WO2009116219A1 - 超電導回転子、超電導回転機および超電導回転機システム - Google Patents

超電導回転子、超電導回転機および超電導回転機システム Download PDF

Info

Publication number
WO2009116219A1
WO2009116219A1 PCT/JP2008/073733 JP2008073733W WO2009116219A1 WO 2009116219 A1 WO2009116219 A1 WO 2009116219A1 JP 2008073733 W JP2008073733 W JP 2008073733W WO 2009116219 A1 WO2009116219 A1 WO 2009116219A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
winding
rotor
lead
cage
Prior art date
Application number
PCT/JP2008/073733
Other languages
English (en)
French (fr)
Inventor
武恒 中村
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2010503748A priority Critical patent/JP5397866B2/ja
Priority to CA2718559A priority patent/CA2718559C/en
Priority to US12/933,112 priority patent/US8242657B2/en
Publication of WO2009116219A1 publication Critical patent/WO2009116219A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/12Asynchronous induction motors for multi-phase current
    • H02K17/14Asynchronous induction motors for multi-phase current having windings arranged for permitting pole-changing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting rotor, a superconducting rotating machine, and a superconducting rotating machine system.
  • Rotating machines that are electrical equipment are classified into DC machines and AC machines.
  • an AC machine generates mechanical power by receiving mechanical power or generates mechanical power by receiving AC power, and is mainly classified into an induction machine and a synchronous machine.
  • An induction machine for example, an induction motor, rotates by generating an induction torque in the rotor by a rotating magnetic field generated by applying an AC voltage to the stator winding.
  • Induction motors are widely used because they have a simple structure, are easy to maintain, and are inexpensive, but they are difficult in terms of efficiency and speed control.
  • Synchronous machines for example, synchronous motors, rotate when a rotor having an electromagnet or a permanent magnet is pulled by a rotating magnetic field generated by applying an AC voltage to a stator winding. Synchronous motors are efficient but require additional equipment for starting and synchronous pull-in.
  • Patent Document 1 a superconducting rotating machine that can rotate synchronously while having a configuration of an induction machine has been proposed (see, for example, Patent Document 1 and Patent Document 2).
  • the rotating machine described in Patent Document 1 includes a stator 60, a rotor 61 rotatably mounted on the stator 60, a superconducting material 62 provided on the rotor 61, and a stator 60.
  • a magnetic field generator provided to form a rotating magnetic field, a mechanism for capturing the magnetic field penetrating the superconducting material 62 in the superconducting material 62, and a torque shield 64 disposed between the magnetic field generator and the superconducting material 62.
  • the skin depth and thickness are such that the strength of the magnetic field in the superconducting material 62 is less than the second critical magnetic field Hc 2 , and sufficient torque is generated to raise the rotor 61 to the synchronous speed.
  • a torque shield 64 having electrical conductivity.
  • the rotating machine described in Patent Document 1 is guided to rotate by the induced torque generated in the torque shield 64 at the time of starting.
  • the magnetic flux of the rotating magnetic field passes through the torque shield 64 and extends into the superconducting material 62. Thereafter, when the superconducting material 62 is cooled to a critical temperature or less and becomes a superconducting state, the magnetic flux of the rotating magnetic field is captured by the superconducting material 62, and the rotating machine described in Patent Document 1 rotates synchronously.
  • the electric motor described in Patent Document 2 for example, as shown in FIGS. 3 and 4, in the hollow portion 10 of the bar and the grooves 11 and 12 of the end ring 5 in the squirrel-cage winding made of a normal conductive material, A superconducting material 13 is filled.
  • the electric motor described in Patent Document 2 has a structure in which a closed circuit as a field winding formed of a superconducting material is added to a cage winding formed of a normal conducting material.
  • the rotating machine described in Patent Document 1 allows a superconducting material to capture magnetic flux and realize a synchronous mode.
  • this superconducting material it is described that any of granular, flakes, lumps (bulk material) and thin film may be used.
  • magnetic flux is effectively captured in the superconducting material. For this reason, it is difficult to think of anything other than a lump. If the superconducting material is a lump (non-winding), it is unlikely that all of the captured magnetic flux contributes to torque generation, and it is considered that the torque generation efficiency occupying the amount of superconducting material used is poor.
  • the temperature in order for the superconducting material to capture the magnetic flux supplied from the primary winding, the temperature is set higher than the critical temperature of the superconducting material, and the rotor is set to a predetermined number of revolutions in the induction mode. At that stage, the temperature is lowered below the critical temperature to capture the magnetic flux.
  • the temperature needs to be higher than the critical temperature every time in order to capture the magnetic flux. Since the process of raising and lowering the temperature requires a relatively long time, there is a concern that the responsiveness of the entire device will deteriorate.
  • the superconducting material is set to a temperature lower than the critical temperature in advance, and then the second supercritical state of the superconducting material is broken from the primary winding or the auxiliary winding when the predetermined rotational speed is reached.
  • a magnetic field greater than the magnetic field (Hc 2 ) is applied in a pulsed manner to capture the magnetic flux.
  • the second critical magnetic field is generally several Tesla even at liquid nitrogen temperature, and it is not easy to manufacture a coil that realizes such a magnetic field in a limited space in a pulsed manner.
  • Patent Document 2 As described in (1) to (3) above, the electric motor described in Patent Document 2 has a serious problem, and a superconducting rotating machine that can rotate synchronously while having the structure of an induction machine has not yet appeared in the world.
  • the present invention has been made in view of the above circumstances, and an object thereof is a superconducting rotor having a configuration of an induction machine and capable of induction rotation and synchronous rotation, a superconducting rotation machine, and a superconducting rotation machine system. Therefore, the object is to provide a material that has good heat dissipation and can easily capture magnetic flux for synchronous rotation.
  • the present invention provides (1) a superconducting rotor that is arranged and rotates in a stator that generates a rotating magnetic field, and a plurality of superconducting wires are covered with a highly conductive metal.
  • a superconducting lead-shaped winding formed by a rotor bar and an end ring made of two superconducting wires, a normal conducting lead-shaped winding formed by a rotor bar and an end ring made of a normal conducting material, and the two-cage windings A cylindrical rotor core having a plurality of slots for accommodating each rotor bar; and a rotor shaft provided coaxially with the rotor core, wherein the superconducting cage winding is in a non-superconducting state.
  • the present invention is the above configuration, wherein (2) the superconducting wire is a metal low temperature superconductor represented by NbTi or Nb 3 Sn, an oxide high temperature superconductor represented by yttrium or bismuth, or two
  • the present invention provides a superconducting rotor which is made of a magnesium boride superconductor, and wherein the highly conductive metal is silver, copper, gold, aluminum or an alloy thereof.
  • the present invention is the above-described configuration, wherein (3) the normal conducting lead-shaped winding is formed by making the high-conductivity metal in the superconducting guiding saw-shaped winding more than a predetermined thickness,
  • the present invention provides a superconducting rotor characterized by being integrated with a shape winding.
  • the present invention is such that (4) the superconducting lead-shaped winding and the normal conducting lead-shaped winding are separated, and the superconducting lead-shaped winding is further provided.
  • a superconducting rotor characterized in that the cage is larger than the normal conducting lead-shaped winding and each rotor bar is positioned outside each rotor bar of the normal conducting lead-shaped winding. is there.
  • the present invention is such that (5) the superconducting lead-shaped winding and the normal conducting lead-shaped winding are separated from each other, and the normal conducting lead-shaped winding is further provided.
  • the wire provides a superconducting rotor characterized in that the cage is larger than the superconducting lead-shaped winding and each rotor bar is located outside the respective rotor bars of the superconducting lead-shaped winding. .
  • the present invention is the above configuration, wherein (6) the number of rotor bars of the superconducting lead-shaped winding, the number of rotor bars of the normal conducting lead-shaped winding, and the number of slots of the rotor core are as follows: There is provided a superconducting rotor having the same number, wherein the rotor bar of the superconducting lead-shaped winding and the rotor bar of the normal conducting lead-shaped winding are accommodated one by one in each slot. is there.
  • the superconducting rotor according to any one of the above configurations (1) to (6) is arranged in a stator having a stator winding for generating a rotating magnetic field.
  • a superconducting rotating machine is provided.
  • the stator winding is made of a superconducting material, and a critical temperature of the superconducting material is a critical temperature of the superconducting wire forming the superconducting lead-shaped winding.
  • the present invention provides a superconducting rotating machine characterized by being at a temperature or higher.
  • the present invention also includes (9) the superconducting rotator described in the above configuration (7), a cooling device capable of cooling the superconducting rotator until it is in a superconducting state, and a control device that controls the superconducting rotator.
  • the control device includes a first control pattern to be used when the superconducting rotator is rotated by the induced torque main drive, and the superconducting rotator is rotated by the synchronous torque main drive.
  • the superconducting rotating machine is configured to control the superconducting rotating machine using the second control pattern, and to control the superconducting rotating machine using the first control pattern otherwise.
  • Machine system It is intended to.
  • the present invention is the above configuration (9), wherein (10) the control device is in a superconducting state when the superconducting cage winding does not capture the magnetic flux of the rotating magnetic field at the start, The applied voltage to the stator winding and / or the frequency of the applied voltage is changed so that the current flowing in the superconducting cage winding exceeds a critical current, and the superconducting cage winding is in a magnetic flux flow state.
  • the present invention provides a superconducting rotating machine system in which the magnetic flux of the rotating magnetic field is linked to the superconducting lead-shaped winding.
  • the superconducting lead-shaped winding is composed of a superconducting wire instead of a superconducting bulk material.
  • the superconducting bulk material has a large current capacity, it is difficult to make it a magnetic flux flow state once it is in the superconducting state.
  • the superconducting lead-type winding of the superconducting rotating machine of the present invention is made of a superconducting wire having a small current capacity, it can be easily brought into a magnetic flux flow state. Therefore, according to the superconducting rotating machine of the present invention, even if the superconducting cage winding is in the superconducting state without capturing the magnetic flux, the superconducting cage winding is once put into the flux flow state.
