WO2009117961A1 - 一种发送数据的方法、系统和设备 - Google Patents

一种发送数据的方法、系统和设备 Download PDF

Info

Publication number
WO2009117961A1
WO2009117961A1 PCT/CN2009/071010 CN2009071010W WO2009117961A1 WO 2009117961 A1 WO2009117961 A1 WO 2009117961A1 CN 2009071010 W CN2009071010 W CN 2009071010W WO 2009117961 A1 WO2009117961 A1 WO 2009117961A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
sent
rnc
channel
preset
Prior art date
Application number
PCT/CN2009/071010
Other languages
English (en)
French (fr)
Inventor
马洁
张屹
张劲林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2009117961A1 publication Critical patent/WO2009117961A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, system and device for transmitting data. Background technique
  • UMTS Universal Mobile Telecommunications System
  • WCDMA Wideband Code Division Multiple Access
  • RAN Radio Access Network
  • CN Core Network
  • a system structure diagram of a UMTS which specifically includes: a UE (User Equipment, a terminal), a RAN, a CN, and an external network, such as a PSTN (Public Switched Telephone Network), and an Internet;
  • the UE is used to provide various service functions to the user, such as common voice, data communication, multimedia video, Internet application, etc.
  • the radio access network includes a Node B (base station) and an RNC (Radio Network Controller).
  • B is interconnected with the RNC through a standard Iub interface, and its main function is to perform processing such as spreading, modulation, channel coding, etc. on the data signal; the RNC is used to manage the wireless data resources of the Node B controlled by the RNC.
  • a person skilled in the art may know that in a multi-carrier communication system, data from the same service source needs to be distributed to different carrier frequency MAC-hs/ehs (Medium Access Control high speed/enhace high speed) / Enhanced high-speed sharing) on the queue, and reorganized and delivered in order at the receiving end.
  • MAC-hs/ehs Medium Access Control high speed/enhace high speed
  • Enhanced high-speed sharing Enhanced high-speed sharing
  • the packet data transmission needs to pass through the PDCP (Packet Data Convergence Protocol) layer and the RLC (Radio Link Control) layer.
  • the PDCP layer is configured to process the service data, provide a header compression algorithm, compress the redundant header of the fractional data from the network layer, and improve the utilization of the wireless channel.
  • the RLC layer is configured to receive the processed data from the PDCP layer.
  • the data is segmented and the like, and the segmentation and retransmission service of the data is provided for the user; wherein the segmentation refers to grouping and reassembling the packet data sent by the PDCP layer of different length into a smaller packet suitable for the RLC layer transmission.
  • the load unit when the RLC layer supports the segmentation of the cascading mode, the PDCP delivers the packet data.
  • the packet is called the RLC SDU (Service).
  • the Data Unit Service Data Unit
  • PDUs Protocl Data Units
  • the PDU is sent to the Node B at the MAC (Medium Access Control) layer, and the data is sent to the UE side through the carrier frequency provided by the Node B.
  • the receiving end UE receives the data packet scheduled to be sent by the Node B through the RLC layer, sorts the data packet carrying sequence number, submits it to the PDCP layer, and implements successful data acquisition through subsequent processing such as decompression.
  • the RLC layer of the transmitting end also needs to notify the PDCP layer in time whether the data is successfully sent.
  • Node B supports multi-carrier communication.
  • the so-called multi-carrier communication means that data can be transmitted on two or more carrier frequencies at the same time.
  • its uplink and downlink are The road can communicate with the same or different number of carrier frequencies at the same time.
  • the downlink uses two carrier frequencies at the same time, if the two carrier frequencies are provided by the same processing board of the Node B, only the Node B side exists.
  • a MAC-hs/ehs queue and a scheduler; if the two carrier frequencies are on different processing boards of Node B, there will be two completely independent MAC-hs/ehs queues and schedulers on the Node B side.
  • data from the same service source needs to be distributed to different MAC-hs/ehs queues for data transmission and recombination at the terminal.
  • the delays introduced by the two MAC-hs/ehs queues may vary greatly depending on the terminal and the type of service that needs to be processed.
  • the RNC when the RNC sends data to the Node B, the RNC transmits the PDU formed by the SDU segmentation from the PDCP layer through the logical channel of the RLC layer, and the Node B receives the data packet PDU from the RLC layer. Then, it is carried in the carrier frequency provided by itself and scheduled to be sent to the UE side.
  • the PDU needs to be retransmitted, resulting in a complete
  • the delay obtained by the SDU for example, for SDU A , SDU B, and SDU C , if the data is scheduled to be sent, due to the loss of a segment PDU X of SDU B (may be caused by a certain carrier frequency degradation, etc.)
  • the delay of obtaining the complete SDU B is caused, and the data acquired by the UE side waits for a long time at the RLC layer, which reduces the efficiency of data transmission.
  • the embodiment of the invention provides a method, a system and a device for transmitting data.
  • the specific plan is as follows:
  • a method of transmitting data comprising:
  • the radio network controller RNC saves the data to be sent in a preset cache, where the data to be sent carries a sequence number
  • the number is at least one.
  • a system for transmitting data comprising: a radio network controller RNC, a base station, among them,
  • the radio network controller RNC is configured to save the data to be sent in a preset cache, where the data data to be sent carries a sequence number; and the device sends the to-before through a preset channel corresponding to each carrier frequency.
  • Transmitted data wherein each group of carrier frequencies corresponds to at least one channel, and each group of carrier frequencies corresponds to different channels, and the number of carrier frequencies in each group of carrier frequencies is at least one;
  • the base station is configured to receive data sent by the RNC, and send the data to the terminal by using a carrier carrier, so that after receiving the data sent by the base station, the terminal performs the data. deal with.
  • a radio network controller RNC comprising:
  • a saving module configured to save the data to be sent in the preset cache as backup data in a preset cache; and adding a module, configured to add a sequence number to the data to be sent of the saving module;
  • a sending module configured to send, by using a preset channel corresponding to a carrier frequency provided by the base station, the data to be sent added by the adding module to the carrier frequency of the base station; each group of carrier frequencies corresponds to at least one channel, And each group of carrier frequencies corresponds to different channels, and the number of carrier frequencies in each group of carrier frequencies is at least one.
  • a terminal device where the terminal device includes:
  • a receiving module configured to receive data, where the data carries a serial number
  • a sorting module configured to sort according to a serial number carried by the data received by the receiving module
  • a processing module configured to process the sorted data of the sorting module.
  • a method of receiving data comprising:
  • the terminal receives multiple data through the preset channel of the RLC layer of the terminal, and sorts the data according to the sequence number carried by the data and submits the data to the PDCP layer of the terminal; or
  • the terminal receives a plurality of data through the preset channel of the RLC layer of the terminal, and submits the data to the PDCP layer of the terminal, and the PDCP layer sorts according to the sequence number carried by the data.
  • the embodiment of the present invention configures a different logical channel in the RLC of the RNC for different frequency points (that is, a carrier frequency), or configures an interface transmission link between the RNC and the Node B to configure a transmission channel corresponding to the frequency point, thereby
  • the SDU uses the configured channel for transmission. For the case where an SDU cannot be completely received at the receiving end, the channel can be re-transmitted to retransmit the SDU, thereby reducing the transmission delay of the data SDU and ensuring the efficiency of data transmission.
  • FIG. 1 is a schematic structural diagram of a system of a UMTS provided by the prior art
  • FIG. 2 is a flowchart of a method for transmitting data according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a method for transmitting data according to Embodiment 2 of the present invention
  • 4 is a flowchart of a method for transmitting data according to Embodiment 3 of the present invention
  • FIG. 5 is a schematic diagram of a system for transmitting data according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic diagram of a system for transmitting data according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic diagram of a radio network controller according to Embodiment 6 of the present invention.
  • FIG. 8 is a schematic diagram of a radio network controller according to Embodiment 7 of the present invention.
  • FIG. 9 is a detailed schematic diagram of a radio network controller according to Embodiment 7 of the present invention.
  • FIG. 10 is a schematic diagram of a terminal device according to Embodiment 8 of the present invention.
  • FIG. 11 is a detailed schematic diagram of a terminal device according to Embodiment 8 of the present invention. detailed description
  • the embodiment of the present invention provides a method for sending data, and the method includes:
  • the RNC Radio Network Controller
  • the method further includes: acquiring a sending status of the data; deleting the saved in the preset cache according to the sending status of the data. Correctly transmitted data; Select a channel according to the channel allocation principle, and send the incorrectly transmitted data saved in the backup in the preset cache.
  • the carrier frequency of each group may include only one carrier frequency, and may also include multiple carrier frequencies.
  • the group A carrier frequency includes: fl, G, ⁇ , then fl, £2, ⁇ may correspond to channel 1. ; may also be fl, £2 corresponding to channel 1, ⁇ corresponding to channel 2; or, fl, £2, ⁇ correspond to channel 1, channel 2 and channel 3, respectively.
  • the carrier frequency of the ⁇ group includes f4, and f4 corresponds to channel 5, that is, it is guaranteed that the carrier frequencies of different groups correspond to different channels.
  • Embodiment 1 the logical channel corresponding to each frequency point (ie, carrier frequency) is set in the RLC layer of the radio network controller.
  • the PDCP layer sets a cache for storing backup data, and the serial number is added to the data by the PDCP layer;
  • Embodiment 2 differs from Embodiment 1 in that a cache for storing backup data is set by the RLC layer, and after receiving data from the PDCP layer by the RLC layer, a sequence number is added to the data;
  • Embodiment 3 The difference between Embodiment 3 and Embodiment 1 is that in the transmission link of the radio network controllers RNC and Node B, Each frequency point sets a corresponding transmission channel.
  • Specific implementations are as follows: Example 1
  • an embodiment of the present invention provides a method for transmitting data, by configuring a logical channel of an RLC layer according to each carrier frequency point of a bearer data packet provided by a Node B at the RLC layer, thereby realizing successful data transmission, effectively Reduce the transmission delay of the data SDU to ensure the efficiency of data transmission.
  • Step 101 Set a unified buffer in the RLC layer of the RNC, and configure a logical channel DTCH (Dedicated Traffic Channel) for each frequency of the carrier frequency.
  • DTCH Dedicated Traffic Channel
  • the configuration of the logical channel DTCH for each carrier frequency may be specifically configured according to the transmission requirements of the system, and it is required to ensure that each carrier frequency corresponds to at least one configured logical channel, and different carrier frequencies correspond to different logical channels;
  • a corresponding control channel DCCH Dedicated Control Channel
  • each logical channel has its own transmission window and various transmission parameters such as data response waiting time.
  • the two carrier frequencies K) and fl provided by the Node B are taken as an example, and the carrier frequency R) is configured with a logical channel X; for the carrier frequency fl, a logical channel Y is configured.
  • Step 102 The PDCP layer of the RNC sends an SDU packet to the RLC layer, and each SDU carries a sequence identifier assigned by the PDCP layer, and saves the delivered SDU packet in the PDCP cache for backup.
  • the PDCP layer sends four SDUs to the RLC layer. After numbering, they are SDU1, SDU2, SDU3, and SDU4, and are saved in the buffer of the PDCP layer.
  • Step 103 The RLC layer of the RNC receives the SDU packet sent by the PDCP layer of the RNC, and the RLC layer preset buffer records the sequence number of the received SDU, and distributes each SDU to the logical channel.
  • the RLC layer can distribute the SDU1 and the SDU3 to the distribution of the data packet.
  • Logical channel X is transmitted; SDU2 and SDU4 are distributed to logical channel Y for transmission.
  • Step 104 The logical channel of the RLC layer of the RNC is processed by the received SDU, and then sent to the corresponding MAC-hs/ehs scheduling queue of the Node B for scheduling, and sent to the terminal UE.
  • the logical channel of the RLC layer processes the received SDU, for example, segments the SDU into a PDU suitable for protocol transmission, and the like, and adds an indication identifier to the PDU to indicate the header of the SDU. The middle and the tail, so as to determine whether the received PDU can form a complete SDU by checking the corresponding indication identifier. For example, for SDU1, the RLC layer segments the SDU into PDU A , PDU B , and PDU C for transmission; where PDU A indicates that the first data unit of the SDU is indicated, and PDU B indicates that it is the middle of the SDU.
  • the data unit, PDU C indicates the tail data unit of the SDU, and PDU A , PDU B , and PDU C are passed through the logical channel X.
  • each data unit segmented by the SDU4 is sent to the MAC corresponding to the frequency point fl of the Node B through the logical channel Y. -hs/ehs.
  • Step 105 The terminal UE returns a status report notification response to the RLC layer of the RNC through the logical channel according to the received SDU.
  • the terminal UE also configures a corresponding MAC-hs/ehs receiving queue and a logical channel.
  • the terminal UE receives the PDU through a logical channel, by checking the corresponding indication identifier, it is determined whether the received PDU can form a complete SDU.
  • the terminal UE judges that a complete SDU cannot be formed as a trigger condition for the status report. For example, when the terminal UE successfully receives the SDU1 through the logical channel X, it sends an ACK acknowledgment to the RLC of the RNC, that is, the SDU1 sends a successful response; if the SDU3 is successfully received through the logical channel X, the ACK is acknowledged and received to the RLC of the RNC.
  • a NACK is sent to the RLC of the RNC to confirm that the SDU2 has not received, that is, the response to the SDU2 transmission failure.
  • Step 106 The RLC layer of the RNC receives the status report from the logical channel, and determines whether the SDU is successfully sent according to the response indication carried in the status report; if yes, execute step 107; otherwise, perform step 108.
  • Step 107 The RLC layer of the RNC sends a status notification that the SDU is correctly sent to the PDCP layer, and the PDCP layer receives the status notification of the correct transmission sent by the RLC layer, and deletes the SDU stored as a backup for the SDU in its own cache.
  • the RLC layer receives the ACK that the SDU1 sends successfully, notifies the PDCP layer, and deletes the SDU1 saved in the buffer of the PDCP.
