WO2009116501A1 - Process for production of thermoplastic resin composition, and process for production of thermoplastic resin molded article - Google Patents

Process for production of thermoplastic resin composition, and process for production of thermoplastic resin molded article Download PDF

Info

Publication number
WO2009116501A1
WO2009116501A1 PCT/JP2009/055083 JP2009055083W WO2009116501A1 WO 2009116501 A1 WO2009116501 A1 WO 2009116501A1 JP 2009055083 W JP2009055083 W JP 2009055083W WO 2009116501 A1 WO2009116501 A1 WO 2009116501A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
mixing
resin composition
acid
plant material
Prior art date
Application number
PCT/JP2009/055083
Other languages
French (fr)
Japanese (ja)
Inventor
正典 羽柴
Original Assignee
トヨタ紡織株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ紡織株式会社 filed Critical トヨタ紡織株式会社
Publication of WO2009116501A1 publication Critical patent/WO2009116501A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/12Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft
    • B29B7/16Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft with paddles or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/12Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft
    • B29B7/125Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft having a casing closely surrounding the rotor, e.g. for masticating rubber ; Rotors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/12Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft
    • B29B7/14Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/21Mixers with rotary stirring devices in fixed receptacles; Kneaders characterised by their rotating shafts
    • B01F27/2123Shafts with both stirring means and feeding or discharging means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements

Definitions

  • the present invention relates to a method for producing a thermoplastic resin composition and a method for producing a thermoplastic resin molded article. More specifically, the present invention relates to a method for producing a thermoplastic resin composition containing as much as 50 to 95% by mass of a plant material and a method for producing a thermoplastic resin molded article.
  • Patent Documents 1 and 2 are known as techniques for handling composite materials containing a large amount of plant material.
  • Patent Document 1 when the content of kenaf fiber exceeds 50% by mass, the fluidity of the resin composition is remarkably lowered, so that there is a problem that a satisfactory product shape and product form cannot be obtained in injection molding. It has been shown to occur.
  • Patent Document 2 when only rosin or plasticizer is not added to the resin and only the plant fiber is blended, the plant fiber is difficult to be uniformly dispersed, and the affinity between the resin and the plant fiber is poor. It is shown that only materials with poor strength and the like, lack of uniformity of quality, and poor practicality can be obtained. That is, in any document, it is shown that it is difficult to obtain an injection-moldable thermoplastic resin containing a large amount of plant material exceeding 50% by mass.
  • the present invention has been made in view of the above, and uses a method for producing a thermoplastic resin composition excellent in injection moldability while containing a large amount of plant material in an amount of 50 to 95% by mass, and a thermoplastic resin composition.
  • An object of the present invention is to provide a method for producing a molded article.
  • thermoplastic resin composition comprising a plant material and a thermoplastic resin, and the plant material and the thermoplastic resin in a total amount of 100% by mass, the plant material being contained in an amount of 50 to 95% by mass.
  • a method for manufacturing a product A mixing step of mixing the plant material and the thermoplastic resin with a mixing and melting apparatus; The method for producing a thermoplastic resin composition, wherein in the mixing step, 1 to 30% by mass of an acid-modified thermoplastic resin is used when the total amount of the thermoplastic resin is 100% by mass.
  • the said vegetable material is a manufacturing method of the thermoplastic resin composition as described in said (1) containing vegetable fiber.
  • thermoplastic resin composition according to (2) wherein the vegetable fiber has an average fiber length of 0.5 to 20 mm.
  • thermoplastic resin composition according to (3) wherein the plant material is kenaf.
  • (5) The method for producing a thermoplastic resin composition according to any one of (1) to (4), wherein the acid-modified thermoplastic resin has an acid value of 5 or more.
  • (6) The method for producing a thermoplastic resin composition according to any one of (1) to (5), wherein the acid-modified thermoplastic resin has a weight average molecular weight of 10,000 to 200,000.
  • the mixing and melting apparatus includes a mixing chamber for performing the mixing and a mixing blade disposed in the mixing chamber, The thermoplastic resin according to any one of (1) to (6), wherein the mixing step mixes the thermoplastic resin melted by rotation of the mixing blade in the mixing chamber and the plant material.
  • a method for producing a resin composition (8) The thermoplastic according to any one of (1) to (7), further comprising a pelletizing step after the mixing step, wherein the mixture obtained in the mixing step is pressed and consolidated without heating.
  • a method for producing a resin composition (9) A molding step of obtaining a molded body by injection molding the thermoplastic resin composition obtained by the method for producing a thermoplastic resin composition according to any one of (1) to (8) above is provided.
  • a method for producing a thermoplastic resin molded article is provided.
  • thermoplastic resin composition of the present invention an excellent injection moldability can be obtained as compared with the prior art while containing a large amount of plant material at 50 to 95% by mass.
  • a high fluidity can be obtained, and a thermoplastic resin composition that can be molded at a low injection filling pressure can be obtained. Further, this makes it possible to form into a larger shape and a finer shape with excellent formability.
  • excellent mechanical properties can be obtained with a molded body using this thermoplastic resin composition. In the case where the plant material contains plant fibers, the fluidity is further improved and high formability can be obtained. In addition, excellent mechanical properties can be obtained with a molded article obtained using this thermoplastic resin composition.
  • thermoplastic resin composition When the average fiber length of the vegetable fiber is 0.5 to 20 mm, particularly high fluidity can be obtained, and further excellent formability can be obtained. In addition, excellent mechanical properties can be obtained with a molded article obtained using this thermoplastic resin composition.
  • the plant material is kenaf
  • kenaf is an extremely fast growing annual grass and has an excellent carbon dioxide absorbability, so that it can contribute to the reduction of the amount of carbon dioxide in the atmosphere and the effective use of forest resources.
  • the acid value of the acid-modified thermoplastic resin is 5 or more, particularly high fluidity can be obtained, and further excellent formability can be obtained.
  • excellent mechanical properties can be obtained with a molded article obtained using this thermoplastic resin composition.
  • thermoplastic resin composition When the weight average molecular weight of the acid-modified thermoplastic resin is 10,000 to 200,000, particularly high fluidity can be obtained, and further excellent formability can be obtained. In addition, excellent mechanical properties can be obtained with a molded article obtained using this thermoplastic resin composition.
  • the mixing can be performed in a particularly short time, and the thermoplastic resin is not required from the outside. A composition can be produced. Furthermore, since heating is not required and a separate heating means is not required and mixing can be performed in a short time, a thermoplastic resin composition can be produced at low cost.
  • thermoplastic resin molding When equipped with a pelletizing step that obtains pellets by pressing and solidifying the mixture obtained in the mixing step without heating, it is possible to suppress thermal degradation of the thermoplastic resin to perform pelletization without heating, and to obtain a thermoplastic resin molding The mechanical properties of the body can be improved.
  • a thermoplastic resin composition can be molded by injection molding despite containing a large amount of plant material. Furthermore, these moldings can be performed at a low filling pressure, and in addition, formability (moldability) is also excellent. For this reason, the shaping
  • thermoplastic resin composition Comprising: It is typical explanatory drawing explaining the case where a pelletizing process is provided in addition to a mixing process. It is typical sectional drawing which shows an example of a mixing-melting apparatus. It is a typical side view which shows an example of the mixing blade
  • thermoplastic resin composition comprising a plant material and a thermoplastic resin, wherein the plant material and the thermoplastic resin are 100% by mass, and the plant material is contained in an amount of 50 to 95% by mass.
  • a method A mixing step of mixing the plant material and the thermoplastic resin with a mixing and melting apparatus; The mixing step is characterized in that 1 to 30% by mass of an acid-modified thermoplastic resin is used when the total thermoplastic resin is 100% by mass.
  • the “mixing step” is a step of mixing the plant material and the thermoplastic resin with a stirrer.
  • the “plant material” is a material derived from a plant. These plant materials include kenaf, jute hemp, manila hemp, sisal hemp, husk, cocoon, cocoon, banana, pineapple, coconut palm, corn, sugar cane, bagasse, palm, papyrus, cocoon, esparto, sabaigrass, wheat, rice, bamboo And plant materials obtained from various plants such as various conifers (such as cedar and cypress), broad-leaved trees and cotton. This plant material may use only 1 type and may use 2 or more types together. Of these, kenaf is preferred.
  • part of the plant body used as said plant material is not specifically limited, Any site
  • the kenaf in this invention is an early-growing annual grass which has a wooden stem, and is a plant classified into the mallow family. Hibiscus cannabinus and hibiscus sabdariffa etc. in scientific names are included, and further, red, heba, cubane kenaf, western hemp, taikenaf, mesta, bimli, ambari, and bombay are known as common names.
  • the jute in the present invention is a fiber obtained from jute hemp. This jute hemp shall include hemp and linden plants including jute (Chorus corpus capsularis L.), and hemp (Tunaso), Shimatsunaso and Morohaya.
  • the shape of the plant material is not particularly limited, and is fibrous, powdery (including granular and spherical), chip (including plate and flakes), and irregular shape ( And the like). Although these may use only 1 type and may use 2 or more types together, it is preferable that vegetable fiber is contained as said plant material especially. That is, in this method, only plant fiber is used as the plant material, or a combination of plant fiber and non-fiber plant material (hereinafter simply referred to as “non-fiber plant material”), Is preferred.
  • thermoplastic resin composition can be further improved by increasing the proportion of vegetable fibers in the plant material (see FIG. 2). That is, by using a vegetable fiber and an acid-modified thermoplastic resin in combination, it is possible to obtain a thermoplastic resin molded article having excellent mechanical properties, as well as high formability, and to a finer shape. And larger moldings can be formed. Moreover, such a molded body can be manufactured at a lower cost.
  • the plant fiber is a fiber taken out from a plant body and has a ratio L / t of the fiber diameter t to the fiber length L of 5.0 to 20,000. Those outside this range are non-fibrous plant materials in the present invention.
  • the fiber length L is usually 0.5 to 300 mm
  • the fiber diameter t is usually 0.01 to 1 mm.
  • This fiber length is a value (L) measured on a measuring scale by stretching a single plant fiber straight without stretching, as in the direct method in JIS L1015.
  • a fiber diameter is the value (t) which measured the fiber diameter in the center of the fiber length direction using the optical microscope about the vegetable fiber which measured fiber length.
  • the average fiber length and the average fiber diameter of the vegetable fiber are not particularly limited, but the average fiber length is preferably 20 mm or less.
  • the average fiber length is more preferably 1 to 15 mm, further preferably 2 to 10 mm, and particularly preferably 3 to 7 mm.
  • This average fiber length is determined according to JIS L1015 by taking out single fibers one at a time by the direct method, stretching straight without stretching, and measuring the fiber length on a measuring scale. It is the measured average value.
  • the average fiber diameter is preferably 0.2 mm or less.
  • the average fiber diameter is more preferably 0.01 to 0.15 mm, and particularly preferably 0.01 to 0.1 mm.
  • This average fiber diameter is an average value measured for a total of 200 fibers by taking out single fibers at random and measuring the fiber diameter at the center in the length direction of the fibers using an optical microscope.
  • the size of the non-fibrous plant material is not particularly limited.
  • the maximum length (maximum particle size in the case of granules) is 20 mm or less (usually 0.1 mm or more, more preferably 0.3 to 20 mm, even more preferably 0.3 to 15 mm, particularly 1 to 10 mm). Is preferred.
  • the shape and size of the plant material before mixing may or may not be maintained as it is in the thermoplastic resin composition.
  • the case where it is not maintained includes a case where it is further finely pulverized during mixing and contained in the thermoplastic resin composition.
  • the blending ratio of the vegetable fiber to the whole plant material is not particularly limited, but when the whole plant material is 100% by mass, the plant fiber is 5% by mass or more (may be 100% by mass). It is preferable. In this range, the fluidity of the thermoplastic resin composition can be effectively improved while obtaining the effect of improving the mechanical properties of the thermoplastic resin molded article due to the inclusion of vegetable fibers. As described above, this ratio is 100% by mass when all of the plant material is plant fiber, but when the plant fiber and the non-fiber plant material are used in combination, the ratio is 5 to 5%. It is preferable to set it as 99 mass%. In this range, it is particularly easy to obtain a fluidity improving effect by blending vegetable fibers. Further, this ratio is more preferably 10 to 90% by mass, further preferably 20 to 80% by mass, and particularly preferably 25 to 75% by mass.
  • kenaf core can be used as the non-fibrous plant material.
  • Kenaf consists of an outer layer part called bast and a core part called core.
  • bast is highly useful because it has tough fibers, whereas the core is the whole kenaf. Although it occupies as much as 60% by volume, it cannot be made into a vegetable fiber.
  • the apparent specific gravity is small and bulky, handling is poor, kneading with the resin is difficult, and the core is often discarded or made into fuel.
  • the fluidity of the thermoplastic resin composition can be sufficiently enhanced while using kenaf core as a plant material.
  • the plant material contained in the thermoplastic resin composition obtained by this method is 50 to 95% by mass. This content is usually the same as the blending amount of the plant material blended during production. That is, when the total of the plant material and the thermoplastic resin is 100% by mass, 50 to 95% by mass of the plant material is blended.
  • the blending amount is preferably 50 to 90% by mass, more preferably 52 to 87% by mass, further preferably 54 to 85% by mass, particularly preferably 56 to 83% by mass, and particularly preferably 58 to 80% by mass.
  • thermoplastic resin is a resin mixed with the plant material in the mixing step.
  • the thermoplastic resin used in this mixing step (100% by mass of the entire thermoplastic resin) contains 1 to 30% by mass of an acid-modified thermoplastic resin that is an acid-modified thermoplastic resin.
  • the mechanical properties of a thermoplastic resin molded article using the thermoplastic resin composition according to this method can be improved.
  • other thermoplastic resins excluding the acid-modified thermoplastic resins are also referred to as “non-acid-modified thermoplastic resins”.
  • the “acid-modified thermoplastic resin” is a thermoplastic resin having an acid group.
  • the acid-modified thermoplastic resin include those obtained by introducing an acid group into the following thermoplastic resin (hereinafter, a resin in which no acid group is introduced is also referred to as “base resin”).
  • polyolefin polyolefin, polyester resin, polystyrene, acrylic resin (resin obtained using methacrylate and / or acrylate), polyamide resin, polycarbonate resin, polyacetal resin, ABS resin, olefin elastomer resin, styrene elastomer resin, nitrile Mixed resin of rubber (NBR) and olefin resin (NBR-added olefin resin), mixed resin of ethylene-propylene-diene rubber (EPDM) and NBR-added olefin resin, styrene-butadiene-styrene block copolymer (SBS)
  • NBR olefin elastomer
  • EPDM ethylene-propylene-diene rubber
  • SBS styrene-butadiene-styrene block copolymer
  • SBS styrene-butadiene-styrene block copolymer
  • examples of the polyolefin include polypropylene, polyethylene, and ethylene / propylene random copolymer.
  • examples of the polyester resin include aliphatic polyester resins such as polylactic acid, polycaprolactone, and polybutylene succinate, and aromatic polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate.
  • the type of the acid group is not particularly limited, but is usually a carboxylic acid anhydride residue (—CO—O—OC—) and / or a carboxylic acid residue (—COOH).
  • This acid group may be introduced at the copolymerization stage or may be grafted.
  • the acid group may be introduced by any compound, and examples of the compound include maleic anhydride, itaconic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, maleic acid, itaconic acid. , Fumaric acid, acrylic acid, and methacrylic acid. These may use only 1 type and may use 2 or more types together. Of these, maleic anhydride and itaconic anhydride are preferred, and maleic anhydride is particularly preferred.
  • the amount of acid groups introduced into the acid-modified thermoplastic resin is not particularly limited, the acid value is preferably 5 or more. This is because by using such an acid-modified thermoplastic resin, a high addition effect can be obtained while suppressing the addition amount of the acid-modified thermoplastic resin.
  • the acid value is more preferably 10 to 80, further preferably 15 to 70, and particularly preferably 20 to 60. This acid value is according to JIS K0070.
  • the molecular weight of the acid-modified thermoplastic resin is not particularly limited, but is preferably 10,000 to 200,000 in terms of weight average molecular weight. That is, an acid-modified thermoplastic resin having a relatively small molecular weight is preferable. By using such an acid-modified thermoplastic resin, it is possible to obtain a high addition effect while suppressing property changes to the entire thermoplastic resin composition due to the addition of the acid-modified thermoplastic resin. Furthermore, it is considered that the fluidity of the resulting thermoplastic resin composition can be improved by using an acid-modified thermoplastic resin in this range.
  • the weight average molecular weight is more preferably 15,000 to 150,000, still more preferably 25,000 to 120,000, and particularly preferably 35,000 to 100,000. The weight average molecular weight is based on the GPC method.
  • the resin other than the acid-modified thermoplastic resin constituting the thermoplastic resin is not particularly limited except that it is thermoplastic.
  • this non-acid-modified thermoplastic resin type of non-acid-modified thermoplastic resin
  • polyolefin polyolefin
  • polyester resin polystyrene
  • acrylic resin resin obtained using methacrylate and / or acrylate, etc.
  • polyamide resin polycarbonate resin
  • Polyacetal resins Polyacetal resins and ABS resins.
  • polystyrene resin examples include aliphatic polyester resins such as polylactic acid, polycaprolactone, and polybutylene succinate, and aromatic polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate.
  • polyester resins include aliphatic polyester resins such as polylactic acid, polycaprolactone, and polybutylene succinate, and aromatic polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate.
  • the base resin constituting the acid-modified thermoplastic resin and the non-acid-modified thermoplastic resin may be the same (same type) or different (even different types), but they are the same. It is preferable that both are polyolefins. Polyolefin is easy to handle and can improve productivity. Further, high flexibility and excellent moldability can be obtained. In particular, since the resin is originally excellent in injection moldability, higher fluidity can be obtained by applying this method compared to the case of using other resins. Among polyolefins, polypropylene, polyethylene, ethylene / propylene copolymer, and mixed resin (alloy) of polypropylene and polyethylene are preferable.
  • non-acid-modified thermoplastic resin polypropylene or the above mixed resin
  • base resin constituting the acid-modified thermoplastic resin polypropylene is particularly preferable. Therefore, as the non-acid-modified thermoplastic resin, polypropylene or the above mixed resin is particularly preferable, and as the acid-modified thermoplastic resin, maleic anhydride-modified polypropylene is particularly preferable.
  • thermoplastic resin 100% by mass as a whole
  • the ratio of the acid-modified thermoplastic resin is 1 to 30% by mass. If the blending amount is within this range, it is a matter of course that the mechanical properties of the resulting molded body (thermoplastic resin molded body) can be improved by the combined use with the non-acid-modified thermoplastic resin.
  • the fluidity at the time can be dramatically improved.
  • fluidity can be further improved by using plant fiber as the plant material.
  • the amount is preferably 1 to 27% by mass, more preferably 1 to 22% by mass, and still more preferably 1.5 to 17% by mass.
  • the above-mentioned “mixing and melting apparatus” is an apparatus that melts and mixes a thermoplastic resin and a vegetable material, and excludes an extrusion type apparatus.
  • the type of the mixing and melting apparatus is not particularly limited, but the following mixing and melting apparatus is particularly preferable. When this mixing and melting apparatus is used, in addition to the blending of the acid-modified thermoplastic resin and the blending of the vegetable fiber, higher fluidity can be obtained.
  • FIG. 3 and FIG. 4 (FIG. 4 is cited from the pamphlet of International Publication No. 04/076044 obtained from the Patent Electronic Library of the Patent Office) and FIG. 5 (FIG. 5 is the patent office patent).
  • FIG. 5 is the patent office patent.
  • the mixing and melting apparatus 1 includes a material supply chamber 13, a mixing chamber 3 connected to the material supply chamber 13, and a rotation provided rotatably through the material supply chamber 13 and the mixing chamber 3.
  • a spiral shape that is arranged on the shaft 5 and the rotating shaft 5 in the material supply chamber 13 and that supplies the mixed material (plant material and thermoplastic resin) supplied to the material supply chamber 13 to the mixing chamber 3.
  • a mixing and melting apparatus including blades 12 and mixing blades 10a to 10f disposed on the rotating shaft 5 in the mixing chamber 3 and mixing the mixed material is preferable.
  • the mixing and melting apparatus By using the mixing and melting apparatus, the plant material and the thermoplastic resin are put into the mixing and melting apparatus 1 (material supply chamber 13), and the mixing blades 10a to 10f of the mixing and melting apparatus 1 are rotated, whereby the plant material and the heat Both the plastic resin is struck and pushed so as to be pressed against the inner wall of the mixing chamber 3, and the thermoplastic resin is softened and melted in a short time by the energy (heat amount) that the materials collide with each other. And kneaded. Moreover, the fluidity which can be injection-molded is expressed in the obtained mixture (thermoplastic resin composition before pelletization).
  • the mixing blades 10a to 10f are arranged on the rotary shaft 5 at an attachment angle so as to face each other in the axial direction at a constant angular interval in the circumferential direction of the rotary shaft 5 and to narrow the opposing interval in the rotational direction.
  • the mixing blades 10a to 10f are provided with at least two mixing blades (10a to 10f), and the angle of attachment of the mixing blades 10a to 10f with respect to the rotary shaft 5 is the base of the mixing blades 10a to 10f attached to the rotary shaft 5 To the radially outer tip, and the mixing blades 10a to 10f preferably have a rectangular plate shape.
  • the mixing chamber further includes a mixing chamber cooling means that can circulate a cooling medium through the walls constituting the mixing chamber. With this configuration, an excessive temperature rise in the mixing chamber can be suppressed, and decomposition and thermal deterioration of the thermoplastic resin can be suppressed (and further prevented).
  • the temperature during mixing is not particularly limited, but the temperature of the outer wall of the mixing chamber is 200 ° C. or lower (more preferably 150 ° C. or lower, more preferably 120 ° C. or lower). It is preferable to control, and it is preferable to control to 50 degreeC or more (more preferably 60 degreeC or more, still more preferably 80 degreeC or more). The temperature is preferably reached within 10 minutes (more preferably within 5 minutes). By making the temperature high in a short time, the water can be rapidly evaporated and the above mixing can be performed, and the deterioration of the thermoplastic resin can be more effectively suppressed. Further, the temperature range is preferably within 15 minutes (more preferably within 10 minutes).
  • the temperature is preferably controlled by controlling the rotation speed of the mixing blade of the mixing and melting apparatus. More specifically, it is preferable to control the rotational speed at the tip of the mixing blade to be 5 m / sec to 50 m / sec. By controlling within this range, it is possible to more strongly (more uniformly) mix with the plant material while efficiently softening and melting the thermoplastic resin.
  • the end point in this mixing is not particularly limited, but can be determined by a change in torque applied to the rotating shaft. That is, it is preferable to measure the torque applied to the rotating shaft and stop mixing after the torque reaches the maximum value. As a result, the plant material and the thermoplastic resin can be mixed with each other with good dispersibility. Furthermore, it is more preferable to stop the mixing after the torque starts to decrease after reaching the maximum value of the torque. It is particularly preferable to stop the mixing in a torque range of 40% or more (particularly preferably 50 to 80%) with respect to the maximum torque.
  • the plant material and the thermoplastic resin can be mixed with each other with good dispersibility, and the mixture (the thermoplastic resin composition before pelletization) can be taken out from the inside of the mixing chamber at a temperature of 160 ° C. or higher. It can prevent more reliably that a thermoplastic resin composition adheres and remains in a room
  • other components can be blended in addition to the plant material and the thermoplastic resin.
  • the carbodiimide compound in the case of using the said polyester resin as a thermoplastic resin is mentioned.
  • various antistatic agents, flame retardants, antibacterial agents, coloring agents, and the like can be blended. These may use only 1 type and may use 2 or more types together.
  • These other components may be blended in any step, but are usually blended in the mixing step.
  • thermoplastic resin composition of the present invention other steps can be provided in addition to the mixing step.
  • the process (pelletization process) of pelletizing the thermoplastic resin composition obtained at the said mixing process is mentioned (refer FIG. 3).
  • the thermoplastic resin composition of the present invention can then be injection-molded, but in this case, it is preferable that the thermoplastic resin composition is pelletized.
  • This pelletization may be done in any way. That is, for example, when using an apparatus in which the melt mixing apparatus and a pelletizing apparatus that can be pelletized (subdivided) before the obtained thermoplastic resin composition is removed from heat are integrally used, Mixing and pelletization can be performed continuously to obtain pellets. In addition, when using an apparatus that does not have a pelletizing apparatus as described above, since a bulk thermoplastic resin composition is usually obtained from a mixing and melting apparatus, the bulk thermoplastic resin composition is pelleted. Pellets can be obtained.
  • the mixture (thermoplastic resin composition before being pelletized) obtained in the mixing step is heated after the mixing step. It is preferable to provide a pelletizing step in which pellets are obtained by pressing and compacting (see FIG. 3). In this way, by pressing and solidifying without heating, for example, the thermoplastic resin composition obtained in the mixing step is melted again and pelletized using a general method such as a twin screw extruder. Compared with the case, since the heat history to a thermoplastic resin composition can be reduced, the mechanical characteristic of the molded object obtained can be maintained higher.
  • any device and means may be used in the pelletizing step in which the pellets are pressed and consolidated without heating, and various compression molding methods are particularly preferable.
  • the compression molding method include a roller molding method and an extruder molding method.
  • the roller-type molding method is a method using a roller-type molding machine, in which a mixture is pressed into a die by a roller rotated in contact with the die, and then extruded from the die and molded.
  • Examples of the roller type molding machine include a disk die type (roller disk die type molding machine) and a ring die type (roller ring die type molding machine) having different die shapes.
  • the extruder type molding method is a method using an extruder type molding machine.
  • the mixture After the mixture is pressed into the die by the rotation of the screw auger, the mixture is extruded from the die and molded.
  • a method using a roller disk die molding method is particularly preferable.
  • the roller disk die type molding machine used in this compression molding method is particularly suitable because of its high compression efficiency.
  • the press roller fixing shaft 54 is inserted through the insertion hole 512 and perpendicular to the main rotation shaft 53, and the press roller 52 is rotatably supported by the press roller fixing shaft 54 so as to rotate the main rotation.
  • a roller disk die molding machine (pelletizing apparatus) 500 having a roller disk die molding unit 50 that is rolled on the surface of the disk die 51 as the shaft 53 rotates.
  • the press roller 52 in addition to the above configuration, it is preferable that the press roller 52 further has irregularities 521 on the surface. Further, it is preferable to include a cutting blade 55 that is rotated in accordance with the rotation of the main rotating shaft 53.
  • the mixture introduced from above the main rotating shaft 53 is caught by the surface irregularities 521 provided in the press roller 52 and pushed into the through holes 511, and the disk die 51 Extruded from the back side.
  • the extruded string-like mixture is cut into an appropriate length by the cutting blade 55, pelletized, dropped down and collected.
  • the shape and size of the pelletized thermoplastic resin composition are not particularly limited, but it is preferably a columnar shape (other shapes may be used but a cylindrical shape is preferable).
  • the maximum length is preferably 1 mm or more (usually 20 mm or less), more preferably 1 to 10 mm, and particularly preferably 2 to 7 mm.
  • a raw material pellet manufacturing step of pressing and solidifying plant material to obtain a raw material pellet A mixing step of mixing raw material pellets and the thermoplastic resin (including 1 to 30% by mass of an acid-modified thermoplastic resin) with a melt mixing device; It can be set as the manufacturing method of a thermoplastic resin composition provided with the pelletization process which presses and solidifies the mixture obtained at the said mixing process, and obtains a pellet in this order.
  • the roller disk die molding machine 500 can be used as in the pelletizing process.
  • the specific gravity difference between the plant material and the thermoplastic resin can be reduced, workability can be improved, uneven distribution of the material during mixing can be suppressed, and the plant material and A thermoplastic resin composition in which the thermoplastic resin is uniformly dispersed can be obtained. Furthermore, the molded body obtained has a high mechanical strength.
  • the method for producing the molded body of the present invention is a thermoplastic resin composition (a pelletized thermoplastic resin composition) obtained by the method for producing a thermoplastic resin composition of the present invention. And a molding step of obtaining a molded body by injection molding.
  • the thermoplastic resin composition exhibits excellent fluidity while containing a large amount of plant material as described above. For this reason, as a result of shortening the metering time (such as the metering time in the injection molding machine) at the time of molding and the injection time, the molding cycle can be shortened and the molding efficiency can be improved.
  • Various molding conditions and the apparatus to be used in the injection molding are not particularly limited, and it is preferable to use an appropriate one depending on the target molded body and properties, the type of thermoplastic resin used, and the like.
  • the shape, size, thickness and the like of the molded body obtained by the production method of the present invention are not particularly limited. Further, its use is not particularly limited.
  • This molded body is used, for example, as an interior material, an exterior material, a structural material, or the like for an automobile, a railway vehicle, a ship, an airplane, or the like.
  • examples of the automobile article include an automobile interior material, an automobile instrument panel, and an automobile exterior material.
  • interior materials such as buildings and furniture, exterior materials, and structural materials may be mentioned. That is, a door cover material, a door structure material, a cover material of various furniture (desk, chair, shelf, bag, etc.), a structural material, etc. are mentioned.
  • a package, a container (such as a tray), a protective member, a partition member, and the like can be given.
  • thermoplastic resin composition (1) Examples 1 to 15 and Comparative Examples 3 to 4
  • plant materials kenaf fibers A to D, kenaf core
  • non-acid-modified thermoplastic resin PP; polypropylene
  • acid-modified thermoplastic resin acid-modified PP; maleic anhydride-modified polypropylene
  • each plant material is put into a roller disk die type molding machine ⁇ manufactured by Kikukawa Iron Works Co., Ltd., type "KP280", through-hole diameter 4.2 mm ⁇ , and is formed into a cylindrical shape having a diameter of about 4 mm and a length of about 5 mm. Used after.
  • thermoplastic resin composition of Comparative Example 1.
  • the plant material was introduced into a roller disk die type molding machine ⁇ manufactured by Kikukawa Iron Works Co., Ltd., model “KP280”, through-hole diameter 4.2 mm ⁇ , respectively. It was used after forming a cylindrical shape of about 4 mm and a length of about 5 mm.
  • Kenaf fiber A vegetable fiber having an average fiber length of 0.8 mm (of the cut kenaf fiber, selected as a sieve under a 1.0 mm aperture plate sieve).
  • Kenaf fiber B vegetable fiber having an average fiber length of 3.5 mm (of the cut kenaf fiber, on a sieve with a 3.0 mm aperture plate and with a 5.0 mm aperture plate sieve) Selected as below).
  • Kenaf fiber C vegetable fiber having an average fiber length of 6.0 mm (of the cut kenaf fiber, on a sieve with a 5.0 mm aperture plate and with a 7.0 mm aperture plate sieve) Selected as below).
  • Keenaf fiber D vegetable fiber having an average fiber length of 10.0 mm (a kenaf fiber cut to a width of 1 cm).
  • Keenaf core non-fibrous plant material in the form of powder having an average particle size of 0.6 mm.
  • PP polypropylene
  • non-acid-modified thermoplastic resin manufactured by Nippon Polypro Co., Ltd., product name “Novatech NBX03HRS”.
  • Acid-modified PP maleic anhydride-modified polypropylene (acid-modified thermoplastic resin, manufactured by Sanyo Chemical Industries, Ltd., product name “Yumex # 1001”, base resin is polypropylene, weight average molecular weight is 40,000, melt viscosity is 16,000 mPa ⁇ s, acid value is 26).
  • thermoplastic resin composition of Examples 1 to 15 and Comparative Examples 1 to 4 obtained in [1] above was injected into an injection molding machine (Sumitomo Heavy Industries, Ltd., The injection filling pressure was measured when each thermoplastic resin composition was filled in a mold for obtaining various test pieces under the conditions of a cylinder temperature of 190 ° C. and a mold temperature of 40 ° C. . The results are also shown in Tables 1 to 4.
  • thermoplastic resin compositions of Examples 1 to 15 and Comparative Examples 1 to 4 obtained in the above [1] was put into an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., type “SE100DU”).
  • SE100DU injection molding machine
  • Each thermoplastic resin composition was filled in a bar flow mold under the conditions of a cylinder temperature of 190 ° C., a mold temperature of 40 ° C., and an injection filling pressure of 150 MPa, and the length of the obtained molded body was measured. The results are also shown in Tables 1 to 4.
  • thermoplastic resin compositions of Examples 1 to 15 and Comparative Examples 1 to 4 obtained in the above [1] were injected into an injection molding machine (Sumitomo Heavy Industries, Ltd.). Made into a model “SE100DU”) and injection molded under conditions of a cylinder temperature of 190 ° C. and a mold temperature of 40 ° C. to obtain a rectangular plate-shaped test piece having a thickness of 4 mm, a width of 10 mm, and a length of 80 mm. Then, the bending strength of each obtained test piece was measured.
  • Example 2 when the mixing and melting apparatus was used as in Example 2, the injection filling pressure could be remarkably reduced to 72 MPa despite the same material composition as in Comparative Examples 1 and 2 (the bar flow flow length was 680 mm long).
  • Example 3 it can be seen that even when the blending ratio of the plant material is increased to 70% by mass, the injection filling pressure can be suppressed to the same level as in Comparative Example 2 (the same is true for the bar flow flow length). A trend is observed).
  • the bending strength of the molded body obtained in Comparative Example 1 was 58 MPa
  • the bending strength of the molded body obtained in Comparative Example 2 was 55 MPa.
  • the bending strength of Example 2 was remarkably large at 68 MPa, although the material composition was the same as those of Comparative Examples 1 and 2. That is, by using the mixing and melting apparatus, it was possible to improve the mechanical properties while improving the fluidity.
  • the decrease in the injection filling pressure of 8 MPa is equivalent to the effect of increasing the ratio of the acid-modified thermoplastic resin in the thermoplastic resin from 1% by mass to 5% by mass, and the extremely high fluidity is improved. It turns out that the effect is acquired.
  • the proportion of the vegetable fiber increases, the fluidity improves and the bending strength increases as shown in FIG. That is, the bending strength is increased by 9 MPa when the proportion of vegetable fiber is in the range of 0 to 100% by mass. As shown in FIG. 1, this is in contrast to the fact that the ratio of the vegetable fiber is improved only by 2 MPa no matter how much the acid-modified thermoplastic resin is increased from 2.5% by mass. It can be seen that it greatly contributes to the effect.
  • Comparative Example 4 a thermoplastic resin composition consisting only of kenaf core and PP
  • Example 8 a system in which 2.5% by mass of acid-modified PP is added to Comparative Example 4 Comparing the pressure
  • Comparative Example 4 is 118 MPa
  • Example 8 is 116 MPa. That is, when the kenaf core is used as the vegetable fiber, the decrease in the injection filling pressure due to the addition of the acid-modified thermoplastic resin is 1.7%.
  • Comparative Example 3 thermoplastic resin composition consisting only of plant fiber and PP
  • Example 2 system in which 2.5% by mass of acid-modified PP was added to Comparative Example 3
  • the injection filling pressure of Comparative Example 3 is 110 MPa
  • Example 2 is 72 MPa. That is, when kenaf fiber is used as the vegetable fiber, the decrease in injection filling pressure due to the addition of the acid-modified thermoplastic resin is 35%, which is equivalent to 21 times the former.
  • the reason why such an effect is obtained is not clear, but in the present invention, a synergistic effect for improving the remarkable fluidity by using the vegetable fiber and the acid-modified thermoplastic resin together is obtained. You can see that
  • the method for producing a thermoplastic composition of the present invention and the method for producing a thermoplastic resin molded body of the present invention are widely used in the fields related to automobiles and fields related to architecture.
  • automotive products suitable for automotive interior materials, automotive instrument panels, automotive exterior materials, etc. It is.
  • it is also suitable for interior materials, exterior materials and structural materials such as buildings and furniture.
  • door cover materials door structure materials, cover materials for various furniture (desks, chairs, shelves, bags, etc.), structural materials, and the like can be given.
  • it is also suitable as a package, a container (such as a tray), a protective member, and a partition member.

