WO2009114990A1 - 动力循环系统以及动力循环方法 - Google Patents

动力循环系统以及动力循环方法 Download PDF

Info

Publication number
WO2009114990A1
WO2009114990A1 PCT/CN2009/000287 CN2009000287W WO2009114990A1 WO 2009114990 A1 WO2009114990 A1 WO 2009114990A1 CN 2009000287 W CN2009000287 W CN 2009000287W WO 2009114990 A1 WO2009114990 A1 WO 2009114990A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
absorber
crystallization
absorbent
absorption
Prior art date
Application number
PCT/CN2009/000287
Other languages
English (en)
French (fr)
Inventor
苏庆泉
Original Assignee
Su Qingquan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Su Qingquan filed Critical Su Qingquan
Publication of WO2009114990A1 publication Critical patent/WO2009114990A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia

Definitions

  • Turbine generators are one of the main methods of conventional heat engine power generation.
  • the working principle of the steam turbine generator based on the Rankine cycle is to drive the steam turbine with high temperature and high pressure steam as the inlet steam, and drive the generator to generate electricity.
  • the low pressure exhaust steam is discharged from the steam turbine.
  • the exhaust gas enters the condenser and is condensed into water by the cooling water.
  • the feed water pump is pressurized and sent to the boiler. The water is heated in the boiler to form high temperature and high pressure steam, thereby completing the cycle.
  • the thermal efficiency of the Rankine cycle that is, the power generation efficiency of the steam turbine is low, usually at a level of 10 to 40%.
  • the power generation efficiency decreases as the inlet steam temperature and pressure decrease.
  • the main object of the present invention is to overcome the problems of the existing thermal power generation system, especially the steam turbine generator set, which has low thermal efficiency and high energy quality of the required heat source, and provides a new power circulation method and power circulation system to be solved.
  • the technical problem is that it can efficiently convert the heat of various high-medium and low-grade external heat sources into work or electric power, thus achieving a clean and efficient new heat engine power cycle technology, which is more suitable for practical use and has industrial Use value.
  • a power cycle system includes a steam turbine or a screw expansion power machine, a steam circulation device, and an absorbent crystallizer, the steam circulation device comprising: a generator for concentrating the absorption solution and generating steam, a steam pipe connected to the steam turbine or a screw expansion power machine; an absorber connected to the steam turbine or a screw expansion power machine through an exhaust pipe for absorbing steam of a steam turbine or a screw expansion power machine; a heat exchange surface disposed at the Between the generator and the absorber, for transferring heat in the absorber to the generator; a heater, disposed on the steam In the steam circulation device; the absorbent crystallizer is configured to cool the absorption solution from the generator and/or the absorption solution from the absorber, to form a crystallization solution of the absorption solution and the absorption agent after crystallization, and the absorption after crystallization The solution is sent to a generator, and the absorbent crystals or the absorption solution
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the steam turbine or the screw expansion power machine is provided with a heater on an intake pipe or an exhaust pipe.
  • the steam turbine or the screw expansion power machine inlet pipe is provided with a first heater
  • the exhaust steam pipe is provided with a second heater
  • the aforementioned power cycle system wherein the heater is a heat exchanger, a regenerative heater, a solar collector or a burner.
  • the heat exchange surface is a wall constituting a generator or an absorber, and both sides of the heat exchange surface are respectively in contact with the absorption solution in the generator and the absorber.
  • the foregoing power circulation system further comprises an absorption solution from the heat exchanger, the absorption solution for crystallization after absorption and/or absorption of the absorption agent or the absorption solution containing the absorption of the absorbent, and the absorption solution from the generator and/or Or an absorption solution from the absorber for heat exchange.
  • the foregoing power circulation system further comprises: an absorption solution from the heat exchanger for exchanging heat between the absorption solution from the absorber and the post-crystallization absorption solution from the absorbent crystallizer; for absorption from the absorber
  • the solution exchanges heat with the absorbent crystals from the absorbent crystallizer or the absorption solution containing the absorbent crystals; or is used to crystallize or contain the absorption solution from the absorber and the post-crystallization absorption solution and absorbent from the absorbent crystallizer
  • the absorption solution of the crystallization of the absorbent undergoes heat exchange.
  • a power cycle method according to the present invention includes:
  • the high-concentration absorption solution absorbs the exhaust steam of the steam turbine or the screw expansion power machine, generates absorption heat and transmits the absorption heat to the generator, and is absorbed after the concentration of the absorption solution is lowered. Delivered to the absorbent crystallizer;
  • the heat from the absorber heats the crystallization solution from the absorbing agent crystallizer to generate a working fluid vapor and outputs it, and after crystallization, the concentration of the absorbing solution increases to a high concentration absorbing solution. And delivering the absorption solution to the absorber;
  • the steam turbine or the screw expansion power machine exhausts the steam, and introduces the exhaust steam into the absorber
  • the foregoing power circulation method further includes: after the crystallization solution is transported to the generator after the crystallization, and the absorption solution output by the absorber is cooled, the absorption solution output by the absorber is After crystallization, the solution is absorbed for heat exchange.
  • the foregoing power circulation method further comprises: crystallization of the absorbent or an absorption solution containing an absorbent crystal before the absorption agent is crystallized and transported to the absorber, and before the absorption solution output from the absorber is cooled.
  • the heat exchange is performed with the absorption solution output from the absorber.
  • the foregoing power circulation method further comprises: before the crystallization solution is transported to the generator after the crystallization, before the crystallization of the absorber is delivered to the absorber, and before the absorption solution of the absorber is cooled, the absorber
  • the output absorption solution exchanges heat with the crystallizing absorption solution and the absorbent crystal or the absorption solution containing the absorbent crystal.
  • the foregoing power circulation method further comprises: before the crystallization of the absorption solution after the crystallization is sent to the generator, before the absorption of the absorption liquid to the absorber, before the absorption of the absorption solution of the absorber is cooled, the absorption of the output of the generator
  • the solution is mixed with the absorption solution output from the absorber to form a mixed absorption solution which exchanges heat with the crystallizing absorption solution and the absorbent crystal or the absorption solution containing the absorbent crystal.
  • the heat source for heating in (6) is solar energy, low valley electricity, medium-low temperature waste heat or fuel combustion heat.
  • the foregoing power circulation method, the steam turbine or the screw expansion power machine exhaust The pressure is greater than or equal to atmospheric pressure.
  • the temperature of the absorbing solution in the generator is lower than the temperature of the absorbing solution in the absorber by 5 ° C or less.
  • the absorber has a concentration of the absorbent in the absorber that is higher than the mass concentration of the absorbent in the generator by i owt ° /. the above.
  • the inventors focused on the recycling of the steam condensing heat of the steam turbine or the screw expansion power machine during the implementation of the technical solution of the present invention, and found that the absorption heat pump cycle is fused to In the heat engine cycle, ⁇ absorbs the exhaust gas with a higher concentration of the absorbing solution, and the condensed heat can be converted into a higher temperature absorbing heat, and the absorbing heat can be used for the pressure and temperature higher than the exhaust gas. Used as steam for steam turbine or screw expansion power unit.
  • renewable energy such as solar energy
  • biomass energy such as straw, fuelwood, biogas and bioethanol
  • low-temperature waste heat and low-grid electricity low-grid electricity
  • Figure 1 is a flow chart showing a power cycle system according to a first embodiment of the present invention.
  • Fig. 2 is a flow chart showing the power cycle system of the second embodiment of the present invention.
  • Fig. 3 is a flow chart showing the power cycle system of the embodiment 3 of the present invention.
  • Fig. 4 is a flow chart showing the power cycle system of the fourth embodiment of the present invention.
  • Figure 5 is a flow chart showing a power cycle system of Embodiment 5 of the present invention.
  • Fig. 6 is a flow chart showing a power cycle system of a sixth embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The specific embodiments, structures, features, and functions of the power cycle system according to the present invention will be described in detail below with reference to the accompanying drawings and preferred embodiments.