  • Step 108 The RNC layer of the RNC sends a status notification that the SDU is not correctly sent to the PDCP layer, and the PDCP layer receives the status notification of the incorrect transmission sent by the RLC layer, and the PDCP layer resends the SDU pre-stored in the cache to the RLC layer. After receiving the SDU retransmitted by the PDCP layer, the RLC layer performs logical channel allocation on the SDU according to the allocation algorithm.
  • each carrier frequency includes only one carrier frequency.
  • the initial transmission may be assigned to the SDU.
  • the logical channel corresponding to the transmission frequency point it may also be distributed to the logical channel of other frequency points.
  • the PDCP layer resends the SDU2 pre-stored in the buffer to the RLC layer.
  • the RLC performs logical channel allocation on the SDU according to the allocation algorithm.
  • the SDU2 may be sent to the initial logical channel Y, or the SDU2 may be sent to the logical channel X.
  • the RLC's cache can define the timer time at which the packet should receive the correct acknowledgment ACK, and the threshold for the number of times the acknowledgment is sent incorrectly.
  • the original used logic may not be changed.
  • the channel is still used, and the logical channel corresponding to the initial transmission is still used.
  • the second indication is received, the logical channel is replaced for transmission; or after the preset transmission timer expires, no response is obtained.
  • the physical channel is replaced for transmission.
  • the embodiment of the present invention does not limit the specific allocation algorithm used.
  • Step 109 After receiving the complete SDU, the terminal UE sends the SDU to the unified cache, reads the sequence identifier of each SDU, and submits the sequence according to the serial number identifier of the PDCP layer.
  • the terminal UE may not receive the RNC from the RNC in the expected order due to uncertain factors in the transmission, such as channel quality.
  • the complete SDU assuming that the terminal UE receives the complete SDUs in the order of SDU1, SDU3, SDU2, and SDU4, saves them in the cache after receiving them, obtains the sequence number identifier by reading the header of the PDCP layer, and then presses the sequence number.
  • the PDCP layer is sequentially delivered in order, for example, SDU1, SDU2, SDU3, and SDU4 are sequentially submitted.
  • the UE may set itself to wait for a long time or set the unified.
  • the SDUs that have been completely received are submitted to the PDCP layer.
  • the number of buffers is sufficient and the waiting time is defined by the corresponding parameters.
  • the definition can be defined by the RNC, when the logical channel is established, or the UE defines itself.
  • the number of logical channels and frequency points in the above configuration may be one-to-many correspondence, that is, if the number of frequency points that the UE can use is four or 6, can configure 2 logical channels for 4 frequency points, and configure 2 logical channels for 6 frequency points; or can configure 4 logical channels for 4 frequency points, and configure 4 logics for 6 frequency points
  • the channel, regardless of the number of frequency points used by the UE, is only a few, as long as the number of logical channels finally configured is the same (for example, two), the implementation method and effect of the solution are not affected.
  • the carrier frequency includes N groups (where N is an integer greater than 1), wherein each carrier frequency may include only one carrier frequency, and may also include multiple carrier frequencies.
  • the group A carrier frequency includes: fl, £2, ⁇ , then fl, £2, ⁇ may correspond to logical channel 1, or fl, £2 correspond to logical channel 1, ⁇ corresponds to logical channel 2; or, fl, £2, ⁇ respectively correspond to Logical channel 1, logical channel 2 and logical channel 3.
  • the ⁇ group carrier frequency includes f4, and f4 corresponds to the logical channel 5, that is, it is to ensure that different sets of carrier frequencies correspond to different logical channels. See below for details:
  • a uniform buffer is set at the RLC layer of the RNC, and at least one logical channel is configured for each group of carrier frequencies. For example, configure logical channel 1 for group A carrier frequencies and logical channel 5 for group B carrier frequencies.
  • the SCP packet is sent to the RLC layer by the PDCP layer of the RNC.
  • Each SDU carries the sequence identifier assigned by the PDCP layer.
  • the SDU packet is saved in the PDCP cache for backup.
  • the RLC layer of the RNC receives the SDU packet sent by the PDCP layer of the RNC, and the preset buffer of the RLC layer records the sequence number identifier of the received SDU, and distributes each SDU to the logical channel.
  • the logical channel of the RLC layer of the RNC is processed by the received SDU, and then sent to the corresponding MAC-hs/ehs scheduling queue of the Node B for scheduling, and sent to the terminal UE.
  • the terminal UE returns a status report notification response to the RLC layer of the RNC through the logical channel according to the received SDU.
  • the RLC layer of the RNC receives the status report from the logical channel, and determines whether the SDU is successfully sent according to the response indication carried in the status report, and performs the following processing:
  • the RLC layer of the RNC sends a status notification that the SDU is correctly sent to the PDCP layer, and the PDCP layer receives the status notification of the correct transmission sent by the RLC layer, and deletes the SDU stored as a backup for the SDU in its own cache.
  • the RLC layer of the RNC sends a status notification that the SDU is not correctly sent to the PDCP layer, and the PDCP layer receives the status notification of the incorrect transmission sent by the RLC layer, and the PDCP layer re-sends the pre-stored in the cache to the RLC layer.
  • the SDU after receiving the SDU retransmitted by the PDCP layer, the RLC layer performs logical channel allocation on the SDU according to an allocation algorithm.
  • the logical channel allocation of the SDU is, for example, obtaining the current group in which the current carrier frequency of the data is sent is group A, and then selecting another group of carrier frequencies (ie, group B carrier frequency) The corresponding channel (ie, logical channel 5) performs retransmission of data.
  • the method provided by the embodiment of the present invention ensures that the data belonging to the same SDU is sent in the same frequency point queue by the logical channel being preset in the RLC layer, and the RLC layer of the receiving end UE side reads the sequence number identifier allocated by the PDCP layer.
  • the ordering of the received SDUs is implemented, the transmission delay of the data SDU is reduced, and the efficiency of data transmission is ensured.
  • the foregoing technical solution provided in this embodiment does not need to modify the format of the existing SDU and the PDU, thereby minimizing the impact on the existing protocol, and also reducing the logical channel with a large retransmission delay by switching the logical channel. Transfer data on.
  • an embodiment of the present invention provides a method for data transmission, which is different from the method provided in Embodiment 1 in that, when the RNC sends an SDU data packet to the RLC layer by the PDCP layer, the PDCP layer is not the same. After the SDU is assigned the sequence number identifier, the RLC layer allocates the sequence number SN to the SDU after receiving the SDU data packet, and caches it; wherein, the method content is as follows:
  • Step 201 Set a unified buffer at the RLC layer of the RNC, and configure a logical channel DTCH for each carrier frequency.
  • Step 202 The PDCP layer of the RNC sends an SDU data packet to the RLC layer.
  • Step 203 The RLC layer of the RNC receives the SDU data packet sent by the PDCP layer of the RNC, saves the delivered SDU data packet in the RLC cache, performs backup, and assigns a sequence number SN to each SDU, which is used to identify the received The order of the SDUs.
  • the RLC layer of the RNC sequentially receives 4 SDUs from the PDCP of the RNC, and accordingly, assigns sequence number identifiers thereto, such as SDU1, SDU2, SDU3, and P SDU4.
  • Step 204 The SLC of the RLC layer that adds the sequence identifier is distributed to the logical channel.
  • the RLC layer sends the received SDUs from the PDCP layer to the logical channel X according to the issued rules, such as SDU1, SDU2, SDU3, and P SDU4. Send SDU2 and SDU4 to logical channel Y.
  • the logical channel X corresponds to the carrier frequency point K) provided by the Node B
  • the logical channel Y corresponds to the carrier frequency point fl provided by the Node B.
  • Step 205 The logical channel of the RLC layer is processed by the received SDU, and then sent to the corresponding MAC-hs/ehs scheduling queue of the Node B to be scheduled and sent to the terminal UE.
  • Step 206 The terminal UE returns a status report notification response to the RLC layer of the RNC through the logical channel according to the received data packet SDU.
  • Step 207 The RLC layer of the RNC receives the status report notification response from the logical channel, and determines whether the SDU is successfully sent according to the indication carried in the status report notification response. If yes, go to step 208; otherwise, go to step 209.
  • Step 208 The RLC layer deletes the SDU that is pre-stored by the SDU as a backup.
  • Step 209 The RLC layer acquires a pre-stored SDU from its own cache, and performs logical channel distribution on the SDU according to an allocation algorithm.
  • Step 210 After receiving the complete SDU through the logical channel corresponding to the sending end RNC, the terminal UE sends the complete SDU to the unified buffer, and assumes that the terminal UE receives the SDU in the order of SDU1, SDU3, SDU2, SDU4, and After being stored in the cache, the RLC is assigned the sequence number identifier assigned by the RLC, and then sorted by the sequence number. After sorting, the serial number identifier of the RLC layer is removed, and then the PDCP layer is delivered in order.
  • the UE may set itself to wait for a long time or unified buffer.
  • the SDUs that have been completely received are submitted to the PDCP layer.
  • the number of caches is sufficient and the wait time is defined using the corresponding parameters.
  • the definition can be defined by the RNC when the logical channel is established. Or the UE defines itself.
  • the number of logical channels and frequency points in the above configuration may be one-to-many correspondence, that is, if the number of frequency points that the UE can use is four or 6, can configure 2 logical channels for 4 frequency points, and configure 2 logical channels for 6 frequency points; or can configure 4 logical channels for 4 frequency points, and configure 4 logics for 6 frequency points
  • the channel regardless of the number of frequency points used by the UE, is only a few, as long as the number of logical channels finally configured is the same (for example, two), the implementation method and effect of the solution are not affected.
  • Embodiment 1 please refer to the description of Embodiment 1, and this embodiment will not be described again.
  • the method provided by the embodiment of the present invention ensures that the data belonging to the same SDU is sent in the same frequency point queue by the logical channel being preset in the RLC layer, and the RLC layer of the receiving end UE extracts the sequence number of the received SDU.
  • the SDUs are sorted, they are submitted to the PDCP layer to reduce the transmission delay of the data SDU, ensure the efficiency of data transmission, avoid unnecessary RLC layer retransmission, and do not need to modify the existing SDU and PDU format.
  • the impact on the existing protocol is reduced, and the PDU transmitted on the logical channel with a large retransmission delay can be reduced by switching the logical channel.
  • an embodiment of the present invention provides a method for transmitting data, which is different from the foregoing Embodiment 1 and Embodiment 2.
  • an independent assignment is performed for each carrier frequency on the Iub interface of the RNC and the NodeB.
  • the transmission channel is implemented, so that the initial transmission for one SDU is guaranteed to be transmitted in a MAC-hs/ehs queue corresponding to a carrier frequency, wherein the method is as follows:
  • Step 301 Divide a transmission link between the RNC and the Node B according to a preset rule.
  • a transmission link exists between the RNC and the Node B, and the transmission link of the RNC and the Node B is divided to ensure that one carrier frequency corresponding to the Node B corresponds to at least one transmission channel.
  • Step 302 The PDCP layer of the RNC sends an SDU packet to the RLC layer, and saves the delivered SDU in the preset buffer of the PDCP to perform backup.
  • Each SDU carries the sequence identifier assigned by the PDCP layer.
  • the RLC layer receives four SDUs from the PDCP layer, namely SDU1, SDU2, SDU3, and SDU4.
  • Step 303 The RLC processes the received data packet SDU to obtain the segmented SDU, and ensures that multiple segments belonging to the same SDU enter the same MAC-hs/ehs queue of the Node B by selecting the transport channel. .
  • the RLC performs segmentation processing on the received SDU1 to obtain segmented SDU1 X and SDU1 Y , and performs segmentation processing on the received SDU 2 to obtain SDU2 X and SDU2 Y.
  • Transport channels A and B, and transport channel A corresponds to carrier frequency fi)
  • transport channel B corresponds to carrier frequency fl
  • RLC sends SDU1 X and SDU1 Y through transport channel A to Node B
  • SDU2 X and SDU2 Y are transmitted to the Node B through the transport channel B, thereby ensuring that multiple segments belonging to the same SDU enter the same carrier frequency MAC-hs/ehs queue of the Node B.
  • Step 304 The MAC-hs/ehs scheduling queue of the Node B schedules and sends the received data to the terminal UE. At this time, the terminal UE returns a status report notification response to the RLC layer of the RNC according to the received SDU.
  • Step 305 The RLC layer of the RNC receives the status report response, and determines whether the SDU is successfully sent according to the indication carried in the notification response. If yes, go to step 306; otherwise, go to step 307.
  • Step 306 The RLC layer sends a notification that the SDU is correctly sent to the PDCP layer, and the PDCP layer receives the notification of the correct transmission sent by the RLC layer, and deletes the SDU that is pre-stored as the backup by the SDU.
  • Step 307 The RLC layer sends a notification that the SDU is not correctly sent to the PDCP layer, and the PDCP layer receives the notification that the RLC layer does not send the packet correctly.
  • the PDCP layer re-sends the pre-stored SDU to the RLC layer, and the RLC receives the PDCP layer. After resending the SDU, the SDU is reselected according to the allocation algorithm.
  • the terminal UE sends a notification that a certain PDU is missing, if the RLC layer saves the PDU at this time, only the PDU may be retransmitted.
  • Step 308 After receiving the complete SDU, the terminal UE directly sends the PDCP layer to the PDCP layer for buffering, and then the PDCP layer performs sorting according to the sequence number identifier, and then performs corresponding processing, such as decompression.
  • the method for performing data transmission by allocating an independent transport channel corresponding to the carrier frequency on the Iub interface of the RNC and the NodeB may also be implemented in the following manner: RLC layer receiving of the radio network controller RNC After the data from the PDCP layer is sent, the data to be sent is backed up and saved in the preset cache of the RLC layer, and the serial number is added to the data by the PLC layer; and then the preset interface corresponding to each carrier frequency provided by the base station is adopted.
  • the transmission channel sends data to the MAC-hs/ehs scheduling queue of the base station, where the MAC-hs/ehs scheduling queue of the base station sends the acquired data to the terminal UE, and the RLC layer of the RNC acquires the data transmission status in time; then RLC The layer deletes the correctly transmitted data saved in the backup in the RLC preset cache according to the sending status of the data.
  • the transport channel is selected according to the transport channel allocation principle, and the RLC is sent.
  • the layer saves the incorrectly sent data saved in the default cache.