Abstract

Disclosed is a process for producing a thermoplastic resin composition which has excellent injection molding performance in spite of a fact that the composition contains 50 to 95% by mass of a plant-derived material. Also disclosed is a process for producing a molded article by using a thermoplastic resin composition. The process for producing the composition involves a mixing step of mixing a plant-derived material (e.g., a kenaf fiber, a kenaf core) with a thermoplastic resin (e.g., polyprolylene) in a mixing/kneading apparatus. In the mixing step, an acid-modified thermoplastic resin (e.g., polypropylene modified with maleic anhydride) is used in an amount of 0.5 to 30% by mass relative to the total amount (100% by mass) of the thermoplastic resin components. The process for producing the molded article involves a molding step of injection-molding the thermoplastic resin composition produced by the aforementioned process to form the molded article.

Description

熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂成形体の製造方法Method for producing thermoplastic resin composition and method for producing thermoplastic resin molded article
 本発明は熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂成形体の製造方法に関する。更に詳しくは、植物性材料を50~95質量%と多く含有する熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂成形体の製造方法に関する。 The present invention relates to a method for producing a thermoplastic resin composition and a method for producing a thermoplastic resin molded article. More specifically, the present invention relates to a method for producing a thermoplastic resin composition containing as much as 50 to 95% by mass of a plant material and a method for producing a thermoplastic resin molded article.
 近年、ケナフ等の成長が早く、二酸化炭素吸収量が多い植物性材料は、二酸化炭素排出量削減及び二酸化炭素の固定化等の観点から注目され、樹脂との複合用途で期待されている。
 しかし、特に多量の植物性材料を樹脂に混合し、更には、得られた複合材料を成形するには大きな困難を伴う。これは複合材料に従来の樹脂と同等の十分な流動性を付与することが難しいからであると考えられる。多量の植物材料を含む複合材料を扱う技術としては下記特許文献1及び2が知られている。
In recent years, plant materials such as kenaf that grow rapidly and have a large amount of carbon dioxide absorption are attracting attention from the viewpoints of reducing carbon dioxide emissions, fixing carbon dioxide, and the like, and are expected to be used in combination with resins.
However, it is particularly difficult to mix a large amount of plant material with the resin and to mold the resulting composite material. This is considered to be because it is difficult to give the composite material sufficient fluidity equivalent to the conventional resin. The following Patent Documents 1 and 2 are known as techniques for handling composite materials containing a large amount of plant material.
特開2005-105245号公報JP 2005-105245 A 特開2000-219812号公報JP 2000-211981
 上記特許文献1では、ケナフ繊維の含有量が50質量%を超える場合に、樹脂組成物の流動性が著しく低下するので射出成形において、満足する製品形状や製品形態が得られない等の問題が発生することが示されている。一方、上記特許文献2では、樹脂にロジンや可塑剤を加えず、植物繊維のみを配合した場合には植物繊維が均一に分散され難く、樹脂と植物繊維の間の親和性が悪いことなどから、強度等に劣り、又品質の均一性にも欠け、実用性に乏しい材料しか得られないことが示されている。
 即ち、いずれの文献においても、50質量%を超える多量の植物性材料を含む射出成形可能な熱可塑性樹脂を得るには困難を伴うことが示されている。
In the above-mentioned Patent Document 1, when the content of kenaf fiber exceeds 50% by mass, the fluidity of the resin composition is remarkably lowered, so that there is a problem that a satisfactory product shape and product form cannot be obtained in injection molding. It has been shown to occur. On the other hand, in Patent Document 2, when only rosin or plasticizer is not added to the resin and only the plant fiber is blended, the plant fiber is difficult to be uniformly dispersed, and the affinity between the resin and the plant fiber is poor. It is shown that only materials with poor strength and the like, lack of uniformity of quality, and poor practicality can be obtained.
That is, in any document, it is shown that it is difficult to obtain an injection-moldable thermoplastic resin containing a large amount of plant material exceeding 50% by mass.
 本発明は、上記に鑑みてなされたものであり、植物性材料を50~95質量%と多く含有しながら射出成形性に優れた熱可塑性樹脂組成物の製造方法及び熱可塑性樹脂組成物を用いた成形体の製造方法を提供することを目的とする。 The present invention has been made in view of the above, and uses a method for producing a thermoplastic resin composition excellent in injection moldability while containing a large amount of plant material in an amount of 50 to 95% by mass, and a thermoplastic resin composition. An object of the present invention is to provide a method for producing a molded article.
 即ち、本発明は以下に示す通りである。
 (1)植物性材料と熱可塑性樹脂とを含有し、該植物性材料及び該熱可塑性樹脂の合計を100質量%とした場合に該植物性材料を50~95質量%含有する熱可塑性樹脂組成物の製造方法であって、
 植物性材料と熱可塑性樹脂とを混合溶融装置により混合する混合工程を備え、
 上記混合工程では、上記熱可塑性樹脂全体を100質量%とした場合に、1~30質量%の酸変性熱可塑性樹脂を用いることを特徴とする熱可塑性樹脂組成物の製造方法。
 (2)上記植物性材料は、植物性繊維を含む上記(1)に記載の熱可塑性樹脂組成物の製造方法。
 (3)上記植物性繊維は、平均繊維長が0.5~20mmである上記(2)に記載の熱可塑性樹脂組成物の製造方法。
 (4)上記植物性材料は、ケナフである上記(1)乃至(3)のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法。
 (5)上記酸変性熱可塑性樹脂は、酸価が5以上である上記(1)乃至(4)のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法。
 (6)上記酸変性熱可塑性樹脂は、重量平均分子量が10,000~200,000である上記(1)乃至(5)のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法。
 (7)上記混合溶融装置は、上記混合を行う混合室及び該混合室内に配置された混合羽根を備え、
 上記混合工程は、上記混合室中で上記混合羽根の回転により溶融された上記熱可塑性樹脂と上記植物性材料とを混合する上記(1)乃至(6)のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法。
 (8)上記混合工程の後に、該混合工程で得られた混合物を加熱せず押し固めてペレットを得るペレット化工程を備える上記(1)乃至(7)のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法。
 (9)上記(1)乃至(8)のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法により得られた熱可塑性樹脂組成物を射出成形して成形体を得る成形工程を備えることを特徴とする熱可塑性樹脂成形体の製造方法。
That is, the present invention is as follows.
(1) A thermoplastic resin composition comprising a plant material and a thermoplastic resin, and the plant material and the thermoplastic resin in a total amount of 100% by mass, the plant material being contained in an amount of 50 to 95% by mass. A method for manufacturing a product,
A mixing step of mixing the plant material and the thermoplastic resin with a mixing and melting apparatus;
The method for producing a thermoplastic resin composition, wherein in the mixing step, 1 to 30% by mass of an acid-modified thermoplastic resin is used when the total amount of the thermoplastic resin is 100% by mass.
(2) The said vegetable material is a manufacturing method of the thermoplastic resin composition as described in said (1) containing vegetable fiber.
(3) The method for producing a thermoplastic resin composition according to (2), wherein the vegetable fiber has an average fiber length of 0.5 to 20 mm.
(4) The method for producing a thermoplastic resin composition according to any one of (1) to (3), wherein the plant material is kenaf.
(5) The method for producing a thermoplastic resin composition according to any one of (1) to (4), wherein the acid-modified thermoplastic resin has an acid value of 5 or more.
(6) The method for producing a thermoplastic resin composition according to any one of (1) to (5), wherein the acid-modified thermoplastic resin has a weight average molecular weight of 10,000 to 200,000.
(7) The mixing and melting apparatus includes a mixing chamber for performing the mixing and a mixing blade disposed in the mixing chamber,
The thermoplastic resin according to any one of (1) to (6), wherein the mixing step mixes the thermoplastic resin melted by rotation of the mixing blade in the mixing chamber and the plant material. A method for producing a resin composition.
(8) The thermoplastic according to any one of (1) to (7), further comprising a pelletizing step after the mixing step, wherein the mixture obtained in the mixing step is pressed and consolidated without heating. A method for producing a resin composition.
(9) A molding step of obtaining a molded body by injection molding the thermoplastic resin composition obtained by the method for producing a thermoplastic resin composition according to any one of (1) to (8) above is provided. A method for producing a thermoplastic resin molded article.
 本発明の熱可塑性樹脂組成物の製造方法によれば、植物性材料を50~95質量%と多く含有しながら、従来に比べてより優れた射出成形性が得られる。特に高い流動性が得られて、低い射出充填圧力で成形できる熱可塑性樹脂組成物を得ることができる。また、これにより賦形性に優れ、また、より大きな形状及びより精細な形状への成形が可能となる。更に、この熱可塑性樹脂組成物を用いた成形体では優れた機械的特性が得られる。
 植物性材料が植物性繊維を含む場合は、流動性に更に優れ、高い賦形性を得ることができる。また、この熱可塑性樹脂組成物を用いて得られた成形体では優れた機械的特性が得られる。
 植物性繊維の平均繊維長が0.5~20mmである場合は、特に高い流動性が得られ、更に優れた賦形性を得ることができる。また、この熱可塑性樹脂組成物を用いて得られた成形体では優れた機械的特性が得られる。
 植物性材料がケナフである場合、ケナフは成長が極めて早い一年草であり、優れた二酸化炭素吸収性を有するため、大気中の二酸化炭素量の削減、森林資源の有効利用等に貢献できる。
 酸変性熱可塑性樹脂の酸価が5以上である場合は、特に高い流動性が得られ、更に優れた賦形性を得ることができる。また、この熱可塑性樹脂組成物を用いて得られた成形体では優れた機械的特性が得られる。
 酸変性熱可塑性樹脂の重量平均分子量が10,000~200,000である場合は、特に高い流動性が得られ、更に優れた賦形性を得ることができる。また、この熱可塑性樹脂組成物を用いて得られた成形体では優れた機械的特性が得られる。
 混合室中で混合羽根の回転により溶融された熱可塑性樹脂と植物性材料とを混合する場合は、特に短時間で混合を行うことができ、また、外部からの加熱を要することなく熱可塑性樹脂組成物を製造できる。更に、加熱を要さず別途の加熱手段等が不要であり、短時間で混合できるために低コストで熱可塑性樹脂組成物を製造できる。
 混合工程で得られた混合物を加熱せず押し固めてペレットを得るペレット化工程を備える場合は、非加熱でペレット化を行うために熱可塑性樹脂の熱劣化を抑制でき、得られる熱可塑性樹脂成形体の機械的特性を向上させることができる。
 本発明の熱可塑性樹脂成形体の製造方法によれば、植物性材料を多量に含有するにもかかわらず、熱可塑性樹脂組成物を射出成形により成形できる。更に、これらの成形を低い充填圧力で行うことができ、加えて賦形性(成形性)にも優れる。このため、生産性に優れた成形を行うことができる。また、得られる成形体においては、高い機械的特性が得られる。
According to the method for producing a thermoplastic resin composition of the present invention, an excellent injection moldability can be obtained as compared with the prior art while containing a large amount of plant material at 50 to 95% by mass. In particular, a high fluidity can be obtained, and a thermoplastic resin composition that can be molded at a low injection filling pressure can be obtained. Further, this makes it possible to form into a larger shape and a finer shape with excellent formability. Furthermore, excellent mechanical properties can be obtained with a molded body using this thermoplastic resin composition.
In the case where the plant material contains plant fibers, the fluidity is further improved and high formability can be obtained. In addition, excellent mechanical properties can be obtained with a molded article obtained using this thermoplastic resin composition.
When the average fiber length of the vegetable fiber is 0.5 to 20 mm, particularly high fluidity can be obtained, and further excellent formability can be obtained. In addition, excellent mechanical properties can be obtained with a molded article obtained using this thermoplastic resin composition.
When the plant material is kenaf, kenaf is an extremely fast growing annual grass and has an excellent carbon dioxide absorbability, so that it can contribute to the reduction of the amount of carbon dioxide in the atmosphere and the effective use of forest resources.
When the acid value of the acid-modified thermoplastic resin is 5 or more, particularly high fluidity can be obtained, and further excellent formability can be obtained. In addition, excellent mechanical properties can be obtained with a molded article obtained using this thermoplastic resin composition.
When the weight average molecular weight of the acid-modified thermoplastic resin is 10,000 to 200,000, particularly high fluidity can be obtained, and further excellent formability can be obtained. In addition, excellent mechanical properties can be obtained with a molded article obtained using this thermoplastic resin composition.
When mixing the thermoplastic resin melted by the rotation of the mixing blade and the plant material in the mixing chamber, the mixing can be performed in a particularly short time, and the thermoplastic resin is not required from the outside. A composition can be produced. Furthermore, since heating is not required and a separate heating means is not required and mixing can be performed in a short time, a thermoplastic resin composition can be produced at low cost.
When equipped with a pelletizing step that obtains pellets by pressing and solidifying the mixture obtained in the mixing step without heating, it is possible to suppress thermal degradation of the thermoplastic resin to perform pelletization without heating, and to obtain a thermoplastic resin molding The mechanical properties of the body can be improved.
According to the method for producing a thermoplastic resin molded article of the present invention, a thermoplastic resin composition can be molded by injection molding despite containing a large amount of plant material. Furthermore, these moldings can be performed at a low filling pressure, and in addition, formability (moldability) is also excellent. For this reason, the shaping | molding excellent in productivity can be performed. Moreover, in the obtained molded object, a high mechanical characteristic is acquired.
熱可塑性樹脂中の酸変性熱可塑性樹脂の割合と射出充填圧力並びに曲げ強度との相関を示すグラフである。It is a graph which shows the correlation with the ratio of the acid-modified thermoplastic resin in a thermoplastic resin, injection filling pressure, and bending strength. 植物性材料中の植物性繊維の割合と射出充填圧力並びに曲げ強度との相関を示すグラフである。It is a graph which shows the correlation with the ratio of the vegetable fiber in plant material, injection filling pressure, and bending strength. 熱可塑性樹脂組成物の製造方法の一例であって、混合工程に加えてペレット化工程を備える場合を説明する模式的な説明図である。It is an example of the manufacturing method of a thermoplastic resin composition, Comprising: It is typical explanatory drawing explaining the case where a pelletizing process is provided in addition to a mixing process. 混合溶融装置の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of a mixing-melting apparatus. 混合溶融装置に配設された混合羽根の一例を示す模式的な側面図である。It is a typical side view which shows an example of the mixing blade | wing arrange | positioned by the mixing-melting apparatus. ローラーディスクダイ式成形機の要部の一例を示す模式的な斜視図である。It is a typical perspective view which shows an example of the principal part of a roller disc die type molding machine.
符号の説明Explanation of symbols
 1;撹拌機、3;混合室、5;回転軸、10及び10a~10f;混合羽根、12;らせん状羽根、13;材料供給室、500;ローラーディスクダイ式成形機(ペレット化装置)、50;ローラーディスクダイ式成形部(ペレット化部)、51;ディスクダイ、511;貫通孔、512;主回転軸挿通孔、52;プレスローラ、521;凹凸部、53;主回転軸、54;プレスローラ固定軸、55;切断用ブレード。 DESCRIPTION OF SYMBOLS 1; Stirrer, 3; Mixing chamber, 5; Rotating shaft, 10 and 10a-10f; Mixing blade, 12; Spiral blade, 13; Material supply chamber, 500; Roller disk die type molding machine (pelletizing apparatus), 50; Roller disk die type molding part (pelletizing part), 51; Disc die, 511; Through hole, 512; Main rotation shaft insertion hole, 52; Press roller, 521; Concavity and convexity, 53; Main rotation shaft, 54; Press roller fixed shaft 55; cutting blade.
 以下、本発明について詳細に説明する。
[1]熱可塑性樹脂組成物の製造方法
 本発明の熱可塑性樹脂組成物の製造方法は、
 植物性材料と熱可塑性樹脂とを含有し、該植物性材料及び該熱可塑性樹脂の合計を100質量%とした場合に該植物性材料を50~95質量%含有する熱可塑性樹脂組成物の製造方法であって、
 植物性材料と熱可塑性樹脂とを混合溶融装置により混合する混合工程を備え、
 上記混合工程では、上記熱可塑性樹脂全体を100質量%とした場合に、1~30質量%の酸変性熱可塑性樹脂を用いることを特徴とする。
Hereinafter, the present invention will be described in detail.
[1] Method for producing thermoplastic resin composition The method for producing the thermoplastic resin composition of the present invention comprises:
Production of a thermoplastic resin composition comprising a plant material and a thermoplastic resin, wherein the plant material and the thermoplastic resin are 100% by mass, and the plant material is contained in an amount of 50 to 95% by mass. A method,
A mixing step of mixing the plant material and the thermoplastic resin with a mixing and melting apparatus;
The mixing step is characterized in that 1 to 30% by mass of an acid-modified thermoplastic resin is used when the total thermoplastic resin is 100% by mass.
 上記「混合工程」は、植物性材料と熱可塑性樹脂とを撹拌機で混合する工程である。
 上記「植物性材料」は、植物に由来する材料である。この植物性材料としては、ケナフ、ジュート麻、マニラ麻、サイザル麻、雁皮、三椏、楮、バナナ、パイナップル、ココヤシ、トウモロコシ、サトウキビ、バガス、ヤシ、パピルス、葦、エスパルト、サバイグラス、麦、稲、竹、各種針葉樹(スギ及びヒノキ等)、広葉樹及び綿花などの各種植物体から得られた植物性材料が挙げられる。この植物性材料は1種のみを用いてもよく2種以上を併用してもよい。これらのなかではケナフが好ましい。ケナフは成長が極めて早い一年草であり、優れた二酸化炭素吸収性を有するため、大気中の二酸化炭素量の削減、森林資源の有効利用等に貢献できるからである。
 また、上記植物性材料として用いる植物体の部位は特に限定されず、非木質部、木質部、葉部、茎部及び根部等の植物体を構成するいずれの部位であってもよい。更に、特定部位のみを用いてもよく2ヶ所以上の異なる部位を併用してもよい。
The “mixing step” is a step of mixing the plant material and the thermoplastic resin with a stirrer.
The “plant material” is a material derived from a plant. These plant materials include kenaf, jute hemp, manila hemp, sisal hemp, husk, cocoon, cocoon, banana, pineapple, coconut palm, corn, sugar cane, bagasse, palm, papyrus, cocoon, esparto, sabaigrass, wheat, rice, bamboo And plant materials obtained from various plants such as various conifers (such as cedar and cypress), broad-leaved trees and cotton. This plant material may use only 1 type and may use 2 or more types together. Of these, kenaf is preferred. This is because kenaf is an annual plant that grows very fast and has excellent carbon dioxide absorptivity, which contributes to reducing the amount of carbon dioxide in the atmosphere and effectively using forest resources.
Moreover, the site | part of the plant body used as said plant material is not specifically limited, Any site | part which comprises plant bodies, such as a non-wood part, a wood part, a leaf part, a stem part, and a root part, may be sufficient. Furthermore, only a specific part may be used and two or more different parts may be used in combination.
 尚、本発明におけるケナフとは、木質茎を有する早育性の一年草であり、アオイ科に分類される植物である。学名におけるhibiscus cannabinus及びhibiscus sabdariffa等が含まれ、更に、通称名における紅麻、キューバケナフ、洋麻、タイケナフ、メスタ、ビムリ、アンバリ麻及びボンベイ麻等が含まれる。
 また、本発明におけるジュートとは、ジュート麻から得られる繊維である。このジュート麻には、黄麻(コウマ、Corchorus capsularis L.)、及び、綱麻(ツナソ)、シマツナソ並びにモロヘイヤ、を含む麻及びシナノキ科の植物を含むものとする。
In addition, the kenaf in this invention is an early-growing annual grass which has a wooden stem, and is a plant classified into the mallow family. Hibiscus cannabinus and hibiscus sabdariffa etc. in scientific names are included, and further, red, heba, cubane kenaf, western hemp, taikenaf, mesta, bimli, ambari, and bombay are known as common names.
The jute in the present invention is a fiber obtained from jute hemp. This jute hemp shall include hemp and linden plants including jute (Chorus corpus capsularis L.), and hemp (Tunaso), Shimatsunaso and Morohaya.
 上記植物性材料(混合前の植物性材料)の形状は特に限定されず、繊維状、粉末状(粒状及び球状等を含む)、チップ状(板状及び薄片状等を含む)及び不定形状(粉砕物状等を含む)などの形態が挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよいが、特に上記植物性材料として植物性繊維が含まれることが好ましい。即ち、本方法では植物性材料として植物性繊維のみを用いること、又は、植物性繊維と非繊維質の植物性材料(以下、単に「非繊維質植物性材料」という)とを併用すること、が好ましい。 The shape of the plant material (plant material before mixing) is not particularly limited, and is fibrous, powdery (including granular and spherical), chip (including plate and flakes), and irregular shape ( And the like). Although these may use only 1 type and may use 2 or more types together, it is preferable that vegetable fiber is contained as said plant material especially. That is, in this method, only plant fiber is used as the plant material, or a combination of plant fiber and non-fiber plant material (hereinafter simply referred to as “non-fiber plant material”), Is preferred.
