WO2009112609A1 - Nuevos usos del 4-fenilbutirato de sodio (4 pba) y sus sales farmacéuticamente aceptables - Google Patents

Nuevos usos del 4-fenilbutirato de sodio (4 pba) y sus sales farmacéuticamente aceptables Download PDF

Info

Publication number
WO2009112609A1
WO2009112609A1 PCT/ES2009/000121 ES2009000121W WO2009112609A1 WO 2009112609 A1 WO2009112609 A1 WO 2009112609A1 ES 2009000121 W ES2009000121 W ES 2009000121W WO 2009112609 A1 WO2009112609 A1 WO 2009112609A1
Authority
WO
WIPO (PCT)
Prior art keywords
4pba
disease
alzheimer
treatment
pharmaceutically acceptable
Prior art date
Application number
PCT/ES2009/000121
Other languages
English (en)
French (fr)
Inventor
Diana Sara Frechilla Manso
Ana Maria GARCÍA OSTA
Luis Alberto PÉREZ MEDIAVILLA
Ana Lourdes Ricobaraza Abarquero
Original Assignee
Proyecto De Biomedicina Cima, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proyecto De Biomedicina Cima, S.L. filed Critical Proyecto De Biomedicina Cima, S.L.
Priority to JP2010550224A priority Critical patent/JP2011518119A/ja
Priority to AU2009224613A priority patent/AU2009224613A1/en
Priority to CN2009801183670A priority patent/CN102036665A/zh
Priority to EP09719846A priority patent/EP2272515A1/en
Priority to CA2718463A priority patent/CA2718463A1/en
Priority to MX2010009933A priority patent/MX2010009933A/es
Priority to BRPI0909745A priority patent/BRPI0909745A2/pt
Priority to US12/921,933 priority patent/US20110027251A1/en
Publication of WO2009112609A1 publication Critical patent/WO2009112609A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • A61K31/06Phenols the aromatic ring being substituted by nitro groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/25Growth hormone-releasing factor [GH-RF], i.e. somatoliberin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • C12Y304/24011Neprilysin (3.4.24.11), i.e. enkephalinase or neutral endopeptidase 24.11

Definitions

  • the present invention falls within the field of biotechnology applied to the medical-pharmaceutical sector for the treatment of cognitive disorders in dementias that occur with taupatias, and especially Alzheimer's.
  • the present invention provides a new treatment for said diseases based on the use of 4PBA.
  • AD Alzheimer's disease
  • Alzheimer's disease is related to deposits of aggregate proteins: intracellular aggregates of phosphorylated tau in the neurofibrillary tangles and extracellular aggregates of ⁇ 3-amyloid (A ⁇ ) in the senile plaques. Therefore, Alzheimer's disease is a very representative example of diseases related to abnormal protein folding (Selkoe 2004).
  • the endoplasmic reticulum (ER) is a site of particular importance in the process of quality control of processes related to proteins, since it regulates the synthesis, folding and trafficking of proteins in the body.
  • the continuous production of proteins requires strict maintenance of quality control, which is carried out in the ER.
  • ER does not always work with adequate accuracy and poorly folded proteins can accumulate inside. This situation may occur because there are proteins that are difficult to fold, such as those responsible for Alzheimer's disease, and also because the proteins are synthesized with faster than the ER can double them. This leads to a situation of "stress" of the ER.
  • the sensors are activated and begin to deliver a series of signals aimed at stopping the synthesis of most of the proteins, and on the other hand to regulate the rate of doubling, so that it is possible to correctly bend all the proteins and ultimately recover the RE from your stress.
  • RE stress is a key event when it comes to triggering and mediating neuronal death in Alzheimer's disease.
  • Several types of cellular stress can cause the accumulation of abnormally folded proteins in the ER lumen, triggering this stress situation activating protein quality control mechanisms to prevent their toxic actions (or the response to known unfolding proteins by its acronym in English UPR "Unfolded Protein Response”).
  • the activation of the UPR control mechanism produces a general reduction in protein synthesis, greater protein degradation and increasing the transcription of genes that encode molecular companions residing in the ER, such as glucose-regulated proteins (GRPs) GRP78 / Bip and GRP94, together with the protein disulphide isomerase (PDI), to facilitate protein folding (Kozutsumi et al., 1998).
  • GRPs glucose-regulated proteins
  • PDI protein disulphide isomerase
  • the UPR is not able to resolve the stress of the ER that neuronal cells are experiencing, it is very possible that a progression of the disease will be achieved, triggering the apoptosis of neurons. Such would be the situation of the most common and devastating neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's disease, which are characterized by the accumulation and aggregation of unfolded proteins. Therefore, it is not surprising that many researchers have found evidence that under these extreme conditions the UPR is also activated. In this case this activation ends up doing more damage than benefit; The initial response is protective, but the final response is destructive.
  • 4PBA is a low molecular weight fatty acid whose use has been approved in clinical practice as an ammonia sequestrant in children suffering from urea cycle disorders (Maestri et al., 1996) and in the treatment of sickle cell anemia and thalassemia due to its ability to activate transcription of fetal hemoglobulin (Dover et al., 1994; Collins et al., 1995). Its beneficial effect has also been documented in patients with Spinal Muscular Atrophy (Mercuri E, et al. 2004; Mercuri E, et al. 2007).