  • the terminal UE can also read the sequence number identifier assigned by the RLC layer, and then sort the sequence number according to the sequence number. After sorting, the sequence number identifier of the RLC layer is removed, and then the PDCP layer is delivered in sequence.
  • the number of transmission channels and frequency points in the above configuration may be one-to-many correspondence, that is, if the number of frequency points that the UE can use is four or 6, can configure 2 transmission channels for 4 frequency points, and configure 2 transmission channels for 6 frequency points; or can configure 4 transmission channels for 4 frequency points, and configure 4 transmissions for 6 frequency points As long as the number of transmission channels configured in the channel is the same (both are 2), the implementation method and effect of the solution are not affected.
  • Embodiment 1 please refer to the description of Embodiment 1. The difference is that the embodiment is a transmission implemented by a transmission channel, which is not described in this embodiment.
  • the method provided by the embodiment of the present invention ensures that the data belonging to the same SDU is sent in the same frequency point queue by using the preset transmission channel, and the RLC of the receiving end UE receives the complete SDU submission, and the PDCP is based on the SDU.
  • the sequence numbers carried are sorted to reduce the transmission delay of the data SDU, ensure the efficiency of data transmission, avoid unnecessary RLC layer retransmission, and do not need to modify the existing SDU and PDU format, thereby minimizing the current presence. With the influence of the protocol, it is also possible to reduce the data transmitted on the transmission channel with a large retransmission delay by switching the transmission channel.
  • Example 4 Referring to FIG. 5, an embodiment of the present invention provides a system for transmitting data, where the system includes: a radio network controller RNC, a base station, and a terminal, where
  • the RNC saves the data to be sent in the preset cache as backup data.
  • the preset cache is located in the PDCP layer of the RNC packet data convergence protocol, or is located at the radio link control RLC layer of the RNC; and the RNC provides the preset a channel corresponding to the carrier frequency, where each carrier frequency corresponds to at least one channel, and different carrier frequencies correspond to different channels, and the channel may be specifically a logical channel located at the RLC layer, and the carrier frequency corresponds to at least one logical channel, and Different carrier frequencies correspond to different logical channels; or the channel is specifically an interface transmission channel between the RNC and the base station, the carrier frequency corresponds to at least one transmission channel, and different carrier frequencies correspond to different transmission channels.
  • the RNC sends the data to be transmitted to the carrier frequency of the base station; the RNC also needs to obtain a status report of the transmitted data in time, such as sending a successful ACK response, or sending an unsuccessful NACK response.
  • a status report of the transmitted data in time, such as sending a successful ACK response, or sending an unsuccessful NACK response.
  • the sent report of the obtained data when the data is successfully sent, the correctly sent data saved in the preset cache is deleted, and the cache resource is released; when the data is not successfully sent, the RNC obtains the unsuccessful backup saved in the preset cache.
  • the backup data is selected according to the allocation principle, and the allocation principle may be that when the received data is not sent correctly, the number of indications exceeds a preset threshold, another channel is selected for data retransmission, or within a preset time. If the response indication of the data transmission is not received, another channel is selected for data retransmission.
  • the RCP's PDCP layer or RLC layer also adds a sequence number to the data
  • the base station receives the data transmitted from the RNC and transmits the data to the terminal through the carrier frequency.
  • the terminal receives data transmitted from the base station and processes the data.
  • the terminal specifically includes: a receiving module, a sorting module, and a processing module, where
  • the receiving module receives the data packet carrying the serial number, and the sorting module sorts according to the serial number carried by the data packet.
  • the sorting module may be located at the RLC layer of the terminal device or the PDCP layer of the terminal device, and the processing module processes the data packet sorted by the sorting module.
  • the system provided by the embodiment of the present invention ensures that data belonging to the same SDU must be sent in the same frequency queue by using a preset logical channel or a transmission channel to ensure data transmission efficiency and avoid unnecessary RLC layer retransmission.
  • the existing SDU and the PDU format need not be modified, the impact on the existing protocol is minimized, and the data transmitted on the channel with a large retransmission delay can be reduced by switching channels.
  • an embodiment of the present invention provides a system for transmitting data, where the system includes: a radio network controller RNC, a base station, where
  • the RNC saves the data to be sent in the preset cache as backup data.
  • the preset cache is located in the PDCP layer of the RNC packet data aggregation protocol, or is located at the radio link control RLC layer of the RNC; the RNC is provided by the preset base station.
  • the channel corresponding to each group of carrier frequencies.
  • the carrier frequency of each group corresponds to at least one channel, and each group of carrier frequencies corresponds to different channels, and the number of carrier frequencies in each group of carrier frequencies is at least one, wherein the channel may be specifically a logic located at the RLC layer.
  • each group of carrier frequencies corresponds to at least one logical channel, and each group of carrier frequencies corresponds to different logical channels; or, the channel is specifically an interface transmission channel between the RNC and the base station, and correspondingly, each group The carrier frequency corresponds to at least one transmission channel, and each group of carrier frequencies corresponds to a different transmission channel.
  • the base station receives the data transmitted from the RNC, and transmits the data to the terminal through the carrier frequency, so that the terminal receives the data transmitted from the base station and processes the data.
  • the RNC in the system provided by the embodiment of the present invention sends the data to be sent to the carrier frequency of the base station
  • the RNC also acquires the status report of the sent data in time, such as sending a successful ACK response, or sending Unsuccessful NACK response.
  • the sent report of the obtained data when the data is successfully sent, the correctly sent data saved in the preset cache is deleted, and the cache resource is released; when the data is not successfully sent, the RNC obtains the unsuccessful backup saved in the preset cache. The data is backed up, and the channel is selected for transmission according to the allocation principle.
  • the allocation principle may be that when the received data is not sent correctly, the number of indications exceeds a preset threshold, and another channel corresponding to the carrier frequency is selected for data retransmission, or If the response indication of the data transmission is not received within the preset time, the channel corresponding to the other carrier frequency is selected for data retransmission.
  • the RCP's PDCP layer or RLC layer also adds a sequence number to the data.
  • the system provided by the embodiment of the present invention ensures that data belonging to the same SDU must be sent in the same frequency queue by using a preset logical channel or a transmission channel to ensure data transmission efficiency and avoid unnecessary RLC layer retransmission.
  • the existing SDU and the PDU format need not be modified, the impact on the existing protocol is minimized, and the data transmitted on the channel with a large retransmission delay can be reduced by switching channels.
  • an embodiment of the present invention provides a radio network controller RNC, where
  • the RNC saves the data to be sent in the preset cache as backup data through the save module.
  • the preset cache is located at the PDCP layer of the RNC or at the RLC layer of the RNC.
  • the RNC passes the preset channel corresponding to the carrier frequency provided by the base station.
  • Each carrier frequency corresponds to at least one channel, and different carrier frequencies correspond to different channels, and the channel may be specifically a logical channel located at the RLC layer, the carrier frequency corresponds to at least one logical channel, and different carrier frequencies correspond to In different logical channels; or the channel is specifically an interface transmission channel between the RNC and the base station, the carrier frequency corresponds to at least one transmission channel, and different carrier frequencies correspond to different transmission channels.
  • the RNC sends the data to be sent to the carrier frequency of the base station through the sending module; the RNC also acquires the status report of the sent data in time through the acquiring module, such as sending a successful ACK response, or sending an unsuccessful NACK response.
  • the first processing module in the RNC deletes the correctly sent data saved in the preset cache and releases the cached resource; when the data is not successfully sent,
  • the processing module in the RNC obtains the unsuccessful backup data saved in the backup cache in the preset cache, and selects the channel to send according to the allocation principle, wherein the allocation principle may be that the received data is not sent correctly and the number of indications exceeds the preset.
  • Threshold select another channel for data retransmission; or if no response indication of data transmission is received within a preset time, another channel is selected for data retransmission. And before the data is sent, the PDCP layer or the RLC layer of the RNC adds a sequence number to the data.
  • the RNC provided by the embodiment of the present invention ensures that data belonging to the same SDU must be sent in the same frequency queue by using a preset logical channel or a transmission channel, thereby ensuring data transmission efficiency and avoiding unnecessary RLC layer retransmission. , minimizing the impact on existing agreements.
  • an embodiment of the present invention provides a radio network controller RNC, where the RNC includes:
  • a saving module configured to save the data to be sent in the preset cache as backup data in a preset cache; the data to be sent carries a serial number;
  • the sending module is configured to send, by using a preset channel corresponding to the carrier frequency provided by the base station, the data to be sent after adding the sequence number of the module to the carrier frequency of the base station; each group of carrier frequencies corresponds to at least one channel, and each group carries The frequency corresponds to different channels, and the number of carrier frequencies in each group of carrier frequencies is at least one.
  • the RNC also includes:
  • An obtaining module configured to acquire a sending status of the data
  • a first processing module configured to delete, according to the sending status of the data acquired by the acquiring module, the correctly sent data that is saved and saved in the preset cache;
  • the second processing module is configured to select, according to the allocation principle, the channel to send the incorrectly transmitted data saved in the preset cache according to the sending status of the data acquired by the acquiring module.
  • the save module includes:
  • a first saving unit configured to save, in a preset cache of the PDCP layer of the RNC, the data to be sent as backup data in a preset cache;
  • the second saving unit is configured to save the data to be sent as backup data in a preset cache in a preset cache located in the RLC layer of the RNC.
  • the sending module includes:
  • a first sending unit configured to send, by using a logical channel located in the RLC layer, data to be sent to a carrier frequency of the base station; each group of carrier frequencies corresponds to at least one logical channel, and each group of carrier frequencies corresponds to a different logical channel; or a second sending unit, configured to send, by using an interface transmission channel between the RNC and the base station, data to be sent to a carrier frequency of the base station; each group of carrier frequencies corresponds to at least one transmission channel, and each group of carrier frequencies corresponds to different transmissions channel.
  • the adding module of the radio network controller specifically includes:
  • a first adding unit configured to add a sequence number to the data through the PDCP layer of the RNC;
  • the second adding unit is configured to add a sequence number to the data through the RLC layer of the RNC.
  • the RNC provided by the embodiment of the present invention ensures that data belonging to the same SDU must be sent in the same frequency queue by using a preset logical channel or a transmission channel, thereby ensuring data transmission efficiency and avoiding unnecessary RLC layer retransmission. , minimizing the impact on existing agreements.
  • Example 8
  • an embodiment of the present invention provides a terminal device, where the terminal device includes: a receiving module, a sorting module, and a processing module. among them,
  • a receiving module configured to receive a data packet, and the data packet carries a sequence number
  • a sorting module configured to sort according to a serial number carried by the data packet
  • Processing module configured to process the sorted data packet of the sorting module.
  • the specific processing actions of the processing module include, but are not limited to, operations such as decompression.
  • the sorting module is located at the RLC layer of the terminal device or at the PDCP layer of the terminal device. That is, see Figure 11, the sorting module includes:
  • the first sorting unit is configured to be sorted according to the sequence number carried by the data located at the RLC layer of the terminal device; or, the second sorting unit is configured to be sorted according to the serial number carried by the PDCP layer of the terminal device according to the data.
  • the location of the received multiple data packets may be the RLC layer, and the manner of performing the first sorting and submitting to the PDCP layer may also be implemented in the PDCP layer, and directly received by the RLC. Submit.
  • Example 9
  • an embodiment of the present invention provides a method for receiving data, including:
  • the terminal receives multiple data through the preset channel of the RLC layer of the terminal, and sorts the data according to the sequence number carried by the data and submits the data to the PDCP layer of the terminal; or
  • the terminal receives multiple data through the preset channel of the RLC layer of the terminal, and submits the data to the PDCP layer of the terminal, and the PDCP layer sorts according to the sequence number carried by the data.
  • the location of the received multiple data packets may be the RLC layer, and the method of performing the first sorting and submitting to the PDCP layer may also be implemented in the PDCP layer, and directly received by the RLC. submit.
  • the technical solution provided by the embodiment of the present invention ensures that data belonging to the same SDU must be sent in the same frequency queue by using a preset logical channel or a transmission channel, thereby ensuring data transmission efficiency and avoiding unnecessary RLC.
  • Layer retransmission which minimizes the impact on existing protocols, and minimizes the amount of data on the branch with a large retransmission delay of the RLC layer.
  • the data is on two carriers.
  • the delays introduced by the transmission are very different, for example, the signal on a certain carrier frequency suddenly deteriorates, and the data cannot be sent out. This part of the data can be transmitted for one frequency point to avoid the data waiting very long at the RLC layer on the UE side. Time cannot be submitted.