 本方法では、その理由は定かではないものの、植物性繊維と酸変性熱可塑性樹脂とを併用した場合には、得られる熱可塑性樹脂組成物の流動性が顕著に向上されることに加えて、植物性材料中の植物性繊維の割合を多くすることによっても、更に、熱可塑性樹脂組成物の流動性を向上させることができる(図2参照)。即ち、植物性繊維と酸変性熱可塑性樹脂とを併用することで、機械的特性に優れた熱可塑性樹脂成形体が得られるのは勿論のこと、高い賦形性が得られ、より細かい形状への成形や、より大きな成形体の成形が可能となる。また、このような成形体をより低コストで製造することができる。 In this method, although the reason is not clear, when the vegetable fiber and the acid-modified thermoplastic resin are used in combination, the fluidity of the resulting thermoplastic resin composition is significantly improved, The fluidity of the thermoplastic resin composition can be further improved by increasing the proportion of vegetable fibers in the plant material (see FIG. 2). That is, by using a vegetable fiber and an acid-modified thermoplastic resin in combination, it is possible to obtain a thermoplastic resin molded article having excellent mechanical properties, as well as high formability, and to a finer shape. And larger moldings can be formed. Moreover, such a molded body can be manufactured at a lower cost.
 この植物性繊維とは、植物体から取り出された繊維であり、且つ繊維長Lに対する繊維径tの割合L/tが5.0~20,000であるものをいう。この範囲を外れるものは、本発明においては非繊維質植物材料とする。また、植物性繊維において、上記繊維長Lは、通常、0.5~300mmであり、上記繊維径tは、通常、0.01~1mmである。この繊維長は、JIS L1015における直接法と同様に、1本の植物性繊維を伸張させずにまっすぐに伸ばし、置尺上で測定した値(L)である。一方、繊維径は、繊維長を測定した当該植物性繊維について、繊維の長さ方向の中央における繊維径を光学顕微鏡を用いて測定した値(t)である。 The plant fiber is a fiber taken out from a plant body and has a ratio L / t of the fiber diameter t to the fiber length L of 5.0 to 20,000. Those outside this range are non-fibrous plant materials in the present invention. In the vegetable fiber, the fiber length L is usually 0.5 to 300 mm, and the fiber diameter t is usually 0.01 to 1 mm. This fiber length is a value (L) measured on a measuring scale by stretching a single plant fiber straight without stretching, as in the direct method in JIS L1015. On the other hand, a fiber diameter is the value (t) which measured the fiber diameter in the center of the fiber length direction using the optical microscope about the vegetable fiber which measured fiber length.
 更に、この植物性繊維の平均繊維長及び平均繊維径等は特に限定されないが、平均繊維長は、20mm以下が好ましい。平均繊維長が20mm以下の植物性繊維を用いることで、植物性繊維を用いることによる前記効果をよりよく得ることができる。この平均繊維長は1~15mmがより好ましく、2~10mmが更に好ましく、3~7mmが特に好ましい。この平均繊維長は、JIS L1015に準拠して、直接法にて無作為に単繊維を1本ずつ取り出し、伸張させずにまっすぐに伸ばし、置尺上で繊維長を測定し、合計200本について測定した平均値である。
 一方、上記平均繊維径は、0.2mm以下が好ましい。平均繊維径が0.2mm以下の植物性繊維を用いることで、植物性繊維を用いることによる前記効果をよりよく得ることができる。この平均繊維径は0.01~0.15mmがより好ましく、0.01~0.1mmが特に好ましい。この平均繊維径は、無作為に単繊維を1本ずつ取り出し、繊維の長さ方向の中央における繊維径を光学顕微鏡を用いて実測し、合計200本について測定した平均値である。
Furthermore, the average fiber length and the average fiber diameter of the vegetable fiber are not particularly limited, but the average fiber length is preferably 20 mm or less. By using a vegetable fiber having an average fiber length of 20 mm or less, the above-described effect by using the vegetable fiber can be better obtained. The average fiber length is more preferably 1 to 15 mm, further preferably 2 to 10 mm, and particularly preferably 3 to 7 mm. This average fiber length is determined according to JIS L1015 by taking out single fibers one at a time by the direct method, stretching straight without stretching, and measuring the fiber length on a measuring scale. It is the measured average value.
On the other hand, the average fiber diameter is preferably 0.2 mm or less. By using vegetable fibers having an average fiber diameter of 0.2 mm or less, the above-mentioned effect by using vegetable fibers can be obtained better. The average fiber diameter is more preferably 0.01 to 0.15 mm, and particularly preferably 0.01 to 0.1 mm. This average fiber diameter is an average value measured for a total of 200 fibers by taking out single fibers at random and measuring the fiber diameter at the center in the length direction of the fibers using an optical microscope.
 尚、前述の非繊維質植物性材料を用いる場合、即ち、例えば、粉末状、チップ状及び不定形状の植物性材料を用いる場合、非繊維質植物性材料の大きさは特に限定されないが、例えば、最大長さ(粒状である場合には最大粒径)は20mm以下(通常0.1mm以上、更には0.3~20mm、より更には0.3~15mm、特に1~10mm)とすることが好ましい。
 尚、本方法により得られる熱可塑性樹脂組成物では、上記混合前の植物性材料の形状及び大きさは、熱可塑性樹脂組成物内でそのまま維持されてもよく、維持されなくてもよい。維持されない場合としては、混合時に更に細かく粉砕されて熱可塑性樹脂組成物内に含まれる場合が挙げられる。
In addition, when using the above-mentioned non-fibrous plant material, that is, for example, when using powdery, chip-like and amorphous plant materials, the size of the non-fibrous plant material is not particularly limited. The maximum length (maximum particle size in the case of granules) is 20 mm or less (usually 0.1 mm or more, more preferably 0.3 to 20 mm, even more preferably 0.3 to 15 mm, particularly 1 to 10 mm). Is preferred.
In the thermoplastic resin composition obtained by this method, the shape and size of the plant material before mixing may or may not be maintained as it is in the thermoplastic resin composition. The case where it is not maintained includes a case where it is further finely pulverized during mixing and contained in the thermoplastic resin composition.
 植物性材料全体に対する植物性繊維の配合割合は特に限定されないが、植物性材料全体を100質量%とした場合に、植物性繊維は5質量%以上(100質量%であってもよい)とすることが好ましい。この範囲では、植物性繊維が含まれたことによる熱可塑性樹脂成形体の機械的特性を向上させる効果をえつつ、更に、熱可塑性樹脂組成物の流動性を効果的に向上させることができる。この割合は、前述のように、植物性材料の全てを植物性繊維とする場合には100質量%となるが、植物性繊維と非繊維質植物性材料とを併用する場合においては、5~99質量%とすることが好ましい。この範囲では、植物性繊維を配合することによる流動性向上効果を特に得やすい。更に、この割合は、10~90質量%とすることがより好ましく、20~80質量%とすることが更に好ましく、25~75質量%とすることが特に好ましい。 The blending ratio of the vegetable fiber to the whole plant material is not particularly limited, but when the whole plant material is 100% by mass, the plant fiber is 5% by mass or more (may be 100% by mass). It is preferable. In this range, the fluidity of the thermoplastic resin composition can be effectively improved while obtaining the effect of improving the mechanical properties of the thermoplastic resin molded article due to the inclusion of vegetable fibers. As described above, this ratio is 100% by mass when all of the plant material is plant fiber, but when the plant fiber and the non-fiber plant material are used in combination, the ratio is 5 to 5%. It is preferable to set it as 99 mass%. In this range, it is particularly easy to obtain a fluidity improving effect by blending vegetable fibers. Further, this ratio is more preferably 10 to 90% by mass, further preferably 20 to 80% by mass, and particularly preferably 25 to 75% by mass.
 また、植物性材料としてケナフを用いる場合には、ケナフコアを上記非繊維質植物性材料として用いることができる。ケナフは靭皮と称される外層部分とコアと称される芯材部分とからなるが、このうち靭皮は、強靱な繊維を有するために利用価値が高いのに対して、コアはケナフ全体の60体積%程をも占めるにも関わらず、植物性繊維にすることができない。更に、見掛け比重が小さく嵩高いために取扱い性が悪く、樹脂との混練が難しく、コアは廃棄又は燃料化されることが多い。しかし、本方法によれば、ケナフコアを植物性材料として利用しつつも十分に熱可塑性樹脂組成物の流動性を高めることができる。 In addition, when kenaf is used as the plant material, kenaf core can be used as the non-fibrous plant material. Kenaf consists of an outer layer part called bast and a core part called core. Among these, bast is highly useful because it has tough fibers, whereas the core is the whole kenaf. Although it occupies as much as 60% by volume, it cannot be made into a vegetable fiber. Furthermore, since the apparent specific gravity is small and bulky, handling is poor, kneading with the resin is difficult, and the core is often discarded or made into fuel. However, according to this method, the fluidity of the thermoplastic resin composition can be sufficiently enhanced while using kenaf core as a plant material.
 また、本方法により得られる熱可塑性樹脂組成物に含有される植物性材料は50~95質量%である。この含有量は、通常、製造時に配合する植物性材料の配合量と同じである。即ち、植物性材料と熱可塑性樹脂との合計を100質量%とした場合に、50~95質量%の植物性材料を配合するものである。この配合量は50~90質量%が好ましく、52~87質量%がより好ましく、54~85質量%が更に好ましく、56~83質量%が特に好ましく、58~80質量%がより特に好ましい。 The plant material contained in the thermoplastic resin composition obtained by this method is 50 to 95% by mass. This content is usually the same as the blending amount of the plant material blended during production. That is, when the total of the plant material and the thermoplastic resin is 100% by mass, 50 to 95% by mass of the plant material is blended. The blending amount is preferably 50 to 90% by mass, more preferably 52 to 87% by mass, further preferably 54 to 85% by mass, particularly preferably 56 to 83% by mass, and particularly preferably 58 to 80% by mass.
 上記「熱可塑性樹脂」は、混合工程で植物性材料と混合される樹脂である。この混合工程で用いる熱可塑性樹脂(熱可塑性樹脂全体を100質量%)は、1~30質量%の酸変性された熱可塑性樹脂である酸変性熱可塑性樹脂を含有する。本方法では、この酸変性熱可塑性樹脂を用いることにより、本方法による熱可塑性樹脂組成物を用いた熱可塑性樹脂成形体の機械的特性を向上させることができる。
 尚、本発明では、以下、熱可塑性樹脂のうち、酸変性熱可塑性樹脂を除く他の熱可塑性樹脂を「非酸変性熱可塑性樹脂」ともいうものとする。
The “thermoplastic resin” is a resin mixed with the plant material in the mixing step. The thermoplastic resin used in this mixing step (100% by mass of the entire thermoplastic resin) contains 1 to 30% by mass of an acid-modified thermoplastic resin that is an acid-modified thermoplastic resin. In this method, by using this acid-modified thermoplastic resin, the mechanical properties of a thermoplastic resin molded article using the thermoplastic resin composition according to this method can be improved.
In the present invention, hereinafter, among the thermoplastic resins, other thermoplastic resins excluding the acid-modified thermoplastic resins are also referred to as “non-acid-modified thermoplastic resins”.
 上記「酸変性熱可塑性樹脂」は、酸基を有する熱可塑性樹脂である。この酸変性熱可塑性樹脂としては、以下の熱可塑性樹脂に酸基を導入したものが挙げられる(尚、以下では酸基が導入されていない状態の樹脂を「ベース樹脂」ともいう)。
 即ち、ポリオレフィン、ポリエステル樹脂、ポリスチレン、アクリル樹脂(メタクリレート及び/又はアクリレート等を用いて得られた樹脂)、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ABS樹脂、オレフィン系エラストマー樹脂、スチレン系エラストマー樹脂、ニトリルゴム(NBR)とオレフィン系樹脂との混合樹脂(NBR添加オレフィン樹脂)、エチレン-プロピレン-ジエンゴム(EPDM)とNBR添加オレフィン樹脂との混合樹脂、スチレン-ブタジエン-スチレンブロック共重合体(SBS)と水添されたスチレン-ブタジエン-スチレンブロック共重合体(SBBS)とスチレン-エチレン・ブチレン-スチレンブロック共重合体(SEBS)との混合樹脂などが挙げられる。これらは1種のみを用いてもよく2種以上を併用してもよい。
The “acid-modified thermoplastic resin” is a thermoplastic resin having an acid group. Examples of the acid-modified thermoplastic resin include those obtained by introducing an acid group into the following thermoplastic resin (hereinafter, a resin in which no acid group is introduced is also referred to as “base resin”).
Namely, polyolefin, polyester resin, polystyrene, acrylic resin (resin obtained using methacrylate and / or acrylate), polyamide resin, polycarbonate resin, polyacetal resin, ABS resin, olefin elastomer resin, styrene elastomer resin, nitrile Mixed resin of rubber (NBR) and olefin resin (NBR-added olefin resin), mixed resin of ethylene-propylene-diene rubber (EPDM) and NBR-added olefin resin, styrene-butadiene-styrene block copolymer (SBS) Examples thereof include a mixed resin of a hydrogenated styrene-butadiene-styrene block copolymer (SBBS) and a styrene-ethylene-butylene-styrene block copolymer (SEBS). These may use only 1 type and may use 2 or more types together.
 上記ベース樹脂のうち、ポリオレフィンとしては、ポリプロピレン、ポリエチレン、エチレン・プロピレンランダム共重合体などが挙げられる。ポリエステル樹脂としては、ポリ乳酸、ポリカプロラクトン及びポリブチレンサクシネート等の脂肪族ポリエステル樹脂、並びに、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート及びポリブチレンテレフタレート等の芳香族ポリエステル樹脂などが挙げられる。 Among the above base resins, examples of the polyolefin include polypropylene, polyethylene, and ethylene / propylene random copolymer. Examples of the polyester resin include aliphatic polyester resins such as polylactic acid, polycaprolactone, and polybutylene succinate, and aromatic polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate.
 上記酸基の種類は特に限定されないが、通常、無水カルボン酸残基(-CO-O-OC-)及び/又はカルボン酸残基(-COOH)である。この酸基は共重合段階で導入されたものであってもよく、グラフト導入されたものであってもよい。また、酸基はどのような化合物により導入されたものであってもよく、その化合物としては、無水マレイン酸、無水イタコン酸、無水コハク酸、無水グルタル酸、無水アジピン酸、マレイン酸、イタコン酸、フマル酸、アクリル酸、及びメタクリル酸等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。これらのなかでは、無水マレイン酸及び無水イタコン酸が好ましく、無水マレイン酸が特に好ましい。 The type of the acid group is not particularly limited, but is usually a carboxylic acid anhydride residue (—CO—O—OC—) and / or a carboxylic acid residue (—COOH). This acid group may be introduced at the copolymerization stage or may be grafted. The acid group may be introduced by any compound, and examples of the compound include maleic anhydride, itaconic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, maleic acid, itaconic acid. , Fumaric acid, acrylic acid, and methacrylic acid. These may use only 1 type and may use 2 or more types together. Of these, maleic anhydride and itaconic anhydride are preferred, and maleic anhydride is particularly preferred.
 酸変性熱可塑性樹脂に導入される酸基の量は特に限定されないものの、酸価において5以上であることが好ましい。このような酸変性熱可塑性樹脂を用いることにより、酸変性熱可塑性樹脂の添加量を抑制しつつ高い添加効果を得ることができるからである。この酸価は、10~80がより好ましく、15~70が更に好ましく、20~60が特に好ましい。尚、この酸価はJIS K0070によるものである。 Although the amount of acid groups introduced into the acid-modified thermoplastic resin is not particularly limited, the acid value is preferably 5 or more. This is because by using such an acid-modified thermoplastic resin, a high addition effect can be obtained while suppressing the addition amount of the acid-modified thermoplastic resin. The acid value is more preferably 10 to 80, further preferably 15 to 70, and particularly preferably 20 to 60. This acid value is according to JIS K0070.
 更に、酸変性熱可塑性樹脂の分子量は特に限定されないが、重量平均分子量において10,000~200,000であることが好ましい。即ち、比較的分子量の小さい酸変性熱可塑性樹脂であることが好ましい。このような酸変性熱可塑性樹脂を用いることにより、酸変性熱可塑性樹脂の添加による熱可塑性樹脂組成物全体への性状変化を抑制しつつ、高い添加効果を得ることができる。更に、この範囲の酸変性熱可塑性樹脂を用いることにより、得られる熱可塑性樹脂組成物の流動性を向上させることができるものと考えられる。この重量平均分子量は、15,000~150,000がより好ましく、25,000~120,000が更に好ましく、35,000~100,000が特に好ましい。尚、この重量平均分子量はGPC法によるものである。 Furthermore, the molecular weight of the acid-modified thermoplastic resin is not particularly limited, but is preferably 10,000 to 200,000 in terms of weight average molecular weight. That is, an acid-modified thermoplastic resin having a relatively small molecular weight is preferable. By using such an acid-modified thermoplastic resin, it is possible to obtain a high addition effect while suppressing property changes to the entire thermoplastic resin composition due to the addition of the acid-modified thermoplastic resin. Furthermore, it is considered that the fluidity of the resulting thermoplastic resin composition can be improved by using an acid-modified thermoplastic resin in this range. The weight average molecular weight is more preferably 15,000 to 150,000, still more preferably 25,000 to 120,000, and particularly preferably 35,000 to 100,000. The weight average molecular weight is based on the GPC method.
 一方、熱可塑性樹脂を構成する酸変性熱可塑性樹脂以外の樹脂(即ち、非酸変性熱可塑性樹脂)は、熱可塑性であること以外特に限定されない。この非酸変性熱可塑性樹脂(非酸変性熱可塑性樹脂の種類)としては、ポリオレフィン、ポリエステル樹脂、ポリスチレン、アクリル樹脂(メタクリレート及び/又はアクリレート等を用いて得られた樹脂)、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂及びABS樹脂などが挙げられる。このうち、ポリオレフィンとしては、ポリプロピレン、ポリエチレン、エチレン・プロピレン共重合体(エチレン・プロピレンブロック共重合体、エチレン・プロピレンランダム共重合体)などが挙げられる。ポリエステル樹脂としては、ポリ乳酸、ポリカプロラクトン及びポリブチレンサクシネート等の脂肪族ポリエステル樹脂、並びに、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート及びポリブチレンテレフタレート等の芳香族ポリエステル樹脂などが挙げられる。これらの非酸変性熱可塑性樹脂は1種のみを用いてもよく、2種以上を併用してもよい。 On the other hand, the resin other than the acid-modified thermoplastic resin constituting the thermoplastic resin (that is, non-acid-modified thermoplastic resin) is not particularly limited except that it is thermoplastic. As this non-acid-modified thermoplastic resin (type of non-acid-modified thermoplastic resin), polyolefin, polyester resin, polystyrene, acrylic resin (resin obtained using methacrylate and / or acrylate, etc.), polyamide resin, polycarbonate resin , Polyacetal resins and ABS resins. Among these, as the polyolefin, polypropylene, polyethylene, ethylene / propylene copolymer (ethylene / propylene block copolymer, ethylene / propylene random copolymer) and the like can be mentioned. Examples of the polyester resin include aliphatic polyester resins such as polylactic acid, polycaprolactone, and polybutylene succinate, and aromatic polyester resins such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. These non-acid-modified thermoplastic resins may be used alone or in combination of two or more.
 上記酸変性熱可塑性樹脂を構成するベース樹脂と、非酸変性熱可塑性樹脂と、は同じ(同種)であってもよく、異なっていて(異種であっても)もよいが、同じであることが好ましく、更には、共にポリオレフィンであることが好ましい。ポリオレフィンは、取扱いが容易であり、生産性を向上させることができる。また、高い柔軟性と優れた成形性が得られる。特に本来射出形成性に優れた樹脂であるため、本方法に適用することで他の樹脂を用いる場合に比べてより高い流動性を得ることができる。ポリオレフィンのなかでも、ポリプロピレン、ポリエチレン、エチレン・プロピレン共重合体、及びポリプロピレンとポリエチレンとの混合樹脂(アロイ)が好ましい。更には、非酸変性熱可塑性樹脂としては、ポリプロピレン又は上記混合樹脂が特に好ましく、酸変性熱可塑性樹脂を構成するベース樹脂としてはポリプロピレンが特に好ましい。
 従って、非酸変性熱可塑性樹脂としては、ポリプロピレン又は上記混合樹脂が特に好ましく、酸変性熱可塑性樹脂としては無水マレイン酸変性ポリプロピレンが特に好ましい。
The base resin constituting the acid-modified thermoplastic resin and the non-acid-modified thermoplastic resin may be the same (same type) or different (even different types), but they are the same. It is preferable that both are polyolefins. Polyolefin is easy to handle and can improve productivity. Further, high flexibility and excellent moldability can be obtained. In particular, since the resin is originally excellent in injection moldability, higher fluidity can be obtained by applying this method compared to the case of using other resins. Among polyolefins, polypropylene, polyethylene, ethylene / propylene copolymer, and mixed resin (alloy) of polypropylene and polyethylene are preferable. Furthermore, as the non-acid-modified thermoplastic resin, polypropylene or the above mixed resin is particularly preferable, and as the base resin constituting the acid-modified thermoplastic resin, polypropylene is particularly preferable.
Therefore, as the non-acid-modified thermoplastic resin, polypropylene or the above mixed resin is particularly preferable, and as the acid-modified thermoplastic resin, maleic anhydride-modified polypropylene is particularly preferable.
 また、熱可塑性樹脂はその全体を100質量%とした場合、上記酸変性熱可塑性樹脂の割合は1~30質量%である。この範囲の配合量であれば、非酸変性熱可塑性樹脂との併用により、得られる成形体(熱可塑性樹脂成形体)の機械的特性を向上させられることは勿論のことであるが、射出成形の際の流動性を飛躍的に向上させることができる。加えて、植物性材料として植物性繊維を用いると更に流動性を向上させることができる。この配合量は、1~27質量%が好ましく、1~22質量%がより好ましく、1.5~17質量%が更に好ましい。 Further, when the thermoplastic resin is 100% by mass as a whole, the ratio of the acid-modified thermoplastic resin is 1 to 30% by mass. If the blending amount is within this range, it is a matter of course that the mechanical properties of the resulting molded body (thermoplastic resin molded body) can be improved by the combined use with the non-acid-modified thermoplastic resin. The fluidity at the time can be dramatically improved. In addition, fluidity can be further improved by using plant fiber as the plant material. The amount is preferably 1 to 27% by mass, more preferably 1 to 22% by mass, and still more preferably 1.5 to 17% by mass.
 上記「混合溶融装置」は、熱可塑性樹脂と植物性材料とを溶融混合する装置であって、押出タイプのものを除いた装置である。この混合溶融装置の種類などは特に限定されないが特に下記混合溶融装置が好ましい。この混合溶融装置を用いた場合には、上記酸変性熱可塑性樹脂の配合、上記植物性繊維の配合、に加えて、更に高い流動性を得ることができる。 The above-mentioned “mixing and melting apparatus” is an apparatus that melts and mixes a thermoplastic resin and a vegetable material, and excludes an extrusion type apparatus. The type of the mixing and melting apparatus is not particularly limited, but the following mixing and melting apparatus is particularly preferable. When this mixing and melting apparatus is used, in addition to the blending of the acid-modified thermoplastic resin and the blending of the vegetable fiber, higher fluidity can be obtained.