  • 4PBA can act as a chemical companion by reversing the processes of abnormal localization and / or aggregation of proteins associated with human diseases (Rubenstein and Zeitlin, 2000; Kubota et al., 2006). Likewise, 4PBA can play a protective role in certain diseases associated with the neuroinflammatory response such as multiple sclerosis and ischemia (Dasgupta et al., 2003; Qi et al., 2004). The medical literature also cites its beneficial effects on polyglutamine toxicity (Steffan et al., 2001).
  • the patent WO99 / 026657 protects the use of inducible nitric oxide synthase (iNOS) inhibitor compounds.
  • iNOS inducible nitric oxide synthase
  • the reference to PBA is made marginally in the context of a ratio of iNOS inhibitor compounds (lovastatin, forscolin, mevastatin, etc.).
  • lovastatin, forscolin, mevastatin, etc. there is no experiment aimed at demonstrating the beneficial effect of PBA in a contrasted model of AD.
  • tau phosphorylation is an integral component of neural machinery, so that a lack of regulation of this function leads to a deterioration of memory in the development of diseases such as Alzheimer's (Arendt et al., 2003; Ikeda et al., 2007).
  • Histone acetylation mediates the regulation of gene transcription via chromatin modification, and therefore has recently been implicated in synaptic plasticity.
  • the administration of 4PBA has been shown to increase histone acetylation in a murine model expressing amyotrophic lateral sclerosis (Petri S, et al., 2006). Consequently, it He speculated that 4PBA, by inhibiting histone deacetylase, can induce a transcriptional modification that leads to the activation of neuronal plasticity genes. Andreassi et al. (2004) directly related the administration of 4PBA with the increase in the complete expression of genes whose loss is responsible for Spinal Muscular Atrophy.
  • Gene transcription requires the activation of transcription factors, but also the induction of dynamic changes in the chromatin organization that directs gene expression. Hypeacetylation of histones releases histones from their binding with chromatin, which has subsequent effects on gene transcription processes (Lea and Randolph, 1998) and protein synthesis. It has been shown that the synthesis of RNA and "de novo" proteins are necessary for the long-term memory formation process in several species of vertebrate and invertebrate animals, and that the formation of new synaptic connections will probably mediate ( Tully et al., 2003).
  • the histone acetylation process controls the transcription of the genes necessary for memory consolidation and long-term synaptic potentiation (LTP) (Bailey et al., 2004, Levenson and Sweatt 2005; Fischer et al., 2007 ).
  • LTP long-term synaptic potentiation
  • HAT histone acetyltransferase
  • HDAC histone deacetylase
  • Some studies have shown that gene transcription has been deregulated in some brain regions in association with disease progression and supports the notion of a mechanism for disruption of RNA transcription in some degenerative disorders (Anderson et al., 2007).
  • the GIuRl subunit of the AMPA receptor and PSD95 are postsynaptic markers of crucial importance in synapse formation and function.
  • the postsynaptic deficits of PSD95 and GIuRl found in the brains of patients affected by Alzheimer's disease and in the brains of Tg2576 transgenic mice can contribute to synaptic dysfunction and cognitive function deficits (Almeida et al., 2005).
  • Several studies have already outlined the spectrum of genes altered by 4PBA that prevent neurotoxicity in different experimental models (Chang and Min, 2002; Kang et al., 2002; Ryu et al., 2005).
  • the pathophysiology of many degenerative disorders such as Alzheimer's disease, and also neuroprotection, probably comprise numerous mechanisms.
  • these pathogenic mechanisms mainly include the aggregation and deposition of AJ3 with the development of plaques, hyperphosphorylation of tau with the formation of clews, neurovascular dysfunction, and other mechanisms such as alterations of the cell cycle , inflammatory processes, oxidative stress and mitochondrial dysfunction.
  • the central hypothesis about the cause of Alzheimer's disease is the amyloid cascade hypothesis.
  • Alzheimer's disease will be the great challenge of socio-health planning for the next 50 years. Since there is no effective treatment for Alzheimer's disease, this invention describes the ability of 4PBA, through its multiple mechanisms, to reverse the deterioration in the learning process and memory function characteristic of Alzheimer's disease in a model murine
  • Fischer et al in 2007 is not a representative model of Alzheimer's disease, since it does not reproduce the pathogenic mechanisms related to human beta-amyloid protein or aberrant phosphorylation of tau. In particular, it only represents the deficient expression of the p25 protein, a truncated form of p35, which is a regulatory subunit of the cyclin-5 dependent kinase (CDK5).
  • CDK5 cyclin-5 dependent kinase
  • the inventors of the present invention using a transgenic mouse model agreed and validated for Alzheimer's disease, ie Tg2576, which expresses a variety of human beta-amyloid precursor protein (APP) related to the disease of the Alzheimer's have surprisingly found that 4-phenylbutyrate is effective in the treatment of Alzheimer's disease.
  • the inventors have been able to demonstrate that clinical symptoms are improved as well as memory acquisition and retention, and most importantly, they have also shown that after administration of 4PBA, hyperphosphorylated tau levels are reduced.
  • the present invention describes the potentially beneficial role of 4PBA in Alzheimer's type amnesia.
  • the results obtained suggest that the effect of 4PBA is likely to be mediated, on the one hand by the protection that confers cells against the effects of endoplasmic reticulum stress by increasing levels of molecular companions and inducing tau dephosphorylation, and by another part by increasing the acetylation of histone H4 that induces the expression of synaptic markers, which in turn leads to the recovery of long-term spatial memory.