Description

说 明 书
一种发送数据的方法、 系统和设备
本申请要求于 2008年 3月 25 日提交中国专利局、 申请号为 200810102729.4、 发明名 称为 "一种发送数据的方法、 系统和设备" 的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。 技术领域
本发明涉及通信领域, 特别涉及一种发送数据的方法、 系统和设备。 背景技术
UMTS(Universal Mobile Telecommunications System , 通用移动通信系统)是采用 WCDMA(Wideband Code Division Multiple Access, 宽带码分多址接入)空中接口技术的第三 代通信系统, 通常也会将 UMTS系统称为 WCDMA通信系统, 其中, UMTS系统采用与第 二代通信移动系统类似的结构架构, 包括 RAN (Radio Access Network, 无线接入网络) 和 CN (Core Network, 核心网络)。 参见图 1, 提供了一种 UMTS的系统结构示意图, 具体包 括: UE(User Equipment,终端)、 RAN、 CN以及外部网络,如 PSTN(Public Switched Telephone Network, 公共交换电话网络), Internet; 其中, UE用于向用户提供各种业务功能, 如普通 话音、数据通信、多媒体视频、 Internet应用等等,无线接入网包括 Node B (基站)和 RNC(Radio Network Controller, 无线网络控制器), Node B通过标准的 Iub接口和 RNC互连, 其主要功 能是对数据信号进行扩频、调制、信道编码等处理; RNC用于对其控制的 Node B的无线数 据资源进行管理等。
本领域技术人员可以获知, 多载波通信系统中需要将来自同一个业务源的数据分发到 不同的载频的 MAC-hs/ehs (Medium Access Control high speed/enhace high speed, 媒体接入 控制高速共享 /增强高速共享) 队列上, 并在接收端进行重组和按序递交。 其中, RNC在向 MAC-hs/ehs队列进行数据下发时, 分组数据传输需要经过 PDCP (Packet Data Convergence Protocol, 分组数据汇聚协议) 层和 RLC (Radio Link Control, 无线链路控制) 层。 其中, PDCP层用于对业务数据进行处理, 提供头压缩算法, 压缩来自网络层的分数数据的冗余头 部, 提高无线信道的利用率; RLC层, 用于接收来自 PDCP层处理后的数据, 将数据进行 分段等处理, 为用户提供数据的分段和重传业务; 其中, 分段是指将不同长度的 PDCP层 发送的分组数据进行分组重组为较小的适用于本 RLC层传输的负荷单元,当 RLC层支持级 联模式的分段时, PDCP下发分组数据, 对于 RLC层而言, 该分组称为 RLC SDU ( Service Data Unit, 服务数据单元),对该 RLC SDU进行分段, 分成若干 PDU (Protocl Data Unit, 协 议数据单元;)。 当 RLC层形成 PDU后, 将 PDU发送至位于 MAC(Medium Access Control, 媒体接入控制)层的 Node B, 通过 Node B提供的载频, 将数据发送至 UE侧。 接收端 UE 通过 RLC层接收到来自 Node B调度发送的数据包, 按照数据包头部携带序号进行排序, 提交至 PDCP层, 进而通过后续处理如解压缩等, 实现了对数据的成功获取。 其中, 发送 端的 RLC层还需要及时向 PDCP层通告数据是否发送成功。
为了满足日益增长的无线业务需要, Node B支持多载波通信, 所谓多载波通信是指可 以同时在两个或更多个载频上传输数据, 对一个终端来说它的上行链路和下行链路可以同 时使用相同或不同个数的载频进行通信, 当下行链路同时使用两个载频时, 如果这两个载 频由 Node B的同一个处理板提供,则在 Node B侧只存在一个 MAC-hs/ehs队列和一个调度 器;如果两个载频在 Node B不同的处理板上, Node B侧会存在两个完全独立的 MAC-hs/ehs 队列和调度器。此时需要将来自同一个业务源的数据分发到不同的 MAC-hs/ehs队列上进行 数传, 并在终端进行重组。 由于终端的不同, 以及需要处理的业务类型不同会导致两个 MAC-hs/ehs队列引入的时延可能存在很大差别。
现有技术中, 当 RNC向 Node B进行数据的发送时, RNC将来自 PDCP层的 SDU分段 后形成的 PDU, 通过 RLC层的逻辑信道进行传送, Node B收到来自 RLC层的数据包 PDU 后, 将其承载在自身提供的载频中进行调度发送到 UE侧, 当 Node B的 MAC-hs/ehs队列 收到 PDU丢失的报告,则需要对该 PDU进行重传,造成对于一个完整的 SDU获取的时延, 例如对于 SDUA、 SDUB和 SDUC, 如果在对数据调度发送的时候, 由于 SDUB的某个分段 PDUX的丢失 (可能来自某个载频质量劣化等原因), 会造成获取到完整的 SDUB的时延, 造成 UE侧获取到的数据在其 RLC层等待很长时间, 降低了数据传输的效率。 发明内容
为了尽可能减小数据 SDU的传输时延, 保证数据传输的效率, 本发明实施例提供了一 种发送数据的方法、 系统和设备。 具体方案如下:
一方面, 提供了一种发送数据的方法, 所述方法包括:
无线网络控制器 RNC将待发送的数据在预设缓存中进行备份保存, 其中, 所述待发送 的数据携带序号;
通过预设的与各组载频对应的信道发送所述待发送的数据, 每组载频至少对应一个信 道, 且各组的载频对应于不同的信道, 所述每组载频中载频的个数至少是一个。
另一方面, 提供了一种发送数据的系统, 所述系统包括: 无线网络控制器 RNC, 基站, 其中,
所述无线网络控制器 RNC, 用于将待发送的数据在预设缓存中进行备份保存, 其中所 述待发送的数据数据携带序号; 通过预设的与各载频对应的信道发送所述待发送的数据, 其中每组载频至少对应一个信道, 且各组载频对应于不同的信道, 所述每组载频中载频的 个数至少是一个;
所述基站, 用于接收来自所述 RNC发送的数据, 并将所述数据通过载频承载发送到所 述终端, 以使得所述终端接收来自所述基站发送的数据后, 对所述数据进行处理。
再一方面, 提供了一种无线网络控制器 RNC, 所述 RNC包括:
保存模块, 用于在预设的缓存中将待发送的数据在预设缓存中保存为备份数据; 添加模块, 用于为所述保存模块的待发送的数据添加序号;
发送模块, 用于通过预设的与基站提供的载频对应的信道, 将所述添加模块添加序号 后的待发送的数据发送到所述基站的载频; 每组载频至少对应一个信道, 且各组载频对应 于不同的信道, 所述每组载频中载频的个数至少是一个。
再一方面, 还提供了一种终端设备, 所述终端设备包括:
接收模块, 用于接收数据, 所述数据携带序号;
排序模块, 用于根据所述接收模块接收的数据携带的序号进行排序;
处理模块, 用于处理所述排序模块排序后的数据。
再一方面, 还提供了一种接收数据的方法, 所述方法包括:
终端通过本终端的 RLC层的预设信道接收到多个数据, 根据数据携带的序号排序后提 交到本终端的 PDCP层; 或,
终端将通过本终端的 RLC层的预设信道接收到多个数据, 提交到本终端的 PDCP层, 由所述 PDCP层根据所述数据携带的序号进行排序。
本发明实施例通过对不同的频点 (即载频) 在 RNC的 RLC配置不同的逻辑信道, 或 者在 RNC和 Node B之间的接口传输链路配置于频点对应的传输信道, 从而将数据 SDU利 用配置的信道进行传输, 对于在接收端出现不能完整的接收到一个 SDU时的情况, 可以重 新选择信道重传该 SDU, 从而减少了数据 SDU的传输时延, 保证数据传输的效率。 附图说明
图 1是现有技术提供的 UMTS的系统结构示意图;
图 2是本发明实施例 1提供的发送数据的方法流程图;
图 3是本发明实施例 2提供的发送数据的方法流程图; 图 4是本发明实施例 3提供的发送数据的方法流程图;
图 5是本发明实施例 4提供的发送数据的系统示意图;
图 6是本发明实施例 5提供的发送数据的系统示意图;
图 7是本发明实施例 6提供无线网络控制器示意图;
图 8是本发明实施例 7提供无线网络控制器示意图;
图 9是本发明实施例 7提供无线网络控制器详细示意图;
图 10是本发明实施例 8提供的终端设备示意图;
图 11是本发明实施例 8提供的终端设备详细示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
为了尽可能减小数据 SDU的传输时延, 保证数据传输的效率, 本发明实施例提供了一 种发送数据的方法, 该方法包括:
RNC (Radio Network Controller, 无线网络控制器)将待发送的数据在预设缓存中进行 备份保存, 其中, 数据携带序号;
通过预设的与各组载频对应的信道发送待发送的数据, 每组载频至少对应一个信道, 且各组载频对应于不同的信道, 所述每组载频中载频的个数至少是一个。
进一步地, 在通过预设的与各组载频对应的信道发送待发送的数据之后, 所述方法还 包括: 获取数据的发送状态; 根据数据的发送状态, 删除在预设缓存中备份保存的正确发 送的数据; 根据信道分配原则选择信道, 发送预设缓存中备份保存的未正确发送的数据。
其中, 上述每组载频中可以只包括一个载频, 也可以包括多个载频, 例如, A组载频 中包括: fl、 G、 β, 则 fl、 £2、 β可以对应于信道 1 ; 也可以为 fl、 £2对应于信道 1、 β 对应于信道 2; 或, fl、 £2、 β分别对应于信道 1、 信道 2和信道 3。 Β组载频包括 f4, f4 对应于信道 5 , 即要保证不同组的载频对应于不同的信道。
针对本发明实施例提供的发送数据的方法, 下面以多个实施例进行说明, 其中, 实施 例 1在无线网络控制器的 RLC层设置与各频点 (即载频) 对应的逻辑信道, 由 PDCP层设 置保存备份数据的缓存, 并且由 PDCP层为数据添加序号;
实施例 2与实施例 1的区别在于是由 RLC层设置保存备份数据的缓存,并且由 RLC层 接收到来自 PDCP层的数据后, 为数据添加序号;
实施例 3与实施例 1的区别在于, 在无线网络控制器 RNC和 Node B的传输链路中对 各频点设置对应的传输信道。 具体实施例如下: 实施例 1
参见图 2, 本发明实施例提供了一种发送数据的方法, 通过在 RLC层根据 Node B提供 的承载数据包的各载频频点配置 RLC层的逻辑信道, 从而实现数据的成功传输, 有效地减 小数据 SDU的传输时延, 保证数据传输的效率。 具体内容如下:
步骤 101,在 RNC的 RLC层设置统一的缓存,并为每个载频的频点配置逻辑信道 DTCH (Dedicated Traffic Channel, 专用业务逻辑信道)。
其中, 在为每个载频配置逻辑信道 DTCH时, 具体可以根据系统的传输需要进行配置, 需要保证每个载频至少对应一个配置的逻辑信道, 不同的载频对应于不同的逻辑信道; 还 可以为配置的逻辑信道相应的配置出对应的控制信道 DCCH (Dedicated Control Channel, 专用控制信道), 用于对逻辑信道进行控制。 其中, 每个逻辑信道拥有自己的发送窗口以及 各种传输参数如数据应答等待时间等。 例如, 本实施例以 Node B提供的 2个载频 K)和 fl 为例进行说明, 对载频 R)为其配置逻辑信道 X; 对于载频 fl为其配置逻辑信道 Y。
步骤 102, RNC的 PDCP层向 RLC层下发 SDU包, 各 SDU携带有由 PDCP层分配的 序号标识; 并且在 PDCP的缓存中保存下发的 SDU包, 进行备份。
例如, PDCP层向 RLC层下发了 4个 SDU, 进行编号后, 分别为 SDU1、 SDU2、 SDU3 和 SDU4, 并在 PDCP层的缓存中, 进行保存备份。
步骤 103, RNC的 RLC层接收来自 RNC的 PDCP层发送的 SDU包, RLC层预设的缓 存记录下接收到的 SDU的序号标识, 并将各 SDU分发到逻辑信道中。
例如, 如果存在两个载频频点 K)和 fl, 相应地建立了对应的两条逻辑信道, 分别为 X 和 Y, 此时 RLC层在进行数据包的分发时, 可以将 SDU1、 SDU3分发到逻辑信道 X进行 传输; 将 SDU2、 SDU4分发到逻辑信道 Y进行传输。
步骤 104, RNC的 RLC层的逻辑信道对接收到的 SDU处理后,发送到各自对应的 Node B的 MAC-hs/ehs调度队列中进行调度, 发送到终端 UE。