 この混合溶融装置{以下、図3、図4(図4は、特許庁の特許電子図書館から取得した国際公開04/076044号パンフレット図1を引用)及び図5(図5は、特許庁の特許電子図書館から取得した国際公開04/076044号パンフレット図2を引用)参照}としては、国際公開04/076044号パンフレットに記載の混合溶融装置1が好ましい。即ち、混合溶融装置1は、材料供給室13と、該材料供給室13に連接された混合室3と、該材料供給室13と該混合室3とを貫通して回転自在に設けられた回転軸5と、該材料供給室13内の該回転軸5に配設され且つ該材料供給室13に供給された混合材料(植物性材料及び熱可塑性樹脂)を該混合室3へ搬送するらせん状羽根12と、該混合室3内の該回転軸5に配設され且つ該混合材料を混合する混合羽根10a~10fと、を備える混合溶融装置が好ましい。 This mixing and melting apparatus (hereinafter, FIG. 3 and FIG. 4 (FIG. 4 is cited from the pamphlet of International Publication No. 04/076044 obtained from the Patent Electronic Library of the Patent Office) and FIG. 5 (FIG. 5 is the patent office patent). As the reference}, reference is made to the International Publication No. 04/076044 pamphlet obtained from the electronic library), and the mixing and melting apparatus 1 described in the International Publication No. 04/076044 pamphlet is preferable. That is, the mixing and melting apparatus 1 includes a material supply chamber 13, a mixing chamber 3 connected to the material supply chamber 13, and a rotation provided rotatably through the material supply chamber 13 and the mixing chamber 3. A spiral shape that is arranged on the shaft 5 and the rotating shaft 5 in the material supply chamber 13 and that supplies the mixed material (plant material and thermoplastic resin) supplied to the material supply chamber 13 to the mixing chamber 3. A mixing and melting apparatus including blades 12 and mixing blades 10a to 10f disposed on the rotating shaft 5 in the mixing chamber 3 and mixing the mixed material is preferable.
 上記混合溶融装置を用い、植物性材料及び熱可塑性樹脂を混合溶融装置1(材料供給室13)へ投入し、混合溶融装置1の混合羽根10a~10fを回転させることで、植物性材料及び熱可塑性樹脂が共に、混合室3の内壁へ向かって押し付けるように打撃し且つ押し進められ、材料同士の衝突するエネルギー(熱量)により短時間で熱可塑性樹脂が軟化され、更には溶融され、植物性材料と混合され、更には混練される。また、得られる混合物(ペレット化前の熱可塑性樹脂組成物)には射出成形が可能な優れた流動性が発現される。 By using the mixing and melting apparatus, the plant material and the thermoplastic resin are put into the mixing and melting apparatus 1 (material supply chamber 13), and the mixing blades 10a to 10f of the mixing and melting apparatus 1 are rotated, whereby the plant material and the heat Both the plastic resin is struck and pushed so as to be pressed against the inner wall of the mixing chamber 3, and the thermoplastic resin is softened and melted in a short time by the energy (heat amount) that the materials collide with each other. And kneaded. Moreover, the fluidity which can be injection-molded is expressed in the obtained mixture (thermoplastic resin composition before pelletization).
 上記混合羽根10a~10fは、上記回転軸5の円周方向の一定角度間隔の部位における軸方向において対向すると共に、回転方向において互いの対向間隔が狭まるような取付け角で該回転軸5に配設された少なくとも2枚の混合羽根(10a~10f)によって構成され、該混合羽根10a~10fの該回転軸5に対する取付け角は、該回転軸5に取り付けられる該混合羽根10a~10fの根元部から半径方向外方の先端部まで同一であることが好ましく、更には、上記混合羽根10a~10fが矩形板状をなすことが好ましい。
 また、上記混合室は、該混合室を構成する壁に冷却媒体を循環させることができる混合室冷却手段を備えることがより更に好ましい。この構成により、混合室内の過度な温度上昇を抑制でき、熱可塑性樹脂の分解及び熱劣化を抑制(更には防止)できる。
The mixing blades 10a to 10f are arranged on the rotary shaft 5 at an attachment angle so as to face each other in the axial direction at a constant angular interval in the circumferential direction of the rotary shaft 5 and to narrow the opposing interval in the rotational direction. The mixing blades 10a to 10f are provided with at least two mixing blades (10a to 10f), and the angle of attachment of the mixing blades 10a to 10f with respect to the rotary shaft 5 is the base of the mixing blades 10a to 10f attached to the rotary shaft 5 To the radially outer tip, and the mixing blades 10a to 10f preferably have a rectangular plate shape.
More preferably, the mixing chamber further includes a mixing chamber cooling means that can circulate a cooling medium through the walls constituting the mixing chamber. With this configuration, an excessive temperature rise in the mixing chamber can be suppressed, and decomposition and thermal deterioration of the thermoplastic resin can be suppressed (and further prevented).
 上記「混合」における各種条件は特に限定されないが、例えば、混合時の温度は特に限定されないが、混合室外壁の温度を200℃以下(より好ましくは150℃以下、更に好ましくは120℃以下)に制御することが好ましく、更には、50℃以上(より好ましくは60℃以上、更に好ましくは80℃以上)に制御することが好ましい。また、この温度は10分以内(より好ましくは5分以内)に到達させることが好ましい。短時間で高温にすることで急激に水分を蒸散させると共に上記混合を行うことができ、熱可塑性樹脂の劣化をより効果的に抑制できる。更に、上記温度範囲とするのも15分以内(より好ましくは10分以内)とすることが好ましい。
 また、上記温度の制御は、混合溶融装置の混合羽根の回転速度を制御することによって行うことが好ましい。より具体的には、混合羽根の先端の回転速度を5m/秒~50m/秒となるように制御することが好ましい。この範囲に制御することで、効率よく熱可塑性樹脂を軟化・溶融させつつ、植物性材料とより強力に(より均一に)混合することができる。
Various conditions in the above “mixing” are not particularly limited. For example, the temperature during mixing is not particularly limited, but the temperature of the outer wall of the mixing chamber is 200 ° C. or lower (more preferably 150 ° C. or lower, more preferably 120 ° C. or lower). It is preferable to control, and it is preferable to control to 50 degreeC or more (more preferably 60 degreeC or more, still more preferably 80 degreeC or more). The temperature is preferably reached within 10 minutes (more preferably within 5 minutes). By making the temperature high in a short time, the water can be rapidly evaporated and the above mixing can be performed, and the deterioration of the thermoplastic resin can be more effectively suppressed. Further, the temperature range is preferably within 15 minutes (more preferably within 10 minutes).
The temperature is preferably controlled by controlling the rotation speed of the mixing blade of the mixing and melting apparatus. More specifically, it is preferable to control the rotational speed at the tip of the mixing blade to be 5 m / sec to 50 m / sec. By controlling within this range, it is possible to more strongly (more uniformly) mix with the plant material while efficiently softening and melting the thermoplastic resin.
 更に、この混合における終点は特に限定されないが、上記回転軸に負荷されるトルクの変化により決定できる。即ち、上記回転軸に負荷されるトルクを測定し、そのトルクが最大値となった後に混合を停止することが好ましい。これにより、植物性材料と熱可塑性樹脂とを相互に分散性よく混合できる。更に上記トルクの最大値となった後にトルクが低下し始めてから混合を停止させることがより好ましい。特に最大トルクに対して40%以上(とりわけ好ましくは50~80%)のトルク範囲で混合を停止することが特に好ましい。これにより、植物性材料と熱可塑性樹脂とを相互により分散性よく混合できると共に、混合室内部から混合物(ペレット化前の熱可塑性樹脂組成物)を160℃以上の温度で取り出すことができ、混合室内に熱可塑性樹脂組成物が付着して残存されることをより確実に防止できる。 Furthermore, the end point in this mixing is not particularly limited, but can be determined by a change in torque applied to the rotating shaft. That is, it is preferable to measure the torque applied to the rotating shaft and stop mixing after the torque reaches the maximum value. As a result, the plant material and the thermoplastic resin can be mixed with each other with good dispersibility. Furthermore, it is more preferable to stop the mixing after the torque starts to decrease after reaching the maximum value of the torque. It is particularly preferable to stop the mixing in a torque range of 40% or more (particularly preferably 50 to 80%) with respect to the maximum torque. Thereby, the plant material and the thermoplastic resin can be mixed with each other with good dispersibility, and the mixture (the thermoplastic resin composition before pelletization) can be taken out from the inside of the mixing chamber at a temperature of 160 ° C. or higher. It can prevent more reliably that a thermoplastic resin composition adheres and remains in a room | chamber interior.
 本発明の製造方法では、植物性材料及び熱可塑性樹脂以外にも他の成分を配合できる。他の成分としては、熱可塑性樹脂として前記ポリエステル樹脂を用いる場合のカルボジイミド化合物が挙げられる。その他、更に、各種帯電防止剤、難燃剤、抗菌剤、着色剤等も配合できる。これらは1種のみを用いてもよく2種以上を併用してもよい。これら他の成分は、どの工程で配合してもよいが、通常、上記混合工程で配合する。 In the production method of the present invention, other components can be blended in addition to the plant material and the thermoplastic resin. As another component, the carbodiimide compound in the case of using the said polyester resin as a thermoplastic resin is mentioned. In addition, various antistatic agents, flame retardants, antibacterial agents, coloring agents, and the like can be blended. These may use only 1 type and may use 2 or more types together. These other components may be blended in any step, but are usually blended in the mixing step.
 また、本発明の熱可塑性樹脂組成物の製造方法では、上記混合工程以外にも他の工程を備えることができる。他の工程としては、上記混合工程で得られた熱可塑性樹脂組成物をペレット化する工程(ペレット化工程)が挙げられる(図3参照)。本発明の熱可塑性樹脂組成物は、その後、射出形成できるが、この際には、熱可塑性樹脂組成物がペレット化されていることが好ましいからである。 Further, in the method for producing a thermoplastic resin composition of the present invention, other steps can be provided in addition to the mixing step. As another process, the process (pelletization process) of pelletizing the thermoplastic resin composition obtained at the said mixing process is mentioned (refer FIG. 3). The thermoplastic resin composition of the present invention can then be injection-molded, but in this case, it is preferable that the thermoplastic resin composition is pelletized.
 このペレット化は、どのように行ってもよい。即ち、例えば、上記溶融混合装置と、得られた熱可塑性樹脂組成物が除熱される前にペレット化(細分化)できるペレット化装置と、が一体的に設けられた装置を用いる場合には、混合とペレット化とを連続的に行ってペレットを得ることができる。また、上記のようなペレット化装置が併設されていない装置を用いる場合は、混合溶融装置からは、通常、塊状の熱可塑性樹脂組成物が得られるため、この塊状の熱可塑性樹脂組成物をペレット化することでペレットを得ることができる。 This pelletization may be done in any way. That is, for example, when using an apparatus in which the melt mixing apparatus and a pelletizing apparatus that can be pelletized (subdivided) before the obtained thermoplastic resin composition is removed from heat are integrally used, Mixing and pelletization can be performed continuously to obtain pellets. In addition, when using an apparatus that does not have a pelletizing apparatus as described above, since a bulk thermoplastic resin composition is usually obtained from a mixing and melting apparatus, the bulk thermoplastic resin composition is pelleted. Pellets can be obtained.
 上記後者の方法(混合溶融装置から塊状の熱可塑性樹脂組成物を得る場合)においては、混合工程の後に、混合工程で得られた混合物(ペレット化される前の熱可塑性樹脂組成物)を加熱せず押し固めてペレットを得るペレット化工程を備えることが好ましい(図3参照)。このように加熱せず押し固めてペレット化することで、例えば、混合工程で得られた熱可塑性樹脂組成物を再度溶融させて二軸押出し機等の一般的な方法を用いてペレット化を行う場合に比べて、熱可塑性樹脂組成物への熱履歴を低減できるために得られる成形体の機械的特性をより高く維持できる。 In the latter method (when a bulk thermoplastic resin composition is obtained from a mixing and melting apparatus), the mixture (thermoplastic resin composition before being pelletized) obtained in the mixing step is heated after the mixing step. It is preferable to provide a pelletizing step in which pellets are obtained by pressing and compacting (see FIG. 3). In this way, by pressing and solidifying without heating, for example, the thermoplastic resin composition obtained in the mixing step is melted again and pelletized using a general method such as a twin screw extruder. Compared with the case, since the heat history to a thermoplastic resin composition can be reduced, the mechanical characteristic of the molded object obtained can be maintained higher.
 この加熱せず押し固めてペレット化するペレット化工程では、どのような装置及び手段を用いてもよいが、特に各種圧縮成形方法を用いることが好ましい。この圧縮成形方法としては、例えば、ローラー式成形方法及びエクストルーダ式成形方法などが挙げられる。ローラー式成形方法は、ローラー式成形機を用いる方法であり、ダイに接して回転されるローラーにより混合物がダイ内に圧入された後、ダイから押し出されて成形される。ローラー式成形機には、ダイの形状が異なるディスクダイ式(ローラーディスクダイ式成形機)とリングダイ式(ローラーリングダイ式成形機)が挙げられる。一方、エクストルーダ式成形方法は、エクストルーダ式成形機を用いる方法であり、スクリューオーガの回転により混合物がダイ内に圧入された後、ダイから押し出されて成形される。これらの圧縮成形方法のなかでは、特にローラーディスクダイ式成形方法を用いる方法が好ましい。この圧縮成形方法で用いられるローラーディスクダイ式成形機は圧縮効率が高く特に好適である。 Any device and means may be used in the pelletizing step in which the pellets are pressed and consolidated without heating, and various compression molding methods are particularly preferable. Examples of the compression molding method include a roller molding method and an extruder molding method. The roller-type molding method is a method using a roller-type molding machine, in which a mixture is pressed into a die by a roller rotated in contact with the die, and then extruded from the die and molded. Examples of the roller type molding machine include a disk die type (roller disk die type molding machine) and a ring die type (roller ring die type molding machine) having different die shapes. On the other hand, the extruder type molding method is a method using an extruder type molding machine. After the mixture is pressed into the die by the rotation of the screw auger, the mixture is extruded from the die and molded. Among these compression molding methods, a method using a roller disk die molding method is particularly preferable. The roller disk die type molding machine used in this compression molding method is particularly suitable because of its high compression efficiency.
 更に、本方法では下記特定のローラーディスクダイ式成形機500(図3及び主要部を図6に例示)を用いてペレット化することが特に好ましい。即ち、複数の貫通孔511が穿設されたディスクダイ51と、該ディスクダイ51上で転動されて該貫通孔511内に非圧縮物(混合物)を押し込むプレスローラ52と、該プレスローラ52を駆動する主回転軸53と、を備え、上記ディスクダイ51は、上記貫通孔511と同方向に貫通された主回転軸挿通孔512を有し、上記主回転軸53は、上記主回転軸挿通孔512に挿通され且つ該主回転軸53に垂直に設けられたプレスローラ固定軸54を有し、上記プレスローラ52は、上記プレスローラ固定軸54に回転可能に軸支されて上記主回転軸53の回転に伴って上記ディスクダイ51表面で転動されるローラーディスクダイ式成形部50を有するローラーディスクダイ式成形機(ペレット化装置)500である。
 このローラーディスクダイ式成形機500では、上記構成に加えて更に、上記プレスローラ52は表面に凹凸521を備えるものであることが好ましい。また、主回転軸53の回転に伴って回転される切断用ブレード55を備えることが好ましい。
Furthermore, in this method, it is particularly preferable to pelletize by using the following specific roller disk die molding machine 500 (FIG. 3 and main parts are illustrated in FIG. 6). That is, a disk die 51 having a plurality of through holes 511, a press roller 52 that rolls on the disk die 51 and pushes an uncompressed material (mixture) into the through hole 511, and the press roller 52 The disk die 51 has a main rotation shaft insertion hole 512 that is penetrated in the same direction as the through hole 511, and the main rotation shaft 53 is the main rotation shaft 53. The press roller fixing shaft 54 is inserted through the insertion hole 512 and perpendicular to the main rotation shaft 53, and the press roller 52 is rotatably supported by the press roller fixing shaft 54 so as to rotate the main rotation. A roller disk die molding machine (pelletizing apparatus) 500 having a roller disk die molding unit 50 that is rolled on the surface of the disk die 51 as the shaft 53 rotates.
In this roller disk die type molding machine 500, in addition to the above configuration, it is preferable that the press roller 52 further has irregularities 521 on the surface. Further, it is preferable to include a cutting blade 55 that is rotated in accordance with the rotation of the main rotating shaft 53.
 上記ローラーディスクダイ式成形機500では、例えば、図6においては、主回転軸53の上方から投入された混合物をプレスローラ52が備える表面凹凸521が捉えて貫通孔511内に押し込み、ディスクダイ51の裏面側から押し出される。押し出された紐状の混合物は、切断用ブレード55により適宜の長さに切断されてペレット化され、下方に落下されて回収される。
 ペレット化された熱可塑性樹脂組成物の形状及び大きさは特に限定されないが、柱状(その他の形状であってもよいが、円柱状が好ましい)であることが好ましい。また、その最大長さは1mm以上(通常20mm以下)とすることが好ましく、1~10mmがより好ましく、2~7mmが特に好ましい。
In the roller disk die type molding machine 500, for example, in FIG. 6, the mixture introduced from above the main rotating shaft 53 is caught by the surface irregularities 521 provided in the press roller 52 and pushed into the through holes 511, and the disk die 51 Extruded from the back side. The extruded string-like mixture is cut into an appropriate length by the cutting blade 55, pelletized, dropped down and collected.
The shape and size of the pelletized thermoplastic resin composition are not particularly limited, but it is preferably a columnar shape (other shapes may be used but a cylindrical shape is preferable). The maximum length is preferably 1 mm or more (usually 20 mm or less), more preferably 1 to 10 mm, and particularly preferably 2 to 7 mm.
 本方法では、上記混合工程及び上記ペレット工程以外に他の工程を備えることができる。他の工程としては、混合工程前に用いる植物性材料を押し固めて原料ペレットを調製する工程が挙げられる。
 即ち、植物性材料を押し固めて原料ペレットを得る原料ペレット作製工程と、
 原料ペレットと前記熱可塑性樹脂(1~30質量%の酸変性熱可塑性樹脂を含む)とを溶融混合装置により混合する混合工程と、
 上記混合工程で得られた混合物を、押し固めてペレットを得るペレット化工程と、をこの順に備える熱可塑性樹脂組成物の製造方法とすることができる。
 この原料ペレット作製工程においても上記ペレット化工程と同様に上記ローラーディスクダイ式成形機500を用いることができる。
 このように原料ペレット作製工程を備えることで、植物性材料と熱可塑性樹脂との間の比重差を小さくでき、作業性が向上され、混合の際の材料の偏在も抑制でき、植物性材料と熱可塑性樹脂とが相互に均一に分散された熱可塑性樹脂組成物を得ることができる。更に、得られる成形体は高い機械的強度を有する。
In this method, other steps can be provided in addition to the mixing step and the pellet step. As another process, the process of preparing a raw material pellet by pressing and solidifying the plant material used before a mixing process is mentioned.
That is, a raw material pellet manufacturing step of pressing and solidifying plant material to obtain a raw material pellet;
A mixing step of mixing raw material pellets and the thermoplastic resin (including 1 to 30% by mass of an acid-modified thermoplastic resin) with a melt mixing device;
It can be set as the manufacturing method of a thermoplastic resin composition provided with the pelletization process which presses and solidifies the mixture obtained at the said mixing process, and obtains a pellet in this order.
In the raw material pellet manufacturing process, the roller disk die molding machine 500 can be used as in the pelletizing process.
By providing the raw material pellet manufacturing process in this way, the specific gravity difference between the plant material and the thermoplastic resin can be reduced, workability can be improved, uneven distribution of the material during mixing can be suppressed, and the plant material and A thermoplastic resin composition in which the thermoplastic resin is uniformly dispersed can be obtained. Furthermore, the molded body obtained has a high mechanical strength.
[2]成形体の製造方法
 本発明の成形体の製造方法は、前記本発明の熱可塑性樹脂組成物の製造方法により得られた熱可塑性樹脂組成物(ペレット化された熱可塑性樹脂組成物)を射出成形して成形体を得る成形工程を備えることを特徴とする。
 上記熱可塑性樹脂組成物は、前述のように植物性材料を多く含有しつつも、優れた流動性が発現される。このため、成形時の計量時間(射出成形機における計量時間等)、及び射出時間などを短縮できる結果、成形サイクルが短縮されて、成形効率を向上させることができる。射出成形における各種成形条件及び使用する装置等は特に限定されず、目的とする成形体及び性状、使用されている熱可塑性樹脂の種類等により適宜のものとすることが好ましい。
[2] Method for Producing Molded Body The method for producing the molded body of the present invention is a thermoplastic resin composition (a pelletized thermoplastic resin composition) obtained by the method for producing a thermoplastic resin composition of the present invention. And a molding step of obtaining a molded body by injection molding.
The thermoplastic resin composition exhibits excellent fluidity while containing a large amount of plant material as described above. For this reason, as a result of shortening the metering time (such as the metering time in the injection molding machine) at the time of molding and the injection time, the molding cycle can be shortened and the molding efficiency can be improved. Various molding conditions and the apparatus to be used in the injection molding are not particularly limited, and it is preferable to use an appropriate one depending on the target molded body and properties, the type of thermoplastic resin used, and the like.
 本発明の製造方法により得られる成形体の形状、大きさ及び厚さ等は特に限定されない。また、その用途も特に限定されない。この成形体は、例えば、自動車、鉄道車両、船舶及び飛行機等の内装材、外装材及び構造材等として用いられる。このうち自動車用品としては、自動車用内装材、自動車用インストルメントパネル、自動車用外装材等が挙げられる。具体的には、ドア基材、パッケージトレー、ピラーガーニッシュ、スイッチベース、クオーターパネル、アームレストの芯材、自動車用ドアトリム、シート構造材、シートバックボード、天井材、コンソールボックス、自動車用ダッシュボード、各種インストルメントパネル、デッキトリム、バンパー、スポイラー及びカウリング等が挙げられる。更に、例えば、建築物及び家具等の内装材、外装材及び構造材が挙げられる。即ち、ドア表装材、ドア構造材、各種家具(机、椅子、棚、箪笥など)の表装材、構造材等が挙げられる。その他、包装体、収容体(トレイ等)、保護用部材及びパーティション部材等が挙げられる。 The shape, size, thickness and the like of the molded body obtained by the production method of the present invention are not particularly limited. Further, its use is not particularly limited. This molded body is used, for example, as an interior material, an exterior material, a structural material, or the like for an automobile, a railway vehicle, a ship, an airplane, or the like. Among these, examples of the automobile article include an automobile interior material, an automobile instrument panel, and an automobile exterior material. Specifically, door base material, package tray, pillar garnish, switch base, quarter panel, armrest core material, automotive door trim, seat structure material, seat backboard, ceiling material, console box, automotive dashboard, various types Instrument panel, deck trim, bumper, spoiler and cowling. Furthermore, for example, interior materials such as buildings and furniture, exterior materials, and structural materials may be mentioned. That is, a door cover material, a door structure material, a cover material of various furniture (desk, chair, shelf, bag, etc.), a structural material, etc. are mentioned. In addition, a package, a container (such as a tray), a protective member, a partition member, and the like can be given.
