WO2009113799A2 - 휘어진 형상의 전지셀 및 이를 포함하는 전지팩 - Google Patents

휘어진 형상의 전지셀 및 이를 포함하는 전지팩 Download PDF

Info

Publication number
WO2009113799A2
WO2009113799A2 PCT/KR2009/001189 KR2009001189W WO2009113799A2 WO 2009113799 A2 WO2009113799 A2 WO 2009113799A2 KR 2009001189 W KR2009001189 W KR 2009001189W WO 2009113799 A2 WO2009113799 A2 WO 2009113799A2
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
cell
radius
curvature
electrode assembly
Prior art date
Application number
PCT/KR2009/001189
Other languages
English (en)
French (fr)
Other versions
WO2009113799A3 (ko
Inventor
고은영
최병진
이향목
정현철
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP09720670.0A priority Critical patent/EP2251921B1/en
Priority to JP2010550592A priority patent/JP5879687B2/ja
Priority to US12/922,005 priority patent/US8802261B2/en
Priority to CN200980108709.0A priority patent/CN101971388B/zh
Publication of WO2009113799A2 publication Critical patent/WO2009113799A2/ko
Publication of WO2009113799A3 publication Critical patent/WO2009113799A3/ko
Priority to US14/098,133 priority patent/US20140093762A1/en
Priority to US14/098,039 priority patent/US9385396B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/025Electrodes composed of, or comprising, active material with shapes other than plane or cylindrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the present invention relates to a curved battery cell and a battery pack including the same, and more particularly, a battery cell in which an electrode assembly is embedded in a variable cell case in a state in which an electrolyte is impregnated, wherein the electrode assembly and the cell case are shafts. It relates to a battery cell, characterized in that both ends are bent together in the same direction with respect to the center on the vertical cross section in the direction to form a curved surface.
  • US Patent Application Publication No. 2007/0059595 discloses a battery in a jelly-roll type electrode assembly having a curved shape in a cross section perpendicular to the winding axis.
  • the curved shape is achieved through thermocompression molding using a concave heater and a convex heater.
  • Japanese Patent Application Laid-Open No. 1999-307130 discloses a method of manufacturing a curved battery by thermocompressing a stacked electrode assembly using two rolls having different diameters.
  • the former technique has a problem in that the wound electrode assembly (jelly-roll) is subjected to a large deformation in the center where the stress is concentrated, resulting in a large deformation of the electrode assembly.
  • the latter technique has a problem that by using a stacked electrode assembly, a shortage may occur at both ends of the electrode assembly while some electrode plates are unevenly pushed from each other due to shear stress upon pressurization by a heating roll.
  • the above techniques carry out a process that causes deformation in the electrode assembly state, and thus the battery case also bears a burden on the manufacturing process in which such deformation is required.
  • the stress inherent in the electrode assembly may be restored by the plasticizing action of the electrolyte during the bending process.
  • the possibility of a short circuit is increased while being pressed by the inner surface of the battery case.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application have a curved surface in the case of a battery cell including a variable cell case and both end portions are bent together in the same direction with respect to the center portion on an axial vertical section.
  • the battery cell of the present invention is a battery cell in which the electrode assembly of the anode / separator / cathode stacked structure is embedded in a variable cell case in the state of being impregnated with an electrolyte, the electrode assembly and the cell case is perpendicular to the axial direction Both ends are gently curved together in the same direction with respect to the center part on the cross section.
  • the electrode assembly for example, a stacked or folding electrode assembly may be used, but in the case of a simple stacked electrode assembly, when the interfacial friction force of the electrode plates is not the same, some electrode plates are pushed in the bending process, At the ends of the electrode assembly, the electrode plates may contact each other and cause a short circuit.
  • the electrode assembly deformation such as distortion may occur in the central portion where stress is concentrated, and the deflection direction is limited to the winding direction.
  • the electrode assembly may be a stack / foldable electrode assembly in which a stacked bicell or a full cell is sequentially wound by a long separator sheet as a unit cell. Since the stack / foldable electrode assembly has both ends sealed by the separator sheet and the electrode plates have different interfacial frictional forces, the stack / foldable electrode assembly has a high holding force in the laminated state due to the winding force of the separator sheet. Can be prevented.
  • the cell case has a variable characteristic to be easily bent in a state in which the electrode assembly is embedded. That is, the variable cell case may be deformed by an external force applied while the electrode assembly is embedded.
  • a variable cell case there is a pouch type case made of a laminate sheet including a metal layer and a resin layer. Therefore, the battery cell may preferably have a structure in which an outer circumferential surface is sealed by heat fusion in a state in which an electrode assembly is mounted in a pouch type case.
  • the laminate sheet may have a structure in which a resin outer layer having excellent durability is added to one surface (outer surface) of the metal barrier layer, and a heat-melt resin sealant layer is added to the other surface (inner surface).
  • the resin outer layer should have excellent resistance from the external environment, it is necessary to have a predetermined tensile strength and weather resistance.
  • PET polyethylene terephthalate
  • a stretched nylon film may be preferably used as the polymer resin of the resin outer layer.
  • the metal barrier layer may be preferably aluminum, in order to exhibit a function of improving the strength of the battery case in addition to the function of preventing the inflow or leakage of foreign substances such as gas, moisture.
  • a polyolefin-based resin having heat sealability (heat adhesion), low hygroscopicity to suppress invasion of the electrolyte solution, and which is not expanded or eroded by the electrolyte solution is preferably used. More preferably unstretched polypropylene (CPP) may be used.
  • polyolefin-based resins such as polypropylene have low adhesion to metals, and as a way to improve adhesion to the metal barrier layer, preferably, an additional adhesion layer is provided between the metal layer and the resin sealant layer. And blocking characteristics can be improved.
  • the material of the adhesive layer include, but are not limited to, a urethane-based material, an acryl-based material, a composition containing a thermoplastic elastomer, and the like.
  • both end portions are gently curved together in the same direction with respect to the center portion on the vertical cross section in the axial direction to form a curved surface.
  • that both ends are bent together in the same direction means that both ends are bent upwards or downwards relative to the horizontal plane.
  • the electrode terminal is preferably located at one side or both ends of the bent, but is not limited to such a structure.
  • the curved portion formed by bending the electrode assembly and the cell case may be curved in a radius of curvature R of 50R to 150R.
  • the radius of curvature of the curved portion (R) can be variously adjusted according to the desired shape, but if the radius of curvature is too small, the stress is concentrated in the center of the battery cell may cause deformation such as distortion, on the contrary Too large a radius is undesirable because it is difficult to control the radius of curvature and can be returned to its original state, that is, a flat state.
  • the deformation amount of the inner laminate becomes relatively large compared to the deformation amount of the outer laminate.
  • the active materials applied to the electrode plate are repeatedly expanded and contracted in the charging and discharging process, it is not easy to maintain the deformation state in a predetermined form. Therefore, in a secondary battery of a structure having a small radius of curvature, that is, a structure having a relatively large bending state, the bending state may be restored during repeated charging and discharging processes, in which case the ends of the electrode plates are pressed by the cell case. As a result, a large amount of force can penetrate the separator and cause a short circuit.
  • the electrode assembly and the cell case have a radius of curvature of the curved side end portions (R 1) it is greater structure than the radius of curvature (R 2) of the central portion.
  • R 1 is larger than the radius of curvature R.
  • both ends having a large radius of curvature R 1 may have a small radius of curvature ( R 1), so compared to the respective side end portions smaller in the strain according to restore relative with a smaller force applied to the end portion of the electrode assembly. Therefore, the possibility of causing a short circuit as described above can be greatly reduced.
  • the electrode terminal when the electrode terminal is located on one side or both ends of the bent, the electrode terminal is located along the curved surface of the end, it may not be easy to combine the electrode terminal and the cap plate of the PCM for manufacturing the battery pack. have.
  • the radius of curvature (R 1) of the respective side end portions in a relatively large form, having a relatively flat surface becomes smaller the curved angle of the electrode terminal, there is also a merit capable of easily and stably achieve the coupling of the cap plate .