其中, RLC层的逻辑信道对接收到的 SDU进行处理, 例如, 将 SDU分段成适合协议 传输的 PDU等等,并且在分段时候可以通过给 PDU添加指示标识,指示出该 SDU的首部、 中部和尾部, 从而实现通过查看相应的指示标识, 判断出接收到的 PDU是否可以组成完整 的 SDU。 例如, 针对 SDU1, RLC层将该 SDU分段成 PDUA、 PDUB、 PDUC, 进行发送; 其中, PDUA指示出了为该 SDU的首部数据单元、 PDUB指示出了为该 SDU的中部数据单 元、 PDUC指示出了为该 SDU的尾部数据单元, 将 PDUA、 PDUB、 PDUC通过逻辑信道 X 发送至 Node B的频点 K)对应的 MAC-hs/ehs; 同理, 针对 SDU2, 将对该 SDU4分段后的 各数据单元, 通过逻辑信道 Y发送至 Node B的频点 fl对应的 MAC-hs/ehs。
步骤 105,终端 UE根据接收到的 SDU,通过逻辑信道向 RNC的 RLC层返回状态报告 通知响应。
相应地, 终端 UE也会配置对应的 MAC-hs/ehs接收队列和逻辑信道, 当终端 UE通过 一个逻辑信道接收 PDU, 通过查看相应的指示标识, 判断出接收到的 PDU是否可以组成一 个完整的 SDU。本实施例以终端 UE判断无法组成一个完整的 SDU做为状态报告的触发条 件。 例如, 当终端 UE通过逻辑信道 X成功收到 SDU1, 则向 RNC 的 RLC发送 ACK确认 接收, 即该 SDU1发送成功的响应; 通过逻辑信道 X成功收到 SDU3 , 则向 RNC 的 RLC 发送 ACK确认接收; 当通过逻辑信道 Y未成功收到完整的 SDU2, 则向 RNC 的 RLC发送 NACK确认未接收, 即 SDU2发送失败的响应。
步骤 106, RNC的 RLC层接收来自逻辑信道的状态报告, 根据该状态报告中携带的响 应指示, 判断 SDU是否成功发送; 如果是, 执行歩骤 107; 否则, 执行步骤 108。
步骤 107, RNC的 RLC层向 PDCP层发送 SDU正确发送的状态通知, PDCP层收到 RLC层发送的正确发送的状态通知, 删除在自身缓存中为该 SDU预存的做为备份的 SDU。
例如, RLC层接收到了 SDU1发送成功的 ACK, 通知 PDCP层, 删除 PDCP 的缓存中 保存的该 SDU1。
步骤 108, RNC的 RLC层向 PDCP层发送 SDU未正确发送的状态通知, PDCP层收到 RLC层发送的未正确发送的状态通知, PDCP层重新向 RLC层下发在缓存中预存的该 SDU; RLC层收到由 PDCP层重新发送的 SDU后, 根据分配算法, 对该 SDU进行逻辑信道的分 配。
本实施例是以每组载频只包括一个载频为例进行的说明, 即在本步骤中, 根据分配算 法对该重传的 SDU向逻辑信道进行下发时, 可能分配到初传该 SDU的发送频点对应的逻 辑信道中, 也可能分发到其他的频点的逻辑信道。 例如, 接收到了 SDU2 发送未成功的 NACK, PDCP层重新向 RLC层下发在缓存中预存的 SDU2; RLC收到由 PDCP层重新发 送的 SDU2后, 根据分配算法, 对该 SDU进行逻辑信道的分配, 可能会将该 SDU2 下发到 初始的逻辑信道 Y中, 也可能将该 SDU2下发到逻辑信道 X中。
下面对本步骤中涉及到的分配算法进行举例说明:
例如, 当 RLC的缓存可以定义数据包应该收到正确发送应答 ACK的定时器时间, 以 及收到不正确发送应答次数的门限值。当第一次 RLC收到某个 SDU未正确发送指示时,在 向 PDCP层获取到备份的 SDU后, 进行重新向逻辑信道下发时, 可以不改变最初使用的逻 辑信道, 依旧使用初传时对应的逻辑信道, 当第二次收到没有正确发送的指示时, 就更换 逻辑信道进行发送; 或者在预设的发送定时器到期后, 仍然没有得到任何应答, 就更换逻 辑信道来进行发送, 本发明实施例不限制所采用的具体分配算法。
步骤 109, 当终端 UE收到完整的 SDU后, 将 SDU送到统一的缓存中, 读取各 SDU 的序号标识, 根据 PDCP层的序号标识进行按序提交。
例如,当终端 UE通过逻辑信道收到各个 PDU后,通过指示标识判断出收到完整的 SDU 后, 由于传输中的不定因素如信道质量等, 造成终端 UE可能无法按期望的次序收到来自 RNC的完整的 SDU,假定终端 UE收到各完整的 SDU的先后顺序为 SDU1、 SDU3、 SDU2、 SDU4, 接收后将其保存在缓存中, 通过读取 PDCP层的头部获得序号标识, 然后按序号顺 序向 PDCP层进行按序递交, 如, 依次提交 SDU1、 SDU2、 SDU3禾口 SDU4。
进一步地, 终端 UE为了克服当出现某个 SDU在很长时间都没有收到或者组成完整的 SDU的情况时而导致无法及时上报数据的情况, UE可以设定自身等待足够长时间之后或者 设定统一缓存中保存的 SDU个数足够多的时候向 PDCP层将已经完整接收的 SDU进行提 交。 缓存个数足够多以及等待时间使用相应的参数定义, 定义可以是 RNC定义的, 在逻辑 信道建立的时候, 或者 UE自己定义。
本领域技术人员可以获知, 本实施例仅作示例说明, 上述配置的逻辑信道和频点的个 数是可以一对多的对应关系, 即: 如果 UE可以使用的频点个数为 4个或者 6个, 可以针对 4个频点配置 2个逻辑信道, 且针对 6个频点配置 2个逻辑信道; 或可以针对 4个频点配置 4个逻辑信道, 且针对 6个频点配置 4个逻辑信道, 不论 UE使用的频点个数具体为几个, 只要最终配置的逻辑信道个数一致 (如均为 2个) 即可, 不影响本方案的实施方法和效果。
例如, 包括 N组 (其中 N为大于 1的整数) 载频, 其中, 每组载频中可以只包括一个 载频, 也可以包括多个载频, 例如, A组载频中包括: fl、 £2、 β, 则 fl、 £2、 β可以对应 于逻辑信道 1, 也可以为 fl、 £2对应于逻辑信道 1、 β对应于逻辑信道 2; 或, fl、 £2、 β 分别对应于逻辑信道 1、逻辑信道 2和逻辑信道 3。 Β组载频包括 f4, f4对应于逻辑信道 5 , 即要保证不同组的载频对应于不同的逻辑信道。 详见如下:
在 RNC的 RLC层设置统一的缓存, 并为每组载频配置至少一个逻辑信道。例如, 为 A 组载频配置逻辑信道 1 ; 为 B组载频配置逻辑信道 5 。
RNC的 PDCP层向 RLC层下发 SDU包, 各 SDU携带有由 PDCP层分配的序号标识; 并且在 PDCP的缓存中保存下发的 SDU包, 进行备份。
RNC的 RLC层接收来自 RNC的 PDCP层发送的 SDU包, RLC层预设的缓存记录下 接收到的 SDU的序号标识, 并将各 SDU分发到逻辑信道中。 RNC 的 RLC层的逻辑信道对接收到的 SDU处理后, 发送到各自对应的 Node B 的 MAC-hs/ehs调度队列中进行调度, 发送到终端 UE。
终端 UE根据接收到的 SDU, 通过逻辑信道向 RNC的 RLC层返回状态报告通知响应。
RNC的 RLC层接收来自逻辑信道的状态报告, 根据该状态报告中携带的响应指示, 判 断 SDU是否成功发送, 执行如下处理:
当 SDU发成功, 则 RNC的 RLC层向 PDCP层发送 SDU正确发送的状态通知, PDCP 层收到 RLC层发送的正确发送的状态通知,删除在自身缓存中为该 SDU预存的做为备份的 SDU。
当 SDU发送失败, 则 RNC的 RLC层向 PDCP层发送 SDU未正确发送的状态通知, PDCP层收到 RLC层发送的未正确发送的状态通知, PDCP层重新向 RLC层下发在缓存中 预存的该 SDU; RLC层收到由 PDCP层重新发送的 SDU后, 根据分配算法, 对该 SDU进 行逻辑信道的分配。 其中, 根据分配算法, 对该 SDU进行逻辑信道的分配是, 例如, 获取 发送所述数据的当前载频所在的当前组为 A组, 则此时选择另一组载频 (即 B组载频) 对 应的信道 (即逻辑信道 5 ) 进行数据的重发。
本发明实施例提供的方法,通过在 RLC层预设逻辑信道,保证了属于同一个 SDU的数 据在同一个频点队列进行发送, 接收端 UE侧的 RLC层通过读取 PDCP层分配的序号标识 实现对接收到的 SDU的排序, 减小数据 SDU的传输时延, 保证数据传输的效率。 本实施 例提供的上述技术方案不需要修改现有的 SDU以及 PDU的格式, 最大程度的减少了对现 有协议的影响, 还可以通过逻辑信道的切换, 减少重传时延较大的逻辑信道上传输数据。 实施例 2
参见图 3,本发明实施例提供了一种数据传输的方法,与实施例 1提供的方法不同在于, 在发送端 RNC在由 PDCP层向 RLC层下发 SDU数据包时, PDCP层不为该下发的 SDU分 配序号标识, 而是由 RLC层在收到 SDU数据包后, 为 SDU分配序号 SN, 并进行缓存; 其中, 该方法内容如下:
步骤 201, 在 RNC 的 RLC 层设置统一的缓存, 并为每个载频的频点配置逻辑信道 DTCH。
步骤 202, RNC的 PDCP层向 RLC层下发 SDU数据包。
步骤 203, RNC的 RLC层接收来自 RNC的 PDCP层发送的 SDU数据包, 在 RLC的 缓存中保存下发的 SDU数据包, 进行备份, 并为每个 SDU分配序号 SN, 用于标识接收到 的 SDU的先后顺序。 例如, RNC的 RLC层依次收到来自 RNC的 PDCP的 4个 SDU, 相应地, 为其分配序 号标识, 如 SDU1、 SDU2、 SDU3禾 P SDU4。
步骤 204, RLC层的将添加了序号标识的 SDU分发到逻辑信道中。
例如, RLC层通过将接收到的来自 PDCP层的 SDU按照接收的先后顺序进行了编号, 如 SDU1、 SDU2、 SDU3禾 P SDU4, 根据下发的规则, 将 SDU1、 SDU3下发到逻辑信道 X 中, 将 SDU2、 SDU4下发到逻辑信道 Y中。 其中, 逻辑信道 X对应 Node B提供的载频频 点 K), 逻辑信道 Y对应 Node B提供的载频频点 fl。
步骤 205, RLC层的逻辑信道对接收到的 SDU处理后, 发送到各自对应的 Node B的 MAC-hs/ehs调度队列中进行调度发送到终端 UE。
步骤 206,终端 UE根据接收到的数据包 SDU,通过逻辑信道向 RNC的 RLC层返回状 态报告通知响应。
步骤 207, RNC的 RLC层接收来自逻辑信道的状态报告通知响应, 根据状态报告通知 响应中携带的指示,判断 SDU是否成功发送; 如果是,执行步骤 208; 否则,执行步骤 209。
步骤 208, RLC层删除自身为该 SDU预存的做为备份的 SDU。
步骤 209, RLC层从自身的缓存中获取预存的 SDU, 根据分配算法, 对该 SDU进行逻 辑信道的分发。
步骤 210, 当终端 UE通过与发送端 RNC对应的逻辑信道, 接收到完整的 SDU后, 送 到统一的缓存中, 假定终端 UE收到 SDU的先后顺序为 SDU1、 SDU3、 SDU2、 SDU4, 将 其保存在缓存中后, 通过读取 RLC为其分配的序号标识, 然后按序号顺序进行排序, 排序 后去掉 RLC层的序号标识, 再向 PDCP层进行按序递交。
进一步地, 终端 UE为了克服当出现某个 SDU在很长时间都没有收到或者组成完整的 SDU的情况时而导致无法及时上报数据的情况, UE可以设定自身为等待足够长时间之后或 者统一缓存中保存的 SDU个数足够多的时候向 PDCP层将已经完整接收的 SDU进行提交。 缓存个数足够多以及等待时间使用相应的参数定义, 定义可以是 RNC定义的, 在逻辑信道 建立的时候。 或者 UE自己定义。
本领域技术人员可以获知, 本实施例仅作示例说明, 上述配置的逻辑信道和频点的个 数是可以一对多的对应关系, 即: 如果 UE可以使用的频点个数为 4个或者 6个, 可以针对 4个频点配置 2个逻辑信道, 且针对 6个频点配置 2个逻辑信道; 或可以针对 4个频点配置 4个逻辑信道, 且针对 6个频点配置 4个逻辑信道, 不论 UE使用的频点个数具体为几个, 只要最终配置的逻辑信道个数一致 (如均为 2个) 即可, 不影响本方案的实施方法和效果。 具体请详见实施例 1的描述, 本实施例对此不再赘述。 本发明实施例提供的方法,通过在 RLC层预设逻辑信道,保证了属于同一个 SDU的数 据是在同一个频点队列进行发送, 接收端 UE侧的 RLC层提取接收到的 SDU的序号对各 SDU排序后, 再向 PDCP层提交, 减小数据 SDU的传输时延, 保证数据传输的效率, 避免 不必要的 RLC层重传, 不需要修改现有的 SDU以及 PDU的格式, 最大稈度的减少了对现 有协议的影响, 还可以通过逻辑信道的切换, 减少重传时延较大的逻辑信道上传输的 PDU。 实施例 3
参见图 4, 本发明实施例提供了一种发送数据的方法, 与上述实施例 1和实施例 2的区 别在于, 本实施例通过在 RNC和 NodeB的 Iub接口上, 针对各载频分配独立的传输信道, 从而实现对于一个 SDU的初传保证在一个载频对应的 MAC-hs/ehs队列进行传送, 其中, 该方法内容如下:
步骤 301, 根据预设规则, 对 RNC和 Node B的传输链路进行划分。
其中, RNC和 Node B之间存在传输链路, 通过对 RNC和 Node B的传输链路进行划 分, 保证对应于 Node B提供的一个载频对应至少拥有一个传输信道。
步骤 302, RNC的 PDCP层向 RLC层下发 SDU包, 并且在 PDCP的预设缓存中保存 下发的 SDU, 进行备份, 各 SDU中携带由 PDCP层分配的序号标识。
例如, RLC层接收到来自 PDCP层的 4个 SDU,分别为 SDU1、SDU2、SDU3以及 SDU4。 步骤 303, RLC对接收到的数据包 SDU进行处理后得到分段后的 SDU, 通过对传输信 道的选择, 保证属于同一个 SDU的多个分段进入 Node B的同一个 MAC-hs/ehs队列。
其中, 例如, RLC对接收到的 SDU1进行分段处理, 得到分段后的 SDU1X和 SDU1Y, 对接收到的 SDU2进行分段处理, 得到 SDU2X和 SDU2Y, 如果此时对应分配了二个传输信 道 A和 B, 且传输信道 A对应于载频 fi), 传输信道 B对应于载频 fl, 通过选择传输信道, RLC将 SDU1X和 SDU1Y通过传输信道 A发送到 Node B, 将 SDU2X和 SDU2Y通过传输信 道 B发送到 Node B, 从而保证了属于同一个 SDU的多个分段进入 Node B的同一个载频 MAC-hs/ehs队列。
步骤 304, Node B的 MAC-hs/ehs调度队列对接收到的数据进行调度发送到终端 UE。 此时, 终端 UE根据接收到的 SDU, 会向 RNC的 RLC层返回状态报告通知响应。 步骤 305, RNC的 RLC层接收状态报告响应,根据该通知响应中携带的指示,判断 SDU 是否成功发送; 如果是, 执行步骤 306; 否则, 执行步骤 307。
步骤 306, RLC层向 PDCP层发送 SDU正确发送的通知, PDCP层收到 RLC层发送的 正确发送的通知, 删除自身为该 SDU预存的做为备份的 SDU。 步骤 307, RLC层向 PDCP层发送 SDU未正确发送的通知, PDCP层收到 RLC层发送 的未正确发送的通知, PDCP层重新向 RLC层下发预保存的该 SDU, RLC收到由 PDCP层 重新发送的 SDU后, 根据分配算法, 对该 SDU进行传输信道的重新选择。
进一步地, 还可以当终端 UE发送缺少某个 PDU的通知, 如果此时, RLC层保存了该 PDU, 则可以仅对该 PDU进行重新发送。
步骤 308, 当终端 UE接收到完整的 SDU后, 直接送到 PDCP层, PDCP进行缓存, 然 后由 PDCP层根据序号标识进行排序, 然后再进行相应的处理, 如解压缩等操作。
另外, 与本实施例类似, 通过在 RNC和 NodeB的 Iub接口上分配与载频对应的独立传 输信道, 进行数据传输的方法, 还可以采用如下的方式实现: 无线网络控制器 RNC的 RLC 层接收到来自 PDCP层的数据后,将该待发送的数据在 RLC层的预设缓存中进行备份保存, 并由 PLC层为数据添加序号; 然后通过预设的与基站提供的各载频对应的接口传输信道发 送数据到基站的 MAC-hs/ehs调度队列中, 其中, 基站的 MAC-hs/ehs调度队列将获取到的 数据发送到终端 UE, RNC的 RLC层及时获取数据的发送状态; 然后 RLC层根据数据的发 送状态, 当发状状态为正确时, 删除 RLC预设缓存中的备份保存的正确发送的数据; 当发 送状态为未发送正确时, 根据传输信道分配原则选择传输信道, 发送 RLC层预设缓存中备 份保存的未正确发送的数据。
相应地, 终端 UE收到完整的 SDU后, 还可以通过读取 RLC层为其分配的序号标识, 然后按序号顺序进行排序, 排序后去掉 RLC层的序号标识, 再向 PDCP层进行序递交。
本领域技术人员可以获知, 本实施例仅作示例说明, 上述配置的传输信道和频点的个 数是可以一对多的对应关系, 即: 如果 UE可以使用的频点个数为 4个或者 6个, 可以针对 4个频点配置 2个传输信道, 且针对 6个频点配置 2个传输信道; 或可以针对 4个频点配置 4个传输信道, 且针对 6个频点配置 4个传输信道只要最终配置的传输信道个数一致(均为 2个) 即可, 不影响本方案的实施方法和效果。 具体请详见实施例 1的描述, 不同的是, 本 实施例是通过传输信道实现的传输, 本实施例对此不再赘述。
本发明实施例提供的方法, 通过预设传输信道, 保证了属于同一个 SDU的数据是在同 一个频点队列进行发送,接收端 UE侧的 RLC收到完整的 SDU提交后, 由 PDCP根据 SDU 携带的序号进行排序, 减小了数据 SDU的传输时延, 保证数据传输的效率, 避免不必要的 RLC层重传, 不需要修改现有的 SDU以及 PDU的格式, 最大程度的减少了对现有协议的 影响, 还可以通过传输信道的切换, 减少重传时延较大的传输信道上传输的数据。 实施例 4 参见图 5,本发明实施例提供了一种发送数据的系统,系统包括:无线网络控制器 RNC, 基站和终端, 其中,
RNC将待发送数据在预设缓存中保存为备份数据,该预设缓存位于 RNC的分组数据汇 聚协议 PDCP层, 或位于 RNC的无线链路控制 RLC层; RNC通过预设的与基站提供的各 载频对应的信道, 其中, 每个载频至少对应一个信道, 且不同的载频对应于不同的信道, 且该信道可以具体为位于 RLC层的逻辑信道, 载频至少对应一个逻辑信道, 且不同的载频 对应于不同的逻辑信道; 或者该信道具体为 RNC和基站之间的接口传输信道, 载频至少对 应一个传输信道, 且不同的载频对应于不同的传输信道。 RNC将待发送数据发送到基站的 载频; RNC还要及时的获取到发送的数据的状态报告, 如发送成功 ACK响应, 或发送未成 功 NACK响应。 根据获取的数据的发送报告, 当数据发送成功, 删除在预设缓存中备份保 存的正确发送的数据, 释放缓存资源; 当数据未发送成功, RNC获取预设缓存中备份保存 的未发送成功的备份数据, 根据分配原则选择信道进行发送, 其中, 该分配原则可以为当 接收到的数据未发送正确的指示次数超过预设门限, 选择另一信道进行数据的重发, 或在 预设时间内未收到数据发送的应答指示, 则选择另一信道进行数据的重发。 数据发送前, RNC的 PDCP层或 RLC层还为数据添加序号。
基站接收来自 RNC发送的数据, 并将数据通过载频发送到终端。
终端接收来自基站发送的数据, 对数据进行处理。 该终端具体包括: 接收模块、 排序 模块和处理模块, 其中
接收模块接收携带序号的数据包, 排序模块根据数据包携带的序号进行排序, 该排序 模块可以位于终端设备的 RLC层或终端设备的 PDCP层, 处理模块处理排序模块排序后的 数据包。
本发明实施例提供的系统, 通过预设逻辑信道或传输信道, 保证了属于同一个 SDU的 数据一定是在同一个频点队列进行发送,保证数据传输的效率,避免不必要的 RLC层重传, 不需对现有的 SDU以及 PDU的格式进行修改, 最大程度的减少了对现有协议的影响, 还 可以通过切换信道, 减少重传时延较大的信道上传输的数据。 实施例 5
参见图 6,本发明实施例提供了一种发送数据的系统,系统包括:无线网络控制器 RNC, 基站, 其中,
RNC将待发送的数据在预设缓存中保存为备份数据,该预设缓存位于 RNC的分组数据 汇聚协议 PDCP层, 或位于 RNC的无线链路控制 RLC层; RNC通过预设的与基站提供的 各组载频对应的信道。 其中, 每组载频至少对应一个信道, 且各组载频对应于不同的信道, 所述每组载频中载频的个数至少是一个,其中,该信道可以具体为位于 RLC层的逻辑信道, 则相应地, 每组载频至少对应一个逻辑信道, 且各组载频对应于不同的逻辑信道; 或者, 该信道具体为 RNC和基站之间的接口传输信道, 则相应地, 每组载频至少对应一个传输信 道, 且各组载频对应于不同的传输信道。
基站接收来自 RNC发送的数据, 并将数据通过载频发送到终端, 以使得终端接收来自 基站发送的数据, 对数据进行处理。
进一步地,本发明实施例提供的系统中的 RNC在将待发送的数据发送到基站的载频后, 该 RNC还要及时的获取到发送的数据的状态报告, 如发送成功 ACK响应, 或发送未成功 NACK 响应。 根据获取的数据的发送报告, 当数据发送成功, 删除在预设缓存中备份保存 的正确发送的数据, 释放缓存资源; 当数据未发送成功, RNC获取预设缓存中备份保存的 未发送成功的备份数据, 根据分配原则选择信道进行发送, 其中, 该分配原则可以为当接 收到的数据未发送正确的指示次数超过预设门限, 选择另一组载频对应的信道进行数据的 重发, 或在预设时间内未收到数据发送的应答指示, 则选择另一组载频对应的信道进行数 据的重发。 数据发送前, RNC的 PDCP层或 RLC层还为数据添加序号。
本发明实施例提供的系统, 通过预设逻辑信道或传输信道, 保证了属于同一个 SDU的 数据一定是在同一个频点队列进行发送,保证数据传输的效率,避免不必要的 RLC层重传, 不需对现有的 SDU以及 PDU的格式进行修改, 最大程度的减少了对现有协议的影响, 还 可以通过切换信道, 减少重传时延较大的信道上传输的数据。 实施例 6
参见图 7, 本发明实施例提供了一种无线网络控制器 RNC, 其中,
RNC 将通过保存模块将待发送数据在预设缓存中保存为备份数据, 该预设缓存位于 RNC的 PDCP层,或位于 RNC的 RLC层; RNC通过预设的与基站提供的载频对应的信道, 其中, 每个载频至少对应一个信道, 且不同的载频对应于不同的信道, 且该信道可以具体 为位于 RLC层的逻辑信道, 载频至少对应一个逻辑信道, 且不同的载频对应于不同的逻辑 信道; 或者该信道具体为 RNC和基站之间的接口传输信道, 载频至少对应一个传输信道, 且不同的载频对应于不同的传输信道。 RNC通过发送模块将待发送数据发送到基站的载频; RNC还要通过获取模块及时的获取到发送的数据的状态报告,如发送成功 ACK响应,或发 送未成功 NACK响应。 根据获取的数据的发送报告, 当数据发送成功, RNC中的第一处理 模块删除在预设缓存中备份保存的正确发送的数据, 释放缓存资源; 当数据未发送成功, RNC中的第而处理模块获取预设缓存中备份保存的未发送成功的备份数据, 根据分配原则 选择信道进行发送, 其中, 分配原则可以为当接收到的数据未发送正确的指示次数超过预 设门限, 选择另一信道进行数据的重发; 或在预设时间内未收到数据发送的应答指示, 则 选择另一信道进行数据的重发。并且数据发送前, RNC的 PDCP层或 RLC层还为数据添加 序号。
本发明实施例提供的 RNC,通过预设逻辑信道或传输信道, 保证了属于同一个 SDU的 数据一定是在同一个频点队列进行发送,保证数据传输的效率,避免不必要的 RLC层重传, 最大程度的减少了对现有协议的影响。 实施例 7
参见图 8, 本发明实施例提供了一种无线网络控制器 RNC, RNC包括:
保存模块, 用于在预设的缓存中将待发送的数据在预设缓存中保存为备份数据; 待发 送的数据携带序号;
添加模块, 用于为保存模块的待发送的数据添加序号;
发送模块, 用于通过预设的与基站提供的载频对应的信道, 将添加模块添加序号后的 待发送的数据发送到基站的载频; 每组载频至少对应一个信道, 且各组载频对应于不同的 信道, 每组载频中载频的个数至少是一个。
进一步地, 参见图 9, RNC还包括:
获取模块, 用于获取数据的发送状态;
第一处理模块, 用于根据获取模块获取的数据的发送状态, 删除在预设缓存中备份保 存的正确发送的数据;
第二处理模块, 用于根据获取模块获取的数据的发送状态, 根据分配原则选择信道发 送预设缓存中备份保存的未正确发送的数据。
其中, 保存模块包括:
第一保存单元, 用于在位于 RNC的 PDCP层的预设缓存中将待发送的数据在预设缓存 中保存为备份数据; 或,
第二保存单元, 用于在位于 RNC的 RLC层的预设缓存中将待发送的数据在预设缓存 中保存为备份数据。
其中, 发送模块包括:
第一发送单元, 用于通过位于 RLC层的逻辑信道将待发送的数据发送到基站的载频; 每组载频至少对应一个逻辑信道, 且各组载频对应于不同的逻辑信道; 或, 第二发送单元, 用于通过位于 RNC和基站之间的接口传输信道将待发送的数据发送到 基站的载频; 每组载频至少对应一个传输信道, 且各组载频对应于不同的传输信道。
进一步地, 无线网络控制器的添加模块, 具体包括:
第一添加单元, 用于通过本 RNC的 PDCP层为数据添加序号; 或,
第二添加单元, 用于通过本 RNC的 RLC层为数据添加序号。
本发明实施例提供的 RNC,通过预设逻辑信道或传输信道, 保证了属于同一个 SDU的 数据一定是在同一个频点队列进行发送,保证数据传输的效率,避免不必要的 RLC层重传, 最大程度的减少了对现有协议的影响。 实施例 8
参见图 10, 本发明实施例提供了一种终端设备, 终端设备包括: 接收模块、 排序模块 和处理模块。 其中,
接收模块, 用于接收数据包, 数据包携带序号;
排序模块, 用于根据数据包携带的序号进行排序;
处理模块, 用于处理排序模块排序后的数据包。 其中, 该处理模块具体的处理动作包 括但不限于如解压缩等操作。
其中, 排序模块位于终端设备的 RLC层, 或者, 位于终端设备的 PDCP层。 即参见图 11, 该排序模块包括:
第一排序单元, 用于由位于终端设备的 RLC层根据数据携带的序号进行排序; 或, 第二排序单元, 用于由终端设备的 PDCP层根据数据携带的序号进行排序。
本发明实施例提供的终端设备, 对接收到的多个数据包排序的位置可以是 RLC层, 实 现先排序后提交至 PDCP层的方式, 也可以在 PDCP层实现, 直接先由 RLC接收到后进行 提交。 实施例 9
相应于上述方法、 系统和设备实施例, 本发明实施例提供了一种接收数据的方法, 方 法包括:
