WO2009118290A1 - Debitmetre instationnaire temps reel - Google Patents

Debitmetre instationnaire temps reel Download PDF

Info

Publication number
WO2009118290A1
WO2009118290A1 PCT/EP2009/053380 EP2009053380W WO2009118290A1 WO 2009118290 A1 WO2009118290 A1 WO 2009118290A1 EP 2009053380 W EP2009053380 W EP 2009053380W WO 2009118290 A1 WO2009118290 A1 WO 2009118290A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
fluid
pressure
flow member
flow rate
Prior art date
Application number
PCT/EP2009/053380
Other languages
English (en)
Inventor
Eric Foucault
Philippe Laurent Micheau
Philippe Szeger
Janick Laumonier
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Universite De Poitiers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (Cnrs), Universite De Poitiers filed Critical Centre National De La Recherche Scientifique (Cnrs)
Priority to JP2011501189A priority Critical patent/JP2011515689A/ja
Priority to CA2719133A priority patent/CA2719133A1/fr
Priority to EP09724273A priority patent/EP2265907A1/fr
Priority to US12/934,990 priority patent/US20110022335A1/en
Publication of WO2009118290A1 publication Critical patent/WO2009118290A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/44Venturi tubes

Definitions

  • the present invention relates to the field of measuring the instantaneous flow rate of a fluid in unsteady flow.
  • Flow measurements are essential for the implementation and optimization of industrial processes. At present, to know the flow rate of a fluid in unsteady flow at a given moment, it is generally necessary to implement measurement techniques for determining the speed of this fluid.
  • this set of speeds is spatially integrated in order to have access to the evolution of the flow as a function of time.
  • Particle Images or so-called Laser Doppler Velocimetry (LDV) methods, as well as the systems associated with them. These methods are based on the measurement of the displacement of small particles contained in the fluid in flow, this displacement being measured by an image processing technique on the one hand, or by Doppler frequency treatment on the other hand.
  • the pitot tube is an instrument intended to be immersed in a pipe to determine the speed of a flowing fluid by measuring a pressure difference.
  • the direction and direction of flow must be known and constant to set up the pitot tube.
  • the total pressure measurement is impossible, which leads to an error in obtaining the measurement of the speed.
  • this type of system is intrusive and thus disturbs the flow.
  • the flow rate of an unsteady flow fluid can also be obtained from its velocity by the use of a hot wire or hot film system in the flowing fluid. Nevertheless, such a method is punctual and insensitive to the direction of fluid flow. In addition, its implementation is complex and expensive, especially because the wire or heating film is very fragile and ages quickly which requires regular maintenance. Finally, it is an intrusive method that modifies the flow.
  • a system for real-time measurement of the instantaneous flow rate of a fluid in stationary or unsteady flow in a pipe, comprising a fluid flow member provided with at least two wall pressure taps, a means for measuring a pressure difference coupled to the two pressure taps, and a calculation means programmed to calculate the flow in real time by solving a nonlinear ordinary differential equation connecting the instantaneous flow rate to the pressure difference the pressure difference in said formula being positive or negative depending on the variation of the flow velocity of the fluid in the pipe and / or the direction of fluid flow, characterized in that the flow member includes a filter placed between the two pressure taps to increase the pressure drop.
  • the flow member has a cylindrical geometry with a circular section of constant diameter
  • the flow member has a frustoconical geometry of Venturi type
  • the flow member comprises two additional filters respectively arranged upstream and downstream of the flow member relative to the flow of the fluid so as to condition the flow;
  • the filter or filters are arranged substantially perpendicular to the axis of the flow member
  • the filter or filters are grids; the filter or filters have a honeycomb structure;
  • the filter or filters are formed in a porous material
  • the flow member further comprises one or more temperature measurement probes coupled to the calculation means;
  • the flow member further comprises a static pressure measurement probe coupled to the calculation means.
  • FIG. 1 is a schematic representation of a system for measuring the instantaneous flow rate of a fluid according to the invention
  • FIG. 2 is a graph for comparing the flow rate measured by a system according to the invention at the rate measured by a hot wire system.
  • FIG. 1 schematically represents the proposed system, capable of measuring in real time the flow rate of a fluid in a pipe from a pressure difference.
  • This system is a flowmeter and consists essentially of a flow member 1 intended to be inserted in the pipe, a means 2 for measuring a pressure difference, and a calculation means 3 adapted for calculate the flow in real time from a measured pressure difference in the flow member.
  • the flow member 1 has a particularly simple shape adapted to be easily inserted, or interposed, into the flow line of the fluid whose instantaneous flow rate is to be measured.
  • the flow member 1 comprises any internal section S, the member may have a cylindrical geometry.
  • the general shape of the flow member 1 is cylindrical with a circular section of constant diameter, with the same characteristics as the pipe where it is inserted. It can also have a frustoconical shape, thus forming a Venturi.
  • Two static pressure taps A and B are placed on the wall of this flow member 1. These static pressure taps A and B are coupled to the measuring means 2 of a pressure difference of the system.
  • the means 2 thus makes it possible to measure the difference between the two static pressures P1 and P2 taken respectively at A and B.
  • a differential pressure sensor is used.
  • the calculation means 3 is an electronic calculator. This calculation means 3 is programmed to implement an algorithm for solving a formula that will be explained later, which is a non-standard differential equation. linear flow allowing the computation of the instantaneous flow, the sign of this flow accounting the direction of the flow.
  • the electronic computer 3 is coupled to the differential pressure sensor 2 since this computer 3 calculates the instantaneous flow rate from the pressure difference measured in the flow member 1 which is also instantaneous.
  • the flow member 1 has the first characteristic of having a cylindrical shape particularly simple to implement.
  • the flow member may for example have a circular section with a constant diameter, which simplifies all its implementation.
  • this flow member 1 incorporates a filter 4 disposed in the passage of the fluid inside the flow member 1, and placed between the two pressure taps A and B.
  • This filter 4 is provided for inducing a pressure drop in the flow member 1, more particularly between the pressure tap A and the pressure tap B, so as to create a pressure difference between these two pressure taps A and B.
  • This filter 4 is therefore designed to introduce into the flow member 1 an additional pressure drop with respect to the regular loss of pressure due to the geometry, and more particularly to the walls, of the flow member 1.
  • the additional pressure drop introduced by the filter 4 makes it possible to balance the importance of the kinetic energy of the flow with respect to the acceleration of the fluid, so as to be able to calculate more precisely the instantaneous flow rate of the fluid in the pipe. from the measured pressure difference.
  • the filter 4 thus makes it possible to adapt the pressure drop to the particular dynamics of the fluid flow.
  • the filter 4 may have any arrangement, shape, and constitution, as long as it makes it possible to introduce a homogeneous pressure drop between the two pressure taps A and B.
  • a filter 4 is used whose section substantially corresponds to the internal section S of the flow member 1, so as to cover substantially all of this inner section S.
  • the filter is preferably 4 substantially perpendicular to the flow of fluid in the organ 1, this flow of the fluid being shown schematically in Figure 1 by the black arrows.
  • the filter 4 may for example take the form of a grid.
  • This filter 4 may have a structure in the form of a honeycomb. It is also possible to form this filter 4 in a porous material.
  • the flow measurement system presented is therefore particularly simple to design and implement. This is particularly the case when the flow member 1 consists of a cylindrical portion with a circular section of constant diameter, thus forming a tube whose dimensions substantially correspond to the dimensions of the pipe inside which the fluid to be measured, and that a simple filter 4 is inserted inside this cylindrical portion.
  • this system has a symmetrical configuration which allows first of all to simplify its insertion in the fluid flow line.
  • this symmetry in the geometry of the flow member 1 implies that the measurement system is very insensitive to upstream and downstream conditions since the filter 4 has exactly the same effects in terms of pressure loss whatever the meaning considered fluid flow.
  • the accuracy of the measuring system is therefore independent of the direction of the flow, which is particularly advantageous in certain application areas such as the automobile, for which certain flows, for example the flow at the intake of the engines thermal, can periodically change direction.
  • Another advantage induced by this particular configuration of the flow member 1 lies in the small size of the corresponding measurement system. Indeed, the length of the flow member 1 can be very substantially reduced, compared for example with systems based on particular velocity profiles (such as venturi type) which require the design of flow members with an ad hoc geometry, with pipes, upstream and downstream of the measuring zone, of sufficient length to condition the flow.
  • the use of a filter 4 in the flow member 1 also has the advantage of reducing the disturbances of the flowing fluid, which makes the pressure measurements more reliable.
  • the flow member 1 may further comprise additional filters 5 and 6 respectively disposed upstream and downstream of the flow member 1 with respect to the main flow direction of the fluid.
  • filters 5 and 6 respectively disposed upstream and downstream of the flow member 1 with respect to the main flow direction of the fluid.
  • 5 and 6 may have the same shapes, structures and arrangements as the filter 4 disposed between the pressure taps A and B.
  • upstream 5 and downstream 6 filters make it possible to overcome the possible large-scale structures of the flow of the fluid. Indeed, if the flow of the fluid contains vortex structures of large sizes, then the filters
  • the operating principle of the measuring system of Figure 1 is as follows.
  • the fluid flows in a pipe and passes into the flow member 1.
  • the means 2 for measuring a pressure difference measures the difference between the static pressure P1 acquired at the pressure point A, and the static pressure P2 acquired at the pressure tap B.
  • the pressure difference measured by the measurement means 2 is transmitted to the input of the calculation means 3.
  • the calculation means 3 calculates the flow of the fluid in real time from the pressure difference received at the input. Indeed, as has been said, the calculation means 3 is adapted to solve the formula connecting the flow rate to the pressure difference, this formula making it possible to calculate the flow rate in real time and also giving the direction of flow. fluid.
  • the flow of the fluid is obtained in real time, even in unsteady flow.
  • the calculation of the real-time flow of the fluid flow is made from a relationship established between the instantaneous flow rate and the pressure for a fluid in unsteady flow in a pipe. Recall that the value of this flow can be positive or negative, so that the sign of the calculated flow indicates the direction of the flow of the fluid.
  • Ki and K 2 are constants
  • dq (t) / dt represents the time derivative of the desired flow rate
  • f (q (t)) is a non-linear function of the instantaneous volume flow
  • equation 1 can be written as:
  • the sign attributed to the pressure difference ⁇ P (t) varies in particular as a function of the variation in the flow velocity of the fluid and / or the direction of the fluid flow.
  • the pressure difference ⁇ P (t) is therefore positive or negative, for example when the fluid flowing in the pipe accelerates or decelerates, and / or when the fluid flows in the pipe in one direction or in the opposite direction.
  • the terms dq (t) / dt and f (q (t)) are also taken into account as they are, without any absolute value.
  • the sign of the calculated flow rate makes it possible to account for the direction of flow, and the sign inversions of the calculated flow rate make it possible to account for inversions of flow direction of the fluid.
  • Ordinary nonlinear differential equations formulated have the remarkable property of always converging towards a bounded solution provided that the initial condition is suitably chosen from the order of magnitude of the flow to be found.
  • the output signal of the computer 3 converges to the instantaneous value of the desired bit rate.
  • the resolution algorithm can be implemented both numerically and analogically, and can obtain the value of the instantaneous flow in real time.
  • the flow rate measured by this method corresponds to the flow q (t) of an incompressible fluid in unsteady flow in a pipe.
  • the density of the fluid is a datum that must be known to solve equations 1, 2 or 3 above. It should be noted that it is itself a function of a number of other physical quantities such as temperature, static pressure and possibly the molar mass of the fluid.
  • a measuring probe of the temperature and / or a probe for measuring the static pressure prevailing in the flow is integrated into the measuring system, which makes it possible to take into account account the density fluctuations in the fluid flow under consideration.
  • ⁇ > represents the arithmetic mean operator
  • > represents the average value of the absolute value of the flow during a certain period of time.
  • the graph in Figure 2 highlights the instantaneous flow measurement results obtained using the system of Figure 1. More precisely, this graph represents the evolution of the pulsed flow in a suction line of a single-cylinder heat engine. measured by the proposed system, and compared with the reconstituted flow rate from the fluid velocity determined by a hot wire system.
  • the first curve C1 and the second curve C2 of FIG. 2 show the evolution of the flow rate in a pipe as a function of time.
  • Solid lines (curve C1) represent the results obtained with the proposed system, while the dashed lines (curve C2) represent the results obtained with the system of measurement by hot wire.
  • the proposed system has a very good time resolution (high bandwidth) since it has been successfully tested up to a speed of 3000 rpm. On the curve C1 is reported the evolution of the flow rate for an idle speed of 900 revolutions / minute. Thus, the proposed system has a significant temporal resolution, comparable to wire systems or hot films, without presenting their many disadvantages.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un système de mesure en temps réel du débit instantané d'un fluide en écoulement stationnaire ou instationnaire dans une conduite, comprenant un organe d'écoulement (1) du fluide muni d'au moins deux prises de pression (A, B) en paroi, un moyen de mesure (2) d'une différence de pression couple aux deux prises de pression (A, B), et un moyen de calcul (3) programme pour calculer Ie débit en temps réel par Ia résolution d'une équation différentielle ordinaire non-linéaire reliant Ie débit instantané à Ia différence de pression, Ia différence de pression dans ladite formule étant positive ou négative en fonction de Ia variation de Ia vitesse d'écoulement du fluide dans Ia conduite et/ou du sens de l'écoulement du fluide, l'organe d'écoulement (1) comprenant un filtre (4) placé entre les deux prises de pression (A, B) pour augmenter Ia perte de charge.

Description

Débitmètre instationnaire temps réel
DOMAINE DE L'INVENTION La présente invention concerne le domaine de la mesure du débit instantané d'un fluide en écoulement instationnaire.
Elle trouve notamment, mais non limitativement, application dans les domaines du génie des procédés, et de l'industrie automobile.
Plus particulièrement, elle trouve avantageusement application dans le contrôle et la régulation des moteurs thermiques, les centres d'essais et laboratoires de recherche, ainsi que toutes les applications actuelles des débitmètres de l'art antérieur.
Plus particulièrement, elle trouve avantageusement application dans toutes les situations où l'écoulement étant instationnaire, la connaissance du débit impose une intégration dans le temps et dans l'espace de la vitesse.
ETAT DE LA TECHNIQUE
Les mesures de débits sont des éléments indispensables à la mise en œuvre et à l'optimisation des processus industriels. A l'heure actuelle, pour connaître le débit d'un fluide en écoulement instationnaire à un instant donné, il est généralement nécessaire de mettre en œuvre des techniques de mesure permettant de déterminer la vitesse de ce fluide.
Une fois que l'on a déterminé un ensemble de vitesses pour différents instants, on intègre spatialement cet ensemble de vitesses afin d'avoir accès à l'évolution du débit en fonction du temps.
Il a déjà été proposé un certain nombre de systèmes et méthodes permettant l'obtention du débit d'un fluide en écoulement instationnaire par la détermination de la vitesse de ce fluide.
A titre d'exemple, on peut citer les méthodes dites de Vélocimétrie par
Images de Particules (PIV) ou les méthodes dites de Vélocimétrie Doppler Laser (LDV), ainsi que les systèmes qui leurs sont associés. Ces méthodes sont basées sur la mesure du déplacement de petites particules contenue dans le fluide en écoulement, ce déplacement étant mesuré par une technique de traitement d'image d'une part, ou par traitement de fréquences Doppler d'autre part.
Toutefois ces méthodes et systèmes présentent un certain nombre d'inconvénients. En particulier, les méthodes PIV et LDV ne permettent pas de déterminer le débit d'un fluide en temps réel, puisque ces techniques imposent un post-traitement des images acquises afin d'obtenir la vitesse du fluide. De plus, la mise en œuvre de telles techniques est lourde et coûteuse. Ces méthodes sont également mal résolues en temps et possèdent donc une faible bande passante (généralement moins de 10 Hz pour la méthode PIV).
Une autre méthode permettant d'obtenir le débit d'un fluide en écoulement instationnaire à partir de sa vitesse utilise le tube de Pitot (ou sonde de Prandtl).
Le tube de Pitot est un instrument destiné à être plongé dans une conduite pour déterminer la vitesse d'un fluide en écoulement grâce à la mesure d'une différence de pression. Toutefois, la direction et le sens de l'écoulement doivent être connus et constants pour mettre en place le tube de Pitot. En outre, lorsque le sens de l'écoulement varie, la mesure de pression totale est impossible, ce qui induit une erreur dans l'obtention de la mesure de la vitesse. Enfin, ce type de système est intrusif et perturbe donc l'écoulement.
Le débit d'un fluide en écoulement instationnaire peut également être obtenu à partir de sa vitesse par l'utilisation d'un système à fil chaud ou à film chaud placé dans le fluide en écoulement. Néanmoins, une telle méthode est ponctuelle et insensible au sens de l'écoulement du fluide. En outre, sa mise en œuvre est complexe et coûteuse, en particulier parce que le fil ou film chauffant est très fragile et vieillit rapidement ce qui nécessite une maintenance régulière. Enfin, c'est une méthode intrusive qui modifie donc l'écoulement.
Pour remédier aux inconvénients des méthodes présentées ci-dessus, il a été développé un système de mesure particulier permettant de mesurer en temps réel le débit instantané d'un fluide en écoulement et prenant en compte le sens de l'écoulement du fluide. Ce système et la méthode de mesure associée sont plus particulièrement décrits dans la demande PCT/FR2005/000352 publiée le 1er septembre 2005 sous la référence WO2005/080924, et que l'on incorpore ici par référence. Un tel système est particulièrement performant pour mesurer le débit instantané de fluide dont l'écoulement varie à une fréquence élevée de plusieurs dizaines de Hertz. Il présente toutefois quelques inconvénients liés notamment à l'encombrement du système proposé. Un but de la présente invention est donc de fournir un système de mesure en temps réel du débit d'un fluide en écoulement instationnaire, permettant de résoudre la plupart des inconvénients précités.
EXPOSE DE L'INVENTION
A cette fin, on propose un système de mesure en temps réel du débit instantané d'un fluide en écoulement stationnaire ou instationnaire dans une conduite, comprenant un organe d'écoulement du fluide muni d'au moins deux prises de pression en paroi, un moyen de mesure d'une différence de pression couplé aux deux prises de pression, et un moyen de calcul programmé pour calculer le débit en temps réel par la résolution d'une équation différentielle ordinaire non-linéaire reliant le débit instantané à la différence de pression, la différence de pression dans ladite formule étant positive ou négative en fonction de la variation de la vitesse d'écoulement du fluide dans la conduite et/ou du sens de l'écoulement du fluide, caractérisé en ce que l'organe d'écoulement comprend un filtre placé entre les deux prises de pression pour augmenter la perte de charge.
Des aspects préférés mais non limitatifs de ce système de mesure sont les suivants :
- l'organe d'écoulement a une géométrie cylindrique avec une section circulaire de diamètre constant ;
- l'organe d'écoulement a une géométrie tronconique de type Venturi ;
- l'organe d'écoulement comprend deux filtres supplémentaires agencés respectivement en amont et en aval de l'organe d'écoulement par rapport à l'écoulement du fluide de manière à conditionner l'écoulement ;
- le ou les filtres sont agencés sensiblement perpendiculaires à l'axe de l'organe d'écoulement ;
- le ou les filtres sont des grilles ; - le ou les filtres ont une structure en nid d'abeille ;
- le ou les filtres sont formés dans un matériau poreux ;
- l'organe d'écoulement comprend en outre une ou plusieurs sondes de mesure de température couplée au moyen de calcul ;
- l'organe d'écoulement comprend en outre une sonde de mesure de pression statique couplée au moyen de calcul. DESCRIPTION DES FIGURES
D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative et doit être lue en regard des dessins annexés, sur lesquels :
- la figure 1 est une représentation schématique d'un système de mesure du débit instantané d'un fluide selon l'invention ;
- la figure 2 est un graphique permettant de comparer le débit mesuré par un système selon l'invention au débit mesuré par un système à fil chaud.
DESCRIPTION DETAILLEE DE L'INVENTION
La figure 1 représente schématiquement le système proposé, capable de mesurer en temps réel le débit d'un fluide dans une conduite à partir d'une différence de pression. Ce système est un débitmètre et se compose essentiellement d'un organe d'écoulement 1 destiné à s'insérer dans la conduite, d'un moyen 2 de mesure d'une différence de pression, et d'un moyen 3 de calcul adapté pour calculer le débit en temps réel à partir d'une différence de pression mesurée dans l'organe d'écoulement.
L'organe d'écoulement 1 a une forme particulièrement simple adaptée pour être facilement inséré, ou interposé, dans la conduite d'écoulement du fluide dont on veut mesurer le débit instantané.
Plus particulièrement, l'organe d'écoulement 1 comprend une section intérieure S quelconque, l'organe pouvant avoir une géométrie cylindrique. De manière préférée, la forme générale de l'organe d'écoulement 1 est cylindrique avec une section circulaire de diamètre constant, avec les mêmes caractéristiques que la conduite où il s'insère. Il peut également avoir une forme tronconique, formant ainsi un Venturi.
Deux prises de pression statique A et B sont placées sur la paroi de cet organe d'écoulement 1. Ces prises de pression statique A et B sont couplées au moyen de mesure 2 d'une différence de pression du système. Le moyen 2 permet donc de mesurer la différence entre les deux pressions statiques P1 et P2 prises respectivement en A et B. On utilise par exemple un capteur de pression différentielle. Le moyen de calcul 3 est un calculateur électronique. Ce moyen de calcul 3 est programmé pour mettre en œuvre un algorithme de résolution d'une formule que l'on explicitera plus loin, qui est une équation différentielle ordinaire non- linéaire permettant le calcul du débit instantané, le signe de ce débit rendant compte du sens de l'écoulement. Le calculateur électronique 3 est couplé au capteur 2 de pression différentielle puisque ce calculateur 3 calcule le débit instantané à partir de la différence de pression mesurée dans l'organe d'écoulement 1 qui est elle aussi instantanée.
Comme on l'a indiqué plus haut, l'organe d'écoulement 1 présente comme première caractéristique d'avoir une forme cylindrique particulièrement simple à mettre en œuvre. L'organe d'écoulement peut par exemple avoir une section circulaire avec un diamètre constant, ce qui simplifie d'autant sa mise en œuvre.
En outre, cet organe d'écoulement 1 intègre un filtre 4 disposé dans le passage du fluide à l'intérieur de l'organe d'écoulement 1 , et placé entre les deux prises de pression A et B. Ce filtre 4 est prévu pour induire une perte de charge dans l'organe d'écoulement 1 , plus particulièrement entre la prise de pression A et la prise de pression B, de manière à créer une différence de pression entre ces deux prises de pressions A et B.
Ce filtre 4 est donc prévu pour introduire dans l'organe d'écoulement 1 une perte de charge supplémentaire par rapport à la perte de charge régulière due à la géométrie, et plus particulièrement aux parois, de l'organe d'écoulement 1. Comme il est décrit en détail plus loin, il existe une relation entre la pression et le débit instantané pour un fluide en écoulement instationnaire dans une conduite, ou plus précisément une relation entre d'une part la pression, et d'autre part l'accélération du fluide et son énergie cinétique (qui est directement liée aux pertes de charge). La perte de charge supplémentaire introduite par le filtre 4 permet d'équilibrer l'importance de l'énergie cinétique de l'écoulement par rapport à l'accélération du fluide, de manière à pouvoir calculer plus précisément le débit instantané du fluide dans la conduite à partir de la différence de pression mesurée. Le filtre 4 permet donc d'adapter la perte de charge à la dynamique particulière de l'écoulement du fluide. Le filtre 4 peut avoir un agencement, une forme, et une constitution quelconques, tant qu'il permet d'introduire une perte de charge homogène entre les deux prises de pression A et B.
De préférence, on utilise un filtre 4 dont la section correspond sensiblement à la section intérieure S de l'organe d'écoulement 1 , de manière à couvrir la quasi- totalité de cette section intérieure S. En outre, on dispose de préférence le filtre 4 de façon sensiblement perpendiculaire à l'écoulement du fluide dans l'organe d'écoulement 1 , cet écoulement du fluide étant représenté schématiquement dans la figure 1 par les flèches noires.
Le filtre 4 peut par exemple prendre la forme d'une grille. Ce filtre 4 peut avoir une structure en forme de nid d'abeilles. On peut également prévoir de former ce filtre 4 dans un matériau poreux.
Le système de mesure de débit présenté est donc particulièrement simple à concevoir et à mettre en œuvre. Ceci est en particulier le cas lorsque l'organe d'écoulement 1 consiste en une portion cylindrique avec une section circulaire de diamètre constant, formant ainsi un tube, dont les dimensions correspondent sensiblement aux dimensions de la conduite à l'intérieur de laquelle circule le fluide à mesurer, et qu'un simple filtre 4 est inséré à l'intérieur de cette portion cylindrique.
En outre, une telle configuration présente d'autres avantages notables par rapport aux dispositifs de l'art antérieur. En particulier, ce système a une configuration symétrique ce qui permet en premier lieu de simplifier son insertion dans la conduite d'écoulement du fluide. D'autre part, cela permet d'avoir un fonctionnement et une fiabilité indépendants du sens de l'écoulement du fluide dans la conduite. En effet, cette symétrie dans la géométrie de l'organe d'écoulement 1 implique que le système de mesure est très peu sensible aux conditions amont et aval puisque le filtre 4 a exactement les mêmes effets en termes de perte de charge quelque soit le sens considéré d'écoulement du fluide. La précision du système de mesure est donc indépendante du sens de l'écoulement, ce qui est particulièrement avantageux dans certains domaines d'application comme celui de l'automobile, pour lesquels certains écoulements, comme par exemple les écoulements à l'aspiration des moteurs thermiques, peuvent changer périodiquement de sens.
Un autre avantage induit par cette configuration particulière de l'organe d'écoulement 1 réside dans le faible encombrement du système de mesure correspondant. En effet, la longueur de l'organe d'écoulement 1 peut être très sensiblement réduite, par rapport par exemple à des systèmes reposant sur des profils de vitesses particuliers (de type venturi par exemple) qui imposent de concevoir des organes d'écoulement avec une géométrie ad hoc, avec des conduites, à l'amont et à l'aval de la zone de mesure, de longueurs suffisantes pour conditionner l'écoulement.. L'utilisation d'un filtre 4 dans l'organe d'écoulement 1 présente en outre l'avantage de réduire les perturbations du fluide en écoulement, ce qui fiabilise les mesures de pressions effectuées.
L'organe d'écoulement 1 peut en outre comprendre des filtres supplémentaires 5 et 6 disposés respectivement en amont et en aval de l'organe d'écoulement 1 par rapport au sens principal d'écoulement du fluide. De tels filtres
5 et 6 peuvent avoir les mêmes formes, structures et agencements que le filtre 4 disposé entre les prises de pression A et B.
Ces filtres amont 5 et aval 6 permettent de s'affranchir des éventuelles structures de grande échelle de l'écoulement du fluide. En effet, si l'écoulement du fluide contient des structures tourbillonnaires de tailles importantes, alors les filtres
5 et 6 placés aux deux extrémités de l'organe d'écoulement 1 permettent de conditionner l'écoulement du fluide, c'est à dire de stabiliser et régulariser l'écoulement du fluide à l'intérieur de l'organe d'écoulement 1 pour que les mesures de pression soient encore plus fiables.
Cette solution permet donc d'effectuer des mesures fiables de débit instantané de l'écoulement du fluide quelque soit la structure générale d'écoulement dudit fluide, tout en conservant un très faible encombrement. En effet, la solution proposée n'impose pas d'augmenter la longueur de l'organe d'écoulement 1 pour régulariser l'écoulement.
Le principe de fonctionnement du système de mesure de la figure 1 est le suivant. Le fluide s'écoule dans une conduite et passe dans l'organe d'écoulement 1. Le moyen 2 de mesure d'une différence de pression mesure la différence entre la pression statique P1 acquise au niveau de la prise de pression A, et la pression statique P2 acquise au niveau de la prise de pression B. La différence de pression mesurée par le moyen 2 de mesure est transmise en entrée du moyen 3 de calcul. Le moyen 3 de calcul calcule le débit du fluide en temps réel à partir de la différence de pression reçue en entrée. En effet, comme on l'a dit, le moyen 3 de calcul est adapté pour résoudre la formule reliant le débit à la différence de pression, cette formule permettant le calcul du débit en temps réel et donnant en outre le sens de l'écoulement du fluide. A la sortie du moyen 3 de calcul, on obtient en temps réel le débit du fluide, même en écoulement instationnaire. Le dispositif de la figure 1 permet donc de mesurer en temps réel le débit instationnaire d'un fluide dans une conduite. La mesure de ce débit ne nécessite que deux mesures de pression statique, la différence de pression correspondante étant par exemple obtenue par un unique capteur de pression différentielle 2 couplé aux prises de pression, ou par deux capteurs de pression relative (ou absolue).
Comme il a été indiqué plus haut, le calcul du débit en temps réel de l'écoulement du fluide est réalisé à partir d'une relation établie entre le débit instantané et la pression pour un fluide en écoulement instationnaire dans une conduite. Rappelons que la valeur de ce débit peut être positive ou négative, de sorte que le signe du débit calculé indique le sens de l'écoulement du fluide.
Une telle relation avait déjà été établie pour le débitmètre instationnaire temps réel décrit dans la demande PCT publiée sous la référence WO 2005/080924, à laquelle on se référera utilement pour une explication détaillée.
La formule utilisée dans le cadre du présent système de mesure de débit est donnée par une équation différentielle ordinaire non-linéaire de la forme générale suivante : Ki.dq(t)/dt + K2.f(q(t)) = ΔP(t) [Equation 1]
où: - q(t) représente la forme générale du débit instantané recherché,
- Ki et K2 sont des constantes,
- dq(t)/dt représente la dérivée par rapport au temps du débit recherché, - f(q(t)) est une fonction non linéaire du débit volumique instantané,
- ΔP(t) est la différence de pression mesurée.
En conséquence, si l'on note qm(t) le débit massique instantané recherché, et qv(t) le débit volumique instantané recherché, alors l'équation 1 peut s'écrire :
soit ki.dqm(t)/dt + k2.f(qm(t))/rho = ΔP(t) [Equation 2]
soit ki.dqv(t)/dt + k2.f(qv(t)) = ΔP(t)/rho [Equation 3]
où : - ki et k2 sont des constantes déterminées par étalonnage.
- rho est la masse volumique du fluide, avec qm(t)=rho. qv(t) Pour f(q(t)) qui est une fonction non linéaire du débit volumique instantané, on pourra par exemple prendre : f(q(t))=|q(t)|.q(t) [Equation 4])
La présence dans les formules de termes dont le signe varie en fonction de la variation de la vitesse d'écoulement du fluide dans la conduite et/ou du sens de l'écoulement (termes dq(t)/dt et ΔP(t)), et de terme dont le signe varie en fonction du sens de l'écoulement du fluide dans la conduite (terme f(q(t))) permet de calculer un débit positif ou négatif, dont le signe rend compte du sens de l'écoulement du fluide. Notamment, dans les formules décrites ci-dessus, le terme ΔP(t) est pris en compte tel quel, sans valeur absolue. Le signe attribué à la différence de pression ΔP(t) varie notamment en fonction de la variation de vitesse d'écoulement du fluide et/ou du sens de l'écoulement du fluide. La différence de pression ΔP(t) est donc positive ou négative, par exemple lorsque le fluide s'écoulant dans la conduite accélère ou décélère, et/ou lorsque le fluide s'écoule dans la conduite dans un sens ou dans le sens opposé. Par ailleurs, dans les formules décrites ci-dessus, les termes dq(t)/dt et f(q(t)) sont également pris en compte tels quels, sans valeur absolue.
Le signe du débit calculé permet de rendre compte du sens de l'écoulement, et les inversions de signe du débit calculé permettent de rendre compte des inversions de sens d'écoulement du fluide. Les équations différentielles ordinaires non-linéaires formulées possèdent la propriété remarquable de toujours converger vers une solution bornée pour peu que la condition initiale soit convenablement choisie de l'ordre de grandeur du débit à trouver. Préférentiellement, on choisira comme condition initiale q(t=O)=O. En pratique, lorsque la condition initiale est correctement choisie, le signal de sortie du calculateur 3 converge vers la valeur instantanée du débit recherché.
L'algorithme de résolution peut être mis en œuvre aussi bien de façon numérique qu'analogique, et permet d'obtenir la valeur du débit instantané en temps réel.
Le débit mesuré grâce à cette méthode correspond au débit q(t) d'un fluide incompressible en écoulement instationnaire dans une conduite. La masse volumique du fluide est une donnée qui doit être connue pour résoudre les équations 1 , 2 ou 3 ci-dessus. Il convient de noter qu'elle est elle-même fonction d'un certain nombre d'autres grandeurs physiques comme par exemple la température, la pression statique et éventuellement la masse molaire du fluide. Dans le cas où la compressibilité du fluide ne peut pas être négligée, on intègre au système de mesure une sonde de mesure de la température et/ou une sonde de mesure de la pression statique régnant dans l'écoulement, ce qui permet de prendre en compte les fluctuations de masse volumique dans l'écoulement de fluide considéré.
S'il est possible par un moyen tierce de déterminer la valeur instantanée de la valeur absolue du débit volumique |qv| alors l'instrument proposé permet d'en déduire le débit massique instantané qm (mais cette fois-ci avec son sens), indépendamment des éventuelles fluctuations de la masse volumique rho, qui n'a pas besoin d'être déterminée dans ce cas. C'est ce que montre l'équation 5 tirée des équations 2 et 4 :
ki.dqm(t)/dt + k2.qm(t).|qv(t)| = ΔP(t) [Equation 5]
De même s'il est possible par un moyen tierce de déterminer une grandeur statistique liée à la valeur absolue du débit volumique |qv|, comme la valeur moyenne (ou la valeur efficace) du débit volumique |qv|, alors l'instrument proposé permet d'en déduire le débit massique instantané qm (avec son sens), indépendamment des éventuelles fluctuations lentes de la masse volumique rho, qui n'a donc plus besoin d'être déterminée dans ce cas. C'est ce que montre l'équation 6 tirée des équations 2 et 4 :
ki.dqm(t)/dt + k2.qm(t).|qm(t)|.<|qv(t)|>/< |qm(t)|> = ΔP(t) [Equation 6]
où <> représente l'opérateur moyenne arithmétique ; <|q(t)|> représente donc la valeur moyenne de la valeur absolue du débit pendant un certain laps de temps.
Le graphique de la Figure 2 met en avant les résultats de mesure de débit instantané obtenus en utilisant le système de la figure 1. Plus précisément, ce graphique représente l'évolution du débit puisé dans une conduite d'aspiration d'un moteur thermique monocylindre mesuré par le système proposé, et comparée avec le débit reconstitué à partir de la vitesse du fluide déterminée par un système à fil chaud.
La première courbe C1 et la deuxième courbe C2 de la figure 2 présentent l'évolution du débit dans une conduite en fonction du temps. Les traits pleins (courbe C1 ) représentent les résultats obtenus avec le système proposé, tandis que les traits pointillés (courbe C2) représentent les résultats obtenus avec le système de mesure par fil chaud.
On peut remarquer sur la courbe C2 que le système de mesure par fil chaud, qui est incapable par conception de donner le sens de l'écoulement, donne toujours un débit positif, même lorsque celui-ci s'inverse. Ce n'est pas le cas du système de la présente invention qui suit parfaitement les inversions de sens de l'écoulement comme on peut le voir sur la courbe C1. Ceci est dû au fait que le système de mesure de la présente invention tient compte du sens de l'écoulement.
Le système proposé possède une très bonne résolution en temps (grande bande passante) puisqu'il a été testé avec succès jusqu'à un régime de 3000 tours/minute. Sur la courbe C1 est reportée l'évolution du débit pour un régime de ralenti de 900 tours/minute. Ainsi, le système proposé a une résolution temporelle importante, comparable aux systèmes à fil ou films chauds, sans présenter leurs nombreux inconvénients.
Le lecteur aura compris que de nombreuses modifications peuvent être apportées sans sortir matériellement des nouveaux enseignements et des avantages décrits ici. Par conséquent, toutes les modifications de ce type sont destinées à être incorporées à l'intérieur de la portée du système de mesure selon l'invention.

Claims

REVENDICATIONS
1. Système de mesure en temps réel du débit instantané d'un fluide en écoulement stationnaire ou instationnaire dans une conduite, comprenant un organe d'écoulement (1 ) du fluide muni d'au moins deux prises de pression (A, B) en paroi, un moyen de mesure (2) d'une différence de pression couplé aux deux prises de pression (A, B), et un moyen de calcul (3) programmé pour calculer le débit en temps réel par la résolution d'une équation différentielle ordinaire non- linéaire reliant le débit instantané à la différence de pression, la différence de pression dans ladite formule étant positive ou négative en fonction de la variation de la vitesse d'écoulement du fluide dans la conduite et/ou du sens de l'écoulement du fluide, caractérisé en ce que l'organe d'écoulement (1 ) comprend un filtre (4) placé entre les deux prises de pression (A, B) pour augmenter la perte de charge.
2. Système selon la revendication 1 , caractérisé en ce que l'organe d'écoulement (1 ) a une géométrie cylindrique avec une section (S) circulaire de diamètre constant.
3. Système selon la revendication 1 , caractérisé en ce que l'organe d'écoulement (1 ) a une géométrie tronconique de type Venturi.
4. Système selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'organe d'écoulement (1 ) comprend deux filtres (5,6) supplémentaires agencés respectivement en amont et en aval de l'organe d'écoulement (1 ) par rapport à l'écoulement du fluide de manière à conditionner l'écoulement.
5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le ou les filtres (4,5,6) sont agencés sensiblement perpendiculaires à l'axe de l'organe d'écoulement.
6. Système selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le ou les filtres (4,5,6) sont des grilles.
7. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le ou les filtres (4,5,6) ont une structure en nid d'abeille.
8. Système selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le ou les filtres (4,5,6) sont formés dans un matériau poreux.
9. Système selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'organe d'écoulement (1 ) comprend en outre une ou plusieurs sondes de mesure de température couplée au moyen de calcul (3).
10. Système selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'organe d'écoulement (1 ) comprend en outre une sonde de mesure de pression statique couplée au moyen de calcul (3).
PCT/EP2009/053380 2008-03-28 2009-03-23 Debitmetre instationnaire temps reel WO2009118290A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011501189A JP2011515689A (ja) 2008-03-28 2009-03-23 流体の瞬時流量実時間測定システム
CA2719133A CA2719133A1 (fr) 2008-03-28 2009-03-23 Debitmetre instationnaire temps reel
EP09724273A EP2265907A1 (fr) 2008-03-28 2009-03-23 Debitmetre instationnaire temps reel
US12/934,990 US20110022335A1 (en) 2008-03-28 2009-03-23 Real-time non-stationary flowmeter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852026A FR2929399B1 (fr) 2008-03-28 2008-03-28 Debimetre instationnaire temps reel
FR08/52026 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009118290A1 true WO2009118290A1 (fr) 2009-10-01

Family

ID=39865744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/053380 WO2009118290A1 (fr) 2008-03-28 2009-03-23 Debitmetre instationnaire temps reel

Country Status (7)

Country Link
US (1) US20110022335A1 (fr)
EP (1) EP2265907A1 (fr)
JP (1) JP2011515689A (fr)
KR (1) KR20100128346A (fr)
CA (1) CA2719133A1 (fr)
FR (1) FR2929399B1 (fr)
WO (1) WO2009118290A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927465A1 (fr) 2014-04-02 2015-10-07 MANN+HUMMEL GmbH Procédé pour déterminer le débit massique momentané d'un gaz, dispositif et programme informatique correspondants
WO2021156434A1 (fr) 2020-02-07 2021-08-12 Centre National De La Recherche Scientifique Dispositif d'injection de carburant, moteur et procede associe

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010004615A1 (de) * 2010-01-13 2011-07-14 Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Verfahren zur Bestimmung der aus einem Tank entnommenen Menge einer Flüssigkeit
KR20110120424A (ko) * 2010-04-29 2011-11-04 충북대학교 산학협력단 기체 유량 센서
US9126130B2 (en) * 2011-04-29 2015-09-08 Eaton Corporation Fluid vessel with abrasion and corrosion resistant interior cladding
JP5908814B2 (ja) * 2012-09-13 2016-04-26 株式会社小松製作所 排ガス処理装置、ディーゼルエンジン及び排ガス処理方法
AU2014228778B2 (en) * 2013-03-15 2019-06-06 Atrium Medical Corporation Fluid analyzer and associated methods
DE202014104037U1 (de) * 2014-08-28 2015-12-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Messkörper, Durchflussmesssystem und Computerprogramm dafür
EP3376182A1 (fr) * 2017-03-14 2018-09-19 CSEM Centre Suisse D'electronique Et De Microtechnique SA Système et procédé de distribution de fluide
GB201804085D0 (en) * 2018-03-14 2018-04-25 Carlisle Fluid Tech Uk Ltd Paint flow balancing
EP4193128A1 (fr) * 2020-08-07 2023-06-14 Woodward, Inc. Commande d'écoulement de débitmètre à ultrasons
WO2022080113A1 (fr) * 2020-10-13 2022-04-21 株式会社堀場製作所 Débitmètre de type à pression différentielle, dispositif d'analyse de gaz d'échappement, procédé de mesure de débit, procédé d'analyse de gaz d'échappement et programme pour débitmètre de type à pression différentielle
WO2022197321A1 (fr) 2021-03-17 2022-09-22 Woodward, Inc. Débitmètre massique de carburant à ultrasons

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041148A1 (fr) * 1997-03-17 1998-09-24 Instrumentarium Oy Detecteur et systeme de mesure de l'ecoulement de gaz
WO2003038382A1 (fr) * 2001-10-30 2003-05-08 Honeywell International, Inc. Detecteur d'ecoulement et de pression pour fluides nocifs
US6601460B1 (en) * 1998-06-10 2003-08-05 Peter Albert Materna Flowmeter based on pressure drop across parallel geometry using boundary layer flow including Reynolds numbers above the laminar range
WO2005080924A1 (fr) * 2004-02-16 2005-09-01 Centre National De La Recherche Scientifique (Cnrs) Debitmetre instationnaire
DE102004019519A1 (de) * 2004-04-22 2005-11-10 Abb Patent Gmbh Durchflussmessgerät

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4980766U (fr) * 1972-10-31 1974-07-12
JPS53144371A (en) * 1977-05-21 1978-12-15 Tokyo Seimitsu Co Ltd Flow meter
JPH067314Y2 (ja) * 1988-05-30 1994-02-23 株式会社コスモ計器 差圧式流量変換器
JP4788260B2 (ja) * 2005-03-30 2011-10-05 横河電機株式会社 多変量伝送器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041148A1 (fr) * 1997-03-17 1998-09-24 Instrumentarium Oy Detecteur et systeme de mesure de l'ecoulement de gaz
US6601460B1 (en) * 1998-06-10 2003-08-05 Peter Albert Materna Flowmeter based on pressure drop across parallel geometry using boundary layer flow including Reynolds numbers above the laminar range
WO2003038382A1 (fr) * 2001-10-30 2003-05-08 Honeywell International, Inc. Detecteur d'ecoulement et de pression pour fluides nocifs
WO2005080924A1 (fr) * 2004-02-16 2005-09-01 Centre National De La Recherche Scientifique (Cnrs) Debitmetre instationnaire
DE102004019519A1 (de) * 2004-04-22 2005-11-10 Abb Patent Gmbh Durchflussmessgerät

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927465A1 (fr) 2014-04-02 2015-10-07 MANN+HUMMEL GmbH Procédé pour déterminer le débit massique momentané d'un gaz, dispositif et programme informatique correspondants
WO2021156434A1 (fr) 2020-02-07 2021-08-12 Centre National De La Recherche Scientifique Dispositif d'injection de carburant, moteur et procede associe
FR3107090A1 (fr) 2020-02-07 2021-08-13 Centre National De La Recherche Scientifique Dispositif d’injection de carburant, moteur et procédé associé.

Also Published As

Publication number Publication date
CA2719133A1 (fr) 2009-10-01
KR20100128346A (ko) 2010-12-07
FR2929399B1 (fr) 2010-04-30
EP2265907A1 (fr) 2010-12-29
FR2929399A1 (fr) 2009-10-02
JP2011515689A (ja) 2011-05-19
US20110022335A1 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
WO2009118290A1 (fr) Debitmetre instationnaire temps reel
EP1716393B1 (fr) Debitmetre instationnaire
EP0496661B1 (fr) Procédé et dispositif de mesure de vitesse d&#39;écoulement instationnaire
FR2735571A1 (fr) Debitmetre a venturi pour mesure dans une veine d&#39;ecoulement d&#39;un fluide
EP0919800A1 (fr) Dispositif de mesure de la viscosité d&#39;un fluide
FR3019300A1 (fr) Banc d&#39;essai, destine a la caracterisation d&#39;un ecoulement d&#39;un fluide diphasique.
FR3095838A1 (fr) Procédé de gestion d’un filtre à particules d’un système de post-traitement des gaz d’échappement d’un moteur à combustion interne
Laurantzon et al. A flow facility for the characterization of pulsatile flows
EP3330680B1 (fr) Debitmetre thermique massique
CN101283237B (zh) 确定脉动式流体中的瞬时物料流的方法和装置
EP3757578B1 (fr) Procede de mesure de la vitesse d&#39;un fluide par ultrason
EP3405652B1 (fr) Couplemètre à torsion
Hallol Behaviour of energetic coherent structures in turbulent pipe flow at high Reynolds numbers
FR2745375A1 (fr) Procede de mesure de la vitesse d&#39;ecoulement d&#39;un fluide
JP3766777B2 (ja) 流量計
FR2891620A1 (fr) Capteur de debit
FR3050828A1 (fr) Procede de determination d&#39;une vitesse d&#39;ecoulement d&#39;un fluide s&#39;ecoulant dans un troncon de conduite et dispositif associe
WO2022122971A1 (fr) Dispositif de mesure d&#39;un paramètre d&#39;écoulement d&#39;un fluide
FR2549956A1 (fr) Dispositif de mesure de debit
CA3227362A1 (fr) Debitmetre pour fluide diphasique
FR3103282B1 (fr) Dispositif et procédé d’obtention de la température totale de l’air ambiant entourant un aéronef
BE515940A (fr)
FR2923911A1 (fr) Dispositif et procede de mesure de la permeabilite d&#39;un milieu poreux.
FR2983956A1 (fr) Sonde instationnaire et methode de mesure au moyen d&#39;une telle sonde
FR2482301A1 (fr) Appareil de mesure de la densite d&#39;un fluide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2719133

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011501189

Country of ref document: JP

Ref document number: 12934990

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009724273

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107024307

Country of ref document: KR

Kind code of ref document: A