 以下、実施例を用いて本発明を具体的に説明する。
[1]熱可塑性樹脂組成物の製造
 (1)実施例1~15及び比較例3~4
 下記に示す各植物性材料(ケナフ繊維A~D、ケナフコア)、非酸変性熱可塑性樹脂(PP;ポリプロピレン)、及び酸変性熱可塑性樹脂(酸変性PP;無水マレイン酸変性ポリプロピレン)を、表1~4に示す組合せ及び配合量で用い、混合溶融装置1(株式会社エムアンドエフ・テクノロジー製、WO2004-076044号に示された器機)の材料供給室(図4の13)に投入(植物性材料と熱可塑性樹脂とで合計700g)した後、混合室(容量5L、図4の3)内で混合した。この混合に際して混合羽根(図3の10及び図5の10a~10f)は回転速度2000rpmで回転させた。そして、混合羽根にかかる負荷(トルク)が上昇し、最大値に達して(100%を超えて)6秒後を終点として混合を停止して、得られた混合物(ペレット化前の熱可塑性樹脂組成物)を混合溶融装置から排出した。
Hereinafter, the present invention will be specifically described with reference to examples.
[1] Production of thermoplastic resin composition (1) Examples 1 to 15 and Comparative Examples 3 to 4
The following plant materials (kenaf fibers A to D, kenaf core), non-acid-modified thermoplastic resin (PP; polypropylene), and acid-modified thermoplastic resin (acid-modified PP; maleic anhydride-modified polypropylene) are shown in Table 1. Are used in the combinations and blending amounts shown in (4) to (4) and are introduced into the material supply chamber (13 in FIG. 4) of the mixing and melting apparatus 1 (equipment shown in WO2004-076044 by M & F Technology Co., Ltd.) 700 g in total with the thermoplastic resin) and then mixed in a mixing chamber (capacity 5 L, 3 in FIG. 4). During this mixing, the mixing blades (10 in FIG. 3 and 10a to 10f in FIG. 5) were rotated at a rotational speed of 2000 rpm. Then, the load (torque) applied to the mixing blade increases, reaches the maximum value (exceeds 100%) and stops mixing after 6 seconds, and the resulting mixture (thermoplastic resin before pelletization) is obtained. The composition was discharged from the mixing and melting apparatus.
 その後、得られた混合物を破砕機(株式会社ホーライ製、形式「Z10-420」)を用いて5.0mm程度に破砕した後、ローラーディスクダイ式成形機500{株式会社菊川鉄工所製、形式「KP280」、貫通孔径(図6の511)4.2mm}に、フィダー周波数20Hzで投入し、1時間あたり約30kgとなるペレット製造速度で、各混合物を直径約4mm且つ長さ約5mmの円柱状のペレットにした。その後、得られたペレットをオーブンにて100℃で24時間乾燥させて、実施例1~15及び比較例3~4の熱可塑性樹脂組成物を得た。
 尚、植物性材料は、各々、ローラーディスクダイ式成形機{株式会社菊川鉄工所製、形式「KP280」、貫通孔径4.2mm}に投入して直径約4mm且つ長さ約5mmの円柱状にしてから用いた。
After that, the obtained mixture was crushed to about 5.0 mm using a crusher (manufactured by Horai Co., Ltd., model “Z10-420”), and then a roller disk die molding machine 500 {manufactured by Kikukawa Iron Works, Inc. “KP280”, through-hole diameter (511 in FIG. 6) of 4.2 mm} is fed at a feeder frequency of 20 Hz, and at a pellet production rate of about 30 kg per hour, each mixture is a circle having a diameter of about 4 mm and a length of about 5 mm. Columnar pellets were obtained. Thereafter, the obtained pellets were dried in an oven at 100 ° C. for 24 hours to obtain thermoplastic resin compositions of Examples 1 to 15 and Comparative Examples 3 to 4.
In addition, each plant material is put into a roller disk die type molding machine {manufactured by Kikukawa Iron Works Co., Ltd., type "KP280", through-hole diameter 4.2 mm}, and is formed into a cylindrical shape having a diameter of about 4 mm and a length of about 5 mm. Used after.
 (2)比較例1
 上記(1)における混合溶融装置1に換えて二軸押出機を用いて混合工程を行った。即ち、植物性材料(ケナフ繊維B)、非酸変性熱可塑性樹脂(PP;ポリプロピレン)、及び酸変性熱可塑性樹脂(酸変性PP;無水マレイン酸変性ポリプロピレン)を、表1に示す組合せ及び配合量で、二軸押出機(株式会社プラスチック工学研究所製、スクリュー径30mm、L/D=42)の材料投入口から投入し、二軸押出機におけるバレル温度190℃で混練しながら押し出し、コンベアで空冷させながら搬送した後、裁断して熱可塑性樹脂組成物からなるペレットを得た。このペレットをオーブンにて100℃で24時間乾燥させて、比較例1の熱可塑性樹脂組成物を得た。
 尚、この比較例1においても前記と同様に、植物性材料は、各々、ローラーディスクダイ式成形機{株式会社菊川鉄工所製、形式「KP280」、貫通孔径4.2mm}に投入して直径約4mm且つ長さ約5mmの円柱状にしてから用いた。
(2) Comparative Example 1
The mixing step was performed using a twin screw extruder instead of the mixing and melting apparatus 1 in the above (1). That is, combinations and blending amounts of plant material (kenaf fiber B), non-acid-modified thermoplastic resin (PP; polypropylene), and acid-modified thermoplastic resin (acid-modified PP; maleic anhydride-modified polypropylene) shown in Table 1 In the twin screw extruder (Plastic Engineering Laboratory Co., Ltd., screw diameter 30 mm, L / D = 42), the material is inserted from the material inlet and extruded while kneading at a barrel temperature of 190 ° C. in the twin screw extruder. After being conveyed while being air-cooled, it was cut to obtain pellets made of a thermoplastic resin composition. The pellets were dried in an oven at 100 ° C. for 24 hours to obtain a thermoplastic resin composition of Comparative Example 1.
In this Comparative Example 1 as well, the plant material was introduced into a roller disk die type molding machine {manufactured by Kikukawa Iron Works Co., Ltd., model “KP280”, through-hole diameter 4.2 mm}, respectively. It was used after forming a cylindrical shape of about 4 mm and a length of about 5 mm.
 (3)比較例2
 上記(1)における混合溶融装置1を用いず、植物性材料(ケナフ繊維B)、非酸変性熱可塑性樹脂(PP;ポリプロピレン)、及び酸変性熱可塑性樹脂(酸変性PP;無水マレイン酸変性ポリプロピレン)を、表1に示す組合せ及び配合量で、ドライブレンドして、比較例2の熱可塑性樹脂組成物(ペレットの混合物)を得た。
 尚、この比較例2においても前記と同様に、植物性材料は、各々、ローラーディスクダイ式成形機{株式会社菊川鉄工所製、形式「KP280」、貫通孔径4.2mm}に投入して直径約4mm且つ長さ約5mmの円柱状にしてから用いた。
(3) Comparative Example 2
Without using the mixing and melting apparatus 1 in (1) above, plant material (kenaf fiber B), non-acid-modified thermoplastic resin (PP; polypropylene), and acid-modified thermoplastic resin (acid-modified PP; maleic anhydride-modified polypropylene) ) Were dry blended with the combinations and blending amounts shown in Table 1 to obtain a thermoplastic resin composition (mixture of pellets) of Comparative Example 2.
In this comparative example 2 as well, the plant materials were introduced into a roller disk die type molding machine {manufactured by Kikukawa Iron Works Co., Ltd., model “KP280”, through-hole diameter 4.2 mm}, respectively. It was used after forming a cylindrical shape of about 4 mm and a length of about 5 mm.
[植物性材料]
 「ケナフ繊維A」;平均繊維長0.8mmの植物性繊維(裁断したケナフ繊維のうち、目開き1.0mm円孔板篩の篩下として選別)。
 「ケナフ繊維B」;平均繊維長3.5mmの植物性繊維(裁断したケナフ繊維のうち、目開き3.0mm円孔板篩の篩上、且つ、目開き5.0mm円孔板篩の篩下として選別)。
 「ケナフ繊維C」;平均繊維長6.0mmの植物性繊維(裁断したケナフ繊維のうち、目開き5.0mm円孔板篩の篩上、且つ、目開き7.0mm円孔板篩の篩下として選別)。
 「ケナフ繊維D」;平均繊維長10.0mmの植物性繊維(ケナフ繊維を1cm幅で裁断したもの)。
 「ケナフコア」;平均粒径0.6mmの粉末状である非繊維質植物性材料。
[Plant materials]
“Kenaf fiber A”: vegetable fiber having an average fiber length of 0.8 mm (of the cut kenaf fiber, selected as a sieve under a 1.0 mm aperture plate sieve).
“Kenaf fiber B”: vegetable fiber having an average fiber length of 3.5 mm (of the cut kenaf fiber, on a sieve with a 3.0 mm aperture plate and with a 5.0 mm aperture plate sieve) Selected as below).
“Kenaf fiber C”: vegetable fiber having an average fiber length of 6.0 mm (of the cut kenaf fiber, on a sieve with a 5.0 mm aperture plate and with a 7.0 mm aperture plate sieve) Selected as below).
“Kenaf fiber D”: vegetable fiber having an average fiber length of 10.0 mm (a kenaf fiber cut to a width of 1 cm).
“Kenaf core”: non-fibrous plant material in the form of powder having an average particle size of 0.6 mm.
[熱可塑性樹脂]
 「PP」;ポリプロピレン(非酸変性熱可塑性樹脂、日本ポリプロ株式会社製、品名「ノバテック NBX03HRS」)。
 酸変性PP;無水マレイン酸変性ポリプロピレン(酸変性熱可塑性樹脂、三洋化成工業株式会社製、品名「ユーメックス #1001」、ベース樹脂がポリプロピレン、重量平均分子量が40,000、溶融粘度が16,000mPa・s、酸価が26)。
[Thermoplastic resin]
“PP”; polypropylene (non-acid-modified thermoplastic resin, manufactured by Nippon Polypro Co., Ltd., product name “Novatech NBX03HRS”).
Acid-modified PP; maleic anhydride-modified polypropylene (acid-modified thermoplastic resin, manufactured by Sanyo Chemical Industries, Ltd., product name “Yumex # 1001”, base resin is polypropylene, weight average molecular weight is 40,000, melt viscosity is 16,000 mPa · s, acid value is 26).
[2]熱可塑性樹脂組成物の特性評価
 上記[1]で得られた実施例1~15及び比較例1~4の各熱可塑性樹脂組成物を射出成形機(住友重機械工業株式会社製、形式「SE100DU」)に各々投入し、シリンダー温度190℃、型温度40℃の条件で、各種試験片を得るための金型に各熱可塑性樹脂組成物を充填した際の射出充填圧力を測定した。この結果を表1~4に併記した。
[2] Characteristic Evaluation of Thermoplastic Resin Composition Each thermoplastic resin composition of Examples 1 to 15 and Comparative Examples 1 to 4 obtained in [1] above was injected into an injection molding machine (Sumitomo Heavy Industries, Ltd., The injection filling pressure was measured when each thermoplastic resin composition was filled in a mold for obtaining various test pieces under the conditions of a cylinder temperature of 190 ° C. and a mold temperature of 40 ° C. . The results are also shown in Tables 1 to 4.
 また、上記[1]で得られた実施例1~15及び比較例1~4の各熱可塑性樹脂組成物を射出成形機(住友重機械工業株式会社製、形式「SE100DU」)に各々投入し、シリンダー温度190℃、型温度40℃、射出充填圧力150MPaの条件で、バーフロー金型に各熱可塑性樹脂組成物を充填し、得られた成形体の長さを測定した。この結果を表1~4に併記した。 In addition, each of the thermoplastic resin compositions of Examples 1 to 15 and Comparative Examples 1 to 4 obtained in the above [1] was put into an injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd., type “SE100DU”). Each thermoplastic resin composition was filled in a bar flow mold under the conditions of a cylinder temperature of 190 ° C., a mold temperature of 40 ° C., and an injection filling pressure of 150 MPa, and the length of the obtained molded body was measured. The results are also shown in Tables 1 to 4.
[3]熱可塑性樹脂成形体の成形・特性評価
 上記[1]で得られた実施例1~15及び比較例1~4の各熱可塑性樹脂組成物を射出成形機(住友重機械工業株式会社製、形式「SE100DU」)に各々投入し、シリンダー温度190℃、型温度40℃の条件で、射出成形して厚さ4mm、幅10mm、長さ80mmの長方形板状の試験片を得た。
 その後、得られた各試験片の曲げ強度を測定した。この測定に際しては、各試験片を支点間距離(L)64mmとした2つの支点(曲率半径5mm)で支持しつつ、支点間中心に配置した作用点(曲率半径5mm)から速度2mm/分にて荷重の負荷を行った(JIS K7171に準拠)。その結果を表1~4に併記した。
[3] Molding / Characteristic Evaluation of Thermoplastic Resin Molded Body The thermoplastic resin compositions of Examples 1 to 15 and Comparative Examples 1 to 4 obtained in the above [1] were injected into an injection molding machine (Sumitomo Heavy Industries, Ltd.). Made into a model “SE100DU”) and injection molded under conditions of a cylinder temperature of 190 ° C. and a mold temperature of 40 ° C. to obtain a rectangular plate-shaped test piece having a thickness of 4 mm, a width of 10 mm, and a length of 80 mm.
Then, the bending strength of each obtained test piece was measured. In this measurement, while supporting each test piece at two fulcrums (curvature radius 5 mm) with a distance (L) between the fulcrums of 64 mm, the speed is 2 mm / min from the action point (curvature radius 5 mm) arranged at the center between the fulcrums. The load was applied (based on JIS K7171). The results are also shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[4]実施例の効果
 表1の結果から、比較例2に示すようにドライブレンドを行ったのみのペレット混合物を射出成形すると、その射出充填圧力は112MPaと大きかった(バーフロー流動長は520mmと短い)。また、比較例1に示すように二軸押出機を用いて熱可塑性樹脂のペレットと植物性材料のペレットとを予め混合した上で射出成形しても、射出充填圧力は110MPa(バーフロー流動長は550mm)であり、比較例2のドライブレンドのみの場合とほとんど差がないものであった。
 これに対して、実施例2のように混合溶融装置を用いると、比較例1及び2と同じ材料配合であるにもかかわらず射出充填圧力は72MPaと顕著に小さくできた(バーフロー流動長は680mmと長い)。また、実施例3に示すように植物性材料の配合割合を70質量%まで増加させても、比較例2と同程度の射出充填圧力に抑えられることが分かる(バーフロー流動長においても同様の傾向が認められる)。
 更に、比較例1では得られた成形体の曲げ強度は58MPaであり、比較例2で得られた成形体の曲げ強度は55MPaであった。これに対して、実施例2は、比較例1及び2と同じ材料配合であるにもかかわらず、曲げ強度は68MPaと顕著に大きかった。即ち、混合溶融装置を用いることで、流動性を向上させつつ、機械的特性を向上させることができた。
[4] Effect of Example From the results of Table 1, when a pellet mixture that was only dry blended as shown in Comparative Example 2 was injection molded, its injection filling pressure was as large as 112 MPa (bar flow flow length was 520 mm). And short). In addition, as shown in Comparative Example 1, even when injection molding is performed after mixing thermoplastic resin pellets and vegetable material pellets in advance using a twin screw extruder, the injection filling pressure is 110 MPa (bar flow flow length). 550 mm), which is almost the same as that of the dry blend of Comparative Example 2 alone.
On the other hand, when the mixing and melting apparatus was used as in Example 2, the injection filling pressure could be remarkably reduced to 72 MPa despite the same material composition as in Comparative Examples 1 and 2 (the bar flow flow length was 680 mm long). In addition, as shown in Example 3, it can be seen that even when the blending ratio of the plant material is increased to 70% by mass, the injection filling pressure can be suppressed to the same level as in Comparative Example 2 (the same is true for the bar flow flow length). A trend is observed).
Furthermore, the bending strength of the molded body obtained in Comparative Example 1 was 58 MPa, and the bending strength of the molded body obtained in Comparative Example 2 was 55 MPa. On the other hand, the bending strength of Example 2 was remarkably large at 68 MPa, although the material composition was the same as those of Comparative Examples 1 and 2. That is, by using the mixing and melting apparatus, it was possible to improve the mechanical properties while improving the fluidity.
 表2及び図1(比較例3、実施例2、実施例4~7の値をプロット)の結果から、酸変性熱可塑性樹脂を配合することで、曲げ強度を顕著に向上させることができたが、その効果は配合量7質量%程度(熱可塑性樹脂全体に対する割合において7質量%程度)においてほぼ飽和状態となった。また、この酸変性熱可塑性樹脂を配合することで、流動性を顕著に向上させることができた。この効果も、上記曲げ強度と同様に、配合量7質量%程度でほぼ飽和状態となった。 From the results of Table 2 and FIG. 1 (the values of Comparative Example 3, Example 2, and Examples 4 to 7 are plotted), the bending strength could be remarkably improved by adding the acid-modified thermoplastic resin. However, the effect was almost saturated at a blending amount of about 7% by mass (about 7% by mass in the ratio to the whole thermoplastic resin). In addition, the fluidity could be remarkably improved by blending this acid-modified thermoplastic resin. Similar to the bending strength, this effect was almost saturated at a blending amount of about 7% by mass.
 表3及び図2(比較例4、実施例8~11の値をプロット)の結果から、酸変性熱可塑性樹脂の配合量は一定にしても、植物性材料に植物性繊維を配合し、その割合により、更に効果的に流動性を向上させることができることが分かる。即ち、図2に示すように、酸変性熱可塑性樹脂の配合量は一定のままで、植物性材料中の植物性繊維の割合を増加させると、流動性の顕著な向上が認められる。植物性繊維の割合が33質量%までの間では極めて顕著な流動性の向上が認められ、33質量%以上ではその効果は緩やかになる。しかし、33~100質量%の間で8MPaの射出充填圧力の低下がある。この8MPaの射出充填圧力の低下は、図1で示すように、熱可塑性樹脂中の酸変性熱可塑性樹脂の割合を1質量%から5質量%へ増加させる効果に等しく、極めて高い流動性の向上効果が得られていることが分かる。
 一方、植物性繊維の割合の増加に伴い、流動性が向上すると共に、図2に示すように曲げ強度は増加する。即ち、植物性繊維の割合が0~100質量%の範囲で曲げ強度は9MPa増加している。これは図1に示すように、酸変性熱可塑性樹脂の割合を2.5質量%から幾ら増加させても2MPa程度しか変化しないのと対照的であり、植物性繊維の割合が流動性向上の効果に大きく寄与していることが分かる。
From the results of Table 3 and FIG. 2 (the values of Comparative Example 4 and Examples 8 to 11 are plotted), even if the blending amount of the acid-modified thermoplastic resin is constant, the plant fiber is blended with the plant material. It can be seen that the fluidity can be more effectively improved by the ratio. That is, as shown in FIG. 2, when the proportion of the vegetable fiber in the plant material is increased while the amount of the acid-modified thermoplastic resin is kept constant, a remarkable improvement in fluidity is recognized. When the proportion of the vegetable fiber is up to 33% by mass, an extremely remarkable improvement in fluidity is recognized, and when the proportion is 33% by mass or more, the effect becomes moderate. However, there is a drop in injection filling pressure of 8 MPa between 33 and 100% by weight. As shown in FIG. 1, the decrease in the injection filling pressure of 8 MPa is equivalent to the effect of increasing the ratio of the acid-modified thermoplastic resin in the thermoplastic resin from 1% by mass to 5% by mass, and the extremely high fluidity is improved. It turns out that the effect is acquired.
On the other hand, as the proportion of the vegetable fiber increases, the fluidity improves and the bending strength increases as shown in FIG. That is, the bending strength is increased by 9 MPa when the proportion of vegetable fiber is in the range of 0 to 100% by mass. As shown in FIG. 1, this is in contrast to the fact that the ratio of the vegetable fiber is improved only by 2 MPa no matter how much the acid-modified thermoplastic resin is increased from 2.5% by mass. It can be seen that it greatly contributes to the effect.
 また、比較例4(ケナフコアとPPとのみからなる熱可塑性樹脂組成物)と、実施例8(比較例4に対して2.5質量%の酸変性PPを添加した系)と、の射出充填圧力を比較すると、比較例4が118MPaであり、実施例8は116MPaである。即ち、植物性繊維としてケナフコアを用いた場合に酸変性熱可塑性樹脂を添加したことによる射出充填圧力の低下は1.7%である。
 これに対して、比較例3(植物性繊維とPPとのみからなる熱可塑性樹脂組成物)と、実施例2(比較例3に対して2.5質量%の酸変性PPを添加した系)と、の射出充填圧力を比較すると、比較例3が110MPaであり、実施例2は72MPaである。即ち、植物性繊維としてケナフ繊維を用いた場合に酸変性熱可塑性樹脂を添加したことによる射出充填圧力の低下は35%であり、前者の21倍にも相当することが分かる。
 本発明において、このような効果が得られる理由は定かではないが、本発明において、植物性繊維と酸変性熱可塑性樹脂とを併用することによる顕著な流動性を向上させる相乗的な効果が得られることが分かる。
Injection filling of Comparative Example 4 (a thermoplastic resin composition consisting only of kenaf core and PP) and Example 8 (a system in which 2.5% by mass of acid-modified PP is added to Comparative Example 4) Comparing the pressure, Comparative Example 4 is 118 MPa, and Example 8 is 116 MPa. That is, when the kenaf core is used as the vegetable fiber, the decrease in the injection filling pressure due to the addition of the acid-modified thermoplastic resin is 1.7%.
On the other hand, Comparative Example 3 (thermoplastic resin composition consisting only of plant fiber and PP) and Example 2 (system in which 2.5% by mass of acid-modified PP was added to Comparative Example 3) In comparison, the injection filling pressure of Comparative Example 3 is 110 MPa, and Example 2 is 72 MPa. That is, when kenaf fiber is used as the vegetable fiber, the decrease in injection filling pressure due to the addition of the acid-modified thermoplastic resin is 35%, which is equivalent to 21 times the former.
In the present invention, the reason why such an effect is obtained is not clear, but in the present invention, a synergistic effect for improving the remarkable fluidity by using the vegetable fiber and the acid-modified thermoplastic resin together is obtained. You can see that
 本発明の熱可塑性組成物の製造方法及び本発明の熱可塑性樹脂成形体の製造方法は、自動車関連分野及び建築関連分野などにおいて広く利用される。特に自動車、鉄道車両、船舶及び飛行機等の内装材、外装材及び構造材等に好適であり、なかでも自動車用品としては、自動車用内装材、自動車用インストルメントパネル、自動車用外装材等に好適である。具体的には、ドア基材、パッケージトレー、ピラーガーニッシュ、スイッチベース、クオーターパネル、アームレストの芯材、自動車用ドアトリム、シート構造材、シートバックボード、天井材、コンソールボックス、自動車用ダッシュボード、各種インストルメントパネル、デッキトリム、バンパー、スポイラー及びカウリング等が挙げられる。更に、例えば、建築物及び家具等の内装材、外装材及び構造材にも好適である。具体的には、ドア表装材、ドア構造材、各種家具(机、椅子、棚、箪笥など)の表装材、構造材等が挙げられる。その他、包装体、収容体(トレイ等)、保護用部材及びパーティション部材等としても好適である。 The method for producing a thermoplastic composition of the present invention and the method for producing a thermoplastic resin molded body of the present invention are widely used in the fields related to automobiles and fields related to architecture. Particularly suitable for interior materials, exterior materials and structural materials for automobiles, railway vehicles, ships and airplanes, etc. Especially as automotive products, suitable for automotive interior materials, automotive instrument panels, automotive exterior materials, etc. It is. Specifically, door base material, package tray, pillar garnish, switch base, quarter panel, armrest core material, automotive door trim, seat structure material, seat backboard, ceiling material, console box, automotive dashboard, various types Instrument panel, deck trim, bumper, spoiler and cowling. Furthermore, it is also suitable for interior materials, exterior materials and structural materials such as buildings and furniture. Specifically, door cover materials, door structure materials, cover materials for various furniture (desks, chairs, shelves, bags, etc.), structural materials, and the like can be given. In addition, it is also suitable as a package, a container (such as a tray), a protective member, and a partition member.