  • the steam cycle device includes:
  • the generator 11 has a generator absorbing solution inlet, a generator absorbing solution outlet, and a steam outlet.
  • a distributor is also provided in the generator 11 to be connected to the generator absorption solution inlet for dispensing the absorption solution of the input generator 11.
  • the generator 11 is used for concentrating the absorption solution, that is, by supplying heat to the generator 11, causing the working medium in the input absorption solution to evaporate at a higher temperature and pressure and generating steam, and outputting the steam through the steam outlet. Thereby, the concentration of the absorbing solution can be increased while outputting steam of a higher temperature and pressure.
  • the generator absorbing solution outlet may be disposed at the bottom of the generator 11 to output the concentrated absorbing solution.
  • the steam outlet of generator 11 is coupled to the high temperature steam input of steam turbine or screw expansion power unit 200 via inlet conduit 240.
  • the steam output from the generator 11 is used as an intake steam to drive the steam turbine or the screw expansion power machine to become exhaust gas after work.
  • the first heater 220 is disposed on the steam inlet pipe 240 for heating the steam in the steam inlet pipe to further increase the steam temperature introduced into the steam turbine or the screw expansion machine to facilitate the expansion of the steam turbine or the screw.
  • the heater 220 is a heat exchanger, a regenerative heater, a solar collector or a burner.
  • the fuel of the fuel can be a combustible material such as fuelwood, coal, natural gas, petroleum liquefied gas, biogas, bioethanol, straw or fuel oil.
  • the heating method of the heater 220 may be performed by direct heating or by heat exchange between the circulating heat medium and the heated steam.
  • the absorber 12 has an absorber absorption solution inlet, an absorber absorption solution outlet, and an exhaust steam inlet.
  • the exhaust steam inlet is connected to the exhaust steam output end of the steam turbine or screw expansion power machine through an exhaust pipe 230.
  • a reservoir is also disposed within the absorber 12 coupled to the absorber absorbing solution inlet for dispensing the absorbing solution of the input absorber 12. Since the concentration of the absorbent of the absorption solution of the input absorber 12 is relatively high, the absorption heat can be released at a higher temperature, and the concentration of the absorption solution after the absorption of the absorption liquid is lowered, and the absorption solution after the concentration is lowered is collected in the absorber 12. At the bottom, and through the absorber to absorb the solution outlet output.
  • the heat exchange surface 13 may be a wall constituting the generator 11 or the absorber 12, the two sides of which are in contact with the absorption liquid in the generator and the absorber, respectively.
  • the generator 11 and the absorber 12 are designed to share a single side wall, or the generator 11 is disposed inside the absorber 12.
  • the power circulation system constructed as described above can be transferred to the generator for absorption in the evaporator by the absorption of the steam turbine or the screw expansion power machine by the absorption solution with a higher concentration of the absorption solution.
  • the solution simultaneously generates steam, and the generated steam is heated by an external heat source to further increase the temperature, and can be used to drive a steam turbine or a screw expansion power machine to work and generate electricity, so that a large amount of condensation heat possessed by the exhaust gas is reused.
  • the thermal efficiency and power generation efficiency of the power cycle system of the present invention can be significantly improved.
  • the exhaust gas after the expansion work is introduced into the absorber and absorbed by the higher concentration absorption solution, so that heat can be generated at a higher temperature.
  • the absorption solution having a reduced absorption vapor concentration is cooled and crystallized in the crystallizer, the crystal-containing solution is sent to the absorber, and after the crystallization, the absorption solution is sent to the generator, so that the absorber can be operated at a high absorption solution concentration. , and the generator is significantly less soluble than the absorber
  • the working conditions at the concentration of the liquid concentration are very favorable for the operation of the absorption heat pump cycle, which is not achievable by the existing absorption heat pump cycle technology.
  • the absorbing solution forms an absorbent crystal in the absorbent crystallizer 141 and absorbs the solution after crystallization.
  • the crystallization of the absorbent described in Example 1 and the following examples is not intended to limit it to only the absorbent crystal particles, but may also be an absorption solution containing the absorbent crystal particles.
  • the power cycle system of the present embodiment has an absorption solution from the heat exchanger 150 as compared with the embodiment 1, and is disposed on the pipe to which the absorbent crystallizer 14 is connected to the generator 11 and the absorber 12, and is used for The heat-exchange is performed on the absorption solution entering the absorbent crystallizer, the post-crystallization absorption solution output from the absorbent crystallizer, and the crystal-containing solution output from the absorbent crystallizer.
  • the temperature of the absorbing solution from the absorber 12 is much higher than the temperature of the absorbing agent crystallized from the absorbent crystallizer 14 and the absorbing solution after crystallization, the temperature of the absorbing solution entering the absorbent crystallizer 14 is greatly lowered after heat exchange. Thereby, the amount of cooling for cooling the absorption solution can be reduced. At the same time, the temperature of the crystallization of the absorbent from the absorbent crystallizer after heat exchange is greatly increased, and is transported to the absorber, absorbing the same amount of working fluid vapor, and releasing the heat of absorption at a higher working temperature, thereby It can increase the temperature at which the absorber supplies heat.
  • the temperature of the crystallization solution from the absorbent crystallizer is greatly increased, and is sent to the generator to evaporate the same working fluid vapor.
  • This embodiment can reduce the heat consumed by the generator, thereby improving the energy. usage efficiency.
  • the function of the absorption solution from the heat exchanger 150 is that after the heat exchange, the temperature of the absorption solution entering the absorbent crystallizer 14 is lowered, which facilitates the formation of crystals, thereby saving the amount of cooling required for crystallization; and outputting to the generator 11
  • the temperature of the absorbing solution after crystallization is improved to facilitate evaporation of the working medium to form steam; the temperature of the output crystallization solution containing the absorbent is also increased, thereby facilitating the operation of the absorber 12 at a higher temperature.
  • the embodiment further includes a mixer 160, which is respectively connected to the crystallization solution-containing output port, the generator absorbing solution outlet, and the absorber absorbing solution inlet through a pipe, and mixes the crystallization-containing absorbing solution with the absorbing solution from the generator 11. It is sent to the absorber.
  • a mixer 160 which is respectively connected to the crystallization solution-containing output port, the generator absorbing solution outlet, and the absorber absorbing solution inlet through a pipe, and mixes the crystallization-containing absorbing solution with the absorbing solution from the generator 11. It is sent to the absorber.
  • FIG. 3 is a flowchart of Embodiment 3 of the present invention.
  • the absorption solution is supplied from the heat exchanger 150 for crystallizing the absorption solution from the absorber 12 and the absorbent output from the absorbent crystallizer 141 (or an absorption solution containing an absorbent crystal)
  • the heat exchange is performed, and the heat transfer crystallization of the absorbent is sent to the pipe 143.
  • the heat-absorbed absorption solution from the absorber 12 is input to the absorbent crystallizer 14 for cooling crystallization and solid-liquid separation;
  • the absorbent crystals output from the receiver crystallizer 14 are conveyed to the absorber 12 via a line 143.
  • the absorbing solution of the generator 11 is also input to the absorber 12 via the pipe 143, whereby the absorbing solution output from the generator 11 is crystallized and mixed with the heat-treated absorbent, and is input into the absorber.
  • the post-crystallization absorption solution output from the absorbent crystallizer 14 is sent to the generator 11. Since the temperature of the absorbing solution from the absorber 12 is much higher than the temperature of the crystallization of the absorbent output from the absorbent crystallizer 141, the temperature of the absorbing solution entering the absorbent crystallizer 14 is greatly reduced after heat exchange, thereby being reduced. The cooling capacity of the absorption solution is cooled.
  • the temperature of the crystallization of the absorbent from the absorbent crystallizer after heat exchange is greatly increased, and is transported to the absorber, absorbing the same amount of working fluid vapor, and releasing the heat of absorption at a higher working temperature, thereby Improve desorption efficiency and energy efficiency.
