WO2009113388A1 - Process for producing cement - Google Patents

Process for producing cement Download PDF

Info

Publication number
WO2009113388A1
WO2009113388A1 PCT/JP2009/053321 JP2009053321W WO2009113388A1 WO 2009113388 A1 WO2009113388 A1 WO 2009113388A1 JP 2009053321 W JP2009053321 W JP 2009053321W WO 2009113388 A1 WO2009113388 A1 WO 2009113388A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
kiln
combustible material
heavy metals
cement kiln
Prior art date
Application number
PCT/JP2009/053321
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 寺崎
紳一郎 齋藤
貴寛 林田
佳久 小川
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to CN200980106622XA priority Critical patent/CN101959825A/en
Priority to JP2010502757A priority patent/JP5826487B2/en
Publication of WO2009113388A1 publication Critical patent/WO2009113388A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • C04B7/4407Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes
    • C04B7/4438Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes the fuel being introduced directly into the rotary kiln
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases

Definitions

  • the present invention relates to a cement manufacturing method, and in particular, removes heavy metals such as lead from dust contained in gas extracted from a kiln exhaust gas passage from a kiln bottom of a cement kiln to a lowermost cyclone. It relates to a method of separation.
  • Patent Document 1 in order to effectively separate and remove chlorine and lead in waste supplied to the cement manufacturing process, the waste water washing process and the solid separated by filtration An alkaline elution step, a deleading step for precipitating and separating lead from the filtrate, a decalcifying step for precipitating and separating calcium from the deleaded filtrate, and heating the filtrate to precipitate chloride. And a method for treating waste having a salt recovery step of separating and recovering.
  • Patent Document 3 in order to recover heavy metals from chlorine bypass dust generated in the cement manufacturing process, the heavy metal containing dust is separated from the cement manufacturing process, and the cement kiln combustion gas is separated from the heavy metal containing dust.
  • a method is described in which a part is extracted, dust contained in the extracted combustion gas is collected, and one or more selected from thallium, lead, and selenium are removed or recovered.
  • a chlorination volatilization method and a reduction volatilization method are known as volatilization techniques for heavy metals.
  • the chlorination volatilization method that is generally performed is applied to the cement firing step, it is necessary to input a much larger amount of chlorine than a common amount in cement production.
  • the application of the reduction volatilization method is problematic in terms of cement quality because the color of the cement is yellow.
  • the present invention has been made in view of the above-described problems in the prior art, and ensures the safety of the cement manufacturing apparatus without affecting the cement quality and avoids an increase in environmental load.
  • the object is to efficiently separate heavy metals from the cement manufacturing process.
  • the present inventors put a combustible having a carbon content of not less than a predetermined value into the cement kiln, so that the inside of the firing process including the cement kiln And found that the volatility of heavy metals can be increased.
  • a combustible containing 20% by mass or more of carbon is supplied to a region of 900 to 1300 ° C. of the cement kiln, and the kiln bottom of the cement kiln is provided.
  • a part of the combustion gas is extracted from the kiln exhaust gas path from the first to the lowest cyclone, dust contained in the combustion gas is collected, and heavy metals are separated from the collected dust.
  • Carbon is a component that contributes to combustion, and heavy metals that can be separated are lead, zinc, cadmium, antimony, selenium, arsenic, and thallium.
  • the heavy metals can be volatilized at a volatility rate of 80% or more in the region of the cement kiln.
  • the carbon content of the combustible material is ⁇ mass%, and the amount of the combustible material containing the carbon content to be charged into the cement kiln is ⁇ kg per clinker production amount t, And ⁇ can be 30 or more and 5000 or less.
  • the product of ⁇ and ⁇ is less than 30, it is difficult to sufficiently increase the volatility of heavy metals.
  • the product of ⁇ and ⁇ exceeds 5000, more carbon is added.
  • the volatilization rate of heavy metals has reached its peak, and when it is purchased as a valuable product, the cost required for using the combustible material is increased, which is not realistic.
  • a dry dust collector or a wet dust collector can be used to collect dust from the extracted combustion gas.
  • the combustible material when supplying the combustible material to a region of 900 ° C. or higher and 1300 ° C. or lower of the cement kiln, the combustible material is introduced into the kiln bottom of the cement kiln or the carbon-containing material is decomposed at a time difference. Either put into a preheater attached to the cement kiln while being covered with a substance to be decomposed in the above, or put the combustible material directly into the kiln from the inlet provided in the body of the cement kiln Can be used.
  • the combustible material is coke, coal tar pitch, tire, coal, anthracite, bituminous coal, lignite, lignite, graphite, flame retardant plastic, phenol resin, furan resin, thermosetting resin, cellulose. , Charcoal, waste toner, mixed coke, fine coke, electrode scrap, activated coke, carbide, and one or more selected from the group consisting of unburned carbon contained in fly ash.
  • the said combustible material can be thrown into the said cement kiln, after adjusting a particle size by granulation or / and classification. If the combustible material has a small diameter, the gas passing through the kiln is scattered to the low temperature side, so that the supply amount of heavy metals to the volatilization temperature region is reduced and an efficient volatilization rate cannot be ensured.
  • the maximum particle size if it is too large, the mixture will not be combusted until it is mixed into the cement or forms a cement mineral, and the color of the cement will become yellow, which may be a problem in terms of cement quality. Since there is a concern, it is preferable to make the size that does not affect them.
  • the combustible material may have a particle size of 1 mm to 50 mm.
  • the particle size of the combustible material is less than 1 mm, the supply amount of heavy metals to the volatilization temperature region decreases, and an efficient volatilization rate cannot be ensured.
  • the particle size of the combustible material exceeds 50 mm There is a concern that mixing of heavy metals into the cement and the color of the cement exhibiting a yellow color will cause problems in cement quality.
  • FIG. 1 shows a cement manufacturing apparatus to which a cement manufacturing method according to the present invention is applied.
  • This cement manufacturing apparatus 1 includes a kiln bottom 2a (a calcining furnace 3 and an outermost kiln 3) of a cement kiln (hereinafter abbreviated as “kiln”).
  • a charging device 5 for charging the combustible material C is provided at an end portion where the lower cyclone 4 is provided.
  • the kiln 2 is provided with a chlorine bypass device 10, and extracted gas from the kiln exhaust gas flow path from the kiln bottom 2 a of the kiln 2 to the lowermost cyclone 4 (see FIG. 1). Is cooled by the cool air from the cooling fan 12 in the probe 11 and then introduced into the classifier 13 and separated into coarse dust, fine powder and gas. The coarse powder dust is returned to the kiln system, and fine powder (chlorine bypass dust) containing potassium chloride (KCl) and the like is collected by the dust collector 14. The exhaust gas discharged from the dust collector 14 is returned to the exhaust gas passage such as a preheater attached to the kiln 2 or an outlet of the preheater via the fan 15.
  • a chlorine bypass device such as a preheater attached to the kiln 2 or an outlet of the preheater via the fan 15.
  • the combustible C is charged into the kiln bottom 2 a of the kiln 2 by the charging device 5 during cement firing in the kiln 2.
  • This combustible C contains 20% by mass or more of carbon, and includes, for example, coke, coal tar pitch, tire, coal, anthracite, bituminous coal, lignite, lignite, graphite, flame retardant plastic, phenol resin, Furan resin, thermosetting resin, cellulose, charcoal, waste toner, mixed coke, fine coke, electrode scrap, activated coke, carbide, unburned carbon contained in fly ash, and the like are used.
  • the reason why the combustible C having such a carbon content is added is as follows.
  • the lead volatilized in the kiln 2 is included in the gas extracted by the probe 11 in FIG. 2, and the extracted gas is cooled by the probe 11 and then introduced into the classifier 13 to collect coarse dust, fine powder and gas.
  • the fine powder is recovered by the dust collector 14. This fine powder contains more of the lead than the conventional amount of lead, so the lead is concentrated more than before. By separating this lead, the lead can be efficiently removed from the cement manufacturing process, and the cement produced in the kiln 2 The lead content of clinker can be reduced.
  • combustible material A fixed carbon content 30% by mass
  • combustible material B fixed carbon content 17% by mass
  • 5 was used to compare lead volatilization rates.
  • the amount of combustible A input was changed over three levels, a three-day test was performed for each level, and the raw material (a) before entering the kiln 2 and after passing through the kiln 2 Clinker (product) (b) was collected, and the lead volatilization rate was calculated by the following formula. (1-b / a) ⁇ 100%.
  • a represents the lead content of the raw material
  • b represents the lead content of the clinker.
  • the input amount of the combustible B was changed over three levels, a test was conducted for three days for each level, and the lead volatilization rate was measured in the same manner as in the examples.
  • the input amount of the combustible A was kept constant.
  • the raw material (a) before entering the kiln 2 and the clinker (product) (b) after passing through the kiln 2 are sampled without putting the combustible C into 2 and the lead volatilization rate is calculated using the above formula. It was measured.
  • the lead volatilization rate does not reach 80% in the comparative example, whereas the lead volatilization rate is improved as the amount of combustible C input is increased in the example.
  • the combustible C is introduced into the kiln bottom 2a of the kiln 2 by the charging device 5.
  • the kiln 2 is covered with a substance that decomposes at a temperature so as to decompose the carbon-containing substance at a time difference. May be added to the pre-heater attached to the pre-heater, and when the carbon-containing material charged into the pre-heater reaches the region of 900 ° C. or higher and 1300 ° C. or lower of the kiln 2, The same effect is produced.
  • the combustible material C can be directly introduced into the kiln 2 from the entrance provided in the body portion of the kiln 2.
  • lead was isolate
  • lead, zinc, cadmium, antimony, selenium, arsenic, and thallium can also be separated in the same manner as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ecology (AREA)
  • Public Health (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Heavy metals including lead are efficiently separated from cement production steps without exerting any influence on cement quality while ensuring the safety of the cement production apparatus and avoiding an increase in environmental burden. A combustible substance containing at least 20 mass% carbon matter is supplied to that region in a cement kiln which has a temperature of 900-1,300°C. A kiln discharge gas passage extending from the bottom of the cement kiln to a lowermost-stage cyclone is bled of part of the combustion gas, and the dust contained in the combustion gas is collected. Heavy metals are separated from the dust collected.In the region of the cement kiln, the heavy metals can be volatilized at a volatilization ratio of 80% or higher. When the carbon matter content in the combustible substance is expressed by α mass% and the amount of the carbon-matter-containing combustible substance to be introduced into the cement kiln is expressed by β kg per ton of clinker production, then the product of α and β preferably is 30 to 5,000.

Description

セメント製造方法Cement manufacturing method
 本発明は、セメント製造方法に関し、特に、セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス流路より、燃焼ガスの一部を抽気したガスに含まれるダストから鉛等の重金属類を分離する方法に関する。 The present invention relates to a cement manufacturing method, and in particular, removes heavy metals such as lead from dust contained in gas extracted from a kiln exhaust gas passage from a kiln bottom of a cement kiln to a lowermost cyclone. It relates to a method of separation.
 従来、セメント中の鉛(Pb)は固定化されるため、土壌への溶出はないと考えられてきた。しかし、近年のセメント製造装置におけるリサイクル資源の活用量の増加に伴い、セメント中の鉛の量も増加し、これまでの含有量を大幅に上回りつつある。濃度増加に伴い土壌への溶出の可能性もあるため、セメント中の鉛濃度をこれまでの含有量程度まで低減する必要がある。 Conventionally, since lead (Pb) in cement is fixed, it has been considered that there is no elution into soil. However, as the amount of recycled resources used in cement production equipment has increased in recent years, the amount of lead in cement has also increased, and the content has been greatly exceeded. Since there is a possibility of elution into the soil as the concentration increases, it is necessary to reduce the lead concentration in the cement to the level of the conventional content.
 また、近年、廃棄物のセメント原料化又は燃料化によるリサイクルが推進され、廃棄物の処理量が増加するに従い、セメントキルンに持ち込まれる塩素、硫黄、アルカリ等の揮発成分の量も増加し、塩素バイパスダストの発生量も増加している。塩素バイパスダストは、セメント粉砕工程で利用しているが、その発生量の増加や、鉛を含む重金属類のセメント許容濃度の超過が予測されることから、余剰の塩素バイパスダストの利用方法の開発が求められていた。 In recent years, recycling of waste by converting to cement raw material or fuel has been promoted, and as the amount of waste processed increases, the amount of chlorine, sulfur, alkali and other volatile components brought into the cement kiln also increases. The amount of bypass dust is also increasing. Chlorine bypass dust is used in the cement crushing process, but it is expected that the amount of generated chlorine will increase and the allowable concentration of heavy metals including lead will exceed the allowable level. Was demanded.
 上記の点に鑑み、例えば、特許文献1には、セメント製造工程に供給される廃棄物中の塩素分及び鉛分を効果的に分離除去するため、廃棄物の水洗工程と、濾別した固形分のアルカリ溶出工程と、この濾液から鉛を沈澱させて分離する脱鉛工程と、脱鉛した濾液からカルシウムを沈澱させて分離する脱カルシウム工程と、この濾液を加熱して塩化物を析出させて分離回収する塩分回収工程とを有する廃棄物の処理方法が開示されている。 In view of the above points, for example, in Patent Document 1, in order to effectively separate and remove chlorine and lead in waste supplied to the cement manufacturing process, the waste water washing process and the solid separated by filtration An alkaline elution step, a deleading step for precipitating and separating lead from the filtrate, a decalcifying step for precipitating and separating calcium from the deleaded filtrate, and heating the filtrate to precipitate chloride. And a method for treating waste having a salt recovery step of separating and recovering.
 また、特許文献2には、飛灰等の廃棄物から鉛及び亜鉛を分別して除去するに当たって、カルシウムイオンを含む溶液を混合してスラリーを得た後、固液分離して、亜鉛を含む固形分と、鉛を含む水溶液とを得る工程と、鉛を含む水溶液に硫化剤を添加した後、固液分離して、硫化鉛と、カルシウムイオンを含む溶液とを得る工程等を含む廃棄物の処理方法が記載されている。 Moreover, in patent document 2, in separating and removing lead and zinc from waste such as fly ash, a solution containing calcium ions is mixed to obtain a slurry, followed by solid-liquid separation to obtain a solid containing zinc. And a step of obtaining an aqueous solution containing lead, a step of obtaining a solution containing lead sulfide and calcium ions by solid-liquid separation after adding a sulfurizing agent to the aqueous solution containing lead, etc. A processing method is described.
 さらに、特許文献3には、セメント製造工程で発生する塩素バイパスダスト等から重金属類を回収するため、セメント製造工程から重金属類含有ダストとして分離し、該重金属類含有ダストから、セメントキルン燃焼ガスの一部を抽気し、抽気した燃焼ガスに含まれるダストを集塵し、タリウム、鉛、セレンから選択される1つ以上を除去又は回収する方法が記載されている。 Furthermore, in Patent Document 3, in order to recover heavy metals from chlorine bypass dust generated in the cement manufacturing process, the heavy metal containing dust is separated from the cement manufacturing process, and the cement kiln combustion gas is separated from the heavy metal containing dust. A method is described in which a part is extracted, dust contained in the extracted combustion gas is collected, and one or more selected from thallium, lead, and selenium are removed or recovered.
日本特開2003-1218号公報Japanese Unexamined Patent Publication No. 2003-1218 日本特開2003-201524号公報Japanese Unexamined Patent Publication No. 2003-201524 日本特開2006-347794号公報Japanese Unexamined Patent Publication No. 2006-347794
 しかし、上記特許文献に記載の従来技術においては、塩素バイパスダスト等に含まれる鉛等の重金属類を除去しているが、塩素バイパスダストを通じて系外に除去される重金属類の割合は、全体の30%程度に過ぎず、たとえ、塩素バイパスダスト中の重金属類を100%除去したとしても、残りの70%程度は、依然としてセメントキルンから排出されるクリンカに取り込まれるため、セメントの重金属類含有率を低下させるのは容易ではない。そこで、セメントキルン内の重金属類の揮発を促進し、塩素バイパスダスト等への重金属類の濃縮率を高めることが重要である。 However, in the prior art described in the above patent document, heavy metals such as lead contained in chlorine bypass dust are removed, but the ratio of heavy metals removed outside the system through chlorine bypass dust is Only about 30%, even if 100% of heavy metals in chlorine bypass dust are removed, the remaining 70% is still taken up by the clinker discharged from the cement kiln. It is not easy to lower. Therefore, it is important to promote the volatilization of heavy metals in the cement kiln and increase the concentration rate of heavy metals in chlorine bypass dust.