  • R 1 of the both ends and the radius of curvature R 2 of the center portion may be appropriately adjusted in a range capable of minimizing the possibility of occurrence of short circuit as described above, and need not have a large difference.
  • R 1 is 51R to 180R within a range larger than R 2
  • R 2 may be 50R to 150R.
  • the present invention also provides a method for manufacturing a battery cell bent to the predetermined radius of curvature (R), comprising a process of the following (a) to (c):
  • the electrode surface is not formed by pressing only the electrode assembly, the electrolyte is injected after the electrode assembly is mounted in the cell case, and the initial charge and discharge are performed. To form.
  • the deformation relatively low, but heat is not directly applied to the electrode assembly, thereby minimizing deterioration.
  • the curved surface when the curved surface is formed by pressing the electrode assembly itself, the curved surface must be formed again in the cell case for accommodating the curved surface.
  • the curved surface formation itself is not easy and the process becomes complicated.
  • the cell case is also pressurized and bent, resulting in excellent process efficiency.
  • the electrolyte of the battery cell in the pressing process acts as a kind of plasticizer in the process of bending the electrode assembly, thereby minimizing the occurrence of stress caused by the interfacial friction of the electrode plates, so that the curved electrode assembly is caused by the stress in the repeated charging and discharging process.
  • the tendency to restore to its original state can be greatly reduced.
  • the cell case is made of a material having a predetermined variability that can be easily deformed and bent in the pressing process (b).
  • the process (b) is a process for forming a curved surface on the outer surface of the battery cell, jig (for example, concave jig) having a shape corresponding to the desired curved surface and jig of the corresponding shape (for example For example, it is a process of pressurizing a battery cell using convex jig
  • the heat treatment may be performed in the pressing process, and in this case, the heating method is not particularly limited, and for example, a heater may be installed inside the jig to simultaneously heat the pressing.
  • the pressure and temperature applied in the pressing process are such that they do not cause deterioration of the electrode assembly inside the battery cell, and are preferably performed at 10 to 90 ° C. at a pressure of 150 to 500 kgF. However, in order to minimize deterioration of the electrode assembly and the electrolyte due to heating, it is more preferable to perform the pressurization reaction at room temperature without a separate heating process.
  • the shape of the curved surface may be stably maintained by relieving the stress induced in the battery cell in the pressing process (b) so that a desired radius of curvature R may be formed.
  • the present invention also relates to a battery pack having a structure in which a battery cell having the predetermined curved surface is built in a pack case bent in the same shape as the battery cell.
  • Such a battery pack can be preferably used as a power source of the mobile phone.
  • a mobile phone has a rectangular shape and a battery is mounted on a lower end of the cell phone.
  • Such a mobile phone is preferably designed such that the voice receiver and the transmitter can face or approach the position of the human ear and mouth, respectively.
  • a design having a predetermined curved surface so as to be ergonomically efficient, such as the shape of the corresponding part of the human body using a curved battery cell according to the invention, it can have a beautiful outer surface and waste unnecessary space Can be minimized.
  • FIG. 1 is a schematic diagram of a process of manufacturing a battery cell having a radius of curvature R in accordance with one embodiment of the present invention
  • FIG. 2 is a vertical sectional view of a battery cell according to one embodiment of the present invention.
  • FIG. 3 is an enlarged view illustrating a change phenomenon at the portion A of FIG. 2 during repeated charging and discharging processes
  • FIG. 4 is a perspective view of a battery pack including a battery cell with a curved surface according to an embodiment of the present invention.
  • FIG. 1 schematically illustrates a process of manufacturing a curved battery cell according to an embodiment of the present invention.
  • the apparatus for forming a curved surface may include an upper jig 210 having a convex portion 211 having a radius of curvature r, and a radius of curvature r to be engaged with the upper jig 210.
  • Concave portion 221 of the lower jig 220 is formed.
  • the battery cell 100 is in a state in which the electrode assembly is embedded in a variable cell case together with the electrolyte, and is mounted in the axial direction on the recess 221 of the lower jig 220 to form a curved surface in the axial direction. have.
  • the curved surface corresponding to the shape of the upper jig 210 and the lower jig 220 is bent while the battery cell 100 is bent. Is formed.
  • the electrode assembly is deteriorated since the pressing process is performed in a post-treatment process in a state of storing in a variable cell case and performing electrolyte injection and initial charge / discharge. Can be minimized.
  • the electrolyte in the cell case serves as a kind of plasticizer, which minimizes the stress caused by the interfacial friction between the electrode plates during the pressurization process, and thus tends to be restored by such stress during the charge / discharge process of the battery cell. Can be greatly reduced.
  • the pressurization process is preferably carried out at room temperature, but may be accompanied by a predetermined heat treatment process if necessary, for this purpose a heating heater (not shown) inside the upper jig 210 and / or lower jig 220 ) May be installed.
  • the manufactured battery cell 101 has a shape in which both ends are bent upwards together, and its radius of curvature R may have a size equal to or greater than the radius of curvature r of the upper jig 210.
  • FIG. 2 is a side view schematically showing a curved battery cell according to another embodiment of the present invention.
  • the battery cell 102 has a larger radius of curvature R 1 at both ends of the bend than the radius of curvature R 2 at the center portion.
  • the battery cell 102 forms the shape of the radius of curvature R on average, the radius of curvature R 2 is smaller than the radius of curvature R and the radius of curvature R 1 at both ends is the radius of curvature ( Greater than R).
  • FIG. 3 is a schematic diagram showing a change phenomenon in the A region of FIG. 2 during the repeated charging and discharging process.
  • the electrode plates 110 of the electrode assembly are bent in substantially the same shape as the cell case 120.
  • the active material (not shown) applied to the electrode plate 110 tends to recover to the shape of the electrode plate 110a while repeating expansion and contraction. Indicates.
  • the cell case 120 maintains the curved shape as it is, due to the above restoration phenomenon, the ends of the electrode plates 110a are pressed against the inner surface of the cell case 120.
  • the radius of curvature R 1 of the electrode plates 110a is large, the restoring strain is relatively smaller than the case where the radius of curvature R1 is formed.
  • the restoring deformation force is approximately inversely proportional to the radius of curvature R
  • the restoring deformation force is large in the electrode plates 130 that are curved along the relatively small radius of curvature R. Accordingly, the pole plates 130 of the radius of curvature R are relatively more likely to cause a short circuit through their separators (not shown) while the ends thereof are pressed against the cell case 120.
  • the radius of curvature R 1 of both ends is larger than the radius of curvature R 2 of the center portion. desirable.
  • FIG. 4 schematically shows a battery pack mounted with a battery cell according to the present invention.
  • the pack case of the battery pack 300 is attached to the pack case main body 320 having a curved surface gently curved in the axial direction in the same shape as that of the battery cell (see FIG. 2), and an upper surface thereof. Consisting of an upper cap 310, and a lower cap (not shown) mounted on the lower surface thereof. A groove 311 is formed in the upper cap 310 so that the external input / output terminals may protrude.
  • the battery pack 300 having a predetermined curved surface is mounted on a device having various curved designs such as a mobile phone, so that the internal space can be efficiently used, and thus a device having a close structure can be manufactured. Accordingly, it is possible to develop a device having a variety of designs according to the taste of the consumer can ultimately contribute to the diversification of the product.
  • the battery cell according to the present invention is embedded in a variable cell case in which the electrode assembly is impregnated with the electrolyte, the electrode assembly and the cell case on both sides of the central portion on the vertical section in the axial direction It is comprised by bending in the same direction and forming a curved surface. Therefore, in a device having a curved surface or a device having a curved surface, a device having a curved surface has a close structure when mounting a battery cell having a curved surface in the axial direction, thereby minimizing unnecessary space waste. And it has the advantage that it is possible to develop a device having a variety of designs according to the taste of the consumer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)
  • Primary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 양극/분리막/음극 적층 구조의 전극조립체가 전해액이 함침된 상태로 가변적인 셀 케이스에 내장되어 있는 전지셀로서, 상기 전극조립체와 셀 케이스는 축 방향의 수직단면 상으로 중심부에 대해 양측 단부가 동일한 방향으로 함께 휘어 있어서 곡면을 형성하는 구조의 전지셀을 제공한다. 이러한 전지셀은, 곡면이 형성된 외형을 갖는 디바이스에 장착되거나 또는 디바이스 내부의 곡면 부위에 장착되는 경우, 밀착 구조에 의해 불필요한 공간 낭비를 최소화할 수 있어서 효율적이고, 미려한 외관을 가지며, 소비자의 취향에 따라 다양한 디자인을 갖는 디바이스의 개발을 가능하게 한다는 장점을 가진다.