Claims (9)

  1.  植物性材料と熱可塑性樹脂とを含有し、該植物性材料及び該熱可塑性樹脂の合計を100質量%とした場合に該植物性材料を50~95質量%含有する熱可塑性樹脂組成物の製造方法であって、
     植物性材料と熱可塑性樹脂とを混合溶融装置により混合する混合工程を備え、
     上記混合工程では、上記熱可塑性樹脂全体を100質量%とした場合に、1~30質量%の酸変性熱可塑性樹脂を用いることを特徴とする熱可塑性樹脂組成物の製造方法。
    Production of a thermoplastic resin composition comprising a plant material and a thermoplastic resin, wherein the plant material and the thermoplastic resin are 100% by mass, and the plant material is contained in an amount of 50 to 95% by mass. A method,
    A mixing step of mixing the plant material and the thermoplastic resin with a mixing and melting apparatus;
    The method for producing a thermoplastic resin composition, wherein in the mixing step, 1 to 30% by mass of an acid-modified thermoplastic resin is used when the total amount of the thermoplastic resin is 100% by mass.
  2.  上記植物性材料は、植物性繊維を含む請求項1に記載の熱可塑性樹脂組成物の製造方法。 The method for producing a thermoplastic resin composition according to claim 1, wherein the plant material includes plant fibers.
  3.  上記植物性繊維は、平均繊維長が0.5~20mmである請求項2に記載の熱可塑性樹脂組成物の製造方法。 The method for producing a thermoplastic resin composition according to claim 2, wherein the vegetable fiber has an average fiber length of 0.5 to 20 mm.
  4.  上記植物性材料は、ケナフである請求項1乃至3のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法。 The method for producing a thermoplastic resin composition according to any one of claims 1 to 3, wherein the plant material is kenaf.
  5.  上記酸変性熱可塑性樹脂は、酸価が5以上である請求項1乃至4のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法。 The method for producing a thermoplastic resin composition according to any one of claims 1 to 4, wherein the acid-modified thermoplastic resin has an acid value of 5 or more.
  6.  上記酸変性熱可塑性樹脂は、重量平均分子量が10,000~200,000である請求項1乃至5のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法。 The method for producing a thermoplastic resin composition according to any one of claims 1 to 5, wherein the acid-modified thermoplastic resin has a weight average molecular weight of 10,000 to 200,000.
  7.  上記混合溶融装置は、上記混合を行う混合室及び該混合室内に配置された混合羽根を備え、
     上記混合工程は、上記混合室中で上記混合羽根の回転により溶融された上記熱可塑性樹脂と上記植物性材料とを混合する請求項1乃至6のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法。
    The mixing and melting apparatus includes a mixing chamber for performing the mixing and a mixing blade disposed in the mixing chamber,
    The thermoplastic resin composition according to any one of claims 1 to 6, wherein in the mixing step, the thermoplastic resin melted by rotation of the mixing blade in the mixing chamber and the plant material are mixed. Manufacturing method.
  8.  上記混合工程の後に、該混合工程で得られた混合物を加熱せず押し固めてペレットを得るペレット化工程を備える請求項1乃至7のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法。 The method for producing a thermoplastic resin composition according to any one of claims 1 to 7, further comprising a pelletizing step after the mixing step, wherein the mixture obtained in the mixing step is pressed and hardened without heating. .
  9.  請求項1乃至8のうちのいずれかに記載の熱可塑性樹脂組成物の製造方法により得られた熱可塑性樹脂組成物を射出成形して成形体を得る成形工程を備えることを特徴とする熱可塑性樹脂成形体の製造方法。 A thermoplastic comprising a molding step of obtaining a molded body by injection molding of the thermoplastic resin composition obtained by the method for producing a thermoplastic resin composition according to any one of claims 1 to 8. Manufacturing method of resin molding.
PCT/JP2009/055083 2008-03-21 2009-03-16 Process for production of thermoplastic resin composition, and process for production of thermoplastic resin molded article WO2009116501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008074491A JP2009227806A (en) 2008-03-21 2008-03-21 Method for producing thermoplastic resin composition and method for producing thermoplastic resin molding
JP2008-074491 2008-03-21