 例えば、重金属類の揮発技術には、塩化揮発法と還元揮発法が知られている。しかし、一般的に行われる塩化揮発法をセメント焼成工程に適用すると、セメント製造において常識的な量を遙かに上回る量の塩素を投入する必要がある。一方、還元揮発法を適用するのは、セメントの色が黄色を呈することとなるため、セメントの品質面で問題となる。 For example, a chlorination volatilization method and a reduction volatilization method are known as volatilization techniques for heavy metals. However, if the chlorination volatilization method that is generally performed is applied to the cement firing step, it is necessary to input a much larger amount of chlorine than a common amount in cement production. On the other hand, the application of the reduction volatilization method is problematic in terms of cement quality because the color of the cement is yellow.
 また、重金属類の揮発率を上昇させるため、例えば、セメントキルンの窯尻部の酸素濃度を抑え、COガスを発生させるような雰囲気を形成する方法もあるが、COガスの発生により、セメントキルンの燃焼排ガスの集塵に用いる電気集塵機の爆発の危険が生ずるとともに、COガスの系外への排出による環境負荷の増加が懸念される。 In order to increase the volatilization rate of heavy metals, for example, there is a method of forming an atmosphere that generates CO gas by suppressing the oxygen concentration in the kiln bottom of the cement kiln. There is a risk of explosion of an electric dust collector used to collect the combustion exhaust gas, and there is a concern about an increase in environmental load due to discharge of CO gas outside the system.
 そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、セメントの品質に影響を与えることなく、セメント製造装置の安全性も確保し、環境負荷の増加も回避しながら、セメント製造工程から重金属類を効率よく分離することを目的とする。 Therefore, the present invention has been made in view of the above-described problems in the prior art, and ensures the safety of the cement manufacturing apparatus without affecting the cement quality and avoids an increase in environmental load. However, the object is to efficiently separate heavy metals from the cement manufacturing process.
 本発明者らは、上記目的を達成するため、鋭意研究を重ねた結果、炭素分含有率が所定の値以上の可燃物をセメントキルン内に投入することにより、該セメントキルンを含む焼成工程内で重金属類の揮発率を高めることができることを見出した。 As a result of intensive studies to achieve the above-mentioned object, the present inventors put a combustible having a carbon content of not less than a predetermined value into the cement kiln, so that the inside of the firing process including the cement kiln And found that the volatility of heavy metals can be increased.
 本発明は、かかる知見に基づいてなされたものであり、20質量%以上の炭素分を含有する可燃物を、セメントキルンの900℃以上1300℃以下の領域に供給し、該セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス経路より燃焼ガスの一部を抽気し、該燃焼ガスに含まれるダストを集塵し、集塵したダストから重金属類を分離することを特徴とする。尚、炭素分とは、燃焼に寄与する成分であり、分離することができる重金属類は、鉛、亜鉛、カドミウム、アンチモン、セレン、砒素、タリウムである。 The present invention has been made on the basis of such findings. A combustible containing 20% by mass or more of carbon is supplied to a region of 900 to 1300 ° C. of the cement kiln, and the kiln bottom of the cement kiln is provided. A part of the combustion gas is extracted from the kiln exhaust gas path from the first to the lowest cyclone, dust contained in the combustion gas is collected, and heavy metals are separated from the collected dust. Carbon is a component that contributes to combustion, and heavy metals that can be separated are lead, zinc, cadmium, antimony, selenium, arsenic, and thallium.
 上記可燃物を、セメントキルンの900℃未満の部分に投入した場合は、重金属類が効率よく揮発する領域に到達する前に大部分が燃焼し、重金属類の揮発率を十分に高めることが難しく、一方、1300℃以上の部分に投入すると、セメントの色が黄色を呈することとなるため、セメントの品質面で問題となる。上記温度域に可燃物を投入することによって、セメントキルン内の窯尻部での重金属類の揮発率を効果的に向上させることができ、塩素バイパスシステムを利用して塩素バイパスダストへの重金属類の濃縮率を高めることにより、セメント製造工程からの重金属類除去率を上昇させることができる。 When the above combustible material is put into a part of the cement kiln below 900 ° C., most of the metal burns before reaching the region where the heavy metals efficiently volatilize, and it is difficult to sufficiently increase the volatility of the heavy metals. On the other hand, if it is introduced into a portion of 1300 ° C. or higher, the color of the cement becomes yellow, which causes a problem in terms of cement quality. By injecting combustible materials into the above temperature range, the volatilization rate of heavy metals at the bottom of the kiln in the cement kiln can be effectively improved, and heavy metals to chlorine bypass dust using the chlorine bypass system By increasing the concentration rate, the removal rate of heavy metals from the cement manufacturing process can be increased.
 上記セメント製造方法において、セメントキルンの前記領域において、80%以上の揮発率で前記重金属類を揮発させることができる。 In the above cement manufacturing method, the heavy metals can be volatilized at a volatility rate of 80% or more in the region of the cement kiln.
 また、上記セメント製造方法において、前記可燃物の炭素分含有率をα質量%とし、前記セメントキルンへ投入する前記炭素分を含有する可燃物の量をクリンカ生産量1t当たりβkgとした場合、αとβの積を30以上5000以下とすることができる。αとβの積が30未満の場合には、重金属類の揮発率を十分に高めることが難しく、一方、αとβの積が5000を超える場合には、それ以上の炭素分を投入しても重金属類の揮発率が頭打ちとなり、また、有価で購入する場合には、該可燃物の使用に要するコストの増大も招くため現実的ではない。 Further, in the cement manufacturing method, when the carbon content of the combustible material is α mass%, and the amount of the combustible material containing the carbon content to be charged into the cement kiln is β kg per clinker production amount t, And β can be 30 or more and 5000 or less. When the product of α and β is less than 30, it is difficult to sufficiently increase the volatility of heavy metals. On the other hand, when the product of α and β exceeds 5000, more carbon is added. However, the volatilization rate of heavy metals has reached its peak, and when it is purchased as a valuable product, the cost required for using the combustible material is increased, which is not realistic.
 さらに、上記セメント製造方法において、前記抽気した燃焼ガスからダストを集塵するに当たり、乾式集塵機又は湿式集塵機を用いることができる。 Furthermore, in the cement manufacturing method, a dry dust collector or a wet dust collector can be used to collect dust from the extracted combustion gas.
 上記セメント製造方法において、前記可燃物をセメントキルンの900℃以上1300℃以下の領域に供給するに当たり、該可燃物をセメントキルンの窯尻へ投入するか、炭素含有物質を時間差で分解する様温度で分解する物質に覆われた状態で前記セメントキルンに付設されたプレヒータへ投入するか、又は前記可燃物をセメントキルンの胴体部に設けた入口から直接キルン内へ投入するかのいずれかの方法を用いることができる。 In the cement manufacturing method, when supplying the combustible material to a region of 900 ° C. or higher and 1300 ° C. or lower of the cement kiln, the combustible material is introduced into the kiln bottom of the cement kiln or the carbon-containing material is decomposed at a time difference. Either put into a preheater attached to the cement kiln while being covered with a substance to be decomposed in the above, or put the combustible material directly into the kiln from the inlet provided in the body of the cement kiln Can be used.
 また、上記セメント製造方法において、前記可燃物を、コークス、コールタールピッチ、タイヤ、石炭、無煙炭、瀝青炭、亜炭、褐炭、黒鉛、難燃性プラスチック、フェノール樹脂、フラン樹脂、熱硬化性樹脂、セルロース、木炭、廃トナー、ミックスコークス、ファインコークス、電極くず、活性コークス、炭化物及びフライアッシュに含まれる未燃カーボンからなる群より選択される1又は2以上とすることができる。 Further, in the above cement production method, the combustible material is coke, coal tar pitch, tire, coal, anthracite, bituminous coal, lignite, lignite, graphite, flame retardant plastic, phenol resin, furan resin, thermosetting resin, cellulose. , Charcoal, waste toner, mixed coke, fine coke, electrode scrap, activated coke, carbide, and one or more selected from the group consisting of unburned carbon contained in fly ash.
 さらに、上記セメント製造方法において、前記可燃物を、造粒又は/及び分級により粒度調整をした後、前記セメントキルン内に投入することができる。可燃物が小径であるとキルンを通過するガスにより低温側に飛散するため、重金属類の揮発温度領域への供給量が減少し、効率的な揮発率を確保できない。目安として、可燃物粒径をdpとし、投入部のガス風速をVpとしたとき、ストークスの沈降速度式、dx 2=(18×μ×Vp)/((ρp-ρg)×g)から求められるdxが、dp<dxとなる場合には、dx以上の粒径となるように粒度を造粒や分級により調整した方が好ましい。ここで、μはガス粘度、ρpは可燃物密度、ρgはガス密度、gは重力加速度である。また、最大粒径については、大き過ぎるとセメントへの混入やセメント鉱物を形成する焼成帯まで燃焼が終了せず、セメントの色が黄色を呈することとなり、セメントの品質面で問題となることが懸念されるため、それらに影響しない大きさにすることが好ましい。 Furthermore, in the said cement manufacturing method, the said combustible material can be thrown into the said cement kiln, after adjusting a particle size by granulation or / and classification. If the combustible material has a small diameter, the gas passing through the kiln is scattered to the low temperature side, so that the supply amount of heavy metals to the volatilization temperature region is reduced and an efficient volatilization rate cannot be ensured. As a guide, when the particle size of the combustible material is d p and the gas wind velocity at the input is V p , the Stokes settling velocity equation, d x 2 = (18 × μ × V p ) / ((ρ pg ) × g) When d x obtained from dg <d x , it is preferable to adjust the particle size by granulation or classification so that the particle size is not less than d x . Here, μ is a gas viscosity, ρ p is a combustible density, ρ g is a gas density, and g is a gravitational acceleration. As for the maximum particle size, if it is too large, the mixture will not be combusted until it is mixed into the cement or forms a cement mineral, and the color of the cement will become yellow, which may be a problem in terms of cement quality. Since there is a concern, it is preferable to make the size that does not affect them.
 上記セメント製造方法において、前記可燃物の粒径を1mm以上50mm以下とすることができる。可燃物の粒径が1mm未満の場合には、重金属類の揮発温度領域への供給量が減少し、効率的な揮発率を確保できず、一方、可燃物の粒径が50mmを超える場合には、重金属類のセメントへの混入や、セメントの色が黄色を呈してセメントの品質面で問題となることが懸念される。 In the above cement manufacturing method, the combustible material may have a particle size of 1 mm to 50 mm. When the particle size of the combustible material is less than 1 mm, the supply amount of heavy metals to the volatilization temperature region decreases, and an efficient volatilization rate cannot be ensured. On the other hand, when the particle size of the combustible material exceeds 50 mm There is a concern that mixing of heavy metals into the cement and the color of the cement exhibiting a yellow color will cause problems in cement quality.
 以上のように、本発明によれば、セメントの品質に影響を与えず、セメント製造装置の安全性を確保し、環境負荷の増加も回避しながら、セメント製造工程から重金属類を効率よく分離することができる。 As described above, according to the present invention, heavy metals are efficiently separated from the cement manufacturing process while ensuring the safety of the cement manufacturing apparatus and avoiding an increase in environmental load without affecting the cement quality. be able to.
  次に、本発明の実施の形態について図面を参照しながら説明する。尚、以下の説明においては、本発明にかかるセメント製造方法によって重金属類の一つである鉛を分離する場合を例にとって説明する。 Next, embodiments of the present invention will be described with reference to the drawings. In the following description, a case where lead which is one of heavy metals is separated by the cement manufacturing method according to the present invention will be described as an example.
 図1は、本発明にかかるセメント製造方法を適用したセメント製造装置を示し、このセメント製造装置1は、セメントキルン(以下「キルン」と略称する)2の窯尻2a(仮焼炉3及び最下段サイクロン4が備えられている端部)に可燃物Cを投入するための投入装置5を備える。 FIG. 1 shows a cement manufacturing apparatus to which a cement manufacturing method according to the present invention is applied. This cement manufacturing apparatus 1 includes a kiln bottom 2a (a calcining furnace 3 and an outermost kiln 3) of a cement kiln (hereinafter abbreviated as “kiln”). A charging device 5 for charging the combustible material C is provided at an end portion where the lower cyclone 4 is provided.
 一方、図2に示すように、キルン2には、塩素バイパス装置10が備えられ、キルン2の窯尻2aから最下段サイクロン4(図1参照)に至るまでのキルン排ガス流路からの抽気ガスは、プローブ11において冷却ファン12からの冷風によって冷却された後、分級機13に導入され、粗粉ダストと、微粉及びガスとに分離される。粗粉ダストは、キルン系に戻され、塩化カリウム(KCl)等を含む微粉(塩素バイパスダスト)は、集塵機14で回収される。尚、集塵機14から排出された排ガスは、ファン15を経てキルン2に付設されたプレヒータ、又はプレヒータの出口等の排ガス流路に戻される。 On the other hand, as shown in FIG. 2, the kiln 2 is provided with a chlorine bypass device 10, and extracted gas from the kiln exhaust gas flow path from the kiln bottom 2 a of the kiln 2 to the lowermost cyclone 4 (see FIG. 1). Is cooled by the cool air from the cooling fan 12 in the probe 11 and then introduced into the classifier 13 and separated into coarse dust, fine powder and gas. The coarse powder dust is returned to the kiln system, and fine powder (chlorine bypass dust) containing potassium chloride (KCl) and the like is collected by the dust collector 14. The exhaust gas discharged from the dust collector 14 is returned to the exhaust gas passage such as a preheater attached to the kiln 2 or an outlet of the preheater via the fan 15.
 次に、上記セメント製造装置1を用いた本発明にかかるセメント製造方法について説明する。 Next, the cement manufacturing method according to the present invention using the cement manufacturing apparatus 1 will be described.
 図1において、キルン2におけるセメント焼成中に、可燃物Cを投入装置5によってキルン2の窯尻2aに投入する。この可燃物Cは、炭素分を20質量%以上含有するものであって、例えば、コークス、コールタールピッチ、タイヤ、石炭、無煙炭、瀝青炭、亜炭、褐炭、黒鉛、難燃性プラスチック、フェノール樹脂、フラン樹脂、熱硬化性樹脂、セルロース、木炭、廃トナー、ミックスコークス、ファインコークス、電極くず、活性コークス、炭化物及びフライアッシュに含まれる未燃カーボン等が用いられる。このような炭素分含有率を有する可燃物Cを投入する理由は次の通りである。 In FIG. 1, the combustible C is charged into the kiln bottom 2 a of the kiln 2 by the charging device 5 during cement firing in the kiln 2. This combustible C contains 20% by mass or more of carbon, and includes, for example, coke, coal tar pitch, tire, coal, anthracite, bituminous coal, lignite, lignite, graphite, flame retardant plastic, phenol resin, Furan resin, thermosetting resin, cellulose, charcoal, waste toner, mixed coke, fine coke, electrode scrap, activated coke, carbide, unburned carbon contained in fly ash, and the like are used. The reason why the combustible C having such a carbon content is added is as follows.
 図3は、電気炉を用いた鉛の揮発率の試験結果を示すグラフであり、電気炉内にセメント製造工程より採取したキルン2に入る前の原料(最下段サイクロン4から排出された原料)1000に対しコークス(固定炭素87%=α)を50添加し(50kg/t-cli.に相当=β、α×β=4350)、焼成した場合と、最下段サイクロン4から排出された原料のみを入れて焼成した場合とを比較している。同図より明らかなように、コークスを入れた場合には、焼成温度が900℃~1300℃の領域で鉛の揮発率が大幅に上昇している。この温度範囲は、キルン2の窯尻2aから中央部程度までに相当する。 FIG. 3 is a graph showing the test results of lead volatilization rate using an electric furnace, and the raw material before entering the kiln 2 collected from the cement manufacturing process in the electric furnace (raw material discharged from the lowest cyclone 4) 50 coke (fixed carbon 87% = α) is added to 1000 (corresponding to 50 kg / t-cli. = Β, α × β = 4350) and calcined, and only the raw material discharged from the lowermost cyclone 4 It compares with the case where it puts and baked. As is apparent from the figure, when coke is added, the volatilization rate of lead is significantly increased in the range where the firing temperature is 900 ° C. to 1300 ° C. This temperature range corresponds to the kiln 2 from the kiln bottom 2a to the central portion.
 キルン2で揮発した鉛は、図2において、プローブ11によって抽気されたガスに含まれ、抽気ガスは、プローブ11において冷却された後、分級機13に導入され、粗粉ダストと、微粉及びガスとに分離され、微粉が集塵機14で回収される。この微粉には、鉛がより多く揮発した分、鉛が従来よりも多く濃縮されているため、この鉛を分離することによりセメント製造工程から鉛を効率よく除去し、キルン2で製造されるセメントクリンカの鉛含有率を低下させることができる。 The lead volatilized in the kiln 2 is included in the gas extracted by the probe 11 in FIG. 2, and the extracted gas is cooled by the probe 11 and then introduced into the classifier 13 to collect coarse dust, fine powder and gas. The fine powder is recovered by the dust collector 14. This fine powder contains more of the lead than the conventional amount of lead, so the lead is concentrated more than before. By separating this lead, the lead can be efficiently removed from the cement manufacturing process, and the cement produced in the kiln 2 The lead content of clinker can be reduced.
 表1に示すように、実施例として可燃物A(固定炭素分30質量%)、比較例として可燃物B(固定炭素分17質量%)を用い、両者をキルン2の窯尻2aに投入装置5を用いて投入し、鉛揮発率を比較した。 As shown in Table 1, combustible material A (fixed carbon content 30% by mass) was used as an example, and combustible material B (fixed carbon content 17% by mass) was used as a comparative example. 5 was used to compare lead volatilization rates.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表2に示すように、実施例として、可燃物Aの投入量を3水準にわたって変化させ、各水準について3日間試験を行い、キルン2に入る前の原料(a)とキルン2の通過後のクリンカ(製品)(b)を採取し、次式にて鉛揮発率を算出した。(1-b/a)×100%。尚、この式において、aは原料の鉛含有率、bはクリンカの鉛含有率を示す。一方、比較例として、可燃物Bの投入量を3水準にわたって変化させ、各水準について3日間試験を行い、実施例と同様に鉛揮発率を測定した。尚、本比較例においては、可燃物Aの投入量を一定に維持した。 As shown in Table 2, as an example, the amount of combustible A input was changed over three levels, a three-day test was performed for each level, and the raw material (a) before entering the kiln 2 and after passing through the kiln 2 Clinker (product) (b) was collected, and the lead volatilization rate was calculated by the following formula. (1-b / a) × 100%. In this formula, a represents the lead content of the raw material, and b represents the lead content of the clinker. On the other hand, as a comparative example, the input amount of the combustible B was changed over three levels, a test was conducted for three days for each level, and the lead volatilization rate was measured in the same manner as in the examples. In addition, in this comparative example, the input amount of the combustible A was kept constant.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の実施例及び比較例とも、試験時におけるキルン2のクリンカ生産量は、285t/hであったため、可燃物Aの投入量が、水準1の2t/hの場合には、
 2000kg/h÷285t/h=7kg/t-cli.となる。
従って、実施例の水準1では、7kg/t-cli.=α、可燃物Aの固定炭素30%=βとすると、α×β=210となる。
また、同様に計算すると、実施例の水準2では、3.5kg/t-cli.=α、可燃物Aの固定炭素30%=βとすると、α×β=105となる。
In both the examples and comparative examples of Table 2, the clinker production amount of the kiln 2 at the time of the test was 285 t / h, so when the input amount of the combustible A is 2 t / h of level 1,
2000 kg / h ÷ 285 t / h = 7 kg / t-cli. It becomes.
Therefore, at level 1 of the example, 7 kg / t-cli. = Α, fixed carbon 30% of combustible A = β = α × β = 210.
Further, when calculated in the same manner, at level 2 of the example, 3.5 kg / t-cli. If α = α and fixed carbon 30% of combustible A = β, then α × β = 105.
 上記試験結果を図4に示す、同図から明らかなように、比較例では、水準1乃至3において、鉛揮発率に変化が見られないのに対し、実施例では、水準1から水準3に向かうにつれて、すなわち、可燃物Aの投入量を低下させるに従って、鉛揮発率が徐々に低下している。これにより、固定炭素分30質量%の可燃物の投入が鉛揮発率の上昇に寄与することが判る。 The above test results are shown in FIG. 4. As is apparent from FIG. 4, in the comparative example, there is no change in the lead volatilization rate at levels 1 to 3, whereas in the example, from level 1 to level 3. As it goes, that is, as the input amount of the combustible A is decreased, the lead volatilization rate is gradually decreased. Thereby, it turns out that injection | throwing-in of combustible material with a fixed carbon content of 30 mass% contributes to the rise in lead volatility.
 次に、表3に示すように、実施例として、クリンカ生産量85t/hのキルン2に可燃物C(固定炭素87%=α)の投入量を4水準にわたって変化させ、比較例として、キルン2に可燃物Cを投入せずに、キルン2に入る前の原料(a)とキルン2を通過した後のクリンカ(製品)(b)を採取し、上記計算式を用いて鉛揮発率を測定した。同表から明らかなように、比較例では鉛揮発率が80%に達していないのに対し、実施例では可燃物Cの投入量の増加に伴って鉛揮発率が向上している。 Next, as shown in Table 3, as an example, the input amount of combustible material C (fixed carbon 87% = α) was changed over four levels in a kiln 2 with a clinker production amount of 85 t / h. The raw material (a) before entering the kiln 2 and the clinker (product) (b) after passing through the kiln 2 are sampled without putting the combustible C into 2 and the lead volatilization rate is calculated using the above formula. It was measured. As is clear from the table, the lead volatilization rate does not reach 80% in the comparative example, whereas the lead volatilization rate is improved as the amount of combustible C input is increased in the example.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 尚、上記実施の形態においては、可燃物Cを投入装置5によってキルン2の窯尻2aへ投入したが、炭素含有物質を時間差で分解する様温度で分解する物質に覆われた状態でキルン2に付設されたプレヒータへ投入してもよく、プレヒータへ投入した炭素含有物質がキルン2の900℃以上1300℃以下の領域に達した際に20質量%以上の炭素分を含有することで上記と同様の効果を奏する。また、可燃物Cをキルン2の胴体部に設けた入口から直接キルン2内へ投入することもできる。 In the above embodiment, the combustible C is introduced into the kiln bottom 2a of the kiln 2 by the charging device 5. However, the kiln 2 is covered with a substance that decomposes at a temperature so as to decompose the carbon-containing substance at a time difference. May be added to the pre-heater attached to the pre-heater, and when the carbon-containing material charged into the pre-heater reaches the region of 900 ° C. or higher and 1300 ° C. or lower of the kiln 2, The same effect is produced. Further, the combustible material C can be directly introduced into the kiln 2 from the entrance provided in the body portion of the kiln 2.
 また、上記実施の形態においては、塩素バイパスダストから鉛を分離する場合を例示したが、鉛、亜鉛、カドミウム、アンチモン、セレン、砒素、タリウムについても上記と同様の要領にて分離することができる。 Moreover, in the said embodiment, although the case where lead was isolate | separated from chlorine bypass dust was illustrated, lead, zinc, cadmium, antimony, selenium, arsenic, and thallium can also be separated in the same manner as described above. .
本発明にかかるセメント製造方法を実施するための装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus for enforcing the cement manufacturing method concerning this invention. セメント焼成炉に付設される塩素バイパス装置の全体構成を示すフローチャートである。It is a flowchart which shows the whole structure of the chlorine bypass apparatus attached to a cement baking furnace. 電気炉を用いた鉛の揮発率の試験結果を示すグラフである。It is a graph which shows the test result of the volatility of lead using an electric furnace. 本発明にかかるセメント製造方法の試験結果を示すグラフである。It is a graph which shows the test result of the cement manufacturing method concerning this invention.
符号の説明Explanation of symbols
1 セメント製造装置
2 セメントキルン
2a 窯尻
3 仮焼炉
4 最下段サイクロン
5 投入装置
10 塩素バイパス装置
11 プローブ
12 冷却ファン
13 分級機
14 集塵機
15 ファン
DESCRIPTION OF SYMBOLS 1 Cement manufacturing apparatus 2 Cement kiln 2a Kiln bottom 3 Calciner 4 Bottom-stage cyclone 5 Input apparatus 10 Chlorine bypass apparatus 11 Probe 12 Cooling fan 13 Classifier 14 Dust collector 15 Fan

Claims (8)

  1.  20質量%以上の炭素分を含有する可燃物を、セメントキルンの900℃以上1300℃以下の領域に供給し、
     該セメントキルンの窯尻から最下段サイクロンに至るまでのキルン排ガス経路より燃焼ガスの一部を抽気し、
     該燃焼ガスに含まれるダストを集塵し、
     集塵したダストから重金属類を分離することを特徴とするセメント製造方法。
    Supplying a combustible containing 20% by mass or more of carbon to a region of 900 to 1300 ° C. of the cement kiln;
    A part of the combustion gas is extracted from the kiln exhaust gas path from the bottom of the cement kiln to the bottom cyclone,
    Collecting dust contained in the combustion gas;
    A cement manufacturing method, characterized in that heavy metals are separated from dust collected.
  2.  セメントキルンの前記領域において、80%以上の揮発率で前記重金属類を揮発させることを特徴とする請求項1に記載のセメント製造方法。 The cement manufacturing method according to claim 1, wherein the heavy metals are volatilized at a volatility rate of 80% or more in the region of the cement kiln.
  3.  前記可燃物の炭素分含有率をα質量%とし、前記セメントキルンへ投入する前記炭素分を含有する可燃物の量をクリンカ生産量1t当たりβkgとした場合、αとβの積を30以上5000以下とすることを特徴とする請求項1又は2に記載のセメント製造方法。 When the carbon content of the combustible material is α mass% and the amount of the combustible material containing the carbon content to be added to the cement kiln is β kg per clinker production amount of 1 kg, the product of α and β is 30 or more and 5000 The cement manufacturing method according to claim 1 or 2, wherein:
  4.  前記抽気した燃焼ガスからダストを集塵するに当たり、乾式集塵機又は湿式集塵機を用いることを特徴とする請求項1、2又は3に記載のセメント製造方法。 4. The method for producing cement according to claim 1, wherein a dust collector or a wet dust collector is used to collect dust from the extracted combustion gas.
  5.  前記可燃物をセメントキルンの900℃以上1300℃以下の領域に供給するに当たり、該可燃物をセメントキルンの窯尻へ投入するか、炭素含有物質を時間差で分解する様温度で分解する物質に覆われた状態で前記セメントキルンに付設されたプレヒータへ投入するか、又は前記可燃物をセメントキルンの胴体部に設けた入口から直接キルン内へ投入するかのいずれかの方法を用いることを特徴とする請求項1乃至4のいずれかに記載のセメント製造方法。 In supplying the combustible material to the cement kiln in the region of 900 ° C. to 1300 ° C., the combustible material is put into the kiln bottom of the cement kiln or covered with a material that decomposes at a temperature that decomposes the carbon-containing material with a time difference. It is used to either put in a preheater attached to the cement kiln in a broken state or to put the combustible material directly into the kiln from an inlet provided in the body of the cement kiln. The cement manufacturing method according to any one of claims 1 to 4.
  6.  前記可燃物を、コークス、コールタールピッチ、タイヤ、石炭、無煙炭、瀝青炭、亜炭、褐炭、黒鉛、難燃性プラスチック、フェノール樹脂、フラン樹脂、熱硬化性樹脂、セルロース、木炭、廃トナー、ミックスコークス、ファインコークス、電極くず、活性コークス、炭化物及びフライアッシュに含まれる未燃カーボンからなる群より選択される1又は2以上とすることを特徴とする請求項1乃至5のいずれかに記載のセメント製造方法。 Coke, coal tar pitch, tire, coal, anthracite, bituminous coal, lignite, lignite, graphite, flame retardant plastic, phenol resin, furan resin, thermosetting resin, cellulose, charcoal, waste toner, mixed coke The cement according to any one of claims 1 to 5, wherein the cement is one or more selected from the group consisting of unburned carbon contained in fine coke, electrode scrap, activated coke, carbide and fly ash. Production method.
  7.  前記可燃物を、造粒又は/及び分級により粒度調整をした後、前記セメントキルン内に投入することを特徴とする請求項1乃至6のいずれかに記載のセメント製造方法。 The cement manufacturing method according to any one of claims 1 to 6, wherein the combustible material is adjusted in particle size by granulation or / and classification, and then charged into the cement kiln.
  8.  前記可燃物の粒径が1mm以上50mm以下であることを特徴とする請求項7に記載のセメント製造方法。 The cement manufacturing method according to claim 7, wherein a particle size of the combustible material is 1 mm or more and 50 mm or less.
PCT/JP2009/053321 2008-03-10 2009-02-25 Process for producing cement WO2009113388A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980106622XA CN101959825A (en) 2008-03-10 2009-02-25 Process for producing cement
JP2010502757A JP5826487B2 (en) 2008-03-10 2009-02-25 Cement manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-059465 2008-03-10
JP2008059465 2008-03-10

Publications (1)

Publication Number Publication Date
WO2009113388A1 true WO2009113388A1 (en) 2009-09-17

Family

ID=41065057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053321 WO2009113388A1 (en) 2008-03-10 2009-02-25 Process for producing cement

Country Status (5)

Country Link
JP (1) JP5826487B2 (en)
KR (1) KR101571497B1 (en)
CN (2) CN104671681A (en)
TW (1) TWI483918B (en)
WO (1) WO2009113388A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136852A (en) * 2009-12-28 2011-07-14 Taiheiyo Cement Corp Method for producing cement having little repellent component
JP2011195422A (en) * 2010-03-24 2011-10-06 Taiheiyo Cement Corp Method for producing cement having small content of repelling component
JP2013188702A (en) * 2012-03-14 2013-09-26 Mitsubishi Materials Corp Method and apparatus for treating exhaust gas of cement manufacturing facility
CN111807731A (en) * 2020-07-24 2020-10-23 长沙紫宸科技开发有限公司 Method for cooperatively treating chlor-alkali salt mud in cement kiln

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109081618B (en) * 2018-07-27 2020-06-19 华南理工大学 Method for reducing volatilization of heavy metal lead in cement clinker sintering
CN113790589A (en) * 2021-09-22 2021-12-14 新疆宜化化工有限公司 Process and device for realizing energy-saving and efficient drying of carbide slag

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156186A (en) * 1982-03-11 1983-09-17 大阪瓦斯株式会社 Method of effectively utilizing coal tar residue
JPH07300355A (en) * 1994-05-09 1995-11-14 Chichibu Onoda Cement Corp Production of cement
JPH11189442A (en) * 1997-12-26 1999-07-13 Mitsubishi Materials Corp Production of cement clinker
JP2002220263A (en) * 2001-01-23 2002-08-09 Mitsubishi Materials Corp Method and apparatus for manufacturing cement clinker
JP2004000882A (en) * 2002-04-17 2004-01-08 Kobe Steel Ltd Method for treating heavy metal and/or organic compound
JP2005097063A (en) * 2003-09-26 2005-04-14 Sumitomo Osaka Cement Co Ltd Method for treating organic waste
JP2005320218A (en) * 2004-05-11 2005-11-17 Taiheiyo Cement Corp Manufacturing method of cement feed material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2478626T3 (en) * 2004-09-29 2014-07-22 Taiheiyo Cement Corporation System and procedure for treating dust in gas extracted from combustion gas from a cement kiln

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156186A (en) * 1982-03-11 1983-09-17 大阪瓦斯株式会社 Method of effectively utilizing coal tar residue
JPH07300355A (en) * 1994-05-09 1995-11-14 Chichibu Onoda Cement Corp Production of cement
JPH11189442A (en) * 1997-12-26 1999-07-13 Mitsubishi Materials Corp Production of cement clinker
JP2002220263A (en) * 2001-01-23 2002-08-09 Mitsubishi Materials Corp Method and apparatus for manufacturing cement clinker
JP2004000882A (en) * 2002-04-17 2004-01-08 Kobe Steel Ltd Method for treating heavy metal and/or organic compound
JP2005097063A (en) * 2003-09-26 2005-04-14 Sumitomo Osaka Cement Co Ltd Method for treating organic waste
JP2005320218A (en) * 2004-05-11 2005-11-17 Taiheiyo Cement Corp Manufacturing method of cement feed material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136852A (en) * 2009-12-28 2011-07-14 Taiheiyo Cement Corp Method for producing cement having little repellent component
JP2011195422A (en) * 2010-03-24 2011-10-06 Taiheiyo Cement Corp Method for producing cement having small content of repelling component
JP2013188702A (en) * 2012-03-14 2013-09-26 Mitsubishi Materials Corp Method and apparatus for treating exhaust gas of cement manufacturing facility
CN111807731A (en) * 2020-07-24 2020-10-23 长沙紫宸科技开发有限公司 Method for cooperatively treating chlor-alkali salt mud in cement kiln

Also Published As

Publication number Publication date
TWI483918B (en) 2015-05-11
JPWO2009113388A1 (en) 2011-07-21
TW200944493A (en) 2009-11-01
JP5826487B2 (en) 2015-12-02
KR101571497B1 (en) 2015-11-24
CN101959825A (en) 2011-01-26
KR20100136445A (en) 2010-12-28
CN104671681A (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5826487B2 (en) Cement manufacturing method
JP2007131463A (en) Method of treating waste plastic containing carbon fiber
JP5213119B2 (en) Method for removing lead from cement firing furnace
JP6357009B2 (en) Raw materials for refining valuable metals and raw material recovery methods for refining valuable metals
JP5904073B2 (en) Method for producing zinc oxide ore
JP2008143728A (en) Method and device for recovering lead from cement production process
JP5686470B2 (en) Silver and lead recovery methods
JP2008190019A (en) Method for collecting lead from cement production process, and collecting apparatus therefor
JP5334312B2 (en) Cement manufacturing apparatus and manufacturing method
JP5441394B2 (en) Cement manufacturing method
JP6094468B2 (en) Method for producing zinc oxide ore
JP5661151B2 (en) Cement kiln extraction gas processing method and processing system
JP2020084235A (en) Manufacturing method of zinc oxide ore
JP6123930B2 (en) Method for producing zinc oxide ore
JP5172728B2 (en) Cement manufacturing method and manufacturing apparatus
JP5247553B2 (en) How to recover lead in cement kilns.
JP2008230942A (en) Method for treating cement kiln combustion gas extracted dust
JP2003286050A (en) Treatment method for dust in kiln exhaust gas
JP7400401B2 (en) Method for producing zinc oxide ore
JP2017128464A (en) Manufacturing method of cement clinker
JP2024053733A (en) Cement clinker manufacturing facility
JP2023167518A (en) Method for producing crude zinc oxide sintered ore
JP2011157269A (en) Method for treating cement kiln combustion gas extracted dust
JP2011084407A (en) Method for reducing lead in cement clinker
JP2010235326A (en) Method for producing clinker

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106622.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719396

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010502757

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107017313

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09719396

Country of ref document: EP

Kind code of ref document: A1