  • FIG. 4 is a flowchart of Embodiment 4 of the present invention.
  • the absorption solution is supplied from the heat exchanger 150 for heat exchange between the absorption solution from the absorber 12 and the absorption solution after being crystallized from the absorbent crystallizer 14.
  • the heat-absorbed absorption solution from the absorber 12 is supplied to the absorbent crystallizer 14 for cooling crystallization and solid-liquid separation, and the absorbing solution after heat exchange is sent to the generator 11.
  • the absorption solution of the generator 11 and the absorbent crystals (or the absorption solution containing the absorbent crystals) from the absorbent crystallizer 14 are collectively supplied to the absorber 12 through the pipe 143.
  • the temperature of the absorbing solution from the absorber 12 is much higher than the temperature of the absorbing solution after crystallization from the absorbent crystallizer 14, after the heat exchange, it enters the amount of the absorbent crystallizer. At the same time, the temperature of the absorbing solution after crystallization from the absorbent crystallizer after heat exchange is greatly increased, and is transported to the generator, which can reduce the amount of the driving heat source of the generator, thereby reducing energy consumption.
  • FIG. 5 is a flowchart of Embodiment 5 of the present invention.
  • the absorption solution output pipe of the generator 11 is connected to the absorption solution output pipe of the absorber 12, and the connected node is located before the absorption solution from the heat exchanger 15G.
  • the absorbing solution from the generator 11 is mixed with the absorbing solution from the absorber 12 and then introduced into the absorbing solution from the heat exchanger 150, and is condensed with the absorbing agent output from the absorbing agent crystallizer 14 and absorbing the solution while absorbing the solution.
  • the absorbing solution is sent to the generator 11 through the absorption solution input pipe.
  • the heat-treated absorbent crystals are transported to the absorber 12 through the absorption solution input conduit.
  • the absorption solution from the generator 11 is mixed with the absorption solution from the absorber 12 to be cooled and crystallized, In comparison with the above, the amount of the absorbing solution cooled by crystallization is increased, so that more crystallization after absorption solution can be obtained, so that the use efficiency of the absorbent crystallizer can be improved.
  • the power circulation system of the embodiment adds a second heater 250 to the exhaust pipe 230 for heating the steam in the exhaust pipe to exhaust the steam.
  • the temperature is increased above the operating temperature of the absorber 12 to facilitate compensation of the amount of cooling of the absorbent crystallizer 14 and heat loss from the system, while lower grade heat sources can be used to generate electricity.
  • Embodiment 7 of the present invention also proposes a power cycle method based on the power cycle system of Embodiment 1, which includes the following steps:
  • the high concentration absorption solution absorbs the exhaust gas of the steam turbine or the screw expansion power machine, generates absorption heat and transmits the absorption heat to the generator, and the absorption solution concentration is lowered and then sent to the absorbent crystallizer;
  • the absorbing solution is subjected to cooling crystallization and solid-liquid separation, and the crystallization solution after solid-liquid separation is sent to the generator, and the crystallization solution is transported to the absorber;
  • the absorption heat from the absorber heats the crystallization solution from the absorption crystallizer, and evaporates the working medium of the absorption solution to generate steam and outputs, and the concentration of the absorption solution rises to a high concentration. Absorbing the solution and delivering the absorption solution to the absorber;
  • Embodiment 8 of the present invention further provides a power cycle method.
  • the embodiment further includes: the absorption solution from the generator and/or the absorption solution from the absorber, and after crystallization
  • the absorption solution and/or the absorbent crystals or the absorption solution containing the absorbent crystals are subjected to heat exchange.
  • Increasing the temperature of the absorbing solution entering the generator facilitates evaporation and concentration, which saves the heat supply of the generator; at the same time, lowers the temperature of the absorbing solution entering the absorbing agent crystallizer, which is advantageous for cooling crystallization, thereby reducing the supply of cold.
  • the absorption solution outputted by the absorber exchanges heat with the post-crystallization absorption solution before the crystallization solution is transported to the generator after the crystallization, and the absorption solution output from the absorber is cooled.
  • the absorbent crystals or the absorption solution containing the absorbent crystals are exchanged with the absorption solution output from the absorber before the solution is cooled.
  • the absorbing solution output by the absorber is After crystallization, the absorption solution and the absorbent crystals or the absorption solution containing the absorbent crystals are subjected to heat exchange.
  • the absorbing solution output from the generator and the output of the absorber are before the absorbing solution is crystallized and sent to the absorber before the absorption solution of the absorber is cooled.
  • the absorption solution is mixed to form a mixed absorption solution which is exchanged with the post-crystallization absorption solution and the absorbent crystal or the absorption solution containing the absorbent crystal.
  • Embodiment 9 of the present invention also proposes a power cycle method of the power cycle system.
  • the power cycle method of the present embodiment further includes the step of heating the exhaust of the steam turbine or the screw expansion power machine as compared with the embodiment 8.
  • the technical solution described in the above embodiments of the present invention is not particularly limited in the type of the absorbing solution to be used.
  • the above examples are all described by taking the water-lithium bromide as the working solution of the working medium as an example.
  • the working medium of the working medium may be ammonia, decyl alcohol, ethanol or a mixture thereof in addition to water.
  • As the absorbent of the working medium used in the present invention in addition to lithium bromide, H 2 0 may be used. , LiCl, LiN0 3 , NaBr, Br, CaCl 2 , MgBr 2 and mixtures thereof, and the like.
  • the method described in Embodiment 9 is used to heat the generator output steam and the steam turbine or the screw expansion power machine exhaust steam using the 200 ° C thermal energy from the low valley electric heat accumulator as an external heat source, and use 20 ° C for the exhaust gas. Cooling water is used to cool the absorbent crystallizer.
  • the adiabatic efficiency of the steam turbine or screw expansion power machine is 80%, the generator efficiency is 90%, and the power cycle efficiency of the power cycle system of this example is 35°/. .
  • Embodiment 9 the method described in Embodiment 9 is adopted, and 220 ⁇ heat energy from a solar collector is used as an external heat source to heat the generator output steam and the steam turbine or the screw expansion power machine exhaust steam, and the chiller water at 20 ° C is used.
  • the cooling absorbent crystallizer, the steam turbine or the screw expansion power machine has an adiabatic efficiency of 80%, the generator efficiency is 90%, and the power cycle system of this example has a power generation efficiency of 36%.
  • This example uses the method described in Example 8, using 250 ° C combustion flue gas from the boiler as an external heat source to heat the generator output steam, and 2 (TC cooling water to cool the absorbent crystallizer, steam turbine or screw
  • the expansion engine has an insulation efficiency of 80% and the generator efficiency is 90%.
  • the power cycle system of this example has a power generation efficiency of 32%.
  • Embodiment 8 the method described in Embodiment 8 is adopted, and the combustion heat of the biogas burner is used as an external heat source to heat the generator output steam, and the cooling water of 32 ° C is used to cool the absorbent crystallizer, the steam turbine or the screw expansion power machine.
  • the adiabatic efficiency is 80% and the generator efficiency is 90°/.
  • the power cycle system of this example has a power generation efficiency of 46°/. .
  • This comparative example uses a turbine generator based on the Rankine cycle, using 250 ° C combustion flue gas from the boiler as the boiler heat source, the adiabatic efficiency of the steam turbine or screw expansion power machine is 80%, and the generator efficiency is 90%, the comparative example The power generation efficiency is 12%.
  • Table 1 shows the operating parameters and performance of the above examples 1 ⁇ 4.
  • Other technical means necessary to achieve the above technical solutions can be achieved by the techniques in the prior art.
  • the invention significantly improves the thermal efficiency and power generation efficiency of the power cycle by reusing the heat of condensation of the steam exhauster of the steam turbine or the screw expansion power machine; since cooling of the exhaust steam is not required, the
  • P cooling tower cooling load which can significantly save valuable water resources; can be diverse, lower grade energy, including renewable energy such as solar energy, straw, fuelwood, biogas, bioethanol and other biomass energy, medium and low temperature Waste heat and low-valley electricity are cleanly and efficiently converted into electricity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