终端通过本终端的 RLC层的预设信道接收到多个数据, 根据数据携带的序号排序后提 交到本终端的 PDCP层; 或,
终端将通过本终端的 RLC层的预设信道接收到多个数据, 提交到本终端的 PDCP层, 由 PDCP层根据数据携带的序号进行排序。 本发明实施例提供的方法, 对接收到的多个数据包排序的位置可以是 RLC层, 实现先 排序后提交至 PDCP层的方式,也可以在 PDCP层实现,直接先由 RLC接收到后进行提交。 综上, 本发明实施例提供的技术方案通过预设逻辑信道或传输信道, 保证了属于同一 个 SDU的数据一定是在同一个频点队列进行发送,保证数据传输的效率,避免不必要的 RLC 层重传, 最大程度的减少了对现有协议的影响, 还能够尽量减小 RLC层重传的重传量时延 较大的那条分支上的数据量, 当数据在两个载频上传输引入的时延相差很大时, 例如某个 载频上的信号突然恶化, 导致数据发不出去, 可以将这部分数据换一个频点进行发送, 避 免数据在 UE侧的 RLC层等待很长时间无法往上递交。
本领域普通技术人员可以理解, 实现上述实施例方法携带的全部或部分步骤是可以通 过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储介质中, 该程 序在执行时, 包括方法实施例的步骤之一或其组合。 上述提到的存储介质可以是只读存储 器, 磁盘或光盘等。
以上所述仅为本发明的具体实施例, 并不用以限制本发明, 对于本技术领域的普通技 术人员来说, 凡在不脱离本发明原理的前提下, 所作的任何修改、 等同替换、 改进等, 均 应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种发送数据的方法, 其特征在于, 所述方法包括:
无线网络控制器 RNC将待发送的数据在预设缓存中进行备份保存, 其中, 所述待发送 的数据携带序号;
通过预设的与各组载频对应的信道发送所述待发送的数据, 每组载频至少对应一个信 道, 且各组的载频对应于不同的信道, 所述每组载频中载频的个数至少是一个。
2. 如权利要求 1所述的方法, 其特征在于, 所述通过预设的与各组载频对应的信道发 送所述待发送的数据之后, 所述方法还包括:
获取所述待发送的数据的发送状态;
根据所述数据的发送状态, 删除在所述预设缓存中备份保存的正确发送的数据; 根据信道分配原则选择信道, 发送所述预设缓存中备份保存的未正确发送的数据。
3 . 如权利要求 2所述发送数据的方法, 其特征在于,
所述待发送的数据携带的序号为无线网络控制器 RNC通过分组数据汇聚协议 PDCP层 为所述待发送的数据添加的; 以及
所述无线网络控制器 RNC将待发送的数据在预设缓存中进行备份保存, 通过预设的与 各组载频对应的信道发送所述待发送的数据, 具体包括:
所述 RNC将待发送的数据在 PDCP层的预设缓存中进行备份保存;
所述 RNC在无线链路控制 RLC层通过预设的与基站提供的各组载频对应的逻辑信道 发送所述数据; 以及
所述获取所述待发送的数据的发送状态, 具体包括;
所述 RNC通过 RLC层获取所述待发送的数据的发送状态; 以及
所述根据所述数据的发送状态, 删除在所述预设缓存中备份保存的正确发送的数据; 具体包括:
所述 RNC根据所述获取的待发送的数据的发送状态,通过所述 RLC层通知所述 PDCP 层删除在所述预设缓存中备份保存的正确发送的数据; 以及
所述根据信道分配原则选择信道, 发送所述预设缓存中备份保存的未正确发送的数据, 具体包括:
所述 RNC获取所述 PDCP层的预设缓存中备份保存的未正确发送的数据, 根据逻辑信 道分配原则选择逻辑信道, 发送所述未正确发送的数据。
4. 如权利要求 2所述发送数据的方法, 其特征在于,
所述待发送的数据携带的序号为无线网络控制器 RNC通过 RLC层为所述待发送的数 据添加的; 以及
所述无线网络控制器 RNC将待发送的数据在预设缓存中进行备份保存, 通过预设的与 各组载频对应的信道发送所述待发送的数据, 具体包括:
所述 RNC将所述待发送的数据在所述 RLC层的预设缓存中进行备份保存;
所述 RNC在所述 RLC层通过预设的与基站提供的各组载频对应的逻辑信道发送所述 数据; 以及
所述获取所述待发送的数据的发送状态; 具体包括:
所述 RNC通过所述 RLC层获取所述待发送的数据的发送状态; 以及
根据所述数据的发送状态, 删除在所述预设缓存中备份保存的正确发送的数据; 具体 包括:
所述 RNC根据所述获取的待发送的数据的发送状态, 删除所述 RLC层的预设缓存中 的备份保存的正确发送的数据; 以及
所述根据信道分配原则选择信道, 发送所述预设缓存中备份保存的未正确发送的数据, 具体包括:
所述 RNC获取在所述 RLC层的预设缓存中进行备份保存的未正确发送的数据, 根据 逻辑信道分配原则选择逻辑信道, 发送所述未正确发送的数据。
5. 如权利要求 2所述的发送数据的方法, 其特征在于,
所述待发送的数据携带的序号为无线网络控制器 RNC通过分组数据汇聚协议 PDCP层 为所述待发送的数据添加的; 以及
所述无线网络控制器 RNC将待发送的数据在预设缓存中进行备份保存, 通过预设的与 各组载频对应的信道发送所述待发送的数据, 具体包括:
所述 RNC将所述待发送的数据在所述 PDCP层的预设缓存中进行备份保存; 所述 RNC的无线链路控制 RLC层通过预设的与基站提供的各组载频对应的传输信道 发送所述数据; 以及
所述获取所述待发送的数据的发送状态; 具体包括:
所述 RNC通过所述 RLC层获取所述待发送的数据的发送状态; 以及
所述根据所述数据的发送状态, 删除在所述预设缓存中备份保存的正确发送的数据; 具体包括: 所述 RNC根据所述数据的发送状态, 通知所述 PDCP层删除在所述预设缓存中备份保 存的正确发送的数据; 以及
所述根据信道分配原则选择信道, 发送所述预设缓存中备份保存的未正确发送的数据, 具体包括:
所述 RNC获取所述 PDCP层的预设缓存中备份保存的未正确发送的数据, 根据传输信 道分配原则选择传输信道, 发送所述未正确发送的数据。
6. 如权利要求 2所述的发送数据的方法, 其特征在于,
所述待发送的数据携带的序号为无线网络控制器 RNC通过 RLC层为所述数据添加的; 以及
所述无线网络控制器 RNC将待发送的数据在预设缓存中进行备份保存, 通过预设的与 各组载频对应的信道发送所述待发送的数据, 具体包括:
所述 RNC将所述待发送的数据在所述 RLC层的预设缓存中进行备份保存;
所述 RNC在所述 RLC层通过预设的与基站提供的各组载频对应的传输信道发送所述 数据; 以及
所述获取所述待发送的数据的发送状态; 具体包括:
所述 RNC通过所述 RLC层获取所述数据的发送状态; 以及
所述根据所述数据的发送状态, 删除在所述预设缓存中备份保存的正确发送的数据; 具体包括:
所述 RNC根据所述待发送的数据的发送状态, 删除所述 RLC层的预设缓存中的备份 保存的正确发送的数据; 以及
所述根据信道分配原则选择信道, 发送所述预设缓存中备份保存的未正确发送的数据, 具体包括:
所述 RNC获取所述 RLC层的预设缓存中备份保存的未正确发送的数据, 根据传输信 道分配原则选择传输信道, 发送所述未正确发送的数据。
7. 如权利要求 2至 5任一权利要求所述发送数据的方法, 其特征在于, 所述根据分配 原则选择信道进行发送, 具体为:
当接收到的所述数据未发送正确的指示次数超过预设门限, 则获取发送所述数据的当 前载频所在的当前组, 选择另一组中载频对应的信道进行数据的重发; 或,
在预设时间内未收到所述数据发送的应答指示, 则获取发送所述数据的当前载频所在 的当前组, 选择另一组中载频对应的信道进行数据的重发。
8. 一种发送数据的系统, 其特征在于, 所述系统包括: 无线网络控制器 RNC, 基站, 其中,
所述无线网络控制器 RNC, 用于将待发送的数据在预设缓存中进行备份保存, 其中所 述待发送的数据数据携带序号; 通过预设的与各载频对应的信道发送所述待发送的数据, 其中每组载频至少对应一个信道, 且各组载频对应于不同的信道, 所述每组载频中载频的 个数至少是一个;
所述基站, 用于接收来自所述 RNC发送的数据, 并将所述数据通过载频承载发送到所 述终端, 以使得所述终端接收来自所述基站发送的数据后, 对所述数据进行处理。
9. 如权利要求 8所述发送数据的系统, 其特征在于,
所述无线网络控制器 RNC还用于获取所述数据的发送状态;根据所述数据的发送状态, 删除在所述预设缓存中备份保存的正确发送的数据; 根据信道分配原则选择信道, 发送所 述预设缓存中备份保存的未正确发送的数据。
10. 如权利要求 8或 9所述发送数据的系统, 其特征在于,
所述 RNC用于通过位于无线链路控制 RLC层的逻辑信道发送所述待发送的数据; 所 述每组载频至少对应一个逻辑信道, 且各组载频对应于不同的逻辑信道; 或,
所述 RNC用于通过位于所述 RNC和所述基站之间的接口传输信道发送所述待发送的 数据; 所述每组载频至少对应一个传输信道, 且各组载频对应于不同的传输信道。
11 . 如权利要求 8或 9所述发送数据的系统, 其特征在于,
所述 RNC用于在位于所述 RNC的分组数据汇聚协议 RDCP层的预设缓存中保存所述 待发送的数据; 或,
所述 RNC用于在位于所述 RNC的无线链路控制 RLC层的预设缓存中保存所述待发送 的数据。
12. 如权利要求 8或 9所述发送数据的系统, 其特征在于,
所述 RNC还用于通过所述 RNC的 PDCP层为所述待发送的数据添加序号; 或, 所述 RNC还用于通过所述 RNC的 RLC层为所述待发送的数据添加序号。
13. 一种无线网络控制器 RNC, 其特征在于, 所述 RNC包括:
保存模块, 用于在预设的缓存中将待发送的数据在预设缓存中保存为备份数据; 添加模块, 用于为所述保存模块中的待发送的数据添加序号;
发送模块, 用于通过预设的与基站提供的载频对应的信道, 将所述添加模块添加序号 后的待发送的数据发送到所述基站的载频; 每组载频至少对应一个信道, 且各组载频对应 于不同的信道, 所述每组载频中载频的个数至少是一个。
14、 如权利要求 13所述的无线网络控制器 RNC, 其特征在于, 所述 RNC还包括: 获取模块, 用于获取所述待发送的数据的发送状态;
第一处理模块, 用于根据所述获取模块获取的所述待发送的数据的发送状态, 删除在 所述预设缓存中备份保存的正确发送的数据;
第二处理模块, 用于根据所述获取模块获取的所述待发送的数据的发送状态, 根据分 配原则选择信道发送所述预设缓存中备份保存的未正确发送的数据。
15. 如权利要求 13或 14所述无线网络控制器 RNC, 其特征在于, 所述保存模块包括: 第一保存单元, 用于在位于所述 RNC的分组数据汇聚协议 PDCP层的预设缓存中将待 发送的数据在所述预设缓存中保存为备份数据; 或,
第二保存单元, 用于在位于所述 RNC的无线链路控制 RLC层的预设缓存中将待发送 的数据在所述预设缓存中保存为备份数据。
16. 如权利要求 13或 14所述的无线网络控制器 RNC, 其特征在于, 所述发送模块包 括:
第一发送单元, 用于通过位于 RLC层的逻辑信道将所述保存模块中待发送的数据发送 到所述基站的载频; 所述每组载频至少对应一个逻辑信道, 且各组载频对应于不同的逻辑 信道; 或,
第二发送单元, 用于通过位于所述 RNC和所述基站之间的接口传输信道将所述保存模 块中待发送的数据发送到所述基站的载频; 所述每组载频至少对应一个传输信道, 且各组 载频对应于不同的传输信道。
17. 如权利要求 13或 14所述无线网络控制器 RNC, 其特征在于, 所述添加模块, 包 括: 第一添加单元, 用于通过 PDCP层为所述待发送的数据添加所述序号; 或, 第二添加单元, 用于通过 RLC层为所述待发送的数据添加所述序号。
18. 一种终端设备, 其特征在于, 所述终端设备包括:
接收模块, 用于接收数据, 所述数据携带序号;
排序模块, 用于根据所述接收模块接收的数据携带的序号进行排序;
处理模块, 用于处理所述排序模块排序后的数据。
19. 如权利要求 18所述终端设备, 其特征在于, 所述排序模块包括:
第一排序单元, 用于由位于所述终端设备的无线链路控制 RLC层根据所述数据携带的 序号进行排序; 或,
第二排序单元, 用于由所述终端设备的分组数据汇聚协议 PDCP层根据所述数据携带 的序号进行排序。
20.—种接收数据的方法, 其特征在于, 所述方法包括:
终端通过本终端的 RLC层的预设信道接收到多个数据, 根据数据携带的序号排序后提 交到本终端的 PDCP层; 或,
终端将通过本终端的 RLC层的预设信道接收到多个数据, 提交到本终端的 PDCP层, 由所述 PDCP层根据所述数据携带的序号进行排序。
PCT/CN2009/071010 2008-03-25 2009-03-25 一种发送数据的方法、系统和设备 WO2009117961A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101027294A CN101547141B (zh) 2008-03-25 2008-03-25 一种发送数据的方法、系统和设备
CN200810102729.4 2008-03-25

Publications (1)

Publication Number Publication Date
WO2009117961A1 true WO2009117961A1 (zh) 2009-10-01

Family

ID=41112979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071010 WO2009117961A1 (zh) 2008-03-25 2009-03-25 一种发送数据的方法、系统和设备

Country Status (2)

Country Link
CN (1) CN101547141B (zh)
WO (1) WO2009117961A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656573A (zh) * 2016-11-23 2017-05-10 河池学院 一种基于拓扑结构的信息传输机器人系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103428246B (zh) * 2012-05-21 2018-01-19 中兴通讯股份有限公司 分组数据汇聚协议层对上行ip包进行重传的方法及终端
CN104349387B (zh) * 2013-08-08 2018-08-14 上海诺基亚贝尔股份有限公司 在支持双/多连接的系统中用于下行链路传输的方法和设备
CN104837163B (zh) * 2014-02-08 2019-10-25 夏普株式会社 用于删除无线链路控制服务数据单元的方法和基站
CN104243111B (zh) * 2014-09-01 2017-12-26 广州华多网络科技有限公司 一种数据包传输的方法和装置
CN108282272A (zh) * 2017-01-05 2018-07-13 中兴通讯股份有限公司 一种rlc层精确重传的方法及装置
CN108476435B (zh) * 2017-06-19 2021-07-27 北京小米移动软件有限公司 数据处理方法及装置、用户设备和计算机可读存储介质
CN109428684B (zh) * 2017-08-30 2020-11-27 中国移动通信有限公司研究院 一种数据传输方法、rlc实体及pdcp实体
CN110167146B (zh) * 2018-02-12 2023-06-09 维沃移动通信有限公司 一种sdu的处理方法和通信设备
CN111935794B (zh) * 2020-07-02 2021-06-04 四川创智联恒科技有限公司 一种缩短切换时延的数据处理方法
CN112702752A (zh) * 2020-12-22 2021-04-23 展讯通信(上海)有限公司 通信方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719762A (zh) * 2004-07-09 2006-01-11 华为技术有限公司 一种基于高速下行数据包接入技术的数据重传方法
CN1731771A (zh) * 2005-08-16 2006-02-08 中兴通讯股份有限公司 一种支持多载波下行高速数据分组接入的系统和方法
CN1913534A (zh) * 2006-08-17 2007-02-14 华为技术有限公司 一种数据处理方法及通信设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036912A (ja) * 2005-07-29 2007-02-08 Casio Hitachi Mobile Communications Co Ltd 携帯端末、マルチキャストデータ受信方法およびマルチキャストデータ受信プログラム
CN101547469B (zh) * 2008-03-24 2011-10-05 华为技术有限公司 一种发送数据的方法、系统和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719762A (zh) * 2004-07-09 2006-01-11 华为技术有限公司 一种基于高速下行数据包接入技术的数据重传方法
CN1731771A (zh) * 2005-08-16 2006-02-08 中兴通讯股份有限公司 一种支持多载波下行高速数据分组接入的系统和方法
CN1913534A (zh) * 2006-08-17 2007-02-14 华为技术有限公司 一种数据处理方法及通信设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656573A (zh) * 2016-11-23 2017-05-10 河池学院 一种基于拓扑结构的信息传输机器人系统

Also Published As

Publication number Publication date
CN101547141A (zh) 2009-09-30
CN101547141B (zh) 2012-06-27

Similar Documents

Publication Publication Date Title
US10972940B2 (en) Method and apparatus for operating a timer for processing data blocks
WO2009117961A1 (zh) 一种发送数据的方法、系统和设备
KR100840733B1 (ko) 통신 시스템에서 패킷 데이터 처리하는 방법 그 시스템 및 그 수신 장치
TWI220832B (en) A scheme to prevent HFN un-synchronization for UM RLC in a high speed wireless communication system
CN108282248B (zh) 一种数据传输方法、网络侧设备及用户设备
WO2009117945A1 (zh) 发送数据的方法、系统和设备
WO2022148482A1 (zh) 一种业务的传输方法、装置、设备及终端、存储介质
KR20110094587A (ko) 실시간 서비스를 위한 수신 패킷 처리 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09725420

Country of ref document: EP

Kind code of ref document: A1