Publications (1)

Publication Number Publication Date
WO2009116501A1 true WO2009116501A1 (en) 2009-09-24

Family

ID=41090902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055083 WO2009116501A1 (en) 2008-03-21 2009-03-16 Process for production of thermoplastic resin composition, and process for production of thermoplastic resin molded article

Country Status (2)

Country Link
JP (1) JP2009227806A (en)
WO (1) WO2009116501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094539A (en) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 Thermoplastic resin composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114944A (en) * 1999-10-13 2001-04-24 Sekisui Chem Co Ltd Polyolefin based resin composition highly filled with vegetable filler
JP2002167514A (en) * 2000-12-01 2002-06-11 Iris Ohyama Inc Wood meal-based composite
JP2003113280A (en) * 2001-10-03 2003-04-18 Mitsubishi Motors Corp Synthetic wood
JP2005028756A (en) * 2003-07-14 2005-02-03 Green Techno Japan Hanbai Kk Method for producing artificial wood, composition powder for artificial wood, and pellet
JP2005200614A (en) * 2004-01-19 2005-07-28 Okura Ind Co Ltd Polypropylene based resin composition and injection-molded product thereof
JP2006002052A (en) * 2004-06-18 2006-01-05 Mitsubishi Chemicals Corp Composite resin composition and molding of the same
JP2007245517A (en) * 2006-03-15 2007-09-27 Calp Corp Resin mass and its manufacturing method
JP2008019355A (en) * 2006-07-13 2008-01-31 Chisso Corp Thermoplastic resin composition and molded article thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001114944A (en) * 1999-10-13 2001-04-24 Sekisui Chem Co Ltd Polyolefin based resin composition highly filled with vegetable filler
JP2002167514A (en) * 2000-12-01 2002-06-11 Iris Ohyama Inc Wood meal-based composite
JP2003113280A (en) * 2001-10-03 2003-04-18 Mitsubishi Motors Corp Synthetic wood
JP2005028756A (en) * 2003-07-14 2005-02-03 Green Techno Japan Hanbai Kk Method for producing artificial wood, composition powder for artificial wood, and pellet
JP2005200614A (en) * 2004-01-19 2005-07-28 Okura Ind Co Ltd Polypropylene based resin composition and injection-molded product thereof
JP2006002052A (en) * 2004-06-18 2006-01-05 Mitsubishi Chemicals Corp Composite resin composition and molding of the same
JP2007245517A (en) * 2006-03-15 2007-09-27 Calp Corp Resin mass and its manufacturing method
JP2008019355A (en) * 2006-07-13 2008-01-31 Chisso Corp Thermoplastic resin composition and molded article thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094539A (en) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 Thermoplastic resin composition

Also Published As

Publication number Publication date
JP2009227806A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5380816B2 (en) Method for producing thermoplastic resin composition and method for producing thermoplastic resin molded article
JP4888030B2 (en) Method for producing plant composite material molded body, plant composite material molded body, plant composite material production method, and plant composite material
JP5146393B2 (en) Method for producing thermoplastic resin composition
JP5136258B2 (en) Method for producing thermoplastic composition and method for producing molded body
JP5493499B2 (en) Method for producing thermoplastic resin composition
JP2011005783A (en) Method for producing thermoplastic resin composition and method for producing molding
JP5251098B2 (en) Method for producing molded thermoplastic composition
JP5477258B2 (en) Method for producing thermoplastic resin composition and apparatus for producing the same
EP2796266A1 (en) Thermoplastic resin molding and manufacturing method therefor
WO2009157265A1 (en) Thermoplastic resin composition, method for producing same, and moldings
JP2009096875A (en) Method for producing thermoplastic resin composition, and method for producing molded article
WO2009116501A1 (en) Process for production of thermoplastic resin composition, and process for production of thermoplastic resin molded article
JP2009108142A (en) Thermoplastic resin composition, method for producing the same, and method for manufacturing molded product
JP2010030047A (en) Method for producing thermoplastic composition and method for producing molding
JP2010144056A (en) Thermoplastic resin composition, method for producing the composition, molded article and method for producing the same
JP2010275400A (en) Method for manufacturing thermoplastic resin composition
JP5169530B2 (en) Thermoplastic resin composition, method for producing the same, and method for producing a molded article
JP5314867B2 (en) Method for producing thermoplastic resin composition and method for producing molded body
JP2009138110A (en) Manufacturing method for thermoplastic composition molded article
JP5745352B2 (en) Method for producing thermoplastic resin composition
JP5169188B2 (en) Method for producing molded thermoplastic composition
JP2010006875A (en) Method for producing thermoplastic composition pellets and method for producing molded article
JP2009102551A (en) Thermoplastic resin composition and method for producing the same, and method for manufacturing molded article
JP2009073941A (en) Method for producing thermoplastic resin molded article, and thermoplastic resin molded article
JP2010001441A (en) Method of producing thermoplastic composition and method of producing molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09722583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09722583

Country of ref document: EP

Kind code of ref document: A1