Description

휘어진 형상의 전지셀 및 이를 포함하는 전지팩
본 발명은 휘어진 형상의 전지셀 및 이를 포함하는 전지팩으로서, 더욱 상세하게는, 전극조립체가 전해액이 함침된 상태로 가변적인 셀 케이스에 내장되어 있는 전지셀로서, 상기 전극조립체와 셀 케이스는 축 방향의 수직단면 상으로 중심부에 대해 양측 단부가 동일한 방향으로 함께 휘어 있어서 곡면을 형성하는 것을 특징으로 하는 전지셀에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해졌고 또한 상용화되어 널리 사용되고 있다.
대표적으로 전지의 형상 면에서는 얇은 두께로 휴대폰 등과 같은 제품들에 적용될 수 있는 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성의 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.
이러한 이차전지는, 소비자의 취향에 따라 전자 디바이스가 점점 소형화, 박형화 되어 가고 있는 추세이므로, 불필요한 공간 낭비를 최소화하기 위해서는 전지의 형상 역시 소형화, 박형화가 요구되고 있다. 따라서, 전지의 형상을 디바이스의 형상에 따라 다양하게 구현함과 동시에 디바이스의 내부 공간을 효율적으로 활용할 필요가 있다.
특히, 최근에는 디바이스의 디자인 자체가 수요자의 제품 선택에 있어서 매우 중요한 요소로 작용하고 있으므로 종래 생산성 등을 고려한 평면형 디자인에서 탈피하여 다양한 형태의 디자인이 설계되고 있다. 예를 들어, 휴대폰, 노트북 등과 같은 디바이스는 인체공학적인 설계를 위해 소정의 곡면을 갖는 디자인으로 설계될 수 있다.
이와 같이, 외면에 곡면이 형성되어 있는 형태의 디자인이 다수 개발되고 있어 실용화되고 있으나, 제품화되어 있는 전지는 거의 대부분이 평면 형태이므로 불필요한 공간 낭비가 초래되고, 이러한 공간으로 인하여 전지의 안정적인 장착이 어려워 외부 충격에 의해 유동됨으로써 전지가 손상될 수도 있는 문제가 발생한다.
따라서, 곡면이 형성되어 있는 형태의 디바이스에서 전지가 장착될 위치에 곡면이 형성되어 있는 경우에, 그러한 디바이스에 안정적으로 장착될 수 있도록 해당 부분이 휘어져 곡면을 갖는 전지에 대한 요청이 절실한 실정이다.
이와 관련하여, 종래 전극조립체에 곡면을 형성하는 기술이 일부 존재한다. 예를 들어, 미국 특허출원공개 제2007/0059595호는 젤리-롤형 전극조립체에 있어서, 권회축에 수직한 단면이 만곡 형상을 갖는 전지를 개시하고 있다. 상기 기술에 따르면, 만곡 형상은 오목형 히터와 볼록형 히터를 이용한 열압착 성형을 통해 달성됨을 기재하고 있다.
또한, 일본 특허출원공개 제1999-307130호는 직경이 서로 다른 두 개의 롤(roll)을 이용하여 스택형 전극조립체를 열압착함으로써 만곡 구조의 전지를 제조하는 방법을 개시하고 있다.
그러나, 상기 기술들은 모두 전극조립체 자체에 직접 열압착 성형을 수행함으로써, 전지의 열화가 발생하게 되는 심각한 문제가 있다. 또한, 상기 전자의 기술은 권취형 전극조립체(젤리-롤)을 대상으로 하는 바, 응력이 집중되어 있는 중앙부에 더욱 큰 응력을 유발하여 전극조립체의 뒤틀림 등 형태 변형이 크다는 문제점을 가지고 있다. 반면에, 상기 후자의 기술은 스택형 전극조립체를 사용함으로써 가열 롤에 의한 가압시 전단 응력으로 인해 일부 극판들이 서로 불균일하게 밀리면서 전극조립체의 양 단부에서 단락이 발생할 가능성이 있다는 문제점을 가지고 있다.
더욱이, 상기 기술들은 전극조립체 상태에서 휘는 변형을 유발하는 공정을 수행하므로, 전지케이스도 그와 같이 변형하여야 하는 제조 공정상의 부담을 안고 있다. 또한, 휘어진 전극조립체를 전지케이스에 장착한 상태에서 전해액을 주입하고 충전하였을 때, 휘는 과정에서 전극조립체에 내재된 응력이 전해액의 가소 작용에 의해 회복되는 경향을 나타내며, 이로 인해 전극조립체의 단부가 전지케이스 내면에 의해 가압되면서 단락의 가능성이 높아지는 문제점도 존재한다.
따라서, 상기와 같은 문제점을 해결할 수 있고, 전지셀의 축 방향으로 완만한 곡면이 형성될 수 있도록 휘어져 있는 형태의 이차전지(전지셀)에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 가변적인 셀 케이스를 포함하고 축 방향의 수직단면 상으로 중심부에 대해 양측 단부가 동일한 방향으로 함께 휘어져 있는 전지셀의 경우, 곡면이 형성된 외형을 갖는 디바이스의 형상에 대응하여 전지셀을 장착함으로써, 불필요한 공간 낭비를 최소화할 수 있고, 소비자의 취향에 따라 다양한 디자인을 갖는 디바이스의 개발이 가능할 수 있을 뿐만 아니라, 앞서 설명한 바와 같은 단락 위험성의 증가 등 종래기술의 문제점들을 모두 해결할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
이를 바탕으로, 본 발명의 전지셀은 양극/분리막/음극 적층 구조의 전극조립체가 전해액이 함침된 상태로 가변적인 셀 케이스에 내장되어 있는 전지셀로서, 상기 전극조립체와 셀 케이스는 축 방향의 수직단면 상으로 중심부에 대해 양측 단부가 동일한 방향으로 완만하게 함께 휘어져 있는 것으로 구성되어 있다.
따라서, 곡면이 형성된 외형을 갖는 디바이스, 또는 외면은 평면 형상이지만 전지셀의 장착 부위의 형상이 곡면인 디바이스의 경우, 그에 대응하여 축 방향으로 곡면이 형성되어 있는 본 발명의 전지셀을 장착하면, 장착 부위에서 밀착 구조를 갖게 되어 불필요한 공간 낭비를 최소화할 수 있고, 소비자의 취향에 따라 다양한 디자인을 갖는 디바이스의 개발이 가능하다.
상기 전극조립체로는, 예를 들어, 스택형 또는 폴딩형의 전극조립체가 사용될 수도 있으나, 단순한 스택형 전극조립체의 경우, 극판들의 계면 마찰력이 동일하지 않을 때, 휘는 과정에서 일부 극판들이 밀리면서, 전극조립체의 단부에서 극판들이 서로 접촉되어 단락을 일으킬 수 있다. 반면에, 폴딩형 전극조립체의 경우 응력이 집중되어 있는 중앙부에서 뒤틀림 등의 변형이 크게 발생할 수 있고, 휠 수 있는 방향이 권취 방향으로 제한된다는 단점이 있다.
따라서, 하나의 바람직한 예에서, 상기 전극조립체는 단위 셀로서 스택형의 바이셀 또는 풀셀이 긴 분리막 시트에 의해 순차적으로 권취되어 있는 스택/폴딩형 전극조립체일 수 있다. 이러한 스택/폴딩형 전극조립체는 양 단부가 분리막 시트에 의해 밀폐되어 있고, 극판들의 계면 마찰력이 다른 경우에도 분리막 시트에 의한 권취력에 의해 적층 상태의 유지력이 우수하므로, 앞서 설명한 바와 같은 단락의 위험성을 방지할 수 있다.
상기 스택/폴딩형 구조의 전극조립체에 대한 자세한 내용은 본 출원인의 한국 특허출원공개 제2001-0082058호, 제2001-0082059호 및 제2001-0082060호에 개시되어 있으며, 상기 출원의 내용은 참조로서 본 발명의 내용에 합체된다.
본 발명에서 상기 셀 케이스는 전극조립체를 내장한 상태에서 용이하게 휘어질 수 있도록 가변적인 특성을 갖는다. 즉, 가변적인 셀 케이스는 전극조립체가 내장된 상태에서 가해진 외력에 의해 변형이 가능하다. 이와 같이 가변적인 셀 케이스의 바람직한 예로는, 금속층과 수지층을 포함하는 라미네이트 시트로 이루어진 파우치형 케이스를 들 수 있다. 따라서, 상기 전지셀은 바람직하게는 파우치형 케이스에 전극조립체가 장착된 상태에서 외주면을 열융착에 의해 밀봉한 구조일 수 있다.
상기 라미네이트 시트는, 바람직하게는 금속 차단층의 일면(외면)에 내구성이 우수한 수지 외곽층이 부가되어 있고, 타면(내면)에 열용융성의 수지 실란트층이 부가되어 있는 구조로 이루어질 수 있다.