  • the interlinkage magnetic flux can be easily captured and rotated synchronously.
  • FIG. 2 is a diagram showing (A) a superconducting lead-shaped winding in the superconducting motor of FIG. 1, (B) a diagram showing a normal conducting lead-shaped winding, and (C) a diagram showing a rotor core.
  • FIG. 3 is a schematic diagram showing an electromagnetic phenomenon in the superconducting lead-shaped winding of FIG. 2. It is a figure which shows the modification of the superconducting rotary machine system of this invention.
  • FIG. 1 is a longitudinal sectional end view of a superconducting motive according to the present invention.
  • FIG. 2 is a diagram showing (A) a superconducting lead-shaped winding in the superconducting motor of FIG. 1, (B) a diagram showing a normal conducting lead-shaped winding, and (C) a diagram showing a rotor core.
  • FIG. 3 is a schematic view showing a cross section of a superconducting wire constituting the superconducting lead-shaped winding of FIG. 4 is a cross-sectional view of a rotor in the superconducting motive of FIG. 1
  • FIG. 5 is a block diagram showing a superconducting motive system to which the superconducting motive of FIG. 1 is applied.
  • a superconducting motive (superconducting rotating machine) 1 As shown in FIG. 1, a superconducting motive (superconducting rotating machine) 1 according to the present invention includes a cylindrical casing 2, an annular stator 3 provided on the inner periphery of the casing 2, and both openings of the casing 2. Disk-shaped brackets 4a and 4b, and a superconducting rotor 7 rotatably supported by the brackets 4a and 4b via bearings 5a and 5b.
  • the stator 3 includes an annular stator core 3a formed by laminating electromagnetic steel plates such as silicon steel plates in the axial direction, and a stator winding 3b provided in a slot (not shown) of the stator core 3a. ing.
  • the stator winding 3b is made of a normal conductive material.
  • the superconducting rotor 7 is disposed inside the stator 3 at a predetermined interval.
  • the superconducting rotor 7 includes a hollow cylindrical rotor core 71, a superconducting lead-shaped winding 73 in which a rotor bar 73 a is accommodated in a slot 72 of the rotor core 71, and a slot 72 of the rotor core 71. It comprises a normal conducting lead-shaped winding 74 in which a rotor bar 74 a is accommodated, and a rotating shaft 75 that is coaxially attached to the rotor core 71.
  • the rotor core 71 is formed by laminating electromagnetic steel plates such as silicon steel plates in the axial direction.
  • a rotation shaft receiving hole 71 a for receiving the rotation shaft 75 is formed at the center of the rotor core 71.
  • a plurality of slots 72 penetrating in the axial direction are formed at predetermined intervals in the circumferential direction.
  • the slot 72 is generally formed obliquely with respect to the axial direction of the rotor core 71 and has an oblique slot (skew) configuration.
  • the superconducting lead-shaped winding 73 includes a plurality of rotor bars 73a accommodated in the slots 72 of the rotor core 71 and annular end rings 73b and 73b that short-circuit both ends of each rotor bar 73a. Has been.
  • the rotor bar 73a is formed by bundling a plurality of superconducting wires (in this embodiment, bismuth-based high-temperature superconducting wires) 73e and has a rectangular cross section (but is not limited to a rectangular cross section). As shown in FIG. 3, the superconducting wire 73e is formed by covering a plurality of bismuth high-temperature superconducting filaments 73c with a highly conductive metal 73d such as copper, aluminum, silver, or gold.
  • the number of rotor bars 73 a is the same as the number of slots 72 of the rotor core 71.
  • the rotor bar 73a is arranged at a predetermined interval in the circumferential direction and is inclined with respect to the axial direction of the car so as to form a cylindrical and skew structure car. As shown in FIG. 1, the rotor bar 73 a is formed longer than the axial length of the rotor core 71, and protrudes from the slot 72 when accommodated in the slot 72.
  • the end ring 73b is made of a superconducting wire 73e such as a bismuth high-temperature superconducting wire, like the rotor bar 73a.
  • a superconducting wire 73e such as a bismuth high-temperature superconducting wire, like the rotor bar 73a.
  • Each end of the rotor bar 73a protruding from the slot 72 is joined to each of the end rings 73b and 73b.
  • the normal conducting lead-shaped winding 74 includes a plurality of rotor bars 74 a housed in the slots 72 of the rotor core 71 and annular end rings 74 b and 74 b that respectively short-circuit both ends of each rotor bar 74 a. It is configured.
  • the rotor bar 74a is made of a highly conductive material such as copper, aluminum, silver, or gold, and has a rectangular cross section (but is not limited to a rectangular cross section).
  • the number of rotor bars 74 a is the same as the number of slots 72 of the rotor core 71.
  • the rotor bar 74a is arranged at a predetermined interval in the circumferential direction so as to form a cylindrical and skew structure car larger than the superconducting lead-shaped winding 73, and is arranged obliquely with respect to the axial direction of the car. Has been. As shown in FIG.
  • the rotor bar 74 a is formed longer than the axial length of the rotor core 71, and protrudes from the slot 72 when accommodated in the slot 72. As shown in FIGS. 2 and 4, the rotor bar 74 a is inserted inside the slot 72 and outside the rotor bar 73 a of the superconducting lead-shaped winding 73.
  • the end ring 74b is made of a highly conductive material such as copper, aluminum, silver, or gold, like the rotor bar 74a.
  • Each end of the rotor bar 74a protruding from the slot 72 is joined to each of the end rings 74b and 74b.
  • the rotating shaft 75 is inserted into the rotating shaft receiving hole 71a of the rotor core 71 and attached.
  • the rotating shaft 75 is rotatably supported by the brackets 4a and 4b via bearings 5a and 5b such as bearings.
  • the superconducting motive 1 configured as described above, when the superconducting lead-shaped winding 73 is in the normal conducting state (non-superconducting state), the normal conducting lead-shaped winding 74 is caused by the rotating magnetic field generated by the stator 3. Inductive current flows through this, and induction torque is generated. At this time, the superconducting motor 1 rotates by the induced torque main drive and exhibits torque characteristics corresponding to the “inductive rotation (normal conducting state)” in FIG. In the state where the superconducting motor 1 is inductively rotated, a slight induced current also flows through the superconducting lead-shaped winding 73. However, since the induced current flowing in the normal conducting lead winding 74 is much larger, the induced torque generated in the normal conducting lead winding 74 is more dominant than the induction torque generated in the superconducting lead winding 73. It is.
  • the superconducting cage winding 73 captures the magnetic flux of the rotating magnetic field generated by the stator 3. (See FIG. 8C).
  • the superconducting motor 1 rotates with the synchronous torque main drive, and exhibits torque characteristics corresponding to the “synchronous rotation (superconducting state)” in FIG.
  • a slight slip may occur due to the influence of the connection resistance between the rotor bar 73a and the end ring 73b.
  • it can be regarded as a synchronous rotation.
  • the superconducting coil winding 73 shifts to the magnetic flux flow state (see FIG. 8B) and continues to operate with the induced torque main drive. It is possible.
  • the induction torque at this time is provided from both the superconducting lead-type winding 73 and the normal conducting lead-type winding 74 in the magnetic flux flow state, and exhibits torque characteristics corresponding to the “induction rotation (superconducting state)” in FIG. Is done.
  • the superconducting motor 1 has a torque characteristic as shown in FIG. 7 and rotates with the induced torque main drive in the normal conducting state, and in the superconducting state with the synchronous torque main driving at the normal load and the induced torque main driving at the overload. Rotate.
  • the superconducting motive 1 configured as described above can be mounted on an automobile as shown in FIG. 5, for example, and used as a superconducting motive system 21.
  • the superconducting motive system 21 controls the superconducting motive 1 connected to the wheel 23 via the axle 22, the cooling device 24 that can cool the superconducting motive 1 until it becomes a superconducting state, and the cooling device 24 according to the cooling signal SR.
  • the control unit 25 is configured to control the superconducting motor 1 through the inverter 26 in accordance with the electric motor drive signal SM, and the battery 27 for driving the superconducting motor 1.
  • the cooling device 24 supplies the refrigerant into the slot 72 of the superconducting rotor 7 through a refrigerant supply path (not shown) provided in the rotating shaft 75 and the rotor core 71 of the superconducting motive 1. Thereby, the cooling device 24 can cool the superconducting lead-shaped winding 73 in the superconducting electromotive machine 1 to below the critical temperature.
  • a refrigerant supply path not shown
  • the refrigerant helium gas, liquid nitrogen, or the like is used.
  • the control device 25 controls the drive of the superconducting motor 1 via the inverter 26 in accordance with the electric motor drive signal SM. At this time, the control device 25 controls the voltage V and the frequency f of the alternating voltage applied to the stator winding 3 b of the superconducting motor 1 via the inverter 26. Thereby, the control apparatus 25 feedback-controls the rotation speed and torque of the superconducting motive 1.
  • the control device 25 includes an induction rotation control pattern (first control pattern) that is used when the superconducting motor 1 is rotated by induced torque main motion, and a synchronous rotation control that is used when the superconducting motor 1 is rotated by synchronous torque main motion.
  • a pattern (second control pattern) is stored in advance.
  • the control pattern for induction rotation is a known control pattern used for a conventional induction motor.
  • the synchronous rotation control pattern is a known control pattern used for a conventional synchronous motor.
  • a primary current signal SI which is a signal of a primary current flowing in the stator winding 3b is constantly input from the superconducting motive device 1 to the control device 25.
  • the control device 25 further has a threshold value I TH for the primary current signal SI and is set for each ratio V / f of the voltage V to the frequency f of the AC voltage applied to the stator winding 3b. Is stored.
  • the threshold value I TH is used to determine whether or not the superconducting cage winding 73 is in a superconducting state (whether or not the superconducting motive motor 1 is rotated by synchronous torque main driving).
  • the superconducting motor 1 is steadily operated at an arbitrary V / f value, for example, V 1 / f 1 in the normal conducting state.
  • the primary current signal SI becomes a substantially constant value I N1 as shown in FIG.
  • the cooling device 24 is started to operate and is driven until the superconducting motive 1 is in a superconducting state.
  • the threshold value I TH1 is slightly smaller value (e.g. 90% value of I S1) than the value of I S1.
  • the phenomenon that the value of the primary current decreases when the superconducting lead-shaped winding 73 is in the superconducting state is caused by the superconducting motor 1 shifting from induction rotation to synchronous rotation at that time.
  • an extra current for maintaining the slip state is required during the induction rotation, whereas the extra current is not required during the synchronous rotation, so that the value of the primary current decreases.