动力循坏系统以及动力循环方法 技术领域
本发明涉及一种热能工程领域的动力循环技术, 特别涉及一种将吸收 式热泵循环融合到动力循环的动力循环系统以及动力循环方法。 背景技术
汽轮发电机是常规热机发电的主要方式之一。 基于朗肯循环的汽轮发 电机的工作原理是, 以高温高压的蒸汽作为进汽驱动汽轮机, 并帶动发电 机进行发电, 蒸汽经膨胀做功后形成低压的排汽从汽轮机排出。 排汽进入 冷凝器向冷却水放热冷凝成水后, 由给水泵加压送入锅炉, 水在锅炉中受 热蒸发形成高温高压蒸汽, 从而完成循环。 如上所述, 由于在朗肯循环中 工质 (排汽) 经冷凝器向外部排放大量的冷凝潜热, 因而朗肯循环的热效 率即汽轮机的发电效率较低, 通常在 10 ~ 40%的水平, 发电效率随进汽温度 和压力的降低而降低。 发明内容
本发明的主要目的在于克服现有的热机发电系统尤其是汽轮发电机组 存在的热效率低以及所要求热源的能量品位高的问题, 而提供一种新的动 力循环方法以及动力循环系统, 所要解决的技术问题是使其可将多样的、 包括高中低品位的外部热源的热量高效率地转化为功或者电力, 从而实现 清洁高效的新型热机动力循环技术, 更加适于实用,且具有产业上的利用价 值。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种动力循环系统, 其包括汽轮机或螺杆膨胀动力机、 蒸汽 循环装置以及吸收剂结晶器, 所述的蒸汽循环装置包括: 发生器, 用于浓 缩吸收溶液并产生蒸汽, 通过进汽管道连接于所述汽轮机或螺杆膨胀动力 机; 吸收器, 通过排汽管道连接于所述汽轮机或螺杆膨胀动力机, 用于吸 收汽轮机或螺杆膨胀动力机的排汽; 换热面, 设置于所述的发生器和吸收 器之间, 用于将吸收器中的热量传递到发生器; 加热器, 设置于所述的蒸 汽循环装置中; 所述的吸收剂结晶器, 用于对来自发生器的吸收溶液和 /或 来自吸收器的吸收溶液进行冷却, 形成结晶后吸收溶液和吸收剂结晶, 所 述的结晶后吸收溶液被输送至发生器, 所述的吸收剂结晶或者含吸收剂结 晶的吸收溶液被输送至吸收器。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 优选的, 前述的动力循环系统, 其中所述的汽轮机或螺杆膨胀动力机 进汽管道或者排汽管道上设置有加热器。
优选的, 前述的动力循环系统, 其中所述的汽轮机或螺杆膨胀动力机 进汽管道上设置有第 1加热器, 排汽管道上设置有第 2加热器。
优选的, 前述的动力循环系统, 其中所述的加热器为换热器、 蓄热式 加热器、 太阳能集热器或者燃烧器。
优选的, 前述的动力循环系统, 其中所述的换热面为构成发生器或者 吸收器的器壁, 该换热面的两侧分别与发生器和吸收器内的吸收溶液接触。
优选的, 前述的动力循环系统还包括吸收溶液自换热器, 用于所述的 结晶后吸收溶液和 /或吸收剂结晶或者含吸收剂结晶的吸收溶液,与来自发 生器的吸收溶液和 /或来自吸收器的吸收溶液进行换热。
优选的, 前述的动力循环系统还包括: 吸收溶液自换热器, 用于将来 自吸收器的吸收溶液与来自吸收剂结晶器的结晶后吸收溶液进行换热; 用 于将来自吸收器的吸收溶液与来自吸收剂结晶器的吸收剂结晶或者含吸收 剂结晶的吸收溶液进行换热; 或者用于将来自吸收器的吸收溶液与来自吸 收剂结晶器的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液 进行换热。
优选的, 前述的动力循环系统, 来自发生器的吸收溶液和来自吸收器 的吸收溶液混合后进入吸收溶液自换热器, 与来自吸收剂结晶器的吸收溶 液和吸收剂结晶或者含吸收剂结晶的吸收溶液进行换热。
J解决其技术问题还采用以下技术方案来实现的。 依据 本发明提出的一种动力循环方法, 包括:
( 1 )在吸收器中, 高浓度的吸收溶液吸收汽轮机或螺杆膨胀动力机的 排汽, 产生吸收热并将该吸收热传递到发生器, 吸收溶液浓度降低后被输 送到吸收剂结晶器中;
( 2 )在吸收剂结晶器中, 对吸收溶液进行冷却结晶和固液分离, 形成 结晶后吸收溶液和吸收剂结晶, 所述的结晶后吸收溶液被输送至发生器, 所述的吸收剂结晶或者含吸收剂结晶的吸收溶液被输送至吸收器;
( 3 )在发生器中, 来自吸收器的吸^热将来自吸收剂结晶器的结晶后 吸收溶液加热, 产生工质蒸汽并输出, 结晶后吸收溶液浓度升高变为高浓 度的吸收溶液, 并将该吸收溶液输送到吸收器中;
( 4 ) 将发生器输出的工质蒸汽作为进汽导入汽轮机或螺杆膨胀动力机 通过膨胀对外做功;
( 5 ) 汽轮机或螺杆膨胀动力机排汽, 并将该排汽导入吸收器中, 以及
( 6 )对汽轮机或螺杆膨胀动力机的进汽或者排汽进行加热。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 优选的, 前述的动力循环方法, 还包括: 在所述的结晶后吸收溶液输 送到发生器之前, 且吸收器输出的吸收溶液进行冷却之前, 所述的吸收器 输出的吸收溶液与所述的结晶后吸收溶液进行换热。
优选的, 前述的动力循环方法, 还包括: 在所述的吸收剂结晶输送到 吸收器之前, 且吸收器输出的吸收溶液进行冷却之前, 所述的吸收剂结晶 或者含吸收剂结晶的吸收溶液与所述的吸收器输出的吸收溶液进行换热。
优选的, 前述的动力循环方法, 还包括: 在所述的结晶后吸收溶液输 送到发生器之前, 吸收剂结晶输送到吸收器之前, 且吸收器输出的吸收溶 液进行冷却之前, 所述吸收器输出的吸收溶液与所述的结晶后吸收溶液和 吸收剂结晶或者含吸收剂结晶的吸收溶液进行换热。
优选的, 前述的动力循环方法, 还包括: 在所述的结晶后吸收溶液输 送到发生器之前, 吸收剂结晶输送到吸收器之前, 吸收器输出的吸收溶液 进行冷却之前, 发生器输出的吸收溶液与所述吸收器输出的吸收溶液混合 形成混合吸收溶液, 该混合吸收溶液与所述的结晶后吸收溶液和吸收剂结 晶或者含吸收剂结晶的吸收溶液进行换热。
优选的, 前述的动力循环方法, 在 (6 ) 中所述加热的热源为太阳能、 低谷电、 中低温余热或者燃料燃烧热。
优选的, 前述的动力循环方法, 所述的汽轮机或螺杆膨胀动力机排汽 的压力大于等于大气压。
优选的, 前述的动力循环方法, 所述的发生器中吸收溶液的温度比吸 收器中吸收溶液的温度低 5 °C以下。