  • H4 in the cerebral cortices of Tg2576 transgenic mice could be related to a very densely packed chromatin structure that would correspond to transcriptional repression.
  • the present invention relates to the use of 4PBA or a pharmaceutically acceptable salt thereof for the prevention and / or treatment of Alzheimer's disease.
  • the present invention relates to the use of 4PBA or a pharmaceutically acceptable salt thereof for obtaining a medicament for the prevention and / or treatment of Alzheimer's disease.
  • the present invention describes a method for preventing or treating Alzheimer's disease, which comprises the administration of a pharmaceutically acceptable amount of 4PBA or a pharmaceutically acceptable salt thereof to a subject in need of such prevention or treatment.
  • 4PBA used here also refers to those metabolites or compounds resulting from its metabolization in the body.
  • the embodiments of the present invention related to the different therapeutic uses of this compound also comprise the use of its metabolite, that is, phenylacetate.
  • the present invention relates to 4PBA or any of its pharmaceutically acceptable salts, or of a composition comprising 4PBA or any of its pharmaceutically acceptable salts, for use in the prevention or treatment of dementias that occur with taupathy, and more particularly for use in the prevention or treatment of cognitive disorders in said dementias.
  • the invention also relates to the use of 4PBA or any of its pharmaceutically acceptable salts, or of a composition comprising 4PBA or any of its pharmaceutically acceptable salts, in the preparation of a medicament for prevention or treatment of dementias that occur with taupathy, and in particular of the cognitive disorders associated with these dementias.
  • the invention particularly relates to the sodium salt of 4PBA for use in the prevention or treatment of dementias that occur with taupathy.
  • 4PBA is 4-phenyl-butyric acid (4-phenyl-butyrate), a commercially available product, which can be obtained for example from SIGMA-ALDRICH (Product No.: P21005); It has registration number CAS 1821-12-1; Its chemical formula is C 6 H 5 (CH 2 ) 3 COOH.
  • the sodium salt of 4PBA is also a commercially available product, which can be obtained for example from BIOMOL International LP (Palatine House, Matford Court, Starbucks EX2 8NL, UK; Catalog No. EI320); It has registration number CAS 1716-12-7; Its chemical formula is C 6 H 5 (CH 2 J 3 COONa; and its structural formula is:
  • this compound can be obtained by known methods.
  • Buphenyl ® and Ammonaps ® are trademarks of sodium phenyl butyrate compositions, authorized by the FDA and EMEA respectively, for the treatment of urea cycle disorders. It can also be found under the trademark TriButyrate ® (Triple Crown America).
  • pharmaceutically acceptable means that the compound or combination of compounds must be compatible with the rest of the ingredients in a formulation, and not deleterious to the subject or patient who receives it.
  • 4PBA salts are those in which the counter-ion is pharmaceutically acceptable.
  • composition comprising 4PBA or a pharmaceutically acceptable salt thereof is a pharmaceutical composition, which also comprises a pharmaceutically acceptable carrier or excipient.
  • the pharmaceutically acceptable salts mentioned above are considered to comprise the active non-toxic forms that 4PBA can form.
  • Pharmaceutically acceptable salts can be conveniently obtained by treating the acid form of 4PBA with the appropriate cations.
  • Appropriate basic salts include those formed with organic cations such as benzathine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine, procaine and those formed with metal cations such as aluminum, calcium, lithium, magnesium, potassium, sodium and zinc.
  • salt forms can be converted into their free forms by treatment with an appropriate acid.
  • salts is also intended to include the hydrates and solvates that 4PBA can form, such as, for example, alcoholates such as methanolates or ethanolates.
  • solvate refers to those crystalline forms of 4PBA that comprise both stoichiometric and non-stoichiometric amounts of solvent. Since water is a solvent, solvates also include hydrates.
  • pseudopolymorph is a synonym for solvate when it refers to crystalline polymorphic forms that have solvent molecules incorporated into their laminar structures. Hydrates and Alcoholates such as methanolates or ethanolates are examples of this type of solvates.
  • prevention refers to the act of "preventing”, understood to prevent the occurrence, existence, or alternatively delaying, the occurrence or recurrence of a disease, disorder or condition to which said term applies, or of one or several of the symptoms associated with the disease, disorder or condition.
  • treatment refers to the act of "treating”, a term that in turn is understood as reversing, alleviating or inhibiting the progression of the disease, disorder or condition to which the term applies, or of one or more of the symptoms of said disease, disorder or condition.
  • “Dementias that occur with taupathy” refers to neurodegenerative diseases in which there is an alteration of the metabolism of the Tau protein and in which one of its most relevant symptoms or consequences is the appearance of cognitive disorders.
  • the use of 4PBA or its salts is useful for the prevention or treatment of cognitive disorders associated with such dementias.
  • the invention relates to the prevention or treatment of diseases such as Alzheimer's, frontotemporal dementia, progressive supranuclear paralysis, corticobasal degeneration, Pick's disease, Lewy body dementia, dementia with argyrophilic grains, Niemann-Pick type C disease, or pugilistic dementia.
  • diseases such as Alzheimer's, frontotemporal dementia, progressive supranuclear paralysis, corticobasal degeneration, Pick's disease, Lewy body dementia, dementia with argyrophilic grains, Niemann-Pick type C disease, or pugilistic dementia.
  • a more preferred embodiment of the present invention is the use of the sodium salt of 4PBA in the manufacture of a medicament for the treatment of the described diseases.
  • the invention in another aspect relates to a composition comprising 4PBA or any of its pharmaceutically acceptable salts for use in the prevention or treatment of dementias that occur with taupathy, and in particular of the cognitive disorders associated with them.
  • the composition comprises the sodium salt of 4PBA.
  • a particular embodiment concerns a pharmaceutical composition comprising a pharmaceutically acceptable salt of 4PBA and a pharmaceutically acceptable carrier for use in the prevention and treatment of Alzheimer's disease.
  • So another embodiment of the present invention to enhance its healing effect is a combination that It comprises 4PBA and / or any of its pharmaceutically acceptable salts as the first active ingredient together with a second active ingredient agent that is an inducing or facilitating agent for the clearance of cerebral ⁇ -amyloid deposits.
  • a more preferred embodiment uses metal chelating agents, catabolizing enzymes of the soluble form of the ⁇ -amyloid peptide, cerebrolysin or nitrophenols as the inducing agent for said deposits.
  • Another embodiment of the present invention offers an acceptable pharmaceutical combination comprising 4PBA or one of its pharmaceutical salts as the first active ingredient, a second active ingredient agent is an inducer or a facilitating agent for the clearance of ⁇ -amyloid deposits in the brain, and a pharmaceutically acceptable vehicle.
  • a more preferred embodiment uses as a inducing agent for the clearance of said deposits, metal chelating agents, catabolizing enzymes of the soluble form of the ⁇ -amyloid peptide, cerebrolysin or nitrophenols.
  • a more preferred embodiment is the use of clioquinol, cerebrolysin, or 2,4-dinitrophenol or 3-nitrophenol as a clearing agent.
  • a more preferred embodiment is the use of clioquinol, cerebrolysin, IDE insulin degrading enzyme or neprilysin, or 2,4,4-dinitrophenol or 3-nitrophenol as a deposit clearance inducing agent.
  • Another embodiment of the invention is therefore the use of a product containing 4PBA and / or any of its pharmaceutically acceptable salts as the first active ingredient, and a second active ingredient that is an inducing or facilitating agent for the clearance of ⁇ - deposits.
  • cerebral amyloid as a combined preparation for simultaneous use in the prevention and / or treatment of cognitive disorders in dementias that occur with taupathy.
  • this combined preparation is designed for a separate use of both active ingredients, and yet another embodiment is that it is for sequential use.
  • the two active components or ingredients of the pharmaceutical combination of the invention may be part of the same unit pharmaceutical formulation; or forming part of separate pharmaceutical formulations for co-administration of the two active components or ingredients but forming part of the same therapeutic regimen.
  • the two components are administered in separate formulations, they do not need to be administered at the same time, although it could be done if desired.
  • the invention relates to a product or kit comprising a pharmaceutical combination comprising 4PBA and / or any of its pharmaceutically acceptable salts together with an inducing or facilitating agent for the clearance of cerebral ⁇ -amyloid deposits, in any of the specified embodiments.
  • the invention relates to said pharmaceutical combination or kit comprising said pharmaceutical combination for use in the prevention or treatment of dementias that occur with taupathy, and particularly associated cognitive disorders.
  • Said combination or kit is useful for the preparation of a medicament for the prevention of said dementias, in particular any of those specified above, and more particularly for Alzheimer's disease.
  • the invention also relates to a method for prevention or treatment of dementias that occur with taupathy, and particularly of the cognitive disorders associated therewith, which comprises administering to a subject in need of such prevention and / or treatment a pharmaceutically effective amount of 4PBA or any of its pharmaceutically acceptable salts, or of a composition comprising 4PBA or any of its pharmaceutically acceptable salts, or one of a pharmaceutical combination comprising 4PBA and / or any of its pharmaceutically acceptable salts together with an inducing or facilitating agent for the clearance of cerebral ⁇ -amyloid deposits.
  • pharmaceutically effective amount refers to an amount of compound or combination of active compounds that is effective in the treatment of the disease, which improves, attenuates or eliminates one or more of its symptoms; or prevents or delays the appearance of one or more symptoms of the disease.
  • the dose of active substances of the present invention depends on each individual case and, usually, has to be adapted to the individual conditions of the case for optimal effect. . Therefore, it depends, of course, on the frequency of administration and the potency and duration of the action of the compound used in each case for therapy or prophylaxis, but also on the nature and severity of the disease and symptoms, and on sex. , age, weight, co-medication and the responsibility of the human or animal being treated and whether the therapy is acute or prophylactic.
  • the therapeutically effective amount of 4PBA and / or its pharmaceutically acceptable salts should be in the following ranges, from 1 mg to 200 g per day, from 2 mg to 150 g per day, from 5 mg to 100 g per day, from 10 mg to 75 g per day, from 20 mg to 75 g per day, from 50 mg to 75 g per day, from 0.1 g to 75 g per day, from 0.2 g up to 75 g per day, from 0.5 to 75 g per day, from 1 g to 50 g per day and from 5 g to 50 g per day.
  • subject means an animal, in particular a mammal such as primates, dogs, cats, bovine animals, horses, sheep and humans. It applies particularly to human mammals of both sexes.
  • a preferred form of administration of the medicament preparation containing 4PBA for the uses described above is in tablets containing its sodium salt.
  • the pharmaceutical preparation of these tablets may comprise excipients such as microcrystalline cellulose, magnesium stearate or colloidal silicon dioxide.
  • Another preferred form of administration is a powder containing the 4PBA sodium salt and an excipient to be dissolved in water.
  • the pharmaceutical preparation of this powder may comprise excipients such as calcium stearate or colloidal silicon dioxide.
  • Figure IA Latency times of transgenic mice treated with 4PBA and with saline, with respect to non-transgenic mice, on different days of measurement of a Morris test in the visible platform phase.
  • Figure IB Latency times of transgenic mice treated with 4PBA and saline, with respect to non-transgenic mice, on different days of measuring a Morris test in the invisible platform phase.
  • Figure IC Time of permanence in the correct quadrant of the transgenic mice treated with 4PBA and with saline, with respect to non-transgenic mice, on different days of measurement of a Morris test.
  • Figure 2A Levels of derivatives of peptides A ⁇ 42 and A ⁇ 40 in bark extract of transgenic mice treated with 4PBA and with saline.
  • Figure 2B Plating of plaques formed by accumulation of the A ⁇ peptide in the brain of transgenic mice treated with 4PBA and with saline compared to non-transgenic mice.
  • Figure 3A Relationship between phosphorylated tau levels with respect to normal protein in transgenic mice treated with 4PBA and saline, with respect to non-transgenic mice.
  • Figure 3B Relationship between levels of phosphorylated GSK3 (inactive form) with respect to unphosphorylated protein (active form) in transgenic mice treated with 4PBA and saline, with respect to non-transgenic mice.
  • Figure 4 GRP78 expression levels in hippocampal extracts of transgenic mice treated with 4PBA and saline, compared to non-transgenic mice.
  • FIG. 5 Levels of Histones 4 (AcH4) and histone 3 (AcH3) acetylated in bark extracts of transgenic mice treated with 4PBA and saline, compared to non-transgenic mice.
  • Figure 6 GIuRl, PSD95 and MAP-2 protein expression levels in membrane-enriched protein extracts obtained from the hippocampus of transgenic mice treated with 4PBA and saline, with respect to non-transgenic mice.
  • Tg2576 transgenic mice with Alzheimer's disease that express the human isoform 695-aa of APP containing the Swedish double mutation APPswe [(APP695) Lys670 ⁇ Asn, Met671 ⁇ Leu] triggered by a hamster cryonic promoter.
  • the content of the A ⁇ peptide in the brain accumulates exponentially between 7 and 12 months of age, and the mice so manipulated showed deterioration of the function of memory when they were subjected to the Morris water maze test when they reached ages between 12 and 15 months.
  • the 16-month-old Tg2576 mouse females were treated once daily intraperitoneally with 200 mg / kg 4PBA or their vehicle for 5 weeks.
  • a solution of 4PBA was prepared by titrating equimolecular amounts of 4-phenylbutyric acid (Sigma) and sodium hydroxide with a pH: 7.4.
  • a control group a group of non-genetically altered mice, normal mice, of similar strains and age was used. All clinical trial procedures were performed according to European and Spanish legislation (86/609 / EEC; RD1201 / 2005).
  • the labyrinth consisted of a circular pool full of water at 20 0 C. The mice received prior training in a pool with a visible platform for three consecutive days (8 tests / day) being able to swim to an elevated platform by above water level.
  • the hidden platform training lasted 9 consecutive days (4 tests / day) during which the mice were allowed 60 seconds to find the submerged platform 1 cm below the water surface. The mice that found it impossible to reach the platform were guided to it. All animals were allowed a rest on the 20-second platform and then removed from it to return them to their cages. At the beginning of the 4 th, 1st and final day of the test, a pre - test during which the pool deck was removed and allowed the mice search for 60 seconds was performed. All attempts were monitored with an HVS camera and the Watermaze program to analyze the escape latencies and the percentage of occupancy time of each quadrant of the pool during the previous tests (with the Ethovision program, Wageningen, The Netherlands). Mice that were not able to learn to locate the visible platform or mice that exhibited abnormal swimming patterns or were floating persistently were excluded from the analyzes.
  • mice were subjected to a previous test during which they were made to swim in the pool from which the platform had been removed for 15 seconds.
  • a measure of retention memory is the percentage of 15 seconds of swimming in the quadrant in which the platform was during training sessions (target quadrant).
  • the percentage of time that the vehicle-treated transgenic mice spent in the target quadrant was significantly less than that of the control group mice.
  • the amount of time that the transgenic mice treated with 4PBA spent in said quadrant did not differ from that of the mice of the same age control group (Fig. IC). Although the differences were evident in the invisible platform test, the escape latencies did not differ significantly during the first training tests with visible platform (Fig. IA).
  • mice were sacrificed 24 hours after they performed the last test in the Morris water maze.
  • the cortex and hippocampus were dissected and used to perform biochemical analyzes.
  • the levels of AJ340 and AJ342 in the cerebral cortex were then determined by a sandwich ELISA.
  • extracts of frontal cerebral cortex were obtained from the mice and homogenized in a cold lysis buffer with protease inhibitors (0.2 M NaCl, 0.1 M HEPES, 10% glycerol, 200 mM NaF, 2 mM Na4P2O7, 5 mM EDTA, 1 mM EGTA, 2 mM DTT, 0.5 mM PMSF, 1 mM Na 3 VO 4 , 1 mM benzamidine, 10 ⁇ g / ml leupeptin, 400 U / ml aprotinin), and se were centrifuged at 14,000 xg 4 ° C for 20 min and aliquots of the supernatant stored at -80 0 C. were obtained the total protein concentration was obtained with the Bradford BioRad Bradford (BioRad Laboratories, Hercules, California) test.
  • protease inhibitors 0.2 M NaCl, 0.1 M HEPES, 10% glycerol, 200 m
  • Example 5 Pathological markers of Alzheimer's disease To investigate the changes that could explain the differences observed in the learning capacity of transgenic mice after treatment, phosphorylation levels of tau in the hippocampus extracted from mice were analyzed using AT8 , a phospho-specific antibody that recognizes hyperphosphorylated aberrant epitopes on Ser-202 / Thr-
  • Fig. 3A The phosphorylation function of tau is regulated by several protein kinases and phosphatases. It has been shown that GSK3b participates in the pathological phosphorylation of tau. The levels of inactive GSK3b, phosphorylated in Ser 9, were measured and found to be higher in the hippocampi of transgenic mice treated with 4PBA when compared to mice treated with the vehicle, which would explain the reduction in phosphorylated form of tau observed in the treated mice ( Figure 3B).
  • the next step of the investigation was to analyze the levels of the molecular companion resident in the GRP78 endoplasmic reticulum in the hippocampus of transgenic mice and bait brothers of the control group mice.
  • GRP78 levels were found to be lower in the hippocampus of 16 month old transgenic mice when compared to those of mice of the same age.
  • the GRP78 levels of transgenic mice treated with 4PBA did not differ from the levels of GRP78 found in non-transgenic mice, suggesting that the effect of 4PBA treatment may be due in part to an increase in the expression of the GRP78 levels (Fig. 4).
  • Tg2576 16-month-old transgenic mice showed very low levels of H4 acetylation when compared with those of mice in the same age control group. Therefore, induction was found in acetylation of cortical histone 4 (H4) in transgenic mice that had been treated with 4PBA (Fig. 5).
  • the GIuRl subunit of the AMPA receptor, PSD95 and MAP-2 are vitally important plasticity markers in the formation and function of the synapse.
  • the microtubule association protein (MAP-2) is a protein located mainly in neuronal dendrites.
  • the expression of MAP-2 coincides with the growth, branching and dendritic remodeling post-injury, suggesting that this protein plays a crucial role in plasticity.
  • a quantitative analysis of MAP-2 was performed by Western Blott, and it was found that MAP-2 expression levels were significantly lower than those of the non-transgenic mouse (54.9 + 10.7) compared to non-transgenic mice (100.0 ⁇ 14.9) and partially restored after treatment with 4PBA. (77.7 ⁇ 11.6) (Fig. 6).
  • Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GIuRl in synapses. Neurobiol Dis 20: 187-198.
  • Kang HL Benzer S, Min KT (2002). Life extension in Drosophila by feeding a drug.
  • Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response, Nat CeIl Biol 1, 479-485.
  • Histone deacetylase inhibitors exhibit anti-inf lammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321: 892-901. - Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1998). The presence of malfolded proteins in the endoplasmic reticulum sign the induction of glucose-regulated proteins. Nature 332: 462-464.
  • ASKl is essential for endoplasmic reticulum stress -induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16: 1345-55.
  • Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413: 739-743.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Endocrinology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurosurgery (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Neurology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Se describe el uso del 4-fenilbutirato de sodio (4 PBA) en la fabricación de un medicamento útil para el tratamiento de trastornos cognitivos en demencias que cursan con taupatías. El tratamiento con 4 PBA mejora el déficit cognitivo de un modelo murino clásico de Enfermedad de Alzheimer (EA) (Tg 2576), que se acompaña con la disminución de un marcador característico de patología EA, como es la Tau fosforilada, y en el incremento de la síntesis de algunas proteínas marcadoras de la plasticidad sináptica, como GIuR1 y PSD95. Como mecanismo mediador del efecto terapéutico proponemos la disminución del estrés en el retículo endoplásmico manifestada en forma de incremento de la proteína GRP78. Por otro lado su efecto como inhibidor de la desacetilación de histonas y su implicación en la remodelización de la cromatina facilita los procesos de síntesis proteica, lo que mejora la plasticidad sináptica.

Description

NUEVOS USOS DEL 4-FENILBUTIRATO DE SODIO (4PBA) Y SUS SALES FARMACÉUTICAMENTE ACEPTABLES
CAMPO TÉCNICO DE LA INVENCIÓN La presente invención se encuadra dentro del campo de la biotecnología aplicada al sector médico-farmacéutico para el tratamiento de trastornos cognitivos en demencias que cursan con taupatías, y en especial del Alzheimer.
Más específicamente, la presente invención proporciona un nuevo tratamiento para dichas enfermedades basado en el uso de 4PBA.
ESTADO DE LA TÉCNICA ANTERIOR A LA INVENCIÓN
La enfermedad de Alzheimer (EA) es la enfermedad neurodegenerativa más común y la primera causa de demencia
(Cummings y Colé, 2002) . Las características fisiopatológicas de la enfermedad de Alzheimer (EA) están relacionadas con depósitos de proteínas agregadas: agregados intracelulares de tau fosforilado en los ovillos neurof ibrilares y agregados extracelulares de {3-amiloide (Aβ) en las placas seniles. Por lo tanto la enfermedad de Alzheimer es un ejemplo muy representativo de enfermedades relacionadas con el plegamiento anómalo de proteínas (Selkoe 2004) .
El retículo endoplásmico (RE) es un sitio de particular importancia en el proceso de control de calidad de procesos relacionados con las proteínas, ya que regula la síntesis, el plegamiento y el tráfico de proteínas en el organismo. La producción continua de proteínas requiere de un estricto mantenimiento del control de calidad, que se lleva a cabo en el RE. El RE no siempre funciona con la adecuada exactitud y las proteínas mal dobladas pueden acumularse en su interior. Esta situación puede llegar a producirse porque existen proteínas difíciles de doblar, como son las responsables de la enfermedad de Alzheimer, y también porque las proteínas se sintetizan con mayor rapidez de lo que el RE pueden doblarlas. Se llega así a una situación de "estrés" del RE. Si ello sucede, se activan los sensores y comienzan a entregar una serie de señales dirigidas a detener la síntesis de la mayor parte de las proteínas, y por otro lado a regular la velocidad de doblaje, de modo que sea posible doblar correctamente todas las proteínas y en definitiva recuperar al RE de su estrés .
El estrés del RE es un evento clave a la hora de desencadenar y mediar la muerte neuronal en la enfermedad de Alzheimer. Varios tipos de estrés celular pueden causar la acumulación de proteínas plegadas de forma anómala en el lumen del RE, desencadenando esta situación de estrés la activación de los mecanismos de control de calidad proteínicos para prevenir sus acciones tóxicas (o la respuesta a proteínas sin plegar conocida por sus siglas en inglés UPR "Unfolded Protein Response") . La activación del mecanismo de control UPR produce una reducción general de la síntesis de proteínas, mayor degradación proteínica y aumentando la transcripción de genes que codifican a acompañantes moleculares que residen en el RE, como pueden ser las proteínas reguladas por la glucosa (GRPs) GRP78/Bip y GRP94, junto con la proteína disulfido isomerasa (PDI) , para facilitar el plegamiento de proteínas (Kozutsumi et al., 1998) . Así, Katayama et al (1999) demostró que la cantidad de acompañantes moleculares residentes en el retículo endoplásmico, como GRP78 y GRP94, era menor en los cerebros de pacientes afectados por la enfermedad de Alzheimer en comparación con la cantidad hallada en cerebros de individuos de la misma edad del grupo de control, lo que puede llevar a vulnerabilidad frente al estrés del retículo endoplásmico. Estos investigadores sugirieron que la expresión de GRP78 actúa como protección contra la muerte neuronal causada por el estrés del retículo endoplásmico. En consecuencia, un aumento de la expresión de GRP78 puede permitir el desarrollo de estrategias terapéuticas para la Enfermedad de Alzheimer (AD) . Si el UPR no es capaz de resolver el estrés del ER que están experimentando las células neuronales, es muy posible que se llegue a una progresión de la enfermedad, gatillando la apoptosis de las neuronas. Tal sería la situación de las enfermedades neurodegenerativas más comunes y devastadoras, incluyendo el Alzheimer, el Parkinson y la enfermedad de Huntington, que se caracterizan por la acumulación y agregación de proteínas no dobladas. Por ello no sorprende que numerosos investigadores hayan encontrado evidencias de que en estas condiciones extremas también se activa el UPR. En este caso esta activación termina haciendo más daño que beneficio; la respuesta inicial es protectora, pero la respuesta final es destructiva.
Hay varias situaciones que favorecen la acumulación de proteínas en el cerebro. El envejecimiento representa el mayor factor de riesgo en el desarrollo de la EA. La capacidad de inducción de la expresión de chaperonas antes una situación de estrés celular disminuye con la edad. También se ha demostrado que la UPR no se activa de forma correcta en animales de edad avanzada. Así, con la edad se aumenta la susceptibilidad del RE al estrés del retículo y al efecto tóxico de acumulación de proteínas. El estrés del retículo puede ser inducido por episodios de hipoxia y/o hipoglicemia, que son situaciones comunes que ocurren en el proceso normal de envejecimiento. Además, si la actividad del proteosoma disminuye con la edad, se esta mas susceptible al efecto tóxico de la formación de agregados proteicos anómalos.
Con la edad, se puede generar en el cerebro un escenario en el que las enfermedades neurodegenerativas relacionadas con la acumulación anómala de proteínas tienen alta probabilidad de desarrollarse . La interrupción del sistema proteínico del RE es un factor que- se ha incluido en varias enfermedades humanas; además del
Alzheimer, las enfermedades de Huntington y de Parkinson
(Katayama et al., 2001; Nishitoh et al., 2002; Ryu et al., 2002) . Existe una serie de compuestos llamados "acompañantes químicos" (o también conocidos en su acepción inglesa como
"chaperones químicos") como el glicerol, el dimetilsulfóxido
(DMSO) y el 4-fenilbutirato de sodio o 4-PBA que han demostrado mejorar los procesos anómalos durante el plegamiento y localización proteínicos (Sato et al., 1996; Chaudhuri and Paul,
2006; Kubota et al., 2006), y cuya administración ha inhibido la muerte neuronal en modelos murinos de Parkinson (Masatoshi I, et al. , 2007) .
El 4PBA es un ácido graso de bajo peso molecular cuyo uso ha sido aprobado en la práctica clínica como secuestrador de amoníaco en niños que padecen trastornos del ciclo de la urea (Maestri et al., 1996) y en el tratamiento de anemia falciforme y talasemia debido a su capacidad de activar la transcripción de hemoglobulina fetal (Dover et al., 1994; Collins et al., 1995) . También se ha documentado su efecto beneficioso en pacientes con Atrofia Muscular Espinal (Mercuri E, et al. 2004; Mercuri E, et al. 2007) . Se ha demostrado que el 4PBA puede actuar como acompañante químico revirtiendo los procesos de localización anómala y/o agregación de proteínas asociadas a enfermedades humanas (Rubenstein y Zeitlin, 2000; Kubota et al., 2006) . Asimismo, el 4PBA puede jugar un papel protector en ciertas enfermedades asociadas a la respuesta neuroinflamatoria como la esclerosis múltiple y la isquemia (Dasgupta et al., 2003; Qi et al., 2004) . La literatura médica también cita sus efectos beneficiosos sobre la toxicidad poliglutamínica (Steffan et al., 2001) .
Potencialmente beneficioso para el tratamiento de la EA y de otras enfermedades con un componente inflamatorio, la patente WO99/026657 protege el uso de compuestos inhibidores de la óxido nítrico sintasa inducible (iNOS) . La referencia al PBA se hace de manera marginal en el contexto de una relación de compuestos inhibidores de la iNOS (lovastatina, forscolina, mevastatina, etc) . Sin embargo, en su descripción no aparece ningún experimento dirigido a demostrar el efecto beneficioso del PBA en un modelo contrastado de EA.
En los efectos de señalización corriente debajo de la sobrecarga o estrés de RE se ha demostrado además que la fosforilación aberrante de tau juega un papel decisivo, y común a muchas enfermedades degenerativas (Hernández y Ávila, 2007) . La tau fosforilada está libre, tiene una afinidad reducida por los microtúbulos y poca capacidad por tanto para promover el ensamblaje de éstos. Responsable de esta fosforilación aberrante de tau es la glicógeno-sintasa kinasa sobreactivada 3α/β (GSK) (Kim et al., 2007) . Los agregados de fosfo-tau son una de las características identif icadoras de la EA y de otras taupatías. Las estrategias para la protección celular contra la sobrecarga del RE pueden inhibir directamente la actividad de GSK3 y consecuentemente reducir la fosforilación de tau y su toxicidad. Es posible que la fosforilación de tau sea un componente integral de la maquinaria neural, de forma que una falta de regulación de dicha función conduzca a un deterioro de la memoria en el desarrollo de enfermedades como la de Alzheimer (Arendt et al., 2003; Ikeda et al., 2007) .
Otra reacción relacionada con los comportamientos de procesos de aprendizaje es la acetilación de histonas. La acetilación de histonas media la regulación de la transcripción génica vía modificación de la cromatina, y por lo tanto se ha implicado recientemente en la plasticidad sináptica. Se ha comprobado que la administración de 4PBA aumenta la acetilación de histonas en un modelo murino que expresa Esclerosis lateral Amiotrófica (Petri S, et al., 2006) . Consecuentemente, se especuló que 4PBA, mediante la inhibición de la histona deacetilasa, puede inducir una modificación transcripcional que conduzca a la activación de genes de plasticidad neuronal . Andreassi y col. (2004) relacionaron de forma directa la administración de 4PBA con el aumento de la expresión completa de los genes cuya pérdida es responsable de la Atrofia Muscular Espinal .
Por lo tanto, es probable que un aumento de la acetilación de la histona H4 regule programas de transcripción que son relativamente específicos. El tráfico de los receptores AMPA en la membrana postsináptica es una indicación de transmisión rápida y de plasticidad sináptica.
La transcripción génica requiere la activación de factores de transcripción, pero también la inducción de cambios dinámicos en la organización de la cromatina que dirige la expresión génica. La hiperacetilación de las histonas libera a las histonas de su unión con la cromatina, lo que tiene efectos subsiguientes en los procesos de transcripción génica (Lea y Randolph, 1998) y de síntesis de proteínas. Se ha demostrado que la síntesis de RNA y de proteínas "de novo" son necesarios para el proceso de formación de la memoria de largo plazo en varias especies de animales vertebrados e invertebrados, y que va a mediar probablemente la formación de nuevas conexiones sinápticas (Tully et al., 2003) . Se cree que la formación de memoria de largo plazo conlleva cambios duraderos en la expresión génica, y existe cada vez más evidencia de la probable participación en este proceso de la modificación de las histonas y de la metilación del ADN (Bailey et al., 2004; Levenson y Sweatt 2005) . El trabajo de Fischer et al. (2007) demostró que el aumento de la acetilación de las histonas mediante inyección de un inhibidor de la histona deacetilasa (HDAC) , o mediante enriquecimiento ambiental, facilitaba la función de la memoria en un modelo experimental con ratones a los que se les había provocado una enfermedad neurodegenerativa. La mejora del proceso de aprendizaje y en la consolidación de la memoria se correlacionó con un aumento de la transcripción y más directamente con un aumento de la regulación de los marcadores de plasticidad sináptica y marcadores dendríticos, lo que sugiere un nuevo mecanismo que puede mejorar la función de la memoria.
El proceso de acetilación de las histonas controla la transcripción de los genes necesarios para la consolidación de la memoria y de la potenciación sináptica de largo plazo (LTP) (Bailey et al., 2004, Levenson y Sweatt 2005; