値を生成するq軸電流指令演算部と、インダクタンス設定値を含むモータ定数設定値、回転数指令値、第2のd軸電流指令値、及び第2のq軸電流指令値に基づいてd軸電圧指令値及びq軸電圧指令値を演算する電圧指令演算部と、d軸電圧指令値及びq軸電圧指令値に基づいてインバータ回路を制御するインバータ制御部と、第1のq軸電流指令値を零以外の値とするベクトル制御運転中に、同定モードとして、所定時間、回転数指令値を固定しつつ、第1のd軸電流指令値を所定の設定値に固定する同定モード制御部と、同定モードの場合における第2のd軸電流指令値と第1のd軸電流指令値との差分を積分して平均値を演算し、これに基づいてインダクタンス設定値の補正量を演算し、その補正量を加算したインダクタンス設定値を電圧指令演算部の演算に用いるようにしたインダクタンス同定部とを備える。 To achieve the above object, the present invention provides a refrigeration apparatus comprising a compressor of a refrigeration cycle, a permanent magnet synchronous motor that drives the compressor, and an inverter device that variably controls the rotational speed of the motor by vector control. The inverter device includes an inverter circuit that generates AC power from DC power and supplies the AC power to the motor, a current detection unit that detects an input DC current or an output AC current of the inverter circuit, and a d detected from the current detected by the current detection unit. A current detection calculation unit for calculating an axis current detection value and a q-axis current detection value, and correcting the first d-axis current command value based on a deviation between the first d-axis current command value and the d-axis current detection value. A first d-axis current command value is generated based on a deviation between the first q-axis current command value and the detected q-axis current value. The second q-axis current finger A q-axis current command calculation unit that generates a value, a d-axis based on a motor constant setting value including an inductance setting value, a rotation speed command value, a second d-axis current command value, and a second q-axis current command value A voltage command calculation unit that calculates a voltage command value and a q-axis voltage command value; an inverter control unit that controls an inverter circuit based on the d-axis voltage command value and the q-axis voltage command value; and a first q-axis current command value An identification mode control unit for fixing the first d-axis current command value to a predetermined set value while fixing the rotation speed command value for a predetermined time as an identification mode during vector control operation in which , The difference between the second d-axis current command value and the first d-axis current command value in the identification mode is integrated to calculate an average value, and based on this, the correction amount of the inductance setting value is calculated, Inductance setting value with the correction amount added And a inductance identification unit as adapted to use in the calculation of the voltage command calculation unit.
 本発明によれば、インダクタンスの同定精度を高めることができ、運転効率の向上を図ることができる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
According to the present invention, it is possible to increase the identification accuracy of inductance and improve the operation efficiency.
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
 以下、本発明の一実施形態を、図面を参照しつつ説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態である空気調和機の構成を表す概略図である。 FIG. 1 is a schematic diagram showing a configuration of an air conditioner according to an embodiment of the present invention.
 この図1において、空気調和機110は、圧縮機101、室内熱交換器102、室内膨張弁104、室外熱交換器105、アキュームレータ107を順次連結した冷凍サイクルを有している。そして、例えば室内を冷房する場合に、圧縮機101で圧縮された冷媒は、室外熱交換器105で凝縮されて液化し、その後、室内膨張弁104で減圧され室内熱交換器102で蒸発し、圧縮機101に戻るようになっている。なお、室内熱交換器102及び室内膨張弁104は室内機109に備えられており、室内機109には熱交換を促進するための室内送風機103が設けられている。また、圧縮機101、室外熱交換器105、及びアキュームレータ107等は室外機108に備えられており、室外機108には熱交換を促進するための室外送風機106が設けられている。 In FIG. 1, an air conditioner 110 has a refrigeration cycle in which a compressor 101, an indoor heat exchanger 102, an indoor expansion valve 104, an outdoor heat exchanger 105, and an accumulator 107 are sequentially connected. For example, when the room is cooled, the refrigerant compressed by the compressor 101 is condensed and liquefied by the outdoor heat exchanger 105, and then reduced by the indoor expansion valve 104 and evaporated by the indoor heat exchanger 102. It returns to the compressor 101. The indoor heat exchanger 102 and the indoor expansion valve 104 are provided in the indoor unit 109, and the indoor unit 109 is provided with an indoor blower 103 for promoting heat exchange. The compressor 101, the outdoor heat exchanger 105, the accumulator 107, and the like are provided in the outdoor unit 108, and the outdoor unit 108 is provided with an outdoor blower 106 for promoting heat exchange.
 圧縮機101は永久磁石同期モータ111によって駆動され、このモータ111の回転数(運転周波数)がインバータ装置210によって可変制御されている。これにより、冷凍サイクルに必要な能力に対応するようになっている。また、室内膨張弁104又は室外膨張弁(図示せず)の開度、室内送風機103及び室外送風機106の回転数、冷房/暖房の運転モードを切り替える四方弁(図示せず)などが制御されている。 The compressor 101 is driven by a permanent magnet synchronous motor 111, and the rotation speed (operation frequency) of the motor 111 is variably controlled by an inverter device 210. Thereby, it respond | corresponds to the capability required for a refrigerating cycle. Further, the opening degree of the indoor expansion valve 104 or the outdoor expansion valve (not shown), the rotation speed of the indoor blower 103 and the outdoor blower 106, a four-way valve (not shown) for switching between the cooling / heating operation modes, and the like are controlled. Yes.
 図2は、上記インバータ装置210の構成を表す概略図である。 FIG. 2 is a schematic diagram showing the configuration of the inverter device 210.
 この図2において、インバータ装置210は、交流電源251からの交流電力を直流電力に変換するコンバータ回路225と、このコンバータ回路225で生成された直流電力から交流電力を生成してモータ111に供給するインバータ回路221と、ドライバ回路232を介してインバータ回路221を制御するマイコン231と、コンバータ回路225で生成された高電圧を例えば5V又は15V程度の制御電源に調整してマイコン231及びドライバ回路232等に供給する電源回路235と、コンバータ回路225の出力直流電圧を検出する電圧検出回路234と、シャント抵抗224を用いてインバータ回路221の入力直流電流を検出する電流検出回路233と、外気温度サーミスタ261を用いて外気温度を検出する外気温度検出回路262と、吐出温度サーミスタ263を用いて圧縮機101の吐出温度を検出する吐出温度検出回路264と、吐出圧力センサ265を用いて圧縮機101の吐出圧力を検出する吐出圧力検出回路266とを備えている。 In FIG. 2, the inverter device 210 converts the AC power from the AC power source 251 into DC power, and generates AC power from the DC power generated by the converter circuit 225 and supplies the AC power to the motor 111. The inverter 221, the microcomputer 231 that controls the inverter circuit 221 via the driver circuit 232, the high voltage generated by the converter circuit 225 is adjusted to a control power supply of about 5 V or 15 V, for example, the microcomputer 231, the driver circuit 232, etc. , A voltage detection circuit 234 that detects the output DC voltage of the converter circuit 225, a current detection circuit 233 that detects the input DC current of the inverter circuit 221 using the shunt resistor 224, and an outside temperature thermistor 261. Outside temperature to detect the outside temperature using A detection circuit 262, a discharge temperature detection circuit 264 that detects the discharge temperature of the compressor 101 using the discharge temperature thermistor 263, and a discharge pressure detection circuit 266 that detects the discharge pressure of the compressor 101 using the discharge pressure sensor 265. It has.
 コンバータ回路225は、複数の整流素子226がブリッジ結線された回路であり、交流電源251からの交流電力を直流電力に変換するようになっている。インバータ回路221は、複数のスイッチング素子222が三相ブリッジ結線された回路である。また、スイッチング素子222がスイッチング時に発生する逆起電力を回生するため、スイッチング素子222と併設してフライホイール素子223が設けられている。ドライバ回路232は、マイコン231からの微弱な信号(後述するPWM信号)を増幅して、スイッチング素子222のスイッチング動作を制御するようになっている。これにより、インバータ回路221で交流電力が生成されるとともにその周波数が制御されるようになっている。 The converter circuit 225 is a circuit in which a plurality of rectifying elements 226 are bridge-connected, and converts AC power from the AC power supply 251 into DC power. The inverter circuit 221 is a circuit in which a plurality of switching elements 222 are connected in a three-phase bridge. In addition, a flywheel element 223 is provided along with the switching element 222 so that the switching element 222 regenerates a counter electromotive force generated at the time of switching. The driver circuit 232 controls a switching operation of the switching element 222 by amplifying a weak signal (a PWM signal described later) from the microcomputer 231. Thereby, AC power is generated by the inverter circuit 221 and its frequency is controlled.
 コンバータ回路225とインバータ回路221との間には、モータ111を運転又は停止させるための電磁接触器253と、力率改善用リアクトル252と、平滑コンデンサ270とが接続されている。また、電源投入時等に閉路する電磁接触器253が平滑コンデンサ270に流れる過大な突入電流で溶着しないように、電磁接触器253と並列して突入電流制限抵抗器254が設けられている。 Between the converter circuit 225 and the inverter circuit 221, an electromagnetic contactor 253 for operating or stopping the motor 111, a power factor improving reactor 252, and a smoothing capacitor 270 are connected. Further, an inrush current limiting resistor 254 is provided in parallel with the electromagnetic contactor 253 so that the electromagnetic contactor 253 that is closed when the power is turned on does not weld due to an excessive inrush current flowing through the smoothing capacitor 270.
 マイコン231は、センサレスタイプのベクトル制御機能を有している。すなわち、電流検出回路233で検出されたインバータ回路221の入力直流電流等に基づいてモータ111の駆動電流(言い換えれば、インバータ回路221の出力交流電流)を再現するようになっており、交流電流を検出する電流センサを不要としている。また、モータ111の回転速度や位相(磁極位置)を推定するようになっており、速度センサや磁極位置センサを不要としている。このようなベクトル制御の詳細を以下説明する。 The microcomputer 231 has a sensorless type vector control function. That is, the drive current of the motor 111 (in other words, the output AC current of the inverter circuit 221) is reproduced based on the input DC current of the inverter circuit 221 detected by the current detection circuit 233, and the AC current is A current sensor for detection is not required. Further, the rotational speed and phase (magnetic pole position) of the motor 111 are estimated, and a speed sensor and a magnetic pole position sensor are not required. Details of such vector control will be described below.
 図3は、マイコン231の機能的構成を表すブロック図である。図4は、図3で示された速度・位相推定部の機能的構成を表すブロック図であり、図5は、図3で示されたモータ定数同定部及びベクトル制御演算部の機能的構成を表すブロック図である。 FIG. 3 is a block diagram showing a functional configuration of the microcomputer 231. FIG. 4 is a block diagram showing the functional configuration of the speed / phase estimation unit shown in FIG. 3, and FIG. 5 shows the functional configuration of the motor constant identification unit and vector control calculation unit shown in FIG. FIG.
 これら図3~図5において、マイコン231は、モータ111の回転速度検出値ω及び位相検出値θdcを推定する速度・位相推定部18と、電流検出回路233で検出された直流電流Ish等からモータ111の駆動電流(3相交流の電流検出値)Iu,Iv,Iwを推定する電流再現部19と、位相検出値θdcに基づいて3相交流の電流検出値Iu,Iv,Iwをdc軸電流検出値Idc及びqc軸電流検出値Iqcに変換する3相/2軸変換部20と、回転速度指令値ωを生成する速度指令生成部10と、減算部11で演算された回転速度指令値ωと回転速度検出値ωとの偏差が零となるように、第1のqc軸電流指令値Iqcを生成するq軸電流指令生成部12と、第1のdc軸電流指令値Idcを生成するd軸電流指令生成部13と、モータ定数設定値(詳細には、抵抗設定値r、誘起電圧設定値Ke、及び仮想インダクタンス設定値L)を出力するモータ定数同定部14と、第1のdc軸電流指令値Idc、第1のqc軸電流指令値Iqc、モータ定数設定値、及び回転速度指令値ω等に基づいてdc軸電圧指令値Vdc及びqc軸電圧指令値Vqcを演算するベクトル制御演算部15と、位相検出値θdcに基づいてdc軸電圧指令値Vdc及びqc軸電圧指令値Vqcdc軸電圧指令値を3相交流の電圧指令値Vu,Vv,Vwに変換する2軸/3相変換部16と、3相交流の電圧指令値Vu,Vv,Vwにそれぞれ比例したPWM信号(パルス幅変調信号)を生成してドライバ回路232に出力するPWM出力部17とを有している。 3 to 5, the microcomputer 231 uses the speed / phase estimation unit 18 for estimating the rotation speed detection value ω and the phase detection value θdc of the motor 111, the DC current Ish detected by the current detection circuit 233, and the like. A current reproduction unit 19 that estimates 111 drive currents (current detection values of three-phase alternating current) Iu, Iv, and Iw, and current detection values Iu, Iv, and Iw of three-phase alternating current based on the phase detection value θdc. Rotation speed command value calculated by the three-phase / 2-axis conversion unit 20 that converts the detection value Idc and the qc-axis current detection value Iqc, the speed command generation unit 10 that generates the rotation speed command value ω * , and the subtraction unit 11 The q-axis current command generation unit 12 that generates the first qc-axis current command value Iqc * and the first dc-axis current command value Idc * so that the deviation between ω * and the rotational speed detection value ω becomes zero . D-axis current command generation to generate Generator 13, motor constant setting unit 14 for outputting motor constant setting values (specifically, resistance setting value r * , induced voltage setting value Ke * , and virtual inductance setting value L * ), and a first dc axis Calculate dc-axis voltage command value Vdc * and qc-axis voltage command value Vqc * based on current command value Idc * , first qc-axis current command value Iqc * , motor constant setting value, rotation speed command value ω *, etc. The vector control calculation unit 15 that performs the dc-axis voltage command value Vdc * and the qc-axis voltage command value Vqc * dc-axis voltage command value based on the phase detection value θdc and three-phase AC voltage command values Vu * , Vv * , Vw biaxial / three-phase converting unit 16 that converts to *, the voltage command value of three-phase AC Vu *, Vv *, Vw * to generate and output to the driver circuit 232, respectively proportional to the PWM signal (pulse width modulation signal) Do And a WM output unit 17.
 電流再現部19は、電流検出回路233で検出された直流電流Ishと2軸/3相変換部16で演算された3相交流の電圧指令値Vu,Vv,Vwに基づき、モータ111の3相交流の電流検出値Iu,Iv,Iwを推定する。3相/2軸変換部20は、速度・位相推定部18で推定された位相検出値θdcに基づき、3相交流の電流検出値Iu,Iv,Iwをdc軸電流検出値Idc及びqc軸電流検出値Iqcに変換する(下記の数式1参照)。なお、図6に示すように、d-q軸はモータ回転子軸、do-qo軸はモータ最大トルク軸、dc-qc軸は制御系の推定軸であり、do-qo軸とdc-qc軸との軸誤差をΔθcと定義する。
Figure JPOXMLDOC01-appb-M000001
The current reproduction unit 19 is based on the DC current Ish detected by the current detection circuit 233 and the three-phase AC voltage command values Vu * , Vv * , Vw * calculated by the 2-axis / 3-phase conversion unit 16. The three-phase AC current detection values Iu, Iv, and Iw are estimated. The three-phase / two-axis conversion unit 20 converts the three-phase AC current detection values Iu, Iv, and Iw into the dc-axis current detection value Idc and the qc-axis current based on the phase detection value θdc estimated by the speed / phase estimation unit 18. The detection value Iqc is converted (see Equation 1 below). As shown in FIG. 6, the dq axis is the motor rotor axis, the do-qo axis is the motor maximum torque axis, the dc-qc axis is the estimated axis of the control system, and the do-qo axis and dc-qc axis An axis error with respect to the axis is defined as Δθc.
Figure JPOXMLDOC01-appb-M000001
 速度・位相推定部18は、軸誤差Δθcを演算する軸誤差演算部21と、軸誤差Δθcに零指令を与える零発生部22と、回転速度検出値ωを推定する速度演算部23と、位相検出値θcを推定する位相演算部24とを有している。軸誤差演算部21は、dc軸電圧指令値Vdc、qc軸電圧指令値Vqc、dc軸電流検出値Idc、qc軸電流検出値Iqc、モータ定数設定値r,Ke,L、及び回転速度指令値ωに基づいて軸誤差Δθcを演算する(下記の数式2参照)。
Figure JPOXMLDOC01-appb-M000002
The speed / phase estimation unit 18 includes an axis error calculation unit 21 that calculates an axis error Δθc, a zero generation unit 22 that gives a zero command to the axis error Δθc, a speed calculation unit 23 that estimates a rotational speed detection value ω, and a phase And a phase calculator 24 for estimating the detected value θc. The axis error calculation unit 21 includes a dc-axis voltage command value Vdc * , a qc-axis voltage command value Vqc * , a dc-axis current detection value Idc, a qc-axis current detection value Iqc, motor constant setting values r * , Ke * , L * , Then, the axis error Δθc is calculated based on the rotational speed command value ω * (see the following formula 2).
Figure JPOXMLDOC01-appb-M000002
 速度演算部23は、軸誤差演算部21で演算された軸誤差Δθcが零となるように、回転速度検出値ωを推定している。言い換えれば、零発生部22及び回転速度演算部23は、PLL制御回路を構成している。速度演算部23は、例えば軸誤差Δθcが正の場合、制御系のdc-qc軸がモータ最大トルクのdo-qo軸より進んでいるため、回転速度検出値ωを増加させるように推定する。一方、例えば軸誤差Δθcが負の場合、制御系のdc-qc軸がモータ最大トルクのdo-qo軸より遅れているため、回転速度検出値ωを減少させるように推定する。そして、d軸電流指令生成部12は、速度演算部23で推定された回転速度検出値ωと速度指令生成部10で生成された回転速度指令値ωとの偏差が零となるように、第1のqc軸電流指令値を生成する。 The speed calculation unit 23 estimates the rotation speed detection value ω so that the axis error Δθc calculated by the axis error calculation unit 21 becomes zero. In other words, the zero generator 22 and the rotation speed calculator 23 constitute a PLL control circuit. For example, when the axis error Δθc is positive, the speed calculation unit 23 estimates that the rotation speed detection value ω is increased because the dc-qc axis of the control system is advanced from the do-qo axis of the maximum motor torque. On the other hand, when the shaft error Δθc is negative, for example, the dc-qc axis of the control system is delayed from the do-qo axis of the motor maximum torque, so that the rotational speed detection value ω is estimated to be decreased. Then, the d-axis current command generation unit 12 is configured such that the deviation between the rotation speed detection value ω estimated by the speed calculation unit 23 and the rotation speed command value ω * generated by the speed command generation unit 10 becomes zero. A first qc-axis current command value is generated.
 位相演算部24は、速度演算部で推定された回転速度検出値ωを積分して、制御系の位相θdcを演算する。 The phase calculation unit 24 integrates the rotational speed detection value ω estimated by the speed calculation unit to calculate the phase θdc of the control system.
 ベクトル制御演算部15は、q軸電流指令演算部31と、d軸電流指令演算部33と、電圧指令演算部34とを有している。q軸電流指令演算部31は、減算部30で演算された第1のqc軸電流指令値Iqcとqc軸電流検出値Iqcとの差分に基づいて第1のqc軸電流指令値Iqcを補正して第2のqc軸電流指令値Iqc**を生成する。同様に、d軸電流指令演算部33は、減算部32で演算された第1のdc軸電流指令値Idcとdc軸電流検出値Idcとの差分に基づいて第1のdc軸電流指令値Idcを補正して第2のdc軸電流指令値Idc**を生成する。 The vector control calculation unit 15 includes a q-axis current command calculation unit 31, a d-axis current command calculation unit 33, and a voltage command calculation unit 34. The q-axis current command calculation unit 31 calculates the first qc-axis current command value Iqc * based on the difference between the first qc-axis current command value Iqc * calculated by the subtraction unit 30 and the qc-axis current detection value Iqc. The second qc-axis current command value Iqc ** is generated by correction. Similarly, the d-axis current command calculation unit 33 calculates the first dc-axis current command value based on the difference between the first dc-axis current command value Idc * calculated by the subtraction unit 32 and the dc-axis current detection value Idc. Idc * is corrected to generate a second dc-axis current command value Idc ** .
 電圧指令演算部34は、第2のqc軸電流指令値Iqc**、第2のdc軸電流指令値Idc**、モータ定数設定値r,Ke,L、及び回転速度指令値ωに基づいて、dc軸電圧指令値Vdc及びqc軸電圧指令値Vqcを演算する(下記の数式3参照)。なお、本実施形態では、d軸インダクタンス設定値Ldとq軸インダクタンス設定値Lqとがほぼ等しい場合を想定し、これを仮想インダクタンスL(=Ld=Lq)として設定している。
Figure JPOXMLDOC01-appb-M000003
The voltage command calculation unit 34 includes a second qc-axis current command value Iqc ** , a second dc-axis current command value Idc ** , motor constant setting values r * , Ke * , L * , and a rotational speed command value ω. Based on * , the dc-axis voltage command value Vdc * and the qc-axis voltage command value Vqc * are calculated (see the following Equation 3). In the present embodiment, it is assumed that the d-axis inductance setting value Ld and the q-axis inductance setting value Lq are substantially equal, and this is set as a virtual inductance L (= Ld = Lq).
Figure JPOXMLDOC01-appb-M000003
 2軸/3相変換部16は、速度・位相推定部18で推定された位相検出値θdcに基づき、dc軸電圧指令値Vdc及びqc軸電流検出値Vqcを3相交流の電圧指令値Vu,Vv,Vwに変換する(下記の数式4参照)。
Figure JPOXMLDOC01-appb-M000004
The 2-axis / 3-phase converter 16 converts the dc-axis voltage command value Vdc * and the qc-axis current detection value Vqc * into a 3-phase AC voltage command value based on the phase detection value θdc estimated by the speed / phase estimation unit 18. Conversion into Vu * , Vv * , Vw * (see Equation 4 below).
Figure JPOXMLDOC01-appb-M000004
 ここで本実施形態の最も大きな特徴である仮想インダクタンスLの同定方法の原理について説明する。 Here, the principle of the identification method of the virtual inductance L, which is the greatest feature of this embodiment, will be described.
 定常状態において、モータ定数設定値(r,Ke,L)と実際のモータ定数(r,Ke,L)とが一致している場合は、電流検出値Idc,Iqc(若しくは第1の電流指令値Idc,Iqc)と電圧指令演算部34の入力である第2の電流指令値Idc**,Iqc**とがほぼ等しくなる。しかし、モータ定数設定値(r,Ke,L)と実際のモータ定数(r,Ke,L)とがずれている場合は、電流検出値Idc,Iqc(若しくは第1の電流指令値Idc,Iqc)と第2の電流指令値Idc**,Iqc**との間に偏差が生じる。その詳細を、以下説明する。 When the motor constant set value (r * , Ke * , L * ) and the actual motor constant (r, Ke, L) coincide with each other in the steady state, the current detection values Idc, Iqc (or the first value) The current command values Idc ** , Iqc * ) and the second current command values Idc ** , Iqc **, which are the inputs of the voltage command calculation unit 34, are substantially equal. However, if the motor constant set value (r * , Ke * , L * ) is different from the actual motor constant (r, Ke, L), the current detection values Idc, Iqc (or the first current command value) Idc *, Iqc *) and the second current command value Idc **, deviation occurs between the Iqc **. Details thereof will be described below.
 定常状態において、電流検出値Idc,Iqcと電圧指令値Vdc,Vqcとの関係は下記の数式5で近似的に表される。
Figure JPOXMLDOC01-appb-M000005
In the steady state, the relationship between the current detection values Idc and Iqc and the voltage command values Vdc * and Vqc * is approximately expressed by the following Equation 5.
Figure JPOXMLDOC01-appb-M000005
 定常状態において、回転速度指令値ωと回転速度検出値ωはほぼ等しく、第1のdc軸電流指令値Idcとdc軸電流検出値Idcはほぼ等しい。また、モータ111が中高速で回転している場合若しくは抵抗設定値rの誤差が少ない場合(r=r)を想定すれば、数式3と数式5より、下記の数式6を導き出すことができる。この数式6を変形すれば、下記の数式7が得られる。
Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-M000007
In the steady state, the rotational speed command value ω * and the rotational speed detection value ω are substantially equal, and the first dc-axis current command value Idc * and the dc-axis current detection value Idc are substantially equal. Further, assuming that the motor 111 is rotating at a medium or high speed or the error of the resistance set value r * is small (r * = r), the following Expression 6 can be derived from Expression 3 and Expression 5. it can. If this equation 6 is modified, the following equation 7 is obtained.
Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-M000007
 さらに、誘起電圧の同定が完了した後(Ke=Ke)、第1のdc軸電流指令値として所定の設定値Idc_atを与えるとすれば、式7を用いて、仮想インダクタンス設定値Lの誤差ΔLを求める式を導き出すことができる(下記の数式8参照)。
Figure JPOXMLDOC01-appb-M000008
Furthermore, after the identification of the induced voltage is completed (Ke * = Ke), if a predetermined set value Idc * _at is given as the first dc-axis current command value, the virtual inductance set value L An equation for obtaining the error ΔL * of * can be derived (see Equation 8 below).
Figure JPOXMLDOC01-appb-M000008
 モータ定数同定部14は、上述した仮想インダクタンスLの同定を行うため、同定モード制御部35、入力切替部36、積算部37、保存部38、及び加算部39を有している。 The motor constant identification unit 14 includes an identification mode control unit 35, an input switching unit 36, an integration unit 37, a storage unit 38, and an addition unit 39 in order to identify the virtual inductance L described above.
 同定モード制御部35は、モータ111のベクトル制御モード運転中に、例えば速度・位相推定部18で推定された回転速度検出値ωを入力し、この回転速度検出値ωが予め設定された所定値ω1に達したかどうかを判定する。そして、例えば回転速度検出値ωが所定値ω1に達した場合は(言い換えれば、所定値ω1まで上昇又は下降した場合は)、同定モードとして、所定時間、速度指令生成部10及びd軸電流指令生成部13に同定モードを指令するとともに、入力切替部36を接続状態に切り替える。なお、本実施形態では、予め設定された所定の回数(例えば3回)繰り返して同定モードを実行するようになっている。 The identification mode control unit 35 receives, for example, the rotational speed detection value ω estimated by the speed / phase estimation unit 18 during the vector control mode operation of the motor 111, and the rotational speed detection value ω is set to a predetermined value. It is determined whether or not ω1 has been reached. For example, when the rotational speed detection value ω reaches the predetermined value ω1 (in other words, when the rotational speed detection value ω rises or falls to the predetermined value ω1), the identification mode is set as the identification mode for a predetermined time, the speed command generator 10 and the d-axis current command. The generation unit 13 is instructed in the identification mode, and the input switching unit 36 is switched to the connected state. In the present embodiment, the identification mode is executed by repeating a predetermined number of times (for example, three times) set in advance.
 速度指令生成部10は、同定モードの指令に応じて、回転速度指令値ωを現在値に固定する。d軸電流指令生成部13は、同定モードの指令に応じて、第1のd軸電流指令値Idcを所定の設定値Idc_atに固定する。なお、所定の設定値Idc_atは、インバータ渦電流及びモータ磁気飽和の影響を避けるため、比較的小さく設定したほうが好ましく、制御装置の電流検出分解能や演算誤差を考慮するとともに同定精度を確保するため、例えばモータの定格電流の約1/10~1/2の範囲に設定すればよい。 The speed command generation unit 10 fixes the rotational speed command value ω * to the current value in accordance with the identification mode command. The d-axis current command generation unit 13 fixes the first d-axis current command value Idc * to a predetermined set value Idc * _at in accordance with the identification mode command. The predetermined set value Idc * _at is preferably set to be relatively small in order to avoid the influence of the inverter eddy current and the motor magnetic saturation, and the identification accuracy is ensured while taking into account the current detection resolution and calculation error of the control device. Therefore, for example, it may be set in the range of about 1/10 to 1/2 of the rated current of the motor.
 積算部37は、減算部40で演算された第2のd軸電流指令値Idc**と第1のd軸電流指令値Idc(=Idc_at)の差分を入力切替部36を介して入力し、同定モード期間中における差分を積分して平均値を算出する。そして、上記の数式8を用いて、仮想インダクタンス設定値Lの誤差ΔLを演算する。なお、電流リップルや位相バラツキの影響を抑えるため、積分部37の応答はベクトル制御演算部15の制御応答より遅くなるように、時定数を設定することが好ましい。そして、同定モードがn回行われて誤差ΔL_1,…,ΔL_nが得られた場合は、それらの総和ΔL_all(=ΔL_1+…+ΔL_n)を保存部38で記憶する。加算部39は、保存部38で記憶された誤差ΔL_allと仮想インダクタンス初期設定値L_0とを加算し、これを仮想インダクタンス設定値Lとしてベクトル制御演算部15の電圧指令演算部34及び速度・位相推定部18に出力する。 The accumulating unit 37 sends the difference between the second d-axis current command value Idc ** calculated by the subtracting unit 40 and the first d-axis current command value Idc * (= Idc * _at) via the input switching unit 36. Input and integrate the differences during the identification mode period to calculate the average value. Then, using Equation 8 above to calculate the virtual inductance setting value L * of the error [Delta] L *. In order to suppress the influence of current ripple and phase variation, it is preferable to set the time constant so that the response of the integration unit 37 is slower than the control response of the vector control calculation unit 15. Then, when the identification mode is performed n times and errors ΔL * _1,..., ΔL * _n are obtained, the sum ΔL * _all (= ΔL * _1 +... + ΔL * _n) is stored in the storage unit 38. . The addition unit 39 adds the error ΔL * _all stored in the storage unit 38 and the virtual inductance initial setting value L * _0, and uses this as the virtual inductance setting value L * , so that the voltage command calculation unit 34 of the vector control calculation unit 15. And output to the speed / phase estimation unit 18.
 次に、本実施形態の動作を図7により説明する。 Next, the operation of this embodiment will be described with reference to FIG.
 インバータ装置120は、センサレスタイプのベクトル制御によって永久磁石同期モータ111を駆動しており、上記の数式2を用いて軸誤差Δθcを演算し、位相θdcを推定している。しかし、位相θdcの精度を精度よく演算するには、モータ111の回転速度ω(すなわち、圧縮機101の回転数N)が定格の5~10程度以上が必要である。そのため、3つの運転制御モード(位置決めモード、同期運転モード、及びベクトル制御運転モード)でモータ111を起動する。まず、位置決めモードで、qc軸電流を零としつつdc軸電流を増加させて、モータ111の回転子磁極の位置決めを行う。その後、同期運転モードで、dc軸電流を固定したまま、モータ111の回転速度ω(すなわち、圧縮機101の回転数N)を上昇させる。そして、モータ111の回転速度(すなわち、圧縮機101の回転数N)が定格の5~10程度に達したら、ベクトル制御運転モードに移行し、qc軸電流を増加させる。 The inverter device 120 drives the permanent magnet synchronous motor 111 by sensorless vector control, calculates the axis error Δθc using the above formula 2, and estimates the phase θdc. However, in order to accurately calculate the accuracy of the phase θdc, the rotational speed ω of the motor 111 (that is, the rotational speed N of the compressor 101) needs to be about 5 to 10 or more. Therefore, the motor 111 is started in three operation control modes (positioning mode, synchronous operation mode, and vector control operation mode). First, in the positioning mode, the rotor magnetic pole of the motor 111 is positioned by increasing the dc axis current while setting the qc axis current to zero. Thereafter, in the synchronous operation mode, the rotational speed ω of the motor 111 (that is, the rotational speed N of the compressor 101) is increased while the dc-axis current is fixed. When the rotational speed of the motor 111 (that is, the rotational speed N of the compressor 101) reaches about the rated value of about 5 to 10, the mode shifts to the vector control operation mode, and the qc-axis current is increased.
 そして、ベクトル制御運転モードに移行後、モータの回転速度ωが所定値ω1に達した場合(すなわち、圧縮機101の回転数Nが所定値N1に達した場合)、同定モードとして、所定時間、速度指令値ωを固定しつつ、第1のd軸電流指令値Idを所定の設定値Idc_atに固定する。そして、同定モードの場合における第2のd軸電流指令値Id**と第1の電流指令値Id(=Idc_at)との差分を積分して平均値を演算し、これに基づいて仮想インダクタンス設定値Lの補正量ΔLを演算し、その後、補正量ΔLを加算したインダクタンス設定値Lを用いてベクトル制御運転を行う。 Then, after shifting to the vector control operation mode, when the rotational speed ω of the motor reaches the predetermined value ω1 (that is, when the rotation speed N of the compressor 101 reaches the predetermined value N1), the identification mode is set for a predetermined time, The first d-axis current command value Id * is fixed to a predetermined set value Idc * _at while fixing the speed command value ω * . Then, the difference between the second d-axis current command value Id ** and the first current command value Id * (= Idc * _at) in the identification mode is integrated to calculate an average value, and based on this A correction amount ΔL * of the virtual inductance setting value L * is calculated, and then the vector control operation is performed using the inductance setting value L * obtained by adding the correction amount ΔL * .
 このような本実施形態においては、電流のリップルや位相のバラツキの影響を抑えつつ、仮想インダクタンスLの同定精度を高めることができる。また、圧縮機101の回転数等の運転条件に応じて同定モードを実行するとともに、予め設定された回数繰り返し行うことにより、仮想インダクタンスLの同定精度を高めることができる。したがって、運転効率の向上を図ることができる。 In this embodiment, the identification accuracy of the virtual inductance L can be increased while suppressing the influence of current ripple and phase variation. Moreover, the identification accuracy of the virtual inductance L can be improved by executing the identification mode in accordance with the operating conditions such as the rotation speed of the compressor 101 and repeatedly performing the preset number of times. Therefore, the driving efficiency can be improved.
 なお、上記一実施形態においては、同定モード制御部35は、速度・位相推定部18で推定された回転速度検出値ωを入力し、この回転速度検出値ωが所定値ω1に達した場合に同定モードを実行させる場合を例にとって説明したが、これに限られない。すなわち、例えば電流検出回路233で検出された直流電流Ishを入力し、この直流電流Ishが所定値Ish1に達した場合に同定モードを実行させてもよい(前述の図7参照)。また、例えば吐出圧力検出回路266で検出された圧縮機101の吐出圧力Pdを入力し、この吐出圧力Pdが所定値Pd1に達した場合に同定モードを実行させてもよい(図8参照)。また、例えば吐出温度検出回路264で検出された吐出温度Tdを入力し、この吐出温度Tdが所定値Td1に達した場合に同定モードを実行させてもよい(図9参照)。また、例えば外気温度検出回路262で検出された外気温度Taを入力し、この外気温度Taが所定Ta1に達した場合に同定モードを実行させてもよい(図10参照)。これらの場合も、上記同様の効果を得ることができる。 In the above-described embodiment, the identification mode control unit 35 receives the rotational speed detection value ω estimated by the speed / phase estimation unit 18 and the rotational speed detection value ω reaches a predetermined value ω1. Although the case where the identification mode is executed has been described as an example, the present invention is not limited to this. That is, for example, the direct current Ish detected by the current detection circuit 233 may be input, and the identification mode may be executed when the direct current Ish reaches a predetermined value Ish1 (see FIG. 7 described above). Alternatively, for example, the discharge pressure Pd of the compressor 101 detected by the discharge pressure detection circuit 266 may be input, and the identification mode may be executed when the discharge pressure Pd reaches a predetermined value Pd1 (see FIG. 8). For example, the discharge temperature Td detected by the discharge temperature detection circuit 264 may be input, and the identification mode may be executed when the discharge temperature Td reaches a predetermined value Td1 (see FIG. 9). Further, for example, the outside air temperature Ta detected by the outside air temperature detection circuit 262 may be input, and the identification mode may be executed when the outside air temperature Ta reaches a predetermined Ta1 (see FIG. 10). In these cases, the same effect as described above can be obtained.
 また、上記一実施形態においては、同定モードとして、第1のdc軸電流指令値Idcを同じ所定値Idc_atで固定する場合を例にとって説明したが、これに限られない。すなわち、例えば同定モードの繰り返し回数(例えば1回目、2回目、3回目)に応じて異なる所定の設定値(Idc_at1,Idc_at2,Idc_at3)に固定してもよい(図11参照)。また、例えば、外気温度検出回路262で検出された外気温度Taが所定の基準値Ta2以上である場合に、第1のdc軸電流指令値Idcを所定の設定値Idc_at4に固定し、外気温度検出回路262で検出された外気温度Taが所定の基準値Ta2未満である場合に、Idc_at5(但し、Idc_at4≠Idc_at5)に固定してもよい(図12参照)。これらの場合も、上記同様の効果を得ることができる。 In the above-described embodiment, the case where the first dc-axis current command value Idc * is fixed at the same predetermined value Idc * _at is described as an example of the identification mode. However, the present invention is not limited to this. That is, for example, it may be fixed to predetermined setting values (Idc * _at1, Idc * _at2, Idc * _at3) that differ depending on the number of repetitions of the identification mode (for example, the first time, the second time, and the third time) (see FIG. 11). ). Further, for example, when the outside air temperature Ta detected by the outside air temperature detection circuit 262 is equal to or higher than a predetermined reference value Ta2, the first dc-axis current command value Idc * is fixed to a predetermined set value Idc * _at4, When the outside air temperature Ta detected by the outside air temperature detection circuit 262 is less than a predetermined reference value Ta2, it may be fixed to Idc * _at5 (where Idc * _at4 ≠ Idc * _at5) (see FIG. 12). In these cases, the same effect as described above can be obtained.
 また、上記一実施形態においては、特に説明しなかったが、d軸電流指令演算部33及びq軸電流指令演算部31は、モータ定数同定部14で同定されたインダクタンス設定値Lを入力し、これに基づいて制御ゲインを調整するようにしてもよい(下記の数式9参照)。この場合も、上記同様の効果を得ることができる。
Figure JPOXMLDOC01-appb-M000009

 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
Although not specifically described in the above embodiment, the d-axis current command calculation unit 33 and the q-axis current command calculation unit 31 input the inductance set value L * identified by the motor constant identification unit 14. Based on this, the control gain may be adjusted (see Equation 9 below). In this case, the same effect as described above can be obtained.
Figure JPOXMLDOC01-appb-M000009

While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
本発明の一実施形態である空気調和装置の構成を表す概略図である。It is the schematic showing the structure of the air conditioning apparatus which is one Embodiment of this invention. 本発明の一実施形態におけるインバータ装置の構成を表す概略図である。It is the schematic showing the structure of the inverter apparatus in one Embodiment of this invention. 本発明の一実施形態におけるインバータ装置のマイコンの機能的構成を表すブロック図である。It is a block diagram showing the functional structure of the microcomputer of the inverter apparatus in one Embodiment of this invention. 図3で示された速度・位相推定部の機能的構成を表すブロック図である。FIG. 4 is a block diagram illustrating a functional configuration of a speed / phase estimation unit illustrated in FIG. 3. 図3で示されたモータ定数同定部の及びベクトル制御演算部の機能的構成を表すブロック図である。FIG. 4 is a block diagram illustrating a functional configuration of a motor constant identification unit and a vector control calculation unit illustrated in FIG. 3. モータ回転子軸、モータ最大トルク軸、及び制御系の推定軸を表す図である。It is a figure showing a motor rotor axis | shaft, a motor maximum torque axis | shaft, and the estimated axis of a control system. 本発明の一実施形態における空気調和装置の動作を説明するためのタイムチャートである。It is a time chart for demonstrating operation | movement of the air conditioning apparatus in one Embodiment of this invention. 本発明の第1の変形例における空気調和装置の動作を説明するためのタイムチャートである。It is a time chart for demonstrating operation | movement of the air conditioning apparatus in the 1st modification of this invention. 本発明の第2の変形例における空気調和装置の動作を説明するためのタイムチャートである。It is a time chart for demonstrating operation | movement of the air conditioning apparatus in the 2nd modification of this invention. 本発明の第3の変形例における空気調和装置の動作を説明するためのタイムチャートである。It is a time chart for demonstrating operation | movement of the air conditioning apparatus in the 3rd modification of this invention. 本発明の第4の変形例における空気調和装置の動作を説明するためのタイムチャートである。It is a time chart for demonstrating operation | movement of the air conditioning apparatus in the 4th modification of this invention. 本発明の第5の変形例における空気調和装置の動作を説明するためのタイムチャートである。It is a time chart for demonstrating operation | movement of the air conditioning apparatus in the 5th modification of this invention.

Claims (9)

  1.  冷凍サイクルの圧縮機と、前記圧縮機を駆動する永久磁石同期モータと、ベクトル制御によって前記モータの回転数を可変制御するインバータ装置とを備えた冷凍装置において、
     前記インバータ装置が、
     直流電力から交流電力を生成して前記モータに供給するインバータ回路と、
     前記インバータ回路の入力直流電流又は出力交流電流を検出する電流検出手段と、
     前記電流検出手段で検出された電流からd軸電流検出値及びq軸電流検出値を演算する電流検出演算手段と、
     第1のd軸電流指令値とd軸電流検出値との偏差に基づいて第1のd軸電流指令値を補正して第2のd軸電流指令値を生成するd軸電流指令演算手段と、
     第1のq軸電流指令値とq軸電流検出値との偏差に基づいて第1のq軸電流指令値を補正して第2のq軸電流指令値を生成するq軸電流指令演算手段と、
     インダクタンス設定値を含むモータ定数設定値、回転数指令値、第2のd軸電流指令値、及び第2のq軸電流指令値に基づいてd軸電圧指令値及びq軸電圧指令値を演算する電圧指令演算手段と、
     d軸電圧指令値及びq軸電圧指令値に基づいて前記インバータ回路を制御するインバータ制御手段と、
     第1のq軸電流指令値を零以外の値とするベクトル制御運転中に、同定モードとして、所定時間、回転数指令値を固定しつつ、第1のd軸電流指令値を所定の設定値に固定する同定モード制御手段と、
     同定モードの場合における第2のd軸電流指令値と第1のd軸電流指令値との差分を積分して平均値を演算し、これに基づいてインダクタンス設定値の補正量を演算し、その補正量を加算したインダクタンス設定値を前記電圧指令演算手段の演算に用いるようにしたインダクタンス同定手段とを備えた冷凍装置。
    In a refrigeration apparatus comprising a compressor of a refrigeration cycle, a permanent magnet synchronous motor that drives the compressor, and an inverter device that variably controls the rotational speed of the motor by vector control,
    The inverter device is
    An inverter circuit that generates AC power from DC power and supplies it to the motor;
    Current detecting means for detecting an input DC current or an output AC current of the inverter circuit;
    Current detection calculation means for calculating a d-axis current detection value and a q-axis current detection value from the current detected by the current detection means;
    D-axis current command calculation means for generating a second d-axis current command value by correcting the first d-axis current command value based on a deviation between the first d-axis current command value and the detected d-axis current value; ,
    Q-axis current command calculation means for correcting the first q-axis current command value based on the deviation between the first q-axis current command value and the detected q-axis current value to generate a second q-axis current command value; ,
    The d-axis voltage command value and the q-axis voltage command value are calculated based on the motor constant setting value including the inductance setting value, the rotation speed command value, the second d-axis current command value, and the second q-axis current command value. Voltage command calculation means;
    inverter control means for controlling the inverter circuit based on a d-axis voltage command value and a q-axis voltage command value;
    During the vector control operation in which the first q-axis current command value is set to a value other than zero, the first d-axis current command value is set to a predetermined set value while fixing the rotation speed command value for a predetermined time as the identification mode. Identification mode control means fixed to
    In the case of the identification mode, the difference between the second d-axis current command value and the first d-axis current command value is integrated to calculate the average value, and based on this, the correction amount of the inductance setting value is calculated. A refrigeration apparatus comprising: an inductance identification unit configured to use an inductance setting value obtained by adding a correction amount for calculation of the voltage command calculation unit.
  2.  請求項1記載の冷凍装置において、前記モータの回転数を取得する回転数取得手段を備え、前記同定モード制御手段は、前記回転数取得手段で取得された前記モータの回転数が予め設定された所定値に達した場合に、同定モードを実行する冷凍装置。 2. The refrigeration apparatus according to claim 1, further comprising a rotation speed acquisition means for acquiring the rotation speed of the motor, wherein the identification mode control means is preset with the rotation speed of the motor acquired by the rotation speed acquisition means. A refrigeration apparatus that executes an identification mode when a predetermined value is reached.
  3.  請求項1記載の冷凍装置において、前記同定モード制御手段は、前記電流検出手段で検出された電流が予め設定された所定値に達した場合に、同定モードを実行する冷凍装置。 2. The refrigeration apparatus according to claim 1, wherein the identification mode control means executes the identification mode when the current detected by the current detection means reaches a predetermined value set in advance.
  4.  請求項1記載の冷凍装置において、前記圧縮機の吐出圧力を検出する吐出圧力検出手段を有し、前記同定モード制御手段は、前記吐出圧力検出手段で検出された前記圧縮機の吐出圧力が予め設定された所定値に達した場合に、同定モードを実行する冷凍装置。 2. The refrigeration apparatus according to claim 1, further comprising discharge pressure detection means for detecting a discharge pressure of the compressor, wherein the identification mode control means is configured such that the discharge pressure of the compressor detected by the discharge pressure detection means is previously detected. A refrigeration apparatus that executes an identification mode when a set predetermined value is reached.
  5.  請求項1記載の冷凍装置において、前記圧縮機の吐出温度を検出する吐出温度検出手段を有し、前記同定モード制御手段は、前記吐出温度検出手段で検出された前記圧縮機の吐出温度が予め設定された所定値に達した場合に、同定モードを実行する冷凍装置。 2. The refrigeration apparatus according to claim 1, further comprising discharge temperature detection means for detecting a discharge temperature of the compressor, wherein the identification mode control means is configured such that the discharge temperature of the compressor detected by the discharge temperature detection means is in advance. A refrigeration apparatus that executes an identification mode when a set predetermined value is reached.
  6.  請求項1項記載の冷凍装置において、外気温度を検出する外気温度検出手段を有し、前記同定モード制御手段は、前記外気温度検出手段で検出された外気温度が予め設定された所定値に達した場合に、同定モードを実行する冷凍装置。 2. The refrigeration apparatus according to claim 1, further comprising an outside air temperature detecting means for detecting an outside air temperature, wherein the identification mode control means has the outside air temperature detected by the outside air temperature detecting means reaching a predetermined value. In this case, the refrigeration apparatus that executes the identification mode.
  7.  請求項1記載の冷凍装置において、前記同定モード制御手段は、予め設定された所定の回数繰り返すように同定モードを実行する冷凍装置。 2. The refrigeration apparatus according to claim 1, wherein the identification mode control means executes the identification mode so as to repeat a predetermined number of times set in advance.
  8.  請求項7記載の冷凍装置において、前記同定モード制御手段は、第1のd軸電流指令値を、同定モードの繰り返し回数に応じて異なる所定の設定値に固定する冷凍装置。 8. The refrigeration apparatus according to claim 7, wherein the identification mode control means fixes the first d-axis current command value to a predetermined set value that differs according to the number of repetitions of the identification mode.
  9.  請求項1記載の冷凍装置において、外気温度を検出する外気温度検出手段を有し、前記同定モード制御手段は、第1のd軸電流指令値を、前記外気温度検出手段で検出された外気温度に応じて異なる所定の設定値に固定する冷凍装置。 2. The refrigeration apparatus according to claim 1, further comprising an outside air temperature detecting means for detecting an outside air temperature, wherein the identification mode control means converts the first d-axis current command value into an outside air temperature detected by the outside air temperature detecting means. A refrigeration apparatus that fixes to different predetermined set values depending on.
PCT/JP2009/050055 2008-03-28 2009-01-07 Refrigeration equipment WO2009119123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980105536.7A CN101946136B (en) 2008-03-28 2009-01-07 Refrigeration equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008085704A JP4194645B1 (en) 2008-03-28 2008-03-28 Refrigeration equipment
JP2008-085704 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119123A1 true WO2009119123A1 (en) 2009-10-01

Family

ID=40174710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050055 WO2009119123A1 (en) 2008-03-28 2009-01-07 Refrigeration equipment

Country Status (4)

Country Link
JP (1) JP4194645B1 (en)
CN (1) CN101946136B (en)
TW (1) TW200940917A (en)
WO (1) WO2009119123A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113819623A (en) * 2021-09-10 2021-12-21 青岛海尔空调器有限总公司 Method and device for controlling operation of motor, air conditioner and storage medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222640B2 (en) * 2008-07-09 2013-06-26 日立アプライアンス株式会社 Refrigeration equipment
JP5350107B2 (en) * 2009-07-03 2013-11-27 日立アプライアンス株式会社 Refrigeration cycle equipment
KR102150312B1 (en) * 2013-11-25 2020-09-01 삼성전자주식회사 Air conditioner and method for control of air conditioner
WO2016016987A1 (en) * 2014-07-31 2016-02-04 三菱電機株式会社 Control device for regenerative converter device
JP6327093B2 (en) * 2014-10-01 2018-05-23 三菱電機株式会社 Dehumidifier
JP6712104B2 (en) * 2015-09-10 2020-06-17 日立ジョンソンコントロールズ空調株式会社 DC power supply and air conditioner
CN113654225B (en) * 2021-08-06 2023-03-24 青岛海尔空调器有限总公司 Control method and system of compressor and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007924A (en) * 2002-05-31 2004-01-08 Mitsubishi Electric Corp Drive device of permanent magnet motor, sealed type compressor, refrigerator cycle unit and drive device of permanent magnet generator
JP2006094601A (en) * 2004-09-22 2006-04-06 Mitsubishi Electric Corp Vector controller for induction motor
JP2007049843A (en) * 2005-08-11 2007-02-22 Hitachi Ltd Vector control device for permanent-magnet synchronous motors
JP2008005592A (en) * 2006-06-21 2008-01-10 Matsushita Electric Ind Co Ltd Motor drive device and storage device with the motor drive device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380437B2 (en) * 2004-07-01 2009-12-09 株式会社日立製作所 Control device and module for permanent magnet synchronous motor
JP4729356B2 (en) * 2005-07-29 2011-07-20 株式会社日立製作所 Motor controller, washing machine, air conditioner and electric oil pump
JP2008148437A (en) * 2006-12-08 2008-06-26 Mitsubishi Heavy Ind Ltd Controller for permanent magnet type synchronous motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007924A (en) * 2002-05-31 2004-01-08 Mitsubishi Electric Corp Drive device of permanent magnet motor, sealed type compressor, refrigerator cycle unit and drive device of permanent magnet generator
JP2006094601A (en) * 2004-09-22 2006-04-06 Mitsubishi Electric Corp Vector controller for induction motor
JP2007049843A (en) * 2005-08-11 2007-02-22 Hitachi Ltd Vector control device for permanent-magnet synchronous motors
JP2008005592A (en) * 2006-06-21 2008-01-10 Matsushita Electric Ind Co Ltd Motor drive device and storage device with the motor drive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113819623A (en) * 2021-09-10 2021-12-21 青岛海尔空调器有限总公司 Method and device for controlling operation of motor, air conditioner and storage medium

Also Published As

Publication number Publication date
TW200940917A (en) 2009-10-01
JP2009236445A (en) 2009-10-15
CN101946136B (en) 2014-03-19
JP4194645B1 (en) 2008-12-10
CN101946136A (en) 2011-01-12
TWI355477B (en) 2012-01-01

Similar Documents

Publication Publication Date Title
JP5222640B2 (en) Refrigeration equipment
JP4194645B1 (en) Refrigeration equipment
JP2012100369A (en) Refrigerator, and control device for permanent magnet synchronous motors
EP2465195B1 (en) Controller and method for transitioning between control angles
JP5161180B2 (en) Motor drive device, inverter device, converter device, and refrigeration air conditioner
JP5116620B2 (en) Electric motor drive device and refrigeration air conditioner
WO2013105173A1 (en) Inverter control device
JP2002247876A (en) Inverter device, compressor controlling device, freezer and air conditioner controlling device, motor controlling method, compressor, freezer and air conditioner
JP4927052B2 (en) Refrigeration equipment
JP5978161B2 (en) Motor drive device
JP4804100B2 (en) Motor drive device, control method therefor, and air conditioner
JP5470098B2 (en) Inverter control device and air conditioner using the same
JP4744505B2 (en) Motor drive control device, motor drive control method and coordinate conversion method, ventilation fan, liquid pump, blower, refrigerant compressor, air conditioner, and refrigerator
JP2004343993A (en) Motor controller, compressor, air conditioner, and refrigerator
JP5517851B2 (en) Refrigeration equipment having a motor control device and a compressor drive device using the motor control device
JP4791319B2 (en) Inverter device, compressor drive device and refrigeration / air-conditioning device
KR101770425B1 (en) Refrigerator and controlling method thereof
JP5136568B2 (en) Electric motor control circuit and air conditioner using the control circuit
JP5385557B2 (en) Motor control device, compressor drive device, and refrigeration / air conditioning device
JP2014187802A (en) Motor drive device
JP2006136167A (en) Power converter, control method of power converter, and air conditioner
WO2024069704A1 (en) Electric power conversion device, motor drive device, and refrigeration cycle application device
JP2008106989A (en) Refrigerating cycle device
WO2024075163A1 (en) Electric power conversion device, motor drive device, and refrigeration cycle application device
KR20090049854A (en) Motor controller of air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105536.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09725949

Country of ref document: EP

Kind code of ref document: A1