상기 수지 외곽층은 외부 환경으로부터 우수한 내성을 가져야 하므로, 소정 이상의 인장강도와 내후성을 가지는 것이 필요하다. 그러한 측면에서 수지 외곽층의 고분자 수지로는 폴리에틸렌 테레프탈레이트(PET)와 연신 나일론 필름이 바람직하게 사용될 수 있다.
상기 금속 차단층은 가스, 습기 등 이물질의 유입 내지 누출을 방지하는 기능 이외에 전지케이스의 강도를 향상시키는 기능을 발휘할 수 있도록, 바람직하게는 알루미늄이 사용될 수 있다.
상기 수지 실란트층의 고분자 수지로는 열융착성(열접착성)을 가지고, 전해액의 침입을 억제하기 위해 흡습성이 낮으며, 전해액에 의해 팽창하거나 침식되지 않는 폴리올레핀(polyolefin)계 수지가 바람직하게 사용될 수 있으며, 더욱 바람직하게는 무연신 폴리프로필렌(CPP)이 사용될 수 있다.
일반적으로 폴리프로필렌 등과 같은 폴리올레핀계 수지는 금속과의 접착력이 낮으므로, 상기 금속 차단층과의 접착력을 향상시키기 위한 방안으로서, 바람직하게는 상기 금속층과 수지 실란트층 사이에 접착층을 추가로 포함하여 접착력 및 차단 특성을 향상시킬 수 있다. 상기 접착층의 소재로는, 예를 들어, 우레탄(urethane)계 물질, 아크릴(acryl)계 물질, 열가소성 일래스토머(elastomer)를 함유하는 조성물 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
본 발명의 전지셀은, 상기에서 정의한 바와 같이, 축 방향의 수직단면 상으로 중심부에 대해 양측 단부가 동일한 방향으로 완만하게 함께 휘어져 있어서 곡면을 형성하고 있다. 여기서, 양측 단부가 동일한 방향으로 함께 휘어져 있다는 것은, 양측 단부가 수평면을 기준으로 둘 다 상향으로 휘어져 있거나, 또는 하향으로 휘어져 있는 것을 의미한다.
이러한 본 발명의 전지셀에서 전극단자는, 바람직하게는, 휘어진 일측 또는 양측 단부에 위치할 수 있지만, 그러한 구조만으로 한정되는 것은 아니다.
상기 전극조립체와 셀 케이스가 휘어지면서 형성하는 만곡 부위는 50R 내지 150R의 곡률 반경(R) 범위에서 휘어져 있는 것일 수 있다.
즉, 상기 만곡부의 곡률 반경(R)은 소망하는 형상에 따라 다양하게 조절할 수 있지만, 곡률 반경이 너무 작으면 전지셀의 중앙부에 응력이 집중되게 되어 뒤틀림 등의 변형이 발생될 수 있고, 반대로 곡률 반경이 너무 크면 곡률 반경을 제어하기 어렵고 재차 원상태, 즉, 편평한 상태로 되돌아갈 수 있으므로 바람직하지 않다.
일반적으로 다수의 판상형 적층체들을 소정의 곡률 반경으로 함께 구부리면, 내측 적층체의 변형량이 외측 적층체의 변형량에 비해 상대적으로 크게 된다. 반면에, 이차전지는 충방전 과정에서 극판에 도포되어 있는 활물질들이 팽창과 수축을 반복하게 되므로, 소정의 형태로 변형 상태를 유지하기가 용이하지 않다. 따라서, 곡률 반경이 작은 구조, 즉, 휨 상태가 상대적으로 큰 구조의 이차전지에서는 반복적인 충방전 과정에서 휨 상태가 복원되는 경향이 나타날 수 있으며, 이 경우에 극판들의 단부가 셀 케이스에 의해 가압되면서 많은 힘을 받아 분리막을 관통하여 단락을 유발할 수 있다.
따라서, 하나의 바람직한 예에서, 상기 전극조립체와 셀 케이스는 휘어진 양측 단부의 곡률 반경(R1)이 중앙부의 곡률 반경(R2) 보다 큰 구조일 수 있다. 상기 구조는, 구체적으로, 전극조립체와 셀 케이스를 평균적으로 곡률 반경(R)의 형상으로 변형하고자 할 때, 중앙부의 곡률 반경(R2)을 상기 곡률 반경(R)보다 작게 하고 양측 단부의 곡률 반경(R1)을 상기 곡률 반경(R)보다 크게 만든 구조이다.
상기와 같은 구조에서는, 이차전지의 반복적인 충방전 과정에서, 극판에 도포되어 있는 활물질들이 팽창과 수축을 반복할 때, 큰 곡률 반경(R1)을 가진 양측 단부는 동일한 조건에서 작은 곡률 반경(R1)을 가진 양측 단부와 비교하여 복원에 따른 변형력이 상대적으로 작으므로, 전극조립체의 단부에 가해지는 힘이 작다. 따라서, 앞서 설명한 바와 같은 단락의 유발 가능성을 크게 줄일 수 있다.
또한, 휘어진 일측 또는 양측 단부에 전극단자가 위치하는 경우, 단부의 휘어진 곡면을 따라 전극단자가 위치하게 되어, 전지팩의 제조를 위한 전극단자와 PCM 등의 캡 플레이트와의 결합이 용이하지 않을 수 있다. 그러나, 양측 단부의 곡률 반경(R1)을 상대적으로 크게 형성하면, 비교적 평탄한 곡면을 가짐으로써 전극단자의 휘어진 각도가 작아지므로, 캡 플레이트와의 결합을 용이하고 안정적으로 달성할 수 있는 장점도 있다.
상기 양측 단부의 곡률 반경(R1)과 중앙부의 곡률 반경(R2)의 구체적인 값은 상기한 바와 같은 단락 유발 가능성 등을 최소화할 수 있는 범위에서 적절히 조절할 수 있으며 큰 차이를 가질 필요는 없다. 바람직하게는 상기 R1은 R2 보다 큰 범위 내에서 51R 내지 180R이고, 상기 R2는 50R 내지 150R 일 수 있다.
본 발명은 또한, 상기 소정의 곡률 반경(R)로 휘어진 전지셀을 제조하는 방법으로서, 하기 (a) 내지 (c)의 과정을 포함하는 제조방법을 제공한다:
(a) 가변적인 셀 케이스에 전극조립체를 장착하고 전해액을 주입한 상태에서 밀봉하여 직립형 전지셀을 제조하고, 초기 충방전을 수행하는 과정;
(b) 상기 곡률 반경(R)보다 작은 곡률 반경(r)의 전지셀 형상이 각인되어 있는 상하 분리형의 지그에 상기 직립형 전지셀을 장착한 후 가압하는 과정; 및
(c) 상기 지그를 형개하여 전지셀을 취출한 후, 절곡 상태가 부분적으로 회복되어 곡률 반경(R)이 만들어질 수 있도록 소정 시간 동안 정치하는 과정.
앞서 살펴본 바와 같이 종래에는 전극조립체 또는 전극판에 직접 변형을 가하는 기술이 존재하였는 바, 이 경우 전해액을 주입한 후 초기 충방전 과정에서 극판의 수축/팽창으로 인해 심한 형태 변형이 발생하는 문제가 있었다. 그러나, 본 발명의 전지셀 제조방법은, 전극조립체 만을 가압하여 곡면을 형성하는 것이 아니라, 셀 케이스에 전극조립체를 장착한 후 전해액을 주입하고 초기 충방전을 수행한 상태에서, 후처리 과정으로 곡면을 형성한다. 따라서, 상대적으로 변형이 적을 뿐만 아니라, 전극조립체에 직접적으로 열이 가해지지 않으므로 그로 인한 열화를 최소화할 수 있다.
또한, 전극조립체 자체를 가압하여 곡면을 형성하는 경우에는 이를 수납하기 위한 셀 케이스에도 재차 곡면을 형성하여야 하므로, 이러한 곡면 형성 자체가 용이하지 않고 공정이 번잡해지지만, 본 발명에 따르면 전극조립체와 함께 셀 케이스도 가압하여 휘므로 공정 효율성이 우수하다.
더욱이, 가압 과정에서 전지셀의 전해액은 전극조립체가 휘는 과정에서 일종의 가소제로 작용하여, 극판들의 계면 마찰력으로 유발되는 응력의 발생을 최소화시킴으로써, 휘어져 있는 전극조립체가 반복적인 충방전 과정에서 응력으로 인해 원상태로 복원되려는 경향을 크게 줄일 수 있다.
이러한 일체 방식의 성형이 용이하도록, 상기 셀 케이스는 가압 과정(b)에서 용이하게 변형되어 휘어질 수 있는 소정의 가변성을 갖는 소재로 이루어져 있다.
상기 과정(b)는 전지셀의 외면에 곡면을 형성하기 위한 공정으로서, 소망하는 곡면의 형상에 대응하는 형상을 갖는 지그(예를 들어, 오목형 지그)와 이에 대응하는 형상의 지그(예를 들어, 볼록형 지그)를 이용하여 전지셀을 가압하는 공정이다.
경우에 따라서는, 상기 가압 과정에서 열처리를 수행할 수 있고, 이 경우 가열 방법은 특별히 제한되지 않으며, 예를 들어, 상기 지그의 내부에 히터를 설치하여 가압과 동시에 가열할 수 있다.
상기 가압 과정에서 가해지는 압력 및 온도는, 전지셀 내부의 전극조립체의 열화를 초래하지 않을 정도로서, 150 ~ 500 kgF의 압력으로 10 내지 90℃에서 수행되는 것이 바람직하다. 다만, 가열로 인한 전극조립체 및 전해액의 열화를 최소화할 수 있도록, 별도의 가열 공정 없이 상온에서 가압 반응을 수행하는 것이 더욱 바람직하다.
상기 정치 과정(c)에서는 소망하는 곡률 반경(R)이 형성될 수 있도록, 가압 과정(b)에서 전지셀에 유발된 응력을 해소시켜 곡면의 형상이 안정적으로 유지될 수 있다.
본 발명은 또한, 상기 소정의 곡면이 형성되어 있는 전지셀이, 상기 전지셀과 동일한 형상으로 휘어져 있는 팩 케이스에 내장되어 있는 구조의 전지팩에 관한 것이다.
이러한 전지팩은 바람직하게는 휴대폰의 전원으로 사용될 수 있다. 일반적으로 휴대폰은 장방형의 형태를 가지고 있고, 전지를 하단부에 장착하는 형태로 이루어져 있다. 이러한 휴대폰은 음성 수신부와 송신부가 각각 사람의 귀와 입의 위치에 대면하거나 근접할 수 있게 설계하는 것이 바람직하다. 이를 위해, 인체의 해당 부위의 형상과 같이 인체 공학적으로 효율적일 수 있도록 소정의 곡면을 갖는 디자인을 설계하는 경우, 본 발명에 따른 곡면 형상의 전지셀을 사용하면, 미려한 외면을 가질 수 있고 불필요한 공간 낭비를 최소화할 수 있다.
상기 전지팩의 기타 구성 요소 및 제조 방법 등은 당업계에 공지되어 있으므로 이에 대한 구체적인 설명은 본 명세서에서 생략한다.
도 1은 본 발명의 하나의 실시예에 따라 곡률 반경(R)을 갖는 전지셀을 제조하는 과정의 모식도이다;
도 2는 본 발명의 하나의 실시예에 따른 전지셀의 수직단면도이다;
도 3은 반복적인 충방전 과정에서 도 2의 A 부위에서의 변화 현상을 보여주는 확대도이다;
도 4는 본 발명의 하나의 실시예에 따른 곡면이 형성된 전지셀을 포함하는 전지팩의 사시도이다.
이하, 실시예를 참조하여 본 발명의 내용을 상세히 설명하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 본 발명의 하나의 실시예에 따라 곡면이 형성된 전지셀을 제조하는 과정이 모식적으로 도시되어 있다.
도 1을 참조하면, 곡면의 형성을 위한 장치는 곡률 반경(r)의 볼록부(211)가 형성되어 있는 상부 지그(210)와, 상부 지그(210)와 맞물릴 수 있도록 곡률 반경(r)의 오목부(221)가 형성되어 있는 하부 지그(220)로 이루어져 있다. 전지셀(100)은 전극조립체가 전해액과 함께 가변적인 셀 케이스에 내장되어 있는 상태이고, 축 방향에 곡면이 형성될 수 있도록 하부 지그(220)의 오목부(221) 상에 축 방향으로 장착되어 있다.
상부 지그(210)를 하부 지그(220) 방향으로 하강시켜 전지셀(100)을 가압하면, 전지셀(100)이 휘어지면서 상부 지그(210)와 하부 지그(220)의 형상에 대응하는 곡면이 형성된다.
따라서, 종래와 같이 전극조립체에 직접 열압착을 수행할 때와는 달리, 가변적인 셀 케이스에 수납하고 전해액 주입 및 초기 충방전을 수행한 상태에서 후처리 공정으로 가압 공정이 수행되므로 전극조립체의 열화를 최소화할 수 있다. 더욱이, 셀 케이스 내부의 전해액이 일종의 가소제로서의 역할을 수행하여, 가압 과정에서 극판들 사이의 계면 마찰력으로 인해 유발되는 응력을 최소화할 수 있어서, 전지셀의 충방전 과정에서 그러한 응력으로 인해 복원되려는 경향을 크게 감소시킬 수 있다.
한편, 가압 공정은 상온에서 수행되는 것이 바람직하지만, 필요에 따라 소정의 열처리 과정을 동반할 수도 있으며, 이를 위해 상부 지그(210) 및/또는 하부 지그(220)의 내부에는 가열 히터(도시하지 않음)가 설치되어 있을 수 있다.
가압 공정 후 지그(210, 220)를 형개하여 전지셀(100)을 취출한 후 절곡 상태가 부분적으로 회복되어 곡률 반경(R)이 만들어질 수 있도록 소정 시간 동안 정치시킨다. 그에 따라, 가압 공정에 의해 전지셀(100)에 가해진 응력이 해소됨으로써 곡면이 안정적으로 유지될 수 있다. 제조된 전지셀(101)은 양측 단부가 상향으로 함께 휘어져 있는 형상을 갖고, 그것의 곡률 반경(R)은 상부 지그(210)의 곡률 반경(r)와 동일하거나 그보다 큰 크기를 가질 수 있다.
도 2에는 본 발명의 또 다른 하나의 실시예에 따른 곡면이 형성된 전지셀의 측면도가 모식적으로 도시되어 있다.
도 2를 참조하면, 전지셀(102)은 휘어진 양측 단부의 곡률 반경(R1)이 중앙부의 곡률 반경(R2) 보다 큰 크기를 갖는다.
따라서, 전지셀(102)은 평균적으로 곡률 반경(R)의 형상을 이루며, 중앙부의 곡률 반경(R2)은 곡률 반경(R)보다 작고 양측 단부의 곡률 반경(R1)은 상기 곡률 반경(R)보다 크다.
이러한 구조에 따른 효과는, 도 2의 A 부위에 대한 확대도가 도시되어 있는 도 3에서 확인할 수 있다. 도 3에는 반복적인 충방전 과정에서 도 2의 A 부위에서의 변화 현상을 보여주는 모식도가 도시되어 있다.
도 3을 참조하면, 전극조립체의 극판들(110)은 셀 케이스(120)와 대략 동일한 형상으로 휘어져 있다. 그러나, 전지셀(102)에 대해 충전과 방전을 계속적으로 수행하면, 극판(110)에 도포되어 있는 활물질(도시하지 않음)이 팽창과 수축을 반복하면서, 극판(110a)의 형상으로 회복되려는 경향을 나타낸다. 반면에, 셀 케이스(120)는 곡면 형상을 그대로 유지하므로, 상기와 같은 복원 현상으로 인해, 극판들(110a)의 단부는 셀 케이스(120)의 내면에 대해 가압되게 된다. 그러나, 극판들(110a)의 곡률 반경(R1)이 크므로, 곡률 반경(R)로 형성되어 있는 경우보다, 복원 변형력은 상대적으로 작다.
구체적으로, 상기 복원 변형력은 곡률 반경(R)에 대략 반비례하여 나타나므로, 상대적으로 작은 곡률 반경(R)에 따라 휘어져 있는 극판들(130)에서 크게 나타낸다. 따라서, 곡률 반경(R)의 극판들(130)은 그것의 단부들이 셀 케이스(120)에 대해 가압되면서 이들 사이의 분리막(도시하지 않음)을 관통하여 단락을 유발할 가능성이 상대적으로 높다.
따라서, 전체적으로 R의 곡률 반경을 가지도록 전지셀(102)를 제조하는 경우에는, 도 2에서와 같이, 양측 단부의 곡률 반경(R1)이 중앙부의 곡률 반경(R2) 보다 크게 제조하는 것이 바람직하다.
도 4에는 본 발명에 따른 전지셀이 장착되어 있는 전지팩이 모식적으로 도시되어 있다.
도 4를 참조하면 전지팩(300)의 팩 케이스는 전지셀(도 2 참조)와 동일한 형상으로 축 방향으로 완만하게 휘어져 곡면을 형성하고 있는 팩 케이스 본체(320)와, 그것의 상단면에 장착되는 상단 캡(310), 및 그것의 하단면에 장착되는 하단 캡(도시되지 않음)으로 이루어져 있다. 상단 캡(310)에는 외부 입출력 단자가 돌출될 수 있도록 홈부(311)가 형성되어 있다.
이와 같이 소정의 곡면이 형성되어 있는 전지팩(300)은 핸드폰 등과 같이 다양한 곡면이 형성된 디자인을 갖는 디바이스에 장착됨으로써 내부 공간을 효율적으로 사용할 수 있어서, 밀착 구조의 디바이스를 제조할 수 있다. 이에 따라, 소비자의 취향에 따라 다양한 디자인을 갖는 디바이스의 개발이 가능하므로 궁극적으로 제품의 다양화에 기여할 수 있다.
이상 본 발명의 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상의 설명과 같이, 본 발명에 따른 전지셀은 전극조립체가 전해액이 함침된 상태로 가변적인 셀 케이스에 내장되어 있고, 상기 전극조립체와 셀 케이스는 축 방향의 수직단면 상으로 중심부에 대해 양측 단부가 동일한 방향으로 함께 휘어 있어서 곡면을 형성하는 것으로 구성되어 있다. 따라서, 곡면이 형성된 외형을 갖는 디바이스 또는 전지의 장착 부위의 형상이 곡면인 디바이스에서, 축 방향으로 곡면이 형성되어 있는 전지셀을 장착할 때 밀착 구조를 갖게 되어 불필요한 공간 낭비를 최소화할 수 있어서 효율적이고, 소비자의 취향에 따라 다양한 디자인을 갖는 디바이스의 개발이 가능하다는 장점을 가진다.

Claims (15)

  1. 양극/분리막/음극 적층 구조의 전극조립체가 전해액이 함침된 상태로 가변적인 셀 케이스에 내장되어 있는 전지셀로서, 상기 전극조립체와 셀 케이스는 축 방향의 수직단면 상으로 중심부에 대해 양측 단부가 동일한 방향으로 함께 휘어 있어서 곡면을 형성하는 것을 특징으로 하는 전지셀.
  2. 제 1 항에 있어서, 상기 전극조립체는 단위 셀로서 스택형의 바이셀 또는 풀셀이 긴 분리막 시트에 의해 순차적으로 권취되어 있는 스택/폴딩형 전극조립체인 것을 특징으로 하는 전지셀.
  3. 제 1 항에 있어서, 상기 가변적인 셀 케이스는 금속층과 수지층을 포함하는 라미네이트 시트로 이루어진 파우치형 케이스인 것을 특징으로 하는 전지셀.
  4. 제 3 항에 있어서, 상기 전지셀은 파우치형 케이스에 전극조립체가 장착된 상태에서 외주면을 열융착에 의해 밀봉한 구조로 이루어진 것을 특징으로 하는 전지셀.
  5. 제 1 항에 있어서, 상기 전극조립체와 셀 케이스는 50R 내지 150R의 곡률 반경(R) 범위에서 휘어져 있는 것을 특징으로 하는 전지셀.
  6. 제 1 항에 있어서, 상기 휘어진 양측 단부의 곡률 반경(R1)이 중앙부의 곡률 반경(R2) 보다 큰 것을 특징으로 하는 전지셀.
  7. 제 6 항에 있어서, 상기 R1은 R2 보다 큰 범위 내에서 51R 내지 180R이고, 상기 R2는 50R 내지 150R인 것을 특징으로 하는 전지셀.
  8. 제 1 항에 있어서, 상기 휘어진 일측 또는 양측 단부에 전극단자가 위치하는 것을 특징으로 하는 전지셀.
  9. 곡률 반경(R)로 휘어진 전지셀을 제조하는 방법으로서,
    (a) 가변적인 셀 케이스에 전극조립체를 장착하고 전해액을 주입한 상태에서 밀봉하여 직립형 전지셀을 제조하고, 초기 충방전을 수행하는 과정;
    (b) 상기 곡률 반경(R)보다 작은 곡률 반경(r)의 전지셀 형상이 각인되어 있는 상하 분리형의 지그에 상기 직립형 전지셀을 장착한 후 가압하는 과정; 및
    (c) 상기 지그를 형개하여 전지셀을 취출한 후, 절곡 상태가 부분적으로 회복되어 곡률 반경(R)이 만들어질 수 있도록 소정 시간 동안 정치하는 과정;
    을 포함하는 것으로 구성된 전지셀의 제조방법.
  10. 제 9 항에 있어서, 상기 가압 과정(b)은 150 ~ 500 kgF의 압력으로 수행하는 것을 특징으로 하는 전지셀의 제조방법.
  11. 제 9 항에 있어서, 상기 가압 과정은 10 내지 90℃에서 수행하는 것을 특징으로 하는 전지셀의 제조방법.
  12. 제 9 항에 있어서, 상기 지그의 내부에는 가열 히터가 설치되어 있는 것을 특징으로 하는 전지셀의 제조방법.
  13. 제 9 항에 있어서, 상기 가압 과정은 상온에서 수행하는 것을 특징으로 하는 전지셀의 제조방법.
  14. 제 1 항에 따른 전지셀이, 상기 전지셀과 동일한 형상으로 휘어져 있는 팩 케이스에 내장되어 있는 구조의 전지팩.
  15. 제 14 항에 있어서, 상기 전지팩은 휴대폰의 전원으로 사용되는 것을 특징으로 하는 전지팩.
PCT/KR2009/001189 2008-03-12 2009-03-10 휘어진 형상의 전지셀 및 이를 포함하는 전지팩 WO2009113799A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09720670.0A EP2251921B1 (en) 2008-03-12 2009-03-10 Curved battery cell, and a battery pack employing the same
JP2010550592A JP5879687B2 (ja) 2008-03-12 2009-03-10 湾曲した形状のバッテリーセル及びそれを使用するバッテリーパック
US12/922,005 US8802261B2 (en) 2008-03-12 2009-03-10 Battery cell of curved shape and battery pack employed with the same
CN200980108709.0A CN101971388B (zh) 2008-03-12 2009-03-10 弯曲形状的电池及包括该电池的电池组件
US14/098,133 US20140093762A1 (en) 2008-03-12 2013-12-05 Battery cell of curved shape and battery pack employed with the same
US14/098,039 US9385396B2 (en) 2008-03-12 2013-12-05 Battery cell of curved shape and battery pack employed with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080023054A KR101049841B1 (ko) 2008-03-12 2008-03-12 휘어진 형상의 전지셀 및 이를 포함하는 전지팩
KR10-2008-0023054 2008-03-12

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/922,005 A-371-Of-International US8802261B2 (en) 2008-03-12 2009-03-10 Battery cell of curved shape and battery pack employed with the same
US14/098,133 Continuation US20140093762A1 (en) 2008-03-12 2013-12-05 Battery cell of curved shape and battery pack employed with the same
US14/098,039 Continuation US9385396B2 (en) 2008-03-12 2013-12-05 Battery cell of curved shape and battery pack employed with the same

Publications (2)

Publication Number Publication Date
WO2009113799A2 true WO2009113799A2 (ko) 2009-09-17
WO2009113799A3 WO2009113799A3 (ko) 2009-12-17

Family

ID=41065664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001189 WO2009113799A2 (ko) 2008-03-12 2009-03-10 휘어진 형상의 전지셀 및 이를 포함하는 전지팩

Country Status (6)

Country Link
US (3) US8802261B2 (ko)
EP (1) EP2251921B1 (ko)
JP (1) JP5879687B2 (ko)
KR (1) KR101049841B1 (ko)
CN (1) CN101971388B (ko)
WO (1) WO2009113799A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016465A1 (ko) * 2013-07-31 2015-02-05 주식회사 엘지화학 휘어진 형상의 전극 적층체 및 이를 포함하는 전지팩
WO2015016463A1 (ko) * 2013-07-31 2015-02-05 주식회사 엘지화학 휘어진 형상의 전극 적층체 및 이를 포함하는 전지셀

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581010B1 (en) * 2011-10-12 2016-03-16 Black & Decker Inc. A battery - powered vacuum cleaner
US20130108907A1 (en) * 2011-10-28 2013-05-02 Apple Inc. Curved battery cells for portable electronic devices
US20130236768A1 (en) 2012-03-08 2013-09-12 Lg Chem, Ltd. Battery pack of stair-like structure
KR20130105271A (ko) 2012-03-16 2013-09-25 주식회사 엘지화학 비대칭 구조의 전지셀 및 이를 포함하는 전지팩
KR20130113301A (ko) 2012-04-05 2013-10-15 주식회사 엘지화학 계단 구조의 전지셀
KR101602235B1 (ko) * 2012-05-15 2016-03-10 엘지전자 주식회사 이동 단말기
KR101976464B1 (ko) * 2012-09-13 2019-05-10 엘지전자 주식회사 이동단말기 및 이에 구비된 배터리를 성형하는 프레스 금형 장치
US9192072B2 (en) * 2012-05-15 2015-11-17 Lg Electronics Inc. Curved mobile terminal with curved battery
KR20130133640A (ko) 2012-05-29 2013-12-09 주식회사 엘지화학 코너부 형상이 다양한 단차를 갖는 전극 조립체, 이를 포함하는 전지셀, 전지팩 및 디바이스
JP5704135B2 (ja) 2012-08-22 2015-04-22 トヨタ自動車株式会社 二次電池の製造方法
KR101483505B1 (ko) 2012-11-13 2015-01-21 주식회사 엘지화학 단차 구조가 형성된 전극조립체
KR101393530B1 (ko) 2012-11-21 2014-05-12 주식회사 엘지화학 노칭부를 포함하는 전극 시트
US9318733B2 (en) 2012-12-27 2016-04-19 Lg Chem, Ltd. Electrode assembly of stair-like structure
CN103943885B (zh) * 2013-01-18 2016-03-23 威力新能源(吉安)有限公司 一种弯形软包锂离子充电电池的制作方法
JP6148346B2 (ja) * 2013-02-13 2017-06-14 エルジー・ケム・リミテッド 丸い角部を含む電気デバイス
US9484560B2 (en) 2013-02-13 2016-11-01 Lg Chem, Ltd. Electric device having a round corner and including a secondary battery
US10686209B2 (en) 2013-02-21 2020-06-16 Samsung Sdi Co., Ltd. Electrode assembly, battery cell including the electrode assembly, and method of preparing the battery cell
US9786874B2 (en) 2013-03-08 2017-10-10 Lg Chem, Ltd. Electrode having round corner
US9954203B2 (en) 2013-03-08 2018-04-24 Lg Chem, Ltd. Stepped electrode group stack
CN103247825B (zh) * 2013-05-31 2016-01-13 深圳市格瑞普电池有限公司 一种叠片锂离子电池制备方法以及制成的电池
TWM482169U (zh) * 2013-07-05 2014-07-11 Power Source Energy Co Ltd 曲面電池
KR101587858B1 (ko) * 2013-07-31 2016-01-22 주식회사 엘지화학 휘어진 형상의 전극 적층체 및 이를 포함하는 전지셀
US10608215B2 (en) 2013-09-30 2020-03-31 Lg Chem, Ltd. Curved surface-structured battery pack
KR20150037380A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 곡면 구조의 전지셀 수납용 트레이
WO2015057643A1 (en) * 2013-10-14 2015-04-23 24M Technologies, Inc. Curved battery container
TWI633693B (zh) 2013-10-22 2018-08-21 半導體能源研究所股份有限公司 二次電池及電子裝置
KR102221805B1 (ko) * 2013-10-29 2021-03-03 삼성에스디아이 주식회사 커브드 이차 전지의 제조 방법
US9912005B2 (en) 2013-10-29 2018-03-06 Samsung Sdi Co., Ltd. Method of manufacturing curved secondary battery
KR102195724B1 (ko) * 2013-11-07 2020-12-28 삼성에스디아이 주식회사 포장 트레이
US20150138699A1 (en) * 2013-11-15 2015-05-21 Semiconductor Energy Laboratory Co., Ltd. Electronic device
KR101784739B1 (ko) * 2013-12-10 2017-10-12 삼성에스디아이 주식회사 이차전지 및 그 제조방법
KR102221803B1 (ko) 2014-01-20 2021-03-02 삼성에스디아이 주식회사 전지 팩
KR102248598B1 (ko) * 2014-02-05 2021-05-06 삼성에스디아이 주식회사 커브드 이차 전지 및 이의 제조 방법
KR102234293B1 (ko) 2014-04-16 2021-03-31 삼성에스디아이 주식회사 전지 팩
KR102198003B1 (ko) * 2014-04-16 2021-01-04 삼성에스디아이 주식회사 전지 팩
KR102234288B1 (ko) 2014-04-16 2021-03-31 삼성에스디아이 주식회사 전지 팩
TWI496332B (zh) * 2014-05-14 2015-08-11 Synergy Scientech Corp Curved battery and its making method
US9578146B2 (en) * 2014-07-08 2017-02-21 Htc Corporation Electronic assembly and electronic apparatus
KR102221808B1 (ko) * 2014-08-11 2021-03-02 삼성에스디아이 주식회사 이차 전지
KR102303827B1 (ko) * 2014-10-06 2021-09-17 삼성전자주식회사 다수의 전극조립체를 구비하는 복합전극조립체 및 이를 포함하는 전기화학소자
US10937999B2 (en) * 2014-11-28 2021-03-02 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and manufacturing method of the same
USD761202S1 (en) 2015-02-18 2016-07-12 Everheart Systems, Inc. Mobile wireless power source
KR101879911B1 (ko) * 2015-03-27 2018-07-18 주식회사 엘지화학 휘어진 형상의 전지셀 제조방법
CN107810569B (zh) 2015-06-23 2020-02-21 株式会社Lg化学 一种制造弯曲电极组件的方法
KR20170001358A (ko) * 2015-06-26 2017-01-04 삼성에스디아이 주식회사 커브드 이차 전지 및 그의 제조 방법
US20180254510A1 (en) * 2015-11-23 2018-09-06 Lg Chem, Ltd. Curved battery cell having less structure strain and method for manufacturing the same
US10784539B2 (en) 2016-03-31 2020-09-22 Lg Chem, Ltd. Electrode assembly having high flexibility and battery cell including the same
KR101941144B1 (ko) 2016-05-02 2019-01-23 주식회사 엘지화학 이차전지의 제조방법 및 전극 조립체의 제조방법
US9837682B1 (en) * 2016-08-29 2017-12-05 Microsoft Technology Licensing, Llc Variable layer thickness in curved battery cell
CN107799836A (zh) * 2016-09-07 2018-03-13 中兴通讯股份有限公司 固态电池制作方法、固态电池及终端
CN107069148A (zh) * 2016-11-07 2017-08-18 珠海格力电器股份有限公司 一种电池
KR102395482B1 (ko) 2016-11-07 2022-05-06 삼성에스디아이 주식회사 이차전지
US10505232B2 (en) 2016-12-30 2019-12-10 Microsoft Licensing Technology, LLC Stacked, rolled-electrode battery cell with y-axis bending
KR102248866B1 (ko) * 2017-03-22 2021-05-06 주식회사 엘지화학 모듈화를 위한 적층 상태가 안정적으로 유지되도록 유기적인 고정 구조를 가지는 이차전지셀과 셀 카트리지를 포함하는 전지모듈
EP3641015A4 (en) * 2017-06-16 2020-06-03 GS Yuasa International Ltd. ENERGY STORAGE DEVICE
KR102270872B1 (ko) * 2017-07-18 2021-07-01 주식회사 엘지에너지솔루션 전극 조립체, 그 전극 조립체를 포함하는 이차전지 및 그 전극 조립체의 제조 방법
KR102244951B1 (ko) 2017-11-21 2021-04-27 주식회사 엘지화학 전극 조립체와 이차전지 및 그 전극 조립체와 이차전지의 제조방법
KR102561762B1 (ko) 2017-12-27 2023-07-28 삼성전자주식회사 이차 전지
KR102347981B1 (ko) * 2018-04-23 2022-01-07 주식회사 엘지에너지솔루션 전극 조립체 및 그 전극 조립체 제조방법
KR102500240B1 (ko) * 2018-06-29 2023-02-16 주식회사 엘지에너지솔루션 전극 조립체 제조방법
KR101979377B1 (ko) * 2018-11-14 2019-05-16 이계설 이차전지용 권취기
KR20200095896A (ko) * 2019-02-01 2020-08-11 주식회사 엘지화학 전극 조립체 제조방법과, 이를 통해 제조된 전극 및 이차전지
KR20210028509A (ko) 2019-09-04 2021-03-12 주식회사 리베스트 커브드 전기화학 셀 및 그 제조 방법
US11563233B1 (en) * 2019-09-16 2023-01-24 Meta Platforms Technologies, Llc Curved battery-pack devices and accessories
USD925528S1 (en) 2020-02-10 2021-07-20 Facebook Technologies, Llc Head-mounted display
USD925529S1 (en) 2020-02-10 2021-07-20 Facebook Technologies, Llc Head-mounted display
US11688905B1 (en) 2020-04-21 2023-06-27 Meta Platforms Technologies, Llc Curve retention for curved batteries
JP2022002183A (ja) * 2020-06-22 2022-01-06 トヨタ自動車株式会社 密閉型電池
USD968402S1 (en) 2020-10-08 2022-11-01 Meta Platforms Technologies, Llc Headset strap
USD972560S1 (en) 2020-10-08 2022-12-13 Meta Platforms Technologies, Llc Headset strap
CN115142098B (zh) * 2022-06-15 2023-06-30 赣州晨光稀土新材料有限公司 一种异型阴极以及应用其调节极距稳定的电解炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307130A (ja) 1998-04-24 1999-11-05 Toshiba Battery Co Ltd 湾曲した電池の製造方法
KR20010082059A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
KR20010082058A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기 화학 셀
KR20010082060A (ko) 2000-02-08 2001-08-29 성재갑 다중 중첩 전기화학 셀 및 그의 제조방법
US20070059595A1 (en) 2000-11-21 2007-03-15 Sony Corporation Polymer Electrolyte Battery and Method for Manufacturing Same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2355197A (en) * 1941-12-10 1944-08-08 Marathon Battery Company Battery construction
JP3015667B2 (ja) * 1994-05-31 2000-03-06 三洋電機株式会社 密閉形の角形電池
US5683831A (en) * 1996-03-29 1997-11-04 Itt Defense, Inc. Compact battery pack for a helmet mounted night vision device
KR19990022813A (ko) * 1996-04-11 1999-03-25 엠. 제이. 엠. 반캄 전기 및/또는 전자 장치용 축전지 디바이스
USD399819S (en) * 1996-08-07 1998-10-20 Cateye Co., Ltd. Battery case
JPH11273709A (ja) * 1998-01-05 1999-10-08 Haibaru:Kk 電 池
TW385558B (en) 1998-01-05 2000-03-21 Voltec Pte Ltd A battery
WO1999040634A1 (fr) * 1998-02-05 1999-08-12 Dai Nippon Printing Co., Ltd. Feuille pour boitier de cellule et dispositif a cellule
WO2000017950A1 (en) * 1998-09-24 2000-03-30 Thomas & Betts International, Inc. Improved process for manufacturing electrochemical cells
JP4168498B2 (ja) 1998-10-23 2008-10-22 ソニー株式会社 非水電解質二次電池
EP1180480B1 (en) * 2000-01-26 2012-11-14 Dai Nippon Printing Co., Ltd. Heat-sealing method
WO2001082393A2 (en) 2000-04-25 2001-11-01 Polystor Corporation Custom geometry battery cells and methods and tools for their manufacture
JP2002222664A (ja) * 2001-01-25 2002-08-09 Tookado:Kk リチュームポリマー電池
JP4377570B2 (ja) * 2001-07-19 2009-12-02 グレイトバッチ リミテッド 電気化学的電池のための外郭を有するケーシング
US6977124B2 (en) * 2001-07-19 2005-12-20 Wilson Greatbatch Technologies, Inc. Contoured casing for an electrochemical cell
CN1316645C (zh) * 2001-08-24 2007-05-16 皇家飞利浦电子股份有限公司 制造锂电池的方法、锂电池和电器
US7118825B2 (en) * 2001-09-05 2006-10-10 Omnitek Partners Llc Conformal power supplies
KR20040054128A (ko) * 2002-12-17 2004-06-25 삼성에스디아이 주식회사 파우치형 리튬 이차 전지
US7105249B2 (en) * 2003-06-03 2006-09-12 Hall David R Pressure-compensated downhole battery
USD496331S1 (en) * 2003-10-30 2004-09-21 Nanma Manufacturing Co., Ltd Battery box
JP5016238B2 (ja) * 2006-03-07 2012-09-05 プライムアースEvエナジー株式会社 電池、及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307130A (ja) 1998-04-24 1999-11-05 Toshiba Battery Co Ltd 湾曲した電池の製造方法
KR20010082059A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
KR20010082058A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기 화학 셀
KR20010082060A (ko) 2000-02-08 2001-08-29 성재갑 다중 중첩 전기화학 셀 및 그의 제조방법
US20070059595A1 (en) 2000-11-21 2007-03-15 Sony Corporation Polymer Electrolyte Battery and Method for Manufacturing Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2251921A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016465A1 (ko) * 2013-07-31 2015-02-05 주식회사 엘지화학 휘어진 형상의 전극 적층체 및 이를 포함하는 전지팩
WO2015016463A1 (ko) * 2013-07-31 2015-02-05 주식회사 엘지화학 휘어진 형상의 전극 적층체 및 이를 포함하는 전지셀
US9799926B2 (en) 2013-07-31 2017-10-24 Lg Chem, Ltd. Curved electrode stack and battery cell including the same
US9972868B2 (en) 2013-07-31 2018-05-15 Lg Chem, Ltd. Curved electrode stack and battery pack including the same

Also Published As

Publication number Publication date
US9385396B2 (en) 2016-07-05
JP2011517831A (ja) 2011-06-16
WO2009113799A3 (ko) 2009-12-17
EP2251921B1 (en) 2018-02-14
JP5879687B2 (ja) 2016-03-08
KR101049841B1 (ko) 2011-07-15
CN101971388A (zh) 2011-02-09
US20140090236A1 (en) 2014-04-03
KR20090097731A (ko) 2009-09-16
US20110097615A1 (en) 2011-04-28
US8802261B2 (en) 2014-08-12
EP2251921A4 (en) 2012-10-10
EP2251921A2 (en) 2010-11-17
CN101971388B (zh) 2014-02-12
US20140093762A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
WO2009113799A2 (ko) 휘어진 형상의 전지셀 및 이를 포함하는 전지팩
KR101161136B1 (ko) 휘어진 형상의 전지셀 및 이를 포함하는 전지팩
KR101382554B1 (ko) 휘어진 형상의 전지셀 및 이를 포함하는 전지팩
JP4502226B2 (ja) 電極ロール用固定部材をもつ二次電池
WO2018131788A2 (ko) 파우치형 이차전지 및 파우치 필름 포밍 장치
WO2013151249A1 (ko) 계단 구조의 전지셀
WO2019208911A1 (ko) 가스배출수단이 구비된 파우치형 이차전지
WO2014073751A1 (ko) 단차가 형성된 전극 조립체, 상기 전극 조립체를 포함하는 이차전지, 전지팩 및 디바이스, 상기 전극 조립체 제조방법
WO2013180449A1 (ko) 전극 조립체, 전지셀, 전극 조립체의 제조방법 및 전지셀의 제조 방법
WO2014126338A1 (ko) 안전성이 향상된 신규한 구조의 전지셀
WO2015122594A1 (ko) 주름 방지용 부재를 포함하는 전지셀
WO2019054642A1 (ko) 파우치형 이차전지 및 파우치 필름 포밍 장치
WO2015016463A1 (ko) 휘어진 형상의 전극 적층체 및 이를 포함하는 전지셀
WO2014042398A1 (ko) 래핑 전극체 및 그 제조방법
JP7146335B2 (ja) ベンティング装置
WO2020145737A1 (ko) 이차전지 및 그 제조방법
WO2019017637A1 (ko) 이차전지용 파우치 외장재, 이를 이용한 파우치형 이차전지 및 그 제조 방법
WO2016056776A1 (ko) 계단 구조의 전극조립체에 대응하는 형상으로 형성되어 있는 전지케이스를 포함하는 전지셀
WO2013032082A1 (ko) 대용량 이차전지
KR20130097840A (ko) 휘어진 형상의 전지셀의 제조방법
WO2013109014A1 (en) Battery cell having frame and method for manufacturing the same
WO2021141427A1 (ko) 가스 트랩 제거를 위한 가압 지그 및 이를 이용한 이차전지의 제조방법
WO2021006543A1 (ko) 단위셀을 포함하는 전극조립체, 이의 제조 방법 및 이를 포함하는 리튬이차전지
WO2016072617A1 (ko) 스텝 셀 구조를 가지는 이차전지
WO2019124733A1 (ko) 전극조립체 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108709.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720670

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009720670

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010550592

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12922005

Country of ref document: US