  • Controller 25 determines the value of the primary current signal SI to be input at all times, based on whether the lower or higher than the threshold value I TH, whether superconducting motor 1 is rotating at a synchronous torque main drive. That is, if the value I S of the primary current signal SI is lower than the threshold value I TH , the control pattern for synchronous rotation is applied to the superconducting motor 1 assuming that the motor is rotating by synchronous torque main motion. For example, the control pattern for induction rotation is applied on the assumption that the rotation is caused by the induced torque main drive.
  • I TH is set to a value slightly smaller than I S.
  • I TH is set to a value higher than I S , the actual rotation is induced due to fluctuations in the primary current signal SI.
  • the synchronous rotation control pattern may be applied to the superconducting motive 1 in some cases, which hinders operation.
  • the superconducting motor 1 is operated without problems.
  • the control device 25 causes the superconducting lead-shaped winding 73 to be in a magnetic flux flow state. As described above, the voltage applied to the stator winding 3b and / or the frequency of the applied voltage is increased. Once the superconducting lead-shaped winding 73 is in a magnetic flux flow state, it can capture the interlinkage magnetic flux even in a state below the critical temperature. This will be described in detail with reference to FIG.
  • the superconducting cage winding 73 when the superconducting cage winding 73 has been cooled below the critical temperature by the cooling device 24 before the start of operation, the superconducting cage winding 73 does not capture the magnetic flux from the stator winding 3b. It is in a superconducting state. In this state, when an AC voltage is applied to the stator winding 3b, a shielding current flows through the superconducting lead-shaped winding 73, and the magnetic flux linked to the superconducting lead-shaped winding 73 and the normal conducting lead-shaped winding 74 is zero. (See FIG. 8A). That is, in this case, no synchronous torque is generated, and no induced current flows through the normal conducting lead-shaped winding 74, so no induced torque is generated.
  • the control device 25 increases the applied voltage to the stator winding 3b and / or the frequency of the applied voltage until the shielding current flowing through the superconducting cage winding 73 exceeds the critical current, thereby superconducting cage winding. 73 is brought into a magnetic flux flow state. Since a finite resistance is generated in the magnetic flux flow state, the magnetic flux can be linked to the superconducting lead-shaped winding even if the state is below the critical temperature (see FIG. 8B).
  • the superconducting rotor 7 is accelerated, and if the relative speed between the rotating magnetic field and the superconducting rotor 7 is reduced accordingly, the current flowing through the superconducting cage winding 73 is automatically reduced. Finally, when the current flowing in the superconducting lead-shaped winding 73 falls below the critical current, the superconducting lead-shaped winding 73 captures the interlinkage magnetic flux (see FIG. 8C).
  • the superconducting motivation system 21 configured as described above is used as follows.
  • the control device 25 detects that the primary current signal SI that is always input is higher than the threshold value I TH corresponding to the operating condition V / f, and the superconducting motor 1 is in the normal conducting state. Is detected. And the control apparatus 25 applies the control pattern for induction rotation with respect to the superconducting motivation 1 rotated by induced torque main motion, and drives and controls the superconducting motivation 1. That is, in the normal conduction state, the superconducting motor 1 operates as an induction motor and exhibits torque characteristics corresponding to the “induction rotation (normal conduction state)” in FIG.
  • the cooling signal SR is input to the control device 25 when the driver performs a cooling start operation after starting the operation.
  • the control device 25 drives the cooling device 24 according to the signal SR.
  • the cooling device 24 supplies a refrigerant such as helium gas to the superconducting lead winding 73 of the superconducting motive 1 and cools the superconducting lead winding 73 to below its critical temperature. Even when the cooling device 24 is driven, the superconducting motor 1 still operates as an induction motor until the superconducting cage winding 73 becomes below the critical temperature.
  • the superconducting motive motor 1 rotates with synchronous torque as described above.
  • control unit 25 detects that the primary current signal SI to be input at all times is lower than the threshold I TH corresponding to the operating condition V / f, superconducting motor 1 is in the superconducting state Detect that. And the control apparatus 25 applies the control pattern for synchronous rotation with respect to the superconducting motivation 1 rotated by synchronous torque main drive, and drives and controls the superconducting motivation 1. That is, in the superconducting state, the superconducting motive 1 exhibits torque characteristics corresponding to “synchronous rotation (superconducting state)” in FIG.
  • the driver performs a driving operation, and the motor drive signal SM is input to the control device 25.
  • the control device 25 tries to drive the superconducting motor 1 in accordance with the signal SM.
  • the superconducting motor 1 is in a superconducting state at this time, even if an AC voltage is applied to the stator winding 3b, a shielding current flows through the superconducting cage winding 73, so that the superconducting cage winding 73 and the normal winding
  • the magnetic flux interlinking with the electrically conductive winding 74 is zero, and the superconducting motor 1 does not operate.
  • the control device 25 increases the voltage applied to the stator winding 3b and / or the frequency of the applied voltage until the shielding current flowing through the superconducting cage winding 73 exceeds the critical current, and the superconducting cage winding.
  • the line 73 is brought into a magnetic flux flow state. In the magnetic flux flow state, as described above, the magnetic flux can be linked to the superconducting lead-shaped winding even if the state is below the critical temperature.
  • the superconducting rotor 7 is accelerated, and if the relative speed between the rotating magnetic field and the superconducting rotor 7 is reduced accordingly, the current flowing in the superconducting cage winding 73 is automatically reduced. Finally, when the current flowing in the superconducting lead-shaped winding 73 falls below the critical current, the superconducting lead-shaped winding 73 captures the interlinkage magnetic flux. And the superconducting motor 1 rotates by synchronous torque main drive.
  • the control device 25 detects that the primary current signal SI that is always input is lower than the threshold value I TH corresponding to the operating condition V / f, and the superconducting motor 1 is in the superconducting state. Detect that. And the control apparatus 25 applies the control pattern for synchronous rotation with respect to the superconducting motivation 1 rotated by synchronous torque main drive, and drives and controls the superconducting motivation 1. That is, in the superconducting state, the superconducting motive 1 rotates synchronously and exhibits torque characteristics corresponding to the “synchronous rotation (superconducting state)” in FIG.
  • the superconducting lead-shaped winding 73 is not composed of a superconducting bulk material but is composed of a superconducting wire, so that heat can be removed when heat is generated.
  • the superconducting bulk material has a large current capacity, it is difficult to make it a magnetic flux flow state once it is in the superconducting state.
  • the superconducting lead-shaped winding 73 of the superconducting motor 1 is made of a superconducting wire having a small current capacity, it can be easily brought into a magnetic flux flow state. Therefore, according to the superconducting motive 1, even when the superconducting cage winding 73 is in a superconducting state without capturing the magnetic flux, the superconducting cage winding 73 is once brought into the magnetic flux flow state.
  • the interlinkage magnetic flux can be easily captured and rotated synchronously.
  • the superconducting motive system 21 whether the superconducting motive 1 is in the superconducting state based on whether the value of the primary current signal SI that is constantly input to the control device 25 is lower or higher than the threshold value ITH . It is possible to easily detect whether or not it is rotating (synchronized torque main rotation). Therefore, according to the superconducting motivation system 21, the control pattern for induction rotation and the control pattern for synchronous rotation can be appropriately applied according to the rotation state of the superconducting motivation 1, and there is no need for complicated control.
  • the superconducting wire is not limited to a bismuth-based high-temperature superconducting wire, but may be a metal-based low-temperature superconducting wire represented by NbTi or Nb 3 Sn, an yttrium-based high-temperature superconducting wire, or a magnesium diboride superconducting wire. it can.
  • the superconducting lead-shaped winding 73 and the normal conducting lead-shaped winding 74 are separate bodies, but they may be configured integrally. That is, the high-conductivity metal in the superconducting wire rod of the superconducting lead-shaped winding 73 may have a predetermined thickness or more, and the high-conductivity metal portion may be the normal-conducting lead-shaped winding 74.
  • the normal conducting lead-shaped winding 74 is disposed outside the superconducting rotor 7 and the superconducting lead-shaped winding 73 is disposed inside. Good.
  • the normal conducting lead winding 74 is on the outside, the induction torque in the normal conducting state and the induction torque in the superconducting state can be increased, and when the super conducting lead winding 73 is on the outside, synchronization in the superconducting state is possible. Torque can be increased.
  • the superconducting lead-shaped winding 73 and the normal conducting lead-shaped winding 74 are housed one by one in the slot 72, but the present invention is not limited to this.
  • a slot for accommodating the superconducting lead-shaped winding 73 and a slot for storing the normal conducting lead-shaped winding 74 may be provided separately.
  • the number of rotor bars 73a of the superconducting lead-shaped winding 73 and the number of rotor bars 74a of the normal-conducting lead-shaped winding 74 may not be the same.
  • the structure which accommodates some rotor bars 73a and 74a in the same slot, and accommodates the remainder in a separate slot may be sufficient.
  • the stator winding 3b made of a normal conducting material is used, but the stator winding 3b made of a superconducting material may be used.
  • the critical temperature of the stator winding 3 b needs to be equal to or higher than the critical temperature of the superconducting lead-shaped winding 73. Otherwise, when the stator winding 3b enters the superconducting state and starts to drive, the superconducting cage winding 73 is always in the superconducting state and can only perform synchronous rotation or induction rotation in the superconducting state.
  • the superconducting motive 1 is directly connected to the axle 22.
  • the superconducting motive 1 may be connected to the axle 22 via a transmission.
  • the superconducting rotary machine of this invention was used as a superconducting electromotive machine, it can also be used as a superconducting generator.
  • a superconducting power generator system 31 including a power converter 34 that converts the voltage and frequency of power can be obtained.
  • the superconducting generator system 31 rotates the superconducting rotor 7 by the rotation of the blade 32 to generate AC power in the stator winding 3b.
  • the superconducting generator system 31 operates as an induction generator when the superconducting cage winding 73 is in the normal conducting state, and operates as a synchronous generator when in the superconducting state, similarly to the superconducting motivation system 21 in the above embodiment. .
  • the superconducting generator system 31 can also be configured to increase the rotational speed of the blade 32 by connecting a speed increaser 36 between the blade 32 and the superconducting generator 1 as shown in FIG. 9B. .

Abstract

 本発明の主たる解決課題は、誘導機の構成を有し、誘導回転および同期回転が可能な超電導回転子、超電導回転機および超電導回転機システムであって、熱はけがよく、過大な負荷に対しても安定で、同期回転のための磁束捕捉が容易であるものを提供することにある。上記課題を解決すべく、図1に示す通り、本発明は複数の超電導線を高導電性金属で被覆してなる超電導線材にて形成された超電導かご形巻線73と、常電導材にて形成された常電導かご形巻線74と、両かご形巻線73,74の各ロータバー73a,74aを収容する複数のスロット72を備えた円柱状の回転子鉄心71と、回転子鉄心71に同軸に設けられた回転子軸75と、を含み、超電導かご形巻線73が非超電導状態であるとき、回転磁界に起因して常電導かご形巻線74に生じる誘導トルク主動で回転する一方、超電導かご形巻線73が超電導状態であるとき、超電導かご形巻線73が回転磁界の磁束を捕捉することで生じる同期トルク主動で回転する超電導回転子7とした。

Description

超電導回転子、超電導回転機および超電導回転機システム
 本発明は、超電導回転子、超電導回転機および超電導回転機システムに関する。
 電気機器である回転機は、直流機と交流機に分類される。このうち、交流機は、機械動力を受けて交流電力を生成する、または交流電力を受けて機械動力を生成するものであり、主として誘導機と同期機に分類される。
 誘導機、例えば誘導電動機は、固定子巻線に交流電圧を印加して発生させた回転磁界によって、回転子に誘導トルクを発生させて回転する。誘導電動機は、単純な構造であり、保守が容易で安価であること等から広く利用されているが、効率や速度制御面で難がある。
 同期機、例えば同期電動機は、固定子巻線に交流電圧を印加して発生させた回転磁界に、電磁石または永久磁石を備えた回転子が引かれることによって回転する。同期電動機は、効率がよいものの、始動や同期引入に付加的な装置が必要である。
 そこで、近年、誘導機の構成でありながら同期回転可能な超電導回転機が提案されている(例えば、特許文献1および特許文献2参照)。
 特許文献1記載の回転機は、例えばその図6に示されるように、ステータ60と、ステータ60に回転可能に装着されたロータ61と、ロータ61に設けられた超電導材料62と、ステータ60に設けられ、回転磁場を形成する磁場発生装置と、超電導材料62内を貫く磁場を超電導材料62内に捕らえておくための機構と、磁場発生装置と超電導材料62の間に配置されたトルクシールド64であって、超電導材料62内の磁場の強度が第2臨界磁場Hc未満になるような表皮深さ及び厚さを有するとともに、ロータ61を同期速度に引き上げるために充分なトルクを生み出すに足る電気導電性を有するトルクシールド64と、を備えている。
 特許文献1記載の回転機は、始動時、トルクシールド64に発生する誘導トルクによって誘導回転する。そして、所定速度に達すると、回転磁場の磁束がトルクシールド64を通過して、超電導材料62中に延びる。その後、超電導材料62が臨界温度以下に冷却されて超電導状態になると、回転磁場の磁束が超電導材料62に捕捉され、特許文献1記載の回転機は同期回転する。
 一方、特許文献2記載の電動機は、例えばその図3および図4に示されるように、常電導材からなるかご形巻線におけるバーの中空部10とエンドリング5の溝11,12とに、超電導材13が充填されている。つまり、特許文献2記載の電動機は、常電導材にて構成されるかご形巻線に、超電導材にて構成される界磁巻線としての閉回路が併設された構造になっている。
 特許文献2記載の電動機によれば、室温雰囲気下で起動することにより起動特性が良好な通常のかご形誘導機としての起動が可能である。また、起動後の加速完了時には、かご形回転子を超電導材料の臨界温度以下に冷却して超電導材料の閉回路を形成すれば、同期引き入れが自動的に行なわれ、以後は永久電流による同期電動機として極めて高効率の運転が可能になる。
特表平8-505515号公報 特開平1-144346号公報
[特許文献1記載の回転機について]
 特許文献1記載の回転機は、超電導材料に磁束を捕捉させ、同期モードを実現する。この超電導材料としては、粒状、薄片状、塊状(バルク材)及び薄膜状のいずれでも良いと記載されているが、特許文献1記載の回転子の構造において超電導材料中に磁束を有効に捕捉させるためには、最終的に塊以外は考えにくい。そして、超電導材料が塊(非巻線)であれば、捕捉されている磁束が全てトルク発生に寄与するとは考えにくく、超電導材料の使用量に占めるトルク発生効率が悪いと考えられる。
 さらに、特許文献1記載の回転機において超電導材料に磁束を捕捉させるためには、2種類の方法が考えられると記載されているが、これらの方法にはそれぞれ下記の問題点がある。
 第1の方法では、1次巻線から供給される磁束を超電導材料に捕捉させるために、温度を当該超電導材料の臨界温度より高く設定しておき、回転子が誘導モードで所定の回転数に達した段階で温度を当該臨界温度未満に下げ、磁束を捕捉させる。しかし、この方法では、磁束を捕捉させるために毎回温度を上記臨界温度より高くする必要がある。温度を昇降するプロセスには比較的長い時間が必要であることから、機器全体の応答性が悪くなると危惧される。
 また、第2の方法では、超電導材料を予め臨界温度未満にしておき、その後、所定の回転数に達した段階で1次巻線あるいは補助巻線から当該超電導材料の超電導状態を壊す第2臨界磁場(Hc)以上の磁場をパルス的に印加して磁束を捕捉する。しかし、この方法はさらに問題で、第2臨界磁場は一般に液体窒素温度でも数テスラとなり、この様な磁場をパルス的に限られた空間に実現するコイルを製作することは容易でない。また、パルスの大きさによって、超電導材料内で発熱が起こり、それに伴って磁束が逃げてしまい、捕捉効率が悪くなる心配もある。現実に、超電導バルク材にパルス着磁する検討は世界的に行われているが、技術が完成していない。さらに、パルス的とはいえ、数テスラの磁場を限られた空間に発生させることから、他の要素に悪影響が及ぶおそれがある。磁場の影響を回避するためには、一般に磁気シールドが必要であり、機器全体の構造が大きくかつ複雑になる。
[特許文献2記載の電動機について]
 特許文献2記載の電動機では、超電導材によって巻線が構成されるが、この超電導材には超電導バルク材が想定されていると考えられる。超電導材がバルク材であれば、次のような問題点がある。
(1)発熱が起こった場合の熱はけが悪い。
(2)特許文献1記載の回転機と同様に、一旦超電導状態になれば、電流容量が大きいことから、磁束フロー状態と呼ばれる損失状態にすることが難しい。つまり、超電導巻線が磁束を捕捉していない状態で超電導状態になっている場合に、一旦磁束フロー状態にして磁束を捕捉させる方法をとることができない。それゆえ、超電導巻線が磁束未捕捉のまま超電導状態になっている場合に、当該電動機を同期回転させるには、特許文献1記載の回転機と同様に、臨界温度以上に昇温するか臨界磁場以上の磁場を印加して、超電導状態を壊して磁束を捕捉した後、再度臨界温度以下にして超電導状態にする必要がある。
(3)超電導巻線を構成するためには、超電導粉末を常電導かご形巻線の中空部に充填し、その後焼成する必要がある。しかし、超電導粉末充填後に、回転子鉄心を含めて焼成するためには、大きな電気炉が必要である。また、回転子鉄心も焼成されてしまうので、特性が変化するおそれがある。さらに、仮に問題なく焼成できたとしても、電動機の製作コストが高くなってしまう。
 上記(1)~(3)のとおり、特許文献2記載の電動機には大きな問題があり、誘導機の構成でありながら同期回転可能な超電導回転機は未だ世の中に現れていない。
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、誘導機の構成を有し、誘導回転および同期回転が可能な超電導回転子、超電導回転機および超電導回転機システムであって、熱はけがよく、同期回転のための磁束捕捉が容易であるものを提供することにある。
 上記課題を解決するために本発明は、(1)回転磁界を発生させる固定子内に配置されて回転する超電導回転子であって、複数の超電導線を高導電性金属で被覆した単数または複数本の超電導線材からなるロータバーおよびエンドリングによって形成された超電導かご形巻線と、常電導材からなるロータバーおよびエンドリングによって形成された常電導かご形巻線と、前記両かご形巻線の前記各ロータバーを収容する複数のスロットを備えた円柱状の回転子鉄心と、前記回転子鉄心に同軸に設けられた回転子軸と、を含んでいて、前記超電導かご形巻線が非超電導状態であるとき、前記回転磁界に起因して前記常電導かご形巻線に生じる誘導トルク主動で回転する一方、前記超電導かご形巻線が超電導状態であるとき、前記超電導かご形巻線が前記回転磁界の磁束を捕捉することで生じる同期トルク主動で回転するようになっていることを特徴とする超電導回転子を提供するものである。
 また本発明は、上記構成において、(2)前記超電導線は、NbTiもしくはNbSnに代表される金属系低温超電導体、イットリウム系もしくはビスマス系に代表される酸化物系高温超電導体、あるいは二ホウ化マグネシウム超電導体からなっており、前記高導電性金属は、銀、銅、金、アルミニウムもしくはそれらの合金であることを特徴とする超電導回転子を提供するものである。
 また本発明は、上記構成において、(3)前記常電導かご形巻線は、前記超電導かご形巻線における前記高導電性金属を所定厚さ以上にすることによって形成されていて、前記超電導かご形巻線と一体的になっていることを特徴とする超電導回転子を提供するものである。
 また本発明は、上記構成(1)または(2)において、(4)前記超電導かご形巻線と前記常電導かご形巻線とは別体になっており、さらに、前記超電導かご形巻線は、前記常電導かご形巻線よりもかごが大きく、前記各ロータバーが前記常電導かご形巻線の各ロータバーよりも外側に位置していることを特徴とする超電導回転子を提供するものである。
 また本発明は、上記構成(1)または(2)において、(5)前記超電導かご形巻線と前記常電導かご形巻線とは別体になっており、さらに、前記常電導かご形巻線は、前記超電導かご形巻線よりもかごが大きく、前記各ロータバーが前記超電導かご形巻線の各ロータバーよりも外側に位置していることを特徴とする超電導回転子を提供するものである。
 また本発明は、上記構成において、(6)前記超電導かご形巻線の前記ロータバーの数と、前記常電導かご形巻線の前記ロータバーの数と、前記回転子鉄心の前記スロットの数とは同数であり、各スロット内に前記超電導かご形巻線の前記ロータバーと前記常電導かご形巻線の前記ロータバーとが1本ずつ収容されていることを特徴とする超電導回転子を提供するものである。
 また本発明は、(7)回転磁界を発生させる固定子巻線を備えた固定子内に、上記構成(1)~(6)のいずれかに記載の超電導回転子が配置されてなることを特徴とする超電導回転機を提供するものである。
 また本発明は、上記構成(7)において、(8)前記固定子巻線は超電導材からなっており、当該超電導材の臨界温度は、前記超電導かご形巻線を形成する前記超電導線材の臨界温度以上になっていることを特徴とする超電導回転機を提供するものである。
 また本発明は、(9)上記構成(7)に記載の超電導回転機と、前記超電導回転機を超電導状態になるまで冷却し得る冷却装置と、前記超電導回転機を制御する制御装置と、を含んでいて、前記制御装置は、前記超電導回転機が前記誘導トルク主動で回転している場合に使用すべき第1の制御パターンと、前記超電導回転機が前記同期トルク主動で回転している場合に使用すべき第2の制御パターンと、を有しており、前記固定子巻線内を流れる電流の値が、前記超電導かご形巻線が超電導状態になったことに起因して低下したとき、前記第2の制御パターンを用いて前記超電導回転機を制御し、そうでないとき、前記第1の制御パターンを用いて前記超電導回転機を制御するようになっていることを特徴とする超電導回転機システムを提供するものである。
 また本発明は、上記構成(9)において、(10)前記制御装置は、始動時において前記超電導かご形巻線が前記回転磁界の磁束を捕捉してない状態で超電導状態になっている場合、前記超電導かご形巻線に流れる電流が臨界電流を越えるように、前記固定子巻線への印加電圧および/または当該印加電圧の周波数を変化させ、前記超電導かご形巻線を磁束フロー状態にし、前記超電導かご形巻線に前記回転磁界の磁束を鎖交させるようになっていることを特徴とする超電導回転機システムを提供するものである。
 本発明の超電導回転機によれば、超電導かご形巻線が超電導バルク材ではなく、超電導線材によって構成されているため、発熱が起こった場合の熱はけが良い。
 また、超電導バルク材は、電流容量が大きいことから、一旦超電導状態になれば磁束フロー状態にすることが難しい。これに対し、本発明の超電導回転機の超電導かご形巻線は電流容量の小さい超電導線材からなっているため、容易に磁束フロー状態にすることができる。それゆえ、本発明の超電導回転機によれば、超電導かご形巻線が磁束未捕捉のまま超電導状態になっている場合であっても、超電導かご形巻線を一旦磁束フロー状態にすることで、容易に鎖交磁束を捕捉して同期回転することができる。
本実施形態にかかる超電導電動機の縦断面端面図である。 図1の超電導電動機における(A)超電導かご形巻線を示す図、(B)常電導かご形巻線を示す図、(C)回転子鉄心を示す図である。 図2の超電導かご形巻線を構成する超電導線材の横断面を示す模式図である。 図1の超電導電動機における回転子の横断面図である。 図1の超電導電動機を適用した超電導電動機システムの一例を示すブロック図である。 図1の超電導電動機における1次電流を示す図である。 図1の超電導電動機のトルク特性を示す図である。 図2の超電導かご形巻線における電磁現象を示す模式図である。 本発明の超電導回転機システムの変形例を示す図である。
符号の説明
1 超電導電動機(超電導回転機)
7 超電導回転子
71 回転子鉄心
72 スロット
73 超電導かご形巻線
74 常電導かご形巻線
75 回転子軸
73a,74a ロータバー
 以下、図面を参照して本発明の好ましい一実施形態につき説明する。
 図1は本発明にかかる超電導電動機の縦断面端面図である。図2は図1の超電導電動機における(A)超電導かご形巻線を示す図、(B)常電導かご形巻線を示す図、(C)回転子鉄心を示す図である。図3は図2の超電導かご形巻線を構成する超電導線材の横断面を示す模式図である。図4は図1の超電導電動機における回転子の横断面図、図5は図1の超電導電動機を適用した超電導電動機システムを示すブロック図である。
[超電導電動機]
 図1に示すように、本発明の超電導電動機(超電導回転機)1は、円筒状のケーシング2と、ケーシング2の内周部に設けられた環状の固定子3と、ケーシング2の両開口部を閉じる円板状のブラケット4a,4bと、ブラケット4a,4bに軸受け5a,5bを介して回転可能に支持された超電導回転子7と、から構成されている。
 固定子3は、珪素鋼板等の電磁鋼板を軸方向に積層してなる環状の固定子鉄心3aと、固定子鉄心3aのスロット(不図示)内に設けられた固定子巻線3bとからなっている。また、固定子巻線3bは常電導材からなっている。
 超電導回転子7は、固定子3の内側に、所定間隔をあけて配置されている。超電導回転子7は、中空円柱状の回転子鉄心71と、回転子鉄心71のスロット72内にロータバー73aが収容された超電導かご形巻線73と、同様に回転子鉄心71のスロット72内にロータバー74aが収容された常電導かご形巻線74と、回転子鉄心71に同軸に取り付けられた回転軸75と、からなっている。
 回転子鉄心71は、図2Cに示す如く、珪素鋼板等の電磁鋼板を軸方向に積層して形成されている。回転子鉄心71の中心部には、回転軸75を受容するための回転軸受容孔71aが形成されている。また、回転子鉄心71の外周近傍には、軸方向に貫通する複数のスロット72が、周方向に所定間隔をあけて形成されている。
 なお、スロット72は一般に、回転子鉄心71の軸方向に対して斜めに形成され、斜めスロット(スキュー)構成とされている。
 超電導かご形巻線73は、図2Aに示す如く、回転子鉄心71のスロット72に収容される複数のロータバー73aと、各ロータバー73aの両端をそれぞれ短絡させる環状のエンドリング73b,73bとから構成されている。
 ロータバー73aは、超電導線材(本実施形態ではビスマス系高温超電導線材)73eを複数本束ねてなり、矩形断面を有している(ただし、矩形断面に限定されない)。超電導線材73eは、図3に示す如く、複数本のビスマス系高温超電導フィラメント73cを、銅、アルミニウム、銀、金等の高導電性金属73dによって被覆して構成されている。ロータバー73aの数は、回転子鉄心71のスロット72と同数である。ロータバー73aは、円筒状かつスキュー構造のかごを形成すべく、周方向に所定間隔をあけて配置されていると共に、かごの軸方向に対して斜めに配置されている。ロータバー73aは、図1に示す如く、回転子鉄心71の軸方向長さよりも長く形成されており、スロット72に収容された際にスロット72から突出するようになっている。
 エンドリング73bは、ロータバー73aと同様に、ビスマス系高温超電導線材等の超電導線材73eからなっている。エンドリング73b,73bにはそれぞれ、スロット72から突出するロータバー73aの各端部が接合される。
 常電導かご形巻線74は、図2Bに示す如く、回転子鉄心71のスロット72に収容される複数のロータバー74aと、各ロータバー74aの両端をそれぞれ短絡させる環状のエンドリング74b,74bとから構成されている。
 ロータバー74aは、銅、アルミニウム、銀、金等の高導電性材からなり、矩形断面を有している(ただし、矩形断面に限定されない)。ロータバー74aの数は、回転子鉄心71のスロット72と同数である。ロータバー74aは、超電導かご形巻線73よりも大きな円筒状かつスキュー構造のかごを形成するように、周方向に所定間隔をあけて配置されていると共に、かごの軸方向に対して斜めに配置されている。ロータバー74aは、図1に示す如く、回転子鉄心71の軸方向長さよりも長く形成されており、スロット72に収容された際にスロット72から突出するようになっている。ロータバー74aは、図2および図4に示す如く、スロット72内であって、超電導かご形巻線73のロータバー73aよりも外側に挿入される。
 エンドリング74bは、ロータバー74aと同様に、銅、アルミニウム、銀、金等の高導電性材からなっている。エンドリング74b,74bにはそれぞれ、スロット72から突出するロータバー74aの各端部が接合される。
 回転軸75は、回転子鉄心71の回転軸受容孔71aに挿入されて取り付けられる。回転軸75は、ベアリング等の軸受け5a,5bを介して、ブラケット4a,4bに回転可能に支持される。
 上記のように構成された超電導電動機1によれば、超電導かご形巻線73が常電導状態(非超電導状態)にあるとき、固定子3による回転磁界に起因して常電導かご形巻線74に誘導電流が流れ、誘導トルクが生じる。このとき、超電導電動機1は当該誘導トルク主動で回転し、図7の「誘導回転(常電導状態)」に対応するトルク特性を発揮する。
 なお、超電導電動機1が誘導回転している状態において、超電導かご形巻線73にも若干の誘導電流が流れている。しかし、常電導かご形巻線74に流れる誘導電流の方がはるかに大きいため、超電導かご形巻線73に生じる誘導トルクよりも、常電導かご形巻線74に生じる誘導トルクの方が支配的である。
 一方、超電導電動機1によれば、超電導かご形巻線73が常電導状態から超電導状態になったとき、固定子3による回転磁界の磁束を超電導かご形巻線73が捕捉することで、同期トルクが生じる(図8C参照)。このとき、超電導電動機1は当該同期トルク主動で回転し、図7の「同期回転(超電導状態)」に対応するトルク特性を発揮する。
 なお、この同期回転時において、ロータバー73aとエンドリング73bの接続抵抗等の影響により、極めてわずかなすべりが生じることがあるが、この場合も機器特性としては同期回転と見なせる。
 そして、同期回転している状態において、仮に超電導電動機1に過大な負荷がかかっても、超電導かご形巻線73が磁束フロー状態(図8B参照)に移行して誘導トルク主動で運転を継続することが可能である。このときの誘導トルクは、磁束フロー状態にある超電導かご形巻線73および常電導かご形巻線74の両方から提供され、図7の「誘導回転(超電導状態)」に対応するトルク特性が発揮される。
 つまり、超電導電動機1は、図7に示すようなトルク特性を有し、常電導状態においては誘導トルク主動で回転し、超電導状態においては、通常負荷時に同期トルク主動、過負荷時に誘導トルク主動で回転する。
[超電導電動機システム]
 上記のように構成された超電導電動機1は、例えば図5に示す如く自動車に搭載され、超電導電動機システム21として使用され得る。超電導電動機システム21は、車軸22を介して車輪23に連結された超電導電動機1と、超電導電動機1を超電導状態になるまで冷却し得る冷却装置24と、冷却装置24を冷却信号SRに応じて制御すると共に、電動機駆動信号SMに応じインバータ26を介して超電導電動機1を制御する制御装置25と、超電導電動機1を駆動するためのバッテリー27と、から構成されている。
 冷却装置24は、超電導電動機1の回転軸75と回転子鉄心71とに設けられた冷媒供給路(不図示)を介して、超電導回転子7のスロット72内に冷媒を供給する。これにより、冷却装置24は、超電導電動機1における超電導かご形巻線73を臨界温度未満に冷却し得る。冷媒としては、ヘリウムガスや液体窒素等が用いられる。
 制御装置25は、電動機駆動信号SMに応じ、インバータ26を介して超電導電動機1を駆動制御する。このとき、制御装置25は、インバータ26を介して、超電導電動機1の固定子巻線3bに印加される交流電圧の電圧Vおよび周波数fを制御する。これにより、制御装置25は、超電導電動機1の回転数およびトルクをフィードバック制御する。
 制御装置25には、超電導電動機1が誘導トルク主動で回転する際に用いる誘導回転用制御パターン(第1の制御パターン)と、超電導電動機1が同期トルク主動で回転する際に用いる同期回転用制御パターン(第2の制御パターン)とが、予め格納されている。誘導回転用制御パターンは、従来の誘導電動機に対して用いられる公知の制御パターンである。同様に、同期回転用制御パターンは、従来の同期電動機に対して用いられる公知の制御パターンである。
 また、制御装置25には、超電導電動機1から、固定子巻線3b内を流れる1次電流の信号である1次電流信号SIが常時入力される。制御装置25にはさらに、1次電流信号SIに対するしきい値ITHであって、固定子巻線3bに印加される交流電圧の電圧Vと周波数fの比V/fごとに設定されたものが格納されている。
 上記しきい値ITHは、超電導かご形巻線73が超電導状態にあるか否か(超電導電動機1が同期トルク主動で回転しているか否か)を判定するためのものであり、次のように設定される。
 まず、超電導電動機1を、常電導状態において任意のV/f値、例えばV/fで定常運転する。このとき、1次電流信号SIは、図6に示す如く、略一定の値IN1となる。次に、冷却装置24を運転開始し、超電導電動機1が超電導状態になるまで駆動する。所定時間T後、超電導かご形巻線73が超電導状態になると、1次電流信号SIの値が低下し、IS1となる。そして、しきい値ITH1は、IS1の値よりも少し小さな値(例えばIS1の90%値)とされる。この作業を各V/f値ごとに実行することで、各しきい値ITHが得られる。
 なお、超電導かご形巻線73が超電導状態になったとき1次電流の値が低下する現象は、そのとき超電導電動機1が誘導回転から同期回転に移行することに起因する。つまり、誘導回転時にはすべり状態を維持するための余分な電流が必要であるのに対し、同期回転時にはその余分な電流が必要なくなるため、1次電流の値が低下するのである。
 制御装置25は、常時入力される1次電流信号SIの値が、しきい値ITHよりも低いか高いかに基づいて、超電導電動機1が同期トルク主動で回転しているか否かを判定する。つまり、1次電流信号SIの値Iがしきい値ITHよりも低ければ、同期トルク主動で回転しているとして、超電導電動機1に対して同期回転用制御パターンを適用し、そうでなければ、誘導トルク主動で回転しているとして、誘導回転用制御パターンを適用する。
 なお、ITHをIよりも少し小さな値としているのは、反対にITHをIよりも高い値にしていると、1次電流信号SIのゆらぎによって、実際は誘導回転しているにも関わらず、同期回転用制御パターンが超電導電動機1に対して適用される場合があり、運転に支障が生じるためである。これに対し、ITHをIよりも少し小さな値としておけば、実際は同期回転している超電導電動機1に対して、誘導回転用制御パターンが適用され得るが、超電導電動機1は問題なく運転される。
 また、制御装置25は、超電導かご形巻線73が、固定子巻線3bによる回転磁界の磁束を捕捉してない状態で超電導状態になっている場合、超電導かご形巻線73を磁束フロー状態にするように、固定子巻線3bへの印加電圧および/または当該印加電圧の周波数を増大させるようになっている。超電導かご形巻線73は、一旦磁束フロー状態になることで、臨界温度未満の状態であっても鎖交磁束を捕捉することができる。このことについては、図8を参照して次に詳述する。
 例えば、運転開始前から、超電導かご形巻線73が冷却装置24によって臨界温度未満に冷却されていたような場合、超電導かご形巻線73は、固定子巻線3bによる磁束を捕捉していない状態で超電導状態になっていることになる。この状態で、固定子巻線3bに交流電圧を印加すると、超電導かご形巻線73には遮蔽電流が流れ、超電導かご形巻線73および常電導かご形巻線74に鎖交する磁束はゼロとなる(図8A参照)。つまり、この場合、同期トルクは発生しないうえに、常電導かご形巻線74に誘導電流が流れないため、誘導トルクも発生しないことになる。それゆえ、この状態では超電導電動機1は動作し得ない。
 そこで、制御装置25により、超電導かご形巻線73に流れる遮蔽電流が臨界電流を超えるまで、固定子巻線3bへの印加電圧および/または当該印加電圧の周波数を増大させ、超電導かご形巻線73を磁束フロー状態にする。磁束フロー状態では、有限の抵抗が発生するため、臨界温度未満の状態のままであっても磁束は超電導かご形巻線に鎖交することができる(図8B参照)。
 その後、超電導回転子7は加速され、それに伴って回転磁界と超電導回転子7との相対速度が小さくなれば、超電導かご形巻線73に流れている電流は自動的に小さくなる。最終的に、超電導かご形巻線73に流れている電流が臨界電流を下回ったところで、超電導かご形巻線73が鎖交磁束を捕捉する(図8C参照)。
 上記のように構成された超電導電動機システム21は、次のように使用される。
(1)常温状態から運転開始される場合
 まず、運転者によって運転操作がなされ、制御装置25に電動機駆動信号SMが入力される。制御装置25は、当該信号SMに応じて、超電導電動機1を駆動する。このとき、超電導電動機1は常電導状態であるから、誘導トルク主動で回転する。
 そのとき、制御装置25は、常時入力される1次電流信号SIがその運転条件V/fに対応するしきい値ITHよりも高いことを検出し、超電導電動機1が常電導状態であることを検知する。そして、制御装置25は、誘導トルク主動で回転する超電導電動機1に対して誘導回転用制御パターンを適用し、超電導電動機1を駆動制御する。つまり、常電導状態において、超電導電動機1は誘導電動機として動作し、図7の「誘導回転(常電導状態)」に対応するトルク特性を発揮する。
 一方、運転開始後、運転者による冷却開始操作がなされると、制御装置25に冷却信号SRが入力される。制御装置25は、当該信号SRに応じて、冷却装置24を駆動する。冷却装置24は、ヘリウムガス等の冷媒を超電導電動機1の超電導かご形巻線73に対して供給し、超電導かご形巻線73をその臨界温度未満にまで冷却する。冷却装置24が駆動されても、超電導かご形巻線73が臨界温度未満になるまでは、依然として超電導電動機1は誘導電動機として動作する。
 所定時間経過後、超電導かご形巻線73が臨界温度未満となって超電導状態になると、超電導電動機1は前述したように同期トルク主動で回転する。
 そのとき、制御装置25は、常時入力される1次電流信号SIがその運転条件V/fに対応するしきい値ITHよりも低くなったことを検出し、超電導電動機1が超電導状態であることを検知する。そして、制御装置25は、同期トルク主動で回転する超電導電動機1に対して同期回転用制御パターンを適用し、超電導電動機1を駆動制御する。つまり、超電導状態において、超電導電動機1は、図7の「同期回転(超電導状態)」に対応するトルク特性を発揮する。
(2)臨界温度未満の状態から運転開始される場合
 まず、運転者によって運転操作がなされ、制御装置25に電動機駆動信号SMが入力される。制御装置25は、当該信号SMに応じて、超電導電動機1を駆動しようとする。しかし、このとき超電導電動機1は超電導状態であるから、固定子巻線3bに交流電圧を印加しても、超電導かご形巻線73に遮蔽電流が流れることにより、超電導かご形巻線73および常電導かご形巻線74に鎖交する磁束はゼロとなって、超電導電動機1は動作しない。
 このとき、制御装置25は、超電導かご形巻線73に流れる遮蔽電流が臨界電流を超えるまで、固定子巻線3bへの印加電圧および/または当該印加電圧の周波数を増大させ、超電導かご形巻線73を磁束フロー状態にする。磁束フロー状態では前述のとおり、臨界温度未満の状態のままであっても磁束が超電導かご形巻線に鎖交することができる。
 その後、超電導回転子7は加速され、それに伴って回転磁界と超電導回転子7との相対速度が小さくなれば、超電導かご形巻線73に流れている電流は自動的に小さくなる。最終的に、超電導かご形巻線73に流れている電流が臨界電流を下回ったところで、超電導かご形巻線73が鎖交磁束を捕捉する。そして、超電導電動機1は同期トルク主動で回転する。
 そのとき、制御装置25は、常時入力される1次電流信号SIがその運転条件V/fに対応するしきい値ITHよりも低くなったことを検出し、超電導電動機1が超電導状態であることを検知する。そして、制御装置25は、同期トルク主動で回転する超電導電動機1に対して同期回転用制御パターンを適用し、超電導電動機1を駆動制御する。つまり、超電導状態において、超電導電動機1は同期回転し、図7の「同期回転(超電導状態)」に対応するトルク特性を発揮する。
[効果]
 以上のように構成された超電導電動機1によれば、従来の誘導電動機と同様の単純構造とすることができるため、保守が容易であり、安価である。
 また、誘導回転と同期回転が可能であるため、同期回転時には高効率で運転することができると共に、何らかの要因で同期外れが生じた際や超電導状態になるまでの間でも、誘導回転で運転することができる。
 また、超電導電動機1によれば、超電導かご形巻線73が超電導バルク材ではなく、超電導線材によって構成されているため、発熱が起こった場合の熱はけが良い。
 また、超電導バルク材は、電流容量が大きいことから、一旦超電導状態になれば磁束フロー状態にすることが難しい。これに対し、超電導電動機1の超電導かご形巻線73は電流容量の小さい超電導線材からなっているため、容易に磁束フロー状態にすることができる。それゆえ、超電導電動機1によれば、超電導かご形巻線73が磁束未捕捉のまま超電導状態になっている場合であっても、超電導かご形巻線73を一旦磁束フロー状態にすることで、容易に鎖交磁束を捕捉して同期回転することができる。
 また、超電導電動機システム21によれば、制御装置25に常時入力される1次電流信号SIの値がしきい値ITHよりも低いか高いかに基づいて、超電導電動機1が超電導状態になっているか否か(同期トルク主動で回転しているか否か)を容易に検知することができる。それゆえ、超電導電動機システム21によれば、超電導電動機1の回転状況に応じて適切に誘導回転用制御パターンおよび同期回転用制御パターンを適用することができ、複雑な制御をする必要がない。
[変形例]
 以上、本発明の実施形態について具体的に説明したが、本発明は次のように変形して実施することができる。
 例えば、超電導線材はビスマス系高温超電導線材に限定されるものではなく、NbTiもしくはNbSnに代表される金属系低温超電導線材や、イットリウム系高温超電導線材、二ホウ化マグネシウム超電導線材とすることができる。
 また、上記実施形態において、超電導かご形巻線73と常電導かご形巻線74とは別体であったが、これらを一体的に構成してもよい。つまり、超電導かご形巻線73の超電導線材における高導電性金属を所定厚さ以上にし、当該高導電性金属部分を常電導かご形巻線74としてもよい。
 また、上記実施形態において、常電導かご形巻線74を超電導回転子7における外側に、超電導かご形巻線73をその内側に配置したが、超電導かご形巻線73を外側に配置してもよい。常電導かご形巻線74を外側にした場合は、常電導状態における誘導トルクおよび超電導状態における誘導トルクを大きくすることができ、超電導かご形巻線73を外側にした場合は、超電導状態における同期トルクを大きくすることができる。
 また、上記実施形態においては、超電導かご形巻線73と常電導かご形巻線74とをスロット72内に1本ずつ収容したが、これに限定されない。例えば、超電導かご形巻線73を収容するスロットと、常電導かご形巻線74を収容するスロットとを別々に設けてもよい。また、その場合、超電導かご形巻線73のロータバー73aの数と常電導かご形巻線74のロータバー74aの数とは同数でなくてもよい。また、ロータバー73a,74aのいくつかを同じスロット内に収容し、その残りを別々のスロット内に収容する構成であってもよい。
 また、上記実施形態においては、常電導材からなる固定子巻線3bを用いたが、超電導材からなる固定子巻線3bを用いてもよい。ただし、この場合、固定子巻線3bの臨界温度は、超電導かご形巻線73の臨界温度以上になっている必要がある。そうしないと、固定子巻線3bが超電導状態になって駆動開始されるとき、超電導かご形巻線73は常に超電導状態となって、超電導状態における同期回転または誘導回転しかできなくなるからである。
 また、超電導回転機システム21では、超電導電動機1を車軸22に直接連結していたが、超電導電動機1をトランスミッションを介して車軸22に連結してもよい。
 また、上記実施形態では、本発明の超電導回転機を超電導電動機として使用したが、超電導発電機として使用することもできる。その場合、例えば図9Aに示す如く、ブレード32と、ブレード32がシャフト33を介して超電導回転子7に連結された超電導発電機1と、超電導発電機1の固定子巻線3bに発生した交流電力の電圧および周波数を変換する電力変換器34と、を含んでなる超電導発電機システム31とすることができる。
 超電導発電機システム31は、ブレード32の回転によって超電導回転子7を回転させ、固定子巻線3bに交流電力を発生させる。超電導発電機システム31は、上記実施形態における超電導電動機システム21と同様に、超電導かご形巻線73が常電導状態であるとき誘導発電機として動作し、超電導状態であるとき同期発電機として動作する。
 なお、超電導発電機システム31は、図9Bに示す如く、ブレード32と超電導発電機1との間に増速機36を接続して、ブレード32の回転速度を増加させるように構成することもできる。

Claims (10)

  1. 回転磁界を発生させる固定子内に配置されて回転する超電導回転子であって、
    複数の超電導線を高導電性金属で被覆した単数または複数本の超電導線材からなるロータバーおよびエンドリングによって形成された超電導かご形巻線と、
    常電導材からなるロータバーおよびエンドリングによって形成された常電導かご形巻線と、
    前記両かご形巻線の前記各ロータバーを収容する複数のスロットを備えた円柱状の回転子鉄心と、
    前記回転子鉄心に同軸に設けられた回転子軸と、
    を含んでいて、
    前記超電導かご形巻線が非超電導状態であるとき、前記回転磁界に起因して前記常電導かご形巻線に生じる誘導トルク主動で回転する一方、前記超電導かご形巻線が超電導状態であるとき、前記超電導かご形巻線が前記回転磁界の磁束を捕捉することで生じる同期トルク主動で回転するようになっていることを特徴とする超電導回転子。
  2. 前記超電導線は、NbTiもしくはNbSnに代表される金属系低温超電導体、イットリウム系もしくはビスマス系に代表される酸化物系高温超電導体、あるいは二ホウ化マグネシウム超電導体からなっており、
    前記高導電性金属は、銀、銅、金、アルミニウムもしくはそれらの合金であることを特徴とする請求項1に記載の超電導回転子。
  3. 前記常電導かご形巻線は、前記超電導かご形巻線における前記高導電性金属を所定厚さ以上にすることによって形成されていて、前記超電導かご形巻線と一体的になっていることを特徴とする請求項1または2に記載の超電導回転子。
  4. 前記超電導かご形巻線と前記常電導かご形巻線とは別体になっており、さらに、前記超電導かご形巻線は、前記常電導かご形巻線よりもかごが大きく、前記各ロータバーが前記常電導かご形巻線の各ロータバーよりも外側に位置していることを特徴とする請求項1または2に記載の超電導回転子。
  5. 前記超電導かご形巻線と前記常電導かご形巻線とは別体になっており、さらに、前記常電導かご形巻線は、前記超電導かご形巻線よりもかごが大きく、前記各ロータバーが前記超電導かご形巻線の各ロータバーよりも外側に位置していることを特徴とする請求項1または2に記載の超電導回転子。
  6. 前記超電導かご形巻線の前記ロータバーの数と、前記常電導かご形巻線の前記ロータバーの数と、前記回転子鉄心の前記スロットの数とは同数であり、各スロット内に前記超電導かご形巻線の前記ロータバーと前記常電導かご形巻線の前記ロータバーとが1本ずつ収容されていることを特徴とする請求項1~5のいずれか1項に記載の超電導回転子。
  7. 回転磁界を発生させる固定子巻線を備えた固定子内に、請求項1~6のいずれか1項に記載の超電導回転子が配置されてなることを特徴とする超電導回転機。
  8. 前記固定子巻線は超電導材からなっており、当該超電導材の臨界温度は、前記超電導かご形巻線を形成する前記超電導線材の臨界温度以上になっていることを特徴とする請求項7に記載の超電導回転機。
  9. 請求項7に記載の超電導回転機と、
    前記超電導回転機を超電導状態になるまで冷却し得る冷却装置と、
    前記超電導回転機を制御する制御装置と、
    を含んでいて、
    前記制御装置は、前記超電導回転機が前記誘導トルク主動で回転している場合に使用すべき第1の制御パターンと、前記超電導回転機が前記同期トルク主動で回転している場合に使用すべき第2の制御パターンと、を有しており、前記固定子巻線内を流れる電流の値が、前記超電導かご形巻線が超電導状態になったことに起因して低下したとき、前記第2の制御パターンを用いて前記超電導回転機を制御し、そうでないとき、前記第1の制御パターンを用いて前記超電導回転機を制御するようになっていることを特徴とする超電導回転機システム。
  10. 前記制御装置は、始動時において前記超電導かご形巻線が前記回転磁界の磁束を捕捉してない状態で超電導状態になっている場合、前記超電導かご形巻線に流れる電流が臨界電流を越えるように、前記固定子巻線への印加電圧および/または当該印加電圧の周波数を変化させ、前記超電導かご形巻線を磁束フロー状態にし、前記超電導かご形巻線に前記回転磁界の磁束を鎖交させるようになっていることを特徴とする請求項9に記載の超電導回転機システム。
PCT/JP2008/073733 2008-03-18 2008-12-26 超電導回転子、超電導回転機および超電導回転機システム WO2009116219A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010503748A JP5397866B2 (ja) 2008-03-18 2008-12-26 超電導回転子、超電導回転機および超電導回転機システム
CA2718559A CA2718559C (en) 2008-03-18 2008-12-26 Superconductive rotor, superconductive rotating machine and superconductive rotating-machine system
US12/933,112 US8242657B2 (en) 2008-03-18 2008-12-26 Superconductive rotor, superconductive rotating machine and superconductive rotating-machine system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-069521 2008-03-18
JP2008069521 2008-03-18

Publications (1)

Publication Number Publication Date
WO2009116219A1 true WO2009116219A1 (ja) 2009-09-24

Family

ID=41090635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073733 WO2009116219A1 (ja) 2008-03-18 2008-12-26 超電導回転子、超電導回転機および超電導回転機システム

Country Status (4)

Country Link
US (1) US8242657B2 (ja)
JP (1) JP5397866B2 (ja)
CA (1) CA2718559C (ja)
WO (1) WO2009116219A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029485A (ja) * 2010-07-26 2012-02-09 Hitachi Ltd 超電導コイルおよびそれを用いた超電導回転機
JP2013055733A (ja) * 2011-09-01 2013-03-21 Kyoto Univ 超電導回転機の運転方法および超電導回転機システム
JP2014217166A (ja) * 2013-04-25 2014-11-17 アイシン精機株式会社 超電導回転機及びその冷却方法
JP2016086525A (ja) * 2014-10-24 2016-05-19 株式会社イムラ材料開発研究所 超電導回転電機ステータ及び超電導回転電機
JP2016135000A (ja) * 2015-01-20 2016-07-25 ジャパンスーパーコンダクタテクノロジー株式会社 誘導型超電導モータの制御回路
JP2019030128A (ja) * 2017-07-31 2019-02-21 アイシン精機株式会社 超電導ロータ及び超電導モータ
WO2021193714A1 (ja) 2020-03-26 2021-09-30 国立大学法人京都大学 超電導回転機
WO2022113930A1 (ja) 2020-11-25 2022-06-02 国立大学法人京都大学 超電導回転機及び超電導回転機の制御方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201107888D0 (en) * 2011-05-12 2011-06-22 Rolls Royce Plc Superconducting electrical machine
JP6038525B2 (ja) * 2012-07-26 2016-12-07 住友電気工業株式会社 風力熱発電システム
US20140028141A1 (en) * 2012-07-27 2014-01-30 Illinois Tool Works Inc. Rotor and generator for reducing harmonics
US20150133303A1 (en) * 2012-12-31 2015-05-14 TransLife Energy Solutions, Inc. Electrical Generator
JP6257960B2 (ja) * 2013-08-27 2018-01-10 住友電気工業株式会社 風力発電システム
EP3311468A4 (en) * 2015-07-13 2019-01-09 Heron Energy Pte Ltd ROTATING ELECTROMAGNETIC DEVICES
US10312830B2 (en) * 2015-08-19 2019-06-04 Lawrence Livermore National Security, Llc Electrostatic generator/motor rotor electrode system suitable for installation on the outer surface of an EMB rotor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447565U (ja) * 1987-09-18 1989-03-23
JPH01144346A (ja) * 1987-11-27 1989-06-06 Mitsubishi Electric Corp 電動機
JPH08505515A (ja) * 1992-02-18 1996-06-11 エレクトリック パワー リサーチ インスティチュート 高始動トルクを有する捕捉磁場・誘導同期型超電導モータ及び発電機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037123A (en) * 1973-01-29 1977-07-19 Westinghouse Electric Corporation Dynamoelectric machine with a superconductive field winding that can operate in either a synchronous or an asynchronous mode
US3898490A (en) * 1973-09-24 1975-08-05 Westinghouse Electric Corp Superconductive AC dynamoelectric machines having two rotors
US4087711A (en) * 1974-10-22 1978-05-02 Massachusetts Institute Of Technology Rotating electric machine having a toroidal-winding armature
US3916229A (en) * 1975-01-03 1975-10-28 Us Navy Induction motor for superconducting synchronous/asynchronous motor
JPH01144346U (ja) * 1988-03-25 1989-10-04
US5492752A (en) * 1992-12-07 1996-02-20 Oregon Graduate Institute Of Science And Technology Substrates for the growth of 3C-silicon carbide
US6711422B2 (en) * 2001-09-17 2004-03-23 Osman K. Mawardi Thin film superconducting synchronous motor
US6791229B2 (en) * 2001-09-17 2004-09-14 Osman K. Mawardi Thin film superconducting motor with magnetically-quenched rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447565U (ja) * 1987-09-18 1989-03-23
JPH01144346A (ja) * 1987-11-27 1989-06-06 Mitsubishi Electric Corp 電動機
JPH08505515A (ja) * 1992-02-18 1996-06-11 エレクトリック パワー リサーチ インスティチュート 高始動トルクを有する捕捉磁場・誘導同期型超電導モータ及び発電機

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029485A (ja) * 2010-07-26 2012-02-09 Hitachi Ltd 超電導コイルおよびそれを用いた超電導回転機
JP2013055733A (ja) * 2011-09-01 2013-03-21 Kyoto Univ 超電導回転機の運転方法および超電導回転機システム
JP2014217166A (ja) * 2013-04-25 2014-11-17 アイシン精機株式会社 超電導回転機及びその冷却方法
JP2016086525A (ja) * 2014-10-24 2016-05-19 株式会社イムラ材料開発研究所 超電導回転電機ステータ及び超電導回転電機
JP2016135000A (ja) * 2015-01-20 2016-07-25 ジャパンスーパーコンダクタテクノロジー株式会社 誘導型超電導モータの制御回路
JP2019030128A (ja) * 2017-07-31 2019-02-21 アイシン精機株式会社 超電導ロータ及び超電導モータ
WO2021193714A1 (ja) 2020-03-26 2021-09-30 国立大学法人京都大学 超電導回転機
WO2022113930A1 (ja) 2020-11-25 2022-06-02 国立大学法人京都大学 超電導回転機及び超電導回転機の制御方法

Also Published As

Publication number Publication date
CA2718559C (en) 2015-11-24
US20110084566A1 (en) 2011-04-14
JP5397866B2 (ja) 2014-01-22
CA2718559A1 (en) 2009-09-24
JPWO2009116219A1 (ja) 2011-07-21
US8242657B2 (en) 2012-08-14

Similar Documents

Publication Publication Date Title
JP5397866B2 (ja) 超電導回転子、超電導回転機および超電導回転機システム
JP4308308B2 (ja) 超伝導電気モータ
US5325002A (en) Trapped-field, superconducting, induction-synchronous motor/generator having improved startup torque
KR101766684B1 (ko) 비접촉식 회전형 여자장치를 적용한 고온 초전도 회전기
Karmaker et al. High-power dense electric propulsion motor
US11502590B2 (en) Radial-gap type superconducting synchronous machine, magnetizing apparatus, and magnetizing method
JP2010537376A (ja) 金属製ビレットの誘導加熱方法及びその装置
US7750524B2 (en) Superconductor magnetizing device and superconducting synchronization device
JP5043955B2 (ja) 超伝導同期電動機
JP5278907B2 (ja) 超電導回転機および超電導回転機システム
US6711422B2 (en) Thin film superconducting synchronous motor
Ikeda et al. Hysteretic rotating characteristics of an HTS induction/synchronous motor
WO2019004847A1 (en) ENERGY STORAGE SYSTEM WITH INERTIAL WHEEL
Nakamura et al. The direct relationship between output power and current carrying capability of rotor bars in HTS induction/synchronous motor with the use of DI-BSCCO tapes
AU2012289033B2 (en) Electrical machine and method for operating it
US20030030339A1 (en) Rotating back iron for synchronous motors/generators
Tixador et al. Conceptual design of an electrical machine with both low and high T/sub c/superconductors
JP2013055733A (ja) 超電導回転機の運転方法および超電導回転機システム
KR101507306B1 (ko) 초전도 회전기의 계자코일 보호장치 및 보호방법
EP4131748A1 (en) Superconducting rotating machine
US20230421083A1 (en) Superconducting rotating machine and method of controlling superconducting rotating machine
JP2019030153A (ja) 超電導回転機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873365

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2718559

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010503748

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12933112

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08873365

Country of ref document: EP

Kind code of ref document: A1