优选的, 前述的动力循环方法, 所述的吸收器中吸收溶液的吸收剂质 量浓度比发生器中吸收溶液的吸收剂质量浓度高 i owt°/。以上。
由以上技术方案可知,为了提高热机循环的发电效率, 本发明人在实现 本发明的技术方案过程中着眼于汽轮机或螺杆膨胀动力机排汽冷凝热的回 用, 发现通过将吸收式热泵循环融合到热机循环中, 釆用较高浓度的吸收 溶液吸收排汽, 可实现将上述冷凝热转化为较高温度的吸收热, 进而可将 该吸收热用于发生压力与温度高于排汽的、 可用作汽轮机或螺杆膨胀动力 机进汽的蒸汽。
本发明与现有技术相比具有如下明显的优点和有益效果:
( 1 )通过回用汽轮机或螺杆膨胀动力机的排汽具有的冷凝热 , 显著提 高了动力循环的热效率和发电效率;
( 2 ) 由于无需对排汽进行冷却, 可大幅降低冷却塔的冷却负荷 , 从而 显著节约宝贵的水资源;
( 3 )可将多样的、 较低品位的能源, 包括太阳能等可再生能源, 秸秆、 薪柴、 沼气、 生物乙醇等生物质能, 中低温余热以及低谷电等清洁高效地 转化为电力。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 并可依照说明书的内容予以实施, 以下以本发明的较佳实施例 并配合附图伴细说明如后。 附图说明
图 1是本发明实施例 1的动力循环系统的流程图。
图 2是本发明实施例 2的动力循环系统的流程图。
图 3是本发明实施例 3的动力循环系统的流程图。
图 4是本发明实施例 4的动力循环系统的流程图。
图 5是本发明实施例 5的动力循环系统的流程图。
图 6是本发明实施例 6的动力循环系统的流程图。 具体实施方式 效,以下结合附图及较佳实施例, 对依据本发明提出的动力循环系统其具体 实施方式、 结构、 特征及其功效, 详细说明如后。
请参阅图 1所示,是本发明实施例 1的动力循环系统的流程图。 该动力 循环系统主要包括原动机; 用于向所述的汽轮发电机提供蒸汽并将蒸汽进 行循环的蒸汽循环装置; 以及吸收剂结晶器。 所述的原动机包括: 汽轮机 或螺杆膨胀动力机 200 ,其具有高温蒸汽输入端和排汽输出端; 以及发电机 210, 通过传动设备连接于汽轮机或螺杆膨胀动力机 200 , 由汽轮机或螺杆 膨胀动力机驱动以产生电力。 在蒸汽循环装置和吸收剂结晶器中填充有吸 收溶液, 并使该吸收溶液在蒸汽循环装置和吸收剂结晶器之间进行循环。
所述的蒸汽循环装置, 包括:
发生器 11 , 具有发生器吸收溶液入口、 发生器吸收溶液出口以及蒸汽 出口。 在发生器 11内还设有布液器连接于发生器吸收溶液入口, 用于分配 输入发生器 11的吸收溶液。 该发生器 11用于浓缩吸收溶液, 即通过向发 生器 11供给热量, 使输入的吸收溶液中的工质在较高的温度和压力下蒸发 并产生蒸汽, 并将该蒸汽通过蒸汽出口输出, 从而可以使吸收溶液的浓度 得到提高同时输出较高温度和压力的蒸汽。 所述的发生器吸收溶液出口, 可以设置于发生器 11 的底部, 从而输出经过浓缩的吸收溶液。 发生器 11 的蒸汽出口通过进汽管道 240连接于汽轮机或螺杆膨胀动力机 200的高温 蒸汽输入端。 发生器 11输出的蒸汽作为进汽推动汽轮机或螺杆膨胀动力机 做功后变为排汽。
第 1加热器 220,设置于所述的进汽管道 240上, 用于对进汽管道中的 蒸汽进行加热, 以进一步提高导入汽轮机或螺軒膨胀动力机的蒸汽温度从 而有利于提高汽轮机或螺杆膨胀动力机的输出功量和排汽干度。 所述的加 热器 220为换热器、 蓄热式加热器、 太阳能集热器或者燃烧器。 所述燃料 器的燃料可为薪柴、 煤、 天然气、 石油液化气、 沼气、 生物乙醇、 秸秆或 者燃料油等可以燃烧的物质。 上述加热器 220的加热方式可采用直接加热 方式, 亦可采用循环热媒与被加热蒸汽换热的方式进行。 吸收器 12 , 具有吸收器吸收溶液入口、 吸收器吸收溶液出口以及排汽 入口。 所述的排汽入口通过排汽管道 230连接于所述汽轮机或螺杆膨胀动 力机的排汽输出端。 在吸收器 12内还设有布液器连接于吸收器吸收溶液入 口, 用于分配输入吸收器 12的吸收溶液。 由于输入吸收器 12的吸收溶液 的吸收剂浓度较高, 因而可在较高的温度下放出吸收热, 吸收溶液吸收输 入的排汽后浓度降低, 浓度降低后的吸收溶液聚集在吸收器 12的底部, 并 通过吸收器吸收溶液出口输出。
换热面 13, 设置与所述的发生器 11和吸收器 12之间, 用于将吸收器 12中产生的吸收热传递到发生器 11中。 该换热面 13可以为构成发生器 11 或者吸收器 12的器壁, 该换热面的两侧分别与发生器和吸收器内的吸收溶 液接触。 例如, 将发生器 11和吸收器 12设计为共用一个侧壁的形式, 或 者将发生器 11设置在吸收器 12内部。
吸收剂结晶器 14 , 其包括: 结晶器吸收溶液入口, 通过管道 142连接 于吸收器吸收溶液出口; 结晶器结晶后吸收溶液出口, 通过管道 141 连接 于发生器吸收溶液入口; 及含结晶溶液输出口, 通过管道 143 连接于吸收 器吸收溶液入口。 该吸收剂结晶器还具有冷媒循环设备, 用于向吸收剂结 晶器 14提供冷量, 使吸收剂结晶器 14 内的吸收溶液温度降低, 当达到吸 收剂的结晶温度以下时, 析出吸收剂结晶。 经固液分离后, 吸收剂结晶从 含结晶溶液输出口输出到吸收器 12中, 吸收剂浓度降低了的结晶后吸收溶 液从管道 141输入到发生器 11内。
如上述结构构成的动力循环系统, 由于在吸收器中通过以较高浓度的 吸收溶液吸收汽轮机或螺杆膨胀动力机排汽而产生的吸收热可以传递给发 生器, 用于蒸发浓缩发生器中的吸收溶液同时产生蒸汽, 所产生的蒸汽经 加热器由外部热源加热以进一步提高温度后, 可用于驱动汽轮机或螺杆膨 胀动力机做功进而发电, 因而排汽所拥有的大量的冷凝热得到了回用, 从 而可显著提高本发明动力循环系统的热效率以及发电效率。 经膨胀做功后 的排汽被导入吸收器中, 由较高浓度的吸收溶液吸收, 从而可在较高温度 下产生吸收热。 由于吸收排汽浓度下降了的吸收溶液在结晶器中冷却结晶, 含结晶溶液被送入吸收器, 而结晶后吸收溶液被输送至发生器中, 从而可 实现吸收器在高吸收溶液浓度下工作, 而发生器在显著低于吸收器吸收溶 液浓度的浓度下工作的、 非常有利于吸收式热泵循环的工况, 而这是现有 吸收式热泵循环技术所无法达到的。
吸收溶液在吸收剂结晶器 141 中形成吸收剂结晶和结晶后吸收溶液。 实施例 1 以及下述实施例中所述的吸收剂结晶不用于限定其仅仅为吸收剂 结晶颗粒, 其还可以是含有吸收剂结晶颗粒的吸收溶液。
请参阅图 2所示, 是本发明实施例 1的流程图。 本实施例的动力循环 系统与实施例 1相比, 其增加了吸收溶液自换热器 150 , 设置于所述的吸收 剂结晶器 14与发生器 11和吸收器 12连接的管道上, 用于对进入吸收剂结 晶器的吸收溶液、 从吸收剂结晶器输出的结晶后吸收溶液和从吸收剂结晶 器输出的含结晶溶液进行热交换。 由于来自吸收器 12的吸收溶液的温度远 高于从吸收剂结晶器 14输出的吸收剂结晶和结晶后吸收溶液的温度, 所以 经过换热后, 进入吸收剂结晶器 14的吸收溶液温度大大降低, 从而可以减 少用于冷却吸收溶液的冷量。 同时, 经过换热后的来自吸收剂结晶器的吸 收剂结晶的温度大大提高, 其被输送到吸收器中, 吸收同样量的工质蒸汽, 可以在更高的工作温度下释放吸收热, 从而可以提高吸收器供热的温度。 经过换热后的来自吸收剂结晶器的结晶后溶液的温度大大提高, 其被输送 到发生器中, 蒸发出同样的工质蒸汽, 本实施例可以减少发生器的消耗的 热量, 从而提高能源利用效率。 吸收溶液自换热器 150 的作用在于, 经过 热交换之后, 进入吸收剂结晶器 14的吸收溶液温度降低, 有利于结晶的形 成, 从而节约了结晶所需的冷量; 输出到发生器 11的结晶后吸收溶液的温 度得到了提高, 有利于工质的蒸发形成蒸汽; 输出的含吸收剂结晶溶液的 温度也得到了提高, 从而有利于保持吸收器 12在较高的温度下工作。 本实 施例 还包括混合器 160 , 通过管道分别连接于所述的含结晶溶液输出口、 发生器吸收溶液出口以及吸收器吸收溶液入口, 将含结晶的吸收溶液与来 自发生器 11的吸收溶液混合后送至吸收器中。
请参阅图 3所示, 是本发明实施例 3的流程图。 与实施例 2相比, 所 述的吸收溶液自换热器 150 , 用于使来自吸收器 12的吸收溶液与从吸收剂 结晶器 141输出的吸收剂结晶 (或者含吸收剂结晶的吸收溶液)进行换热, 换热后的吸收剂结晶送入管道 143。 经过换热后的来自吸收器 12的吸收溶 液输入到吸收剂结晶器 14中进行冷却结晶和固液分离; 经过换热后的从吸 收剂结晶器 14输出的吸收剂结晶经管道 143被输送至吸收器 12中。 发生 器 11的吸收溶液也经管道 143输入到吸收器 12 , 从而将发生器 11输出的 吸收溶液与经过换热后的吸收剂结晶混合后共同输入到吸收器中。 从吸收 剂结晶器 14输出的结晶后吸收溶液输送到发生器 11 内。 由于来自吸收器 12的吸收溶液的温度远高于从吸收剂结晶器 141输出的吸收剂结晶的温度, 所以经过换热后, 进入吸收剂结晶器 14的吸收溶液温度大大降低, 从而可 以减少用于冷却吸收溶液的冷量。 同时, 经过换热后的来自吸收剂结晶器 的吸收剂结晶的温度大大提高, 其被输送到吸收器中, 吸收同样量的工质 蒸汽, 可以在更高的工作温度下释放吸收热, 从而提高解吸效率和能源利 用效率。
请参阅图 4所示, 是本发明实施例 4的流程图。 与实施例 2相比, 所 述的吸收溶液自换热器 150, 用于使来自吸收器 12的吸收溶液与从吸收剂 结晶器 14输出结晶后吸收溶液进行换热。 经过换热后的来自吸收器 12的 吸收溶液输入到吸收剂结晶器 14中进行冷却结晶和固液分离, 换热后的结 晶后吸收溶液送入发生器 11。 发生器 11的吸收溶液和吸收剂结晶器 14输 出的吸收剂结晶 (或含吸收剂结晶的吸收溶液)共同通过管道 143输送至 吸收器 12。 由于来自吸收器 12 的吸收溶液的温度远高于从吸收剂结晶器 14输出的结晶后吸收溶液的温度, 所以经过换热后, 进入吸收剂结晶器 14 量。 同时, 经过换热后的来自吸收剂结晶器的结晶后吸收溶液的温度大大 提高, 其被输送到发生器中, 可以减少发生器的驱动热源的用量, 从而降 低能耗。
请参阅图 5所示, 是本发明实施例 5的流程图。 与实施例 2相比, 所 述的发生器 11的吸收溶液输出管道与吸收器 12的吸收溶液输出管道相连, 相连的节点位于进入吸收溶液自换热器 15G之前。 来自发生器 11的吸收溶 液与来自吸收器 12的吸收溶液混合后进入吸收溶液自换热器 150, 与从吸 收剂结晶器 14输出的吸收剂结晶和结晶后吸收溶液同时进行换热。 经过换 热后的结晶后吸收溶液通过吸收溶液输入管道输送至发生器 11中。 经过换 热后的吸收剂结晶通过吸收溶液输入管道输送至吸收器 12中。 将来自发生 器 11 的吸收溶液与来自吸收器 12的吸收溶液混合后进行冷却结晶, 与前 述方式相比, 增加了被冷却结晶的吸收溶液的量, 从而可以得到更多的结 晶后吸收溶液, 从而可以提高吸收剂结晶器的使用效率。
请参阅图 6所示, 是本发明实施例 6的流程图。 本实施例的动力循环 系统与实施例 2相比, 其增加了第 2加热器 250, 设置于所述的排汽管道 230上, 用于对排汽管道中的蒸汽进行加热, 以将排汽的温度提高到吸收器 12的工作温度以上,从而有利于补偿吸收剂结晶器 14的冷却量和系统的散 热损失, 同时可以将更低品位的热源用于发电。
本发明的实施例 7还提出了一种基于实施例 1的动力循环系统的动力 循环方法, 其包括以下步骤:
( 1 )在吸收器中, 高浓度的吸收溶液吸收汽轮机或螺杆膨胀动力机的 排汽, 产生吸收热并将该吸收热传递到发生器, 吸收溶液浓度降低后被输 送到吸收剂结晶器中;
( 2 ) 在吸收剂结晶器中, 对吸收溶液进行冷却结晶和固液分离, 固液 分离后的结晶后吸收溶液输送至发生器中, 含结晶溶液输送至吸收器中;
( 3 ) 在发生器中, 来自吸收器的吸收热将来自吸收剂结晶器的结晶后 吸收溶液加热, 并蒸发吸收溶液的工质以产生蒸汽并输出, 吸收溶液浓度 升高变为高浓度的吸收溶液, 并将该吸收溶液输送到吸收器中; 以及
( 4 )对发生器输出的蒸汽进行加热, 然后作为进汽导入汽轮机或螺杆 膨胀动力机通过膨胀对外做功, 并将汽轮机或螺杆膨胀动力机的排汽导入 吸收器中。
本发明实施例 8还提出一种动力循环方法, 与实施例 7的方法相比, 本实施例还包括: 所述的来自发生器的吸收溶液和 /或来自吸收器的吸收溶 液, 与结晶后吸收溶液和 /或吸收剂结晶或者含吸收剂结晶的吸收溶液进行 换热。 提高进入发生器的吸收溶液的温度, 有利于蒸发浓缩, 节约发生器 的供热; 同时降低进入吸收剂结晶器的吸收溶液温度, 有利于冷却结晶, 从而減少冷量的供应。
较佳的, 在所述的结晶后吸收溶液输送到发生器之前, 且吸收器输出 的吸收溶液进行冷却之前, 所述的吸收器输出的吸收溶液与所述的结晶后 吸收溶液进行换热。
较佳的, 在所述的吸收剂结晶输送到吸收器之前, 且吸收器输出的吸 收溶液进行冷却之前, 所述的吸收剂结晶或者含吸收剂结晶的吸收溶液与 所述的吸收器输出的吸收溶液进行换热。
较佳的, 在所述的结晶后吸收溶液输送到发生器之前, 吸收剂结晶输 送到吸收器之前, 且吸收器输出的吸收溶液进行冷却之前, 所述吸收器输 出的吸收溶液与所述的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的 吸收溶液进行换热。
较佳的, 在所述的结晶后吸收溶液输送到发生器之前, 吸收剂结晶输 送到吸收器之前, 吸收器输出的吸收溶液进行冷却之前, 发生器输出的吸 收溶液与所述吸收器输出的吸收溶液混合形成混合吸收溶液, 该混合吸收 溶液与所述的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液 进行换热。
本发明的实施例 9还提出了一种动力循环系统的动力循环方法, 本实 施例的动力循环方法与实施例 8相比, 其还包括对汽轮机或螺杆膨胀动力 机排汽进行加热的步骤。
本发明的上述实施例所述的技术方案对所采用吸收溶液的种类并无特 别的限制, 上述实施例皆以水-溴化锂为工质对的吸收溶液为例进行了说 明,作为本发明所采用工质对的工质, 除了水之外, 也可采用氨、 曱醇、 乙 醇及其混合物等, 作为本发明所采用工质对的吸收剂, 除了溴化锂之外, 也可以釆用 H20, LiCl, LiN03, NaBr, Br, CaCl2, MgBr2及其混合物等。
以下通过具有具体参数的实施例来说明上述实施例的可实施性。
实例 1
本实例釆用实施例 9所述的方法,采用来自低谷电蓄热器的 200°C热能 作为外部热源对发生器输出蒸汽和汽轮机或螺杆膨胀动力机排汽进行加 热, 而釆用 20°C的冷却水来冷却吸收剂结晶器, 汽轮机或螺杆膨胀动力机 绝热效率为 80%,发电机效率为 90%,本实例的动力循环系统发电效率为 35°/。。
实例 2
本实例釆用实施例 9所述的方法,采用来自太阳能集热器的 220Ό热能 作为外部热源对发生器输出蒸汽和汽轮机或螺杆膨胀动力机排汽进行加 热, 而釆用 20°C的冷却水来冷却吸收剂结晶器, 汽轮机或螺杆膨胀动力机 绝热效率为 80%,发电机效率为 90%,本实例的动力循环系统发电效率为 36%。 实例 3
本实例采用实施例 8所述的方法,采用来自锅炉的 250°C燃烧烟气作为 外部热源对发生器输出蒸汽进行加热, 而采用 2 (TC的冷却水来冷却吸收剂 结晶器, 汽轮机或螺杆膨胀动力机绝热效率为 80%, 发电机效率为 90%, 本 实例的动力循环系统发电效率为 32%。
实例 4
本实例采用实施例 8 所述的方法, 采用沼气燃烧器的燃烧热作为外部 热源对发生器输出蒸汽进行加热, 而釆用 32 °C的冷却水来冷却吸收剂结晶 器, 汽轮机或螺杆膨胀动力机绝热效率为 80%, 发电机效率为 90°/。, 本实例 的动力循环系统发电效率为 46°/。。
比较例
本比较例采用基于朗肯循环的汽轮发电机,采用来自锅炉的 250°C燃烧 烟气作为锅炉热源, 汽轮机或螺杆膨胀动力机绝热效率为 80%, 发电机效率 为 90%, 本比较例的发电效率为 12%。
上述实例以及比较例的动力循环系统发电效率的计算公式如下:
发电效率 = 所输出电力 /工质从外部热源吸收的热量
= (工质从外部热源吸收的热量-吸收剂结晶器的冷却 量 -散热损失) X发电机效率 /工质从外部热源吸收的热量
= 进汽与排汽的焓差 X发电机效率 /工质从外部热源吸 收的热量
下表 1为上述实例 1 ~ 4的工作参数和性能。 表 1
Figure imgf000013_0001
或螺杆
膨胀动
进汽压力 ( kPa ) 115 235 180 275 1000 力机进
'/
汽轮机 排汽温度 ( ) 130 145 190 250 100 或螺杆 排汽压力 ( kPa ) 55 107 102 102 102 膨胀动 排汽干度 1. 0 1. 0 1. 0 1. 0 0. 96 力机排
进汽与排汽的比焓差
115 125 100 200 340 ( kJ/kg )
吸收剂
吸收剂结晶温度( °C ) 23 23 23 35 - 结晶器
热源工质进口温度( °C ) 200 220 250 700 - 第 1加
热器
热源工质出口温度( °C ) 185 210 205 230 - 热源工质进口温度( 'C ) 185 210 - - - 第 1加
热器
热源工质出口温度 ( °C ) 140 155 - - - 动力循环系统发电效率 (% ) 35 36 32 46 12 为实现上述技术方案所必须的其他技术手段皆可采用现有技术中的技 术实现。
以上所述, 仅是本发明的较佳实施例而已,并非对本发明作任何形式上 的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发明, 任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利用上 述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是 未脱离本发明技术方案的内容, 依据本发明的技术实质对以上实施例所作 的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围内。 工业应用性
本发明通过回用汽轮机或螺杆膨胀动力机的排汽具有的冷凝热, 显著 提高了动力循环的热效率和发电效率; 由于无需对排汽进行冷却, 可大幅
P 低冷却塔的冷却负荷, 从而显著节约宝贵的水资源; 可将多样的、 较低 品位的能源, 包括太阳能等可再生能源, 秸秆、 薪柴、 沼气、 生物乙醇等 生物质能, 中低温余热以及低谷电等清洁高效地转化为电力。

Claims

权 利 要 求
1、 一种动力循环系统, 其特征在于其包括汽轮机或螺杆膨胀动力机、 蒸汽循环装置以及吸收剂结晶器,
所述的蒸汽循环装置包括:
发生器, 用于浓缩吸收溶液并产生蒸汽, 通过进汽管道连接于所述 汽轮机或螺杆膨胀动力机;
吸收器, 通过排汽管道连接于所述汽轮机或螺杆膨胀动力机, 用于 吸收汽轮机或螺杆膨胀动力机的排汽;
换热面, 设置于所述的发生器和吸收器之间, 用于将吸收器中的热 量传递到发生器;
加热器, 设置于所述的蒸汽循环装置中;
所述的吸收剂结晶器, 用于对来自发生器的吸收溶液和 /或来自吸收器 的吸收溶液进行冷却, 形成结晶后吸收溶液和吸收剂结晶, 所述的结晶后 吸收溶液被输送至发生器, 所述的吸收剂结晶或者含吸收剂结晶的吸收溶 液被输送至吸收器。
2、 根据权利要求 1所述的动力循环系统, 其特征在于其中所述的汽轮 机或螺杆膨胀动力机进汽管道或者排汽管道上设置有加热器。
3、 根据权利要求 1所述的动力循环系统, 其特征在于其中所述的汽轮 机或螺杆膨胀动力机进汽管道上设置有第 1加热器,排汽管道上设置有第 2 加热器。
4、 才艮据权利要求 1所述的动力循环系统, 其特征在于其中所述的加热 器为换热器、 蓄热式加热器、 太阳能集热器或者燃烧器。
5、 才艮据权利要求 1所述的动力循环系统, 其特征在于其中所述的换热 面为构成发生器或者吸收器的器壁, 该换热面的两侧分别与发生器和吸收 器内的吸收溶液接触。
6、 才艮据权利要求 1所述的动力循环系统, 其特征在于其还包括吸收溶 液自换热器, 用于所述的结晶后吸收溶液和 /或吸收剂结晶或者含吸收剂结 晶的吸收溶液,与来自发生器的吸收溶液和 /或来自吸收器的吸收溶液进行 换热。
Ί、 根据权利要求 1所述的动力循环系统, 其特征在于其还包括: 吸收 溶液自换热器, 用于将来自吸收器的吸收溶液与来自吸收剂结晶器的结晶 后吸收溶液进行换热。
8、 根据权利要求 1所述的动力循环系统, 其特征在于其还包括: 吸收 溶液自换热器, 用于将来自吸收器的吸收溶液与来自吸收剂结晶器的吸收 剂结晶或者含吸收剂结晶的吸收溶液进行换热。
9、 根据权利要求 1所述的动力循环系统, 其特征在于其还包括: 吸收 溶液自换热器, 用于将来自吸收器的吸收溶液与来自吸收剂结晶器的结晶 后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液进行换热。
10、 根据权利要求 9 所述的动力循环系统, 其特征在于来自发生器的 吸收溶液和来自吸收器的吸收溶液混合后进入吸收溶液自换热器, 与来自 吸收剂结晶器的吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液进行 换热。
11、 一种动力循环方法, 其特征在于包括:
( 1 )在吸收器中, 高浓度的吸收溶液吸收汽轮机或螺杆膨胀动力机的 排汽, 产生吸收热并将该吸收热传递到发生器, 吸收溶液浓度降低后被输 送到吸收剂结晶器中;
( 2 )在吸收剂结晶器中, 对吸收溶液进行冷却结晶和固液分离, 形成 结晶后吸收溶液和吸收剂结晶, 所述的结晶后吸收溶液被输送至发生器, 所述的吸收剂结晶或者含吸收剂结晶的吸收溶液被输送至吸收器;
( 3 )在发生器中, 来自吸收器的吸收热将来自吸收剂结晶器的结晶后 吸收溶液加热, 产生工质蒸汽并输出, 结晶后吸收溶液浓度升高变为高浓 度的吸收溶液, 并将该吸收溶液输送到吸收器中;
( 4 )将发生器输出的工质蒸汽作为进汽导入汽轮机或螺杆膨胀动力机 通过膨胀对外做功; 以及
( 5 ) 汽轮机或螺杆膨胀动力机排汽, 并将该排汽导入吸收器中; 以及
( 6 )对汽轮机或螺杆膨胀动力机的进汽或者排汽进行加热。
12、 根据权利要求 11所述的动力循环方法, 其特征在于还包括: 在所 述的结晶后吸收溶液输送到发生器之前, 且吸收器输出的吸收溶液进行冷 却之前, 所述的吸收器输出的吸收溶液与所述的结晶后吸收溶液进行换热。
13、 根据权利要求 11所述的动力循环方法, 其特征在于还包括: 在所 述的吸收剂结晶输送到吸收器之前, 且吸收器输出的吸收溶液进行冷却之 前, 所述的吸收剂结晶或者含吸收剂结晶的吸收溶液与所述的吸收器输出 的吸收溶液进行换热。
14、 根据权利要求 11所述的动力循环方法, 其特征在于还包括: 在所 述的结晶后吸收溶液输送到发生器之前, 吸收剂结晶输送到吸收器之前, 且吸收器输出的吸收溶液进行冷却之前, 所述吸收器输出的吸收溶液与所 述的结晶后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液进行换 热。
15、 根据权利要求 14所述的动力循环方法, 其特征在于还包括: 在所 述的结晶后吸收溶液输送到发生器之前, 吸收剂结晶输送到吸收器之前, 吸收器输出的吸收溶液进行冷却之前, 发生器输出的吸收溶液与所述吸收 器输出的吸收溶液混合形成混合吸收溶液, 该混合吸收溶液与所述的结晶 后吸收溶液和吸收剂结晶或者含吸收剂结晶的吸收溶液进行换热。
16、 根据权利要求 11 所述的动力循环方法, 其特征在于在 (6 ) 中所 述加热的热源为太阳能、 低谷电、 中低温余热或者燃料燃烧热。
17、 根据权利要求 11所述的动力循环方法, 其特征在于所述的汽轮机 或螺杆膨胀动力机排汽的压力大于等于大气压。
18、 根据权利要求 11所述的动力循环方法, 其特征在于所述的发生器 中吸收溶液的温度比吸收器中吸收溶液的温度低 5 "C以下。
19、 根据权利要求 11所述的动力循环方法, 其特征在于所述的吸收器 中吸收溶液的吸收剂质量浓度比发生器中吸收溶液的吸收剂质量浓度高 10wt /。以上。
PCT/CN2009/000287 2008-03-17 2009-03-17 动力循环系统以及动力循环方法 WO2009114990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810102091.4 2008-03-17
CN 200810102091 CN101539039A (zh) 2008-03-17 2008-03-17 动力循环系统以及动力循环方法

Publications (1)

Publication Number Publication Date
WO2009114990A1 true WO2009114990A1 (zh) 2009-09-24

Family

ID=41090483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000287 WO2009114990A1 (zh) 2008-03-17 2009-03-17 动力循环系统以及动力循环方法

Country Status (2)

Country Link
CN (1) CN101539039A (zh)
WO (1) WO2009114990A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939464A (zh) * 2017-12-21 2018-04-20 西安热工研究院有限公司 一种基于吸收式热泵循环的热电联产供热系统及工作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482949B (zh) * 2009-06-25 2014-06-04 苏庆泉 动力循环系统以及动力循环方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284603A (ja) * 1994-04-14 1995-10-31 Japan Small Corp ヒートポンプ式結晶生成物製造方法及び装置
US5813241A (en) * 1997-03-24 1998-09-29 Gas Research Institute Crytallization detection and recovery for two-stage absorption refrigeration machine
JP2002098436A (ja) * 2000-09-22 2002-04-05 Daikin Ind Ltd 冷凍装置
CN1421645A (zh) * 2001-11-30 2003-06-04 清华大学 回收燃气蒸汽循环热电厂烟气余热的吸收式热泵供暖装置
CN101033897A (zh) * 2007-04-19 2007-09-12 北京科技大学 一种中低温余热转化为蒸汽的系统及方法
JP2007322028A (ja) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The 吸収式冷凍システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284603A (ja) * 1994-04-14 1995-10-31 Japan Small Corp ヒートポンプ式結晶生成物製造方法及び装置
US5813241A (en) * 1997-03-24 1998-09-29 Gas Research Institute Crytallization detection and recovery for two-stage absorption refrigeration machine
JP2002098436A (ja) * 2000-09-22 2002-04-05 Daikin Ind Ltd 冷凍装置
CN1421645A (zh) * 2001-11-30 2003-06-04 清华大学 回收燃气蒸汽循环热电厂烟气余热的吸收式热泵供暖装置
JP2007322028A (ja) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The 吸収式冷凍システム
CN101033897A (zh) * 2007-04-19 2007-09-12 北京科技大学 一种中低温余热转化为蒸汽的系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939464A (zh) * 2017-12-21 2018-04-20 西安热工研究院有限公司 一种基于吸收式热泵循环的热电联产供热系统及工作方法
CN107939464B (zh) * 2017-12-21 2024-03-01 西安热工研究院有限公司 一种基于吸收式热泵循环的热电联产供热系统及工作方法

Also Published As

Publication number Publication date
CN101539039A (zh) 2009-09-23

Similar Documents

Publication Publication Date Title
RU2714018C1 (ru) Комбинированный паровой цикл одной рабочей среды и паросиловая установка комбинированного цикла
CN202381129U (zh) 动力供给系统
CN102003827B (zh) 吸收式冷功联供循环系统和吸收式冷功联供方法
CN109631390B (zh) 一种实现锅炉全回水加热的吸收式热泵烟气余热深度回收系统
US20070157922A1 (en) Integrated electrical and thermal energy solar cell system
CN201866983U (zh) 吸收式冷功联供循环系统
CN101319828B (zh) 一种吸收式制冷和动力联合循环系统
CN102216702B (zh) 热泵循环系统以及冷热联供方法
JP2011508866A (ja) 低温余熱のエネルギー品位を向上する吸収式ヒートポンプシステムおよび方法
CN102482949B (zh) 动力循环系统以及动力循环方法
CN103742291B (zh) 一种余热回收式分布式能源与海洋温差能耦合发电系统
CN102797522A (zh) 一种实现冷电/热电联产的中低温余热回收系统
CN102094772B (zh) 一种太阳能驱动的联供装置
CN105783023A (zh) 一种利用吸收式热泵驱动暖风器的装置及方法
CN103090593A (zh) 热泵循环系统及热泵循环方法及蒸发系统
WO2015054931A1 (zh) 一种非能动式有机物工质喷射制冷方法
CN207348918U (zh) 一种低温余热高效回收发电系统
WO2009121246A1 (zh) 供电系统及其供电方法
CN203518324U (zh) 一种余热回收利用系统
CN101598040B (zh) 动力循环系统以及动力循环方法
KR101208459B1 (ko) 냉방 및 난방용수를 생산하는 orc 터보발전 시스템
CN104236161A (zh) 一种余热回收利用系统
WO2009114990A1 (zh) 动力循环系统以及动力循环方法
CN108361163A (zh) 发电系统
JP2002266656A (ja) ガスタービンコージェネレーションシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09723120

Country of ref document: EP

Kind code of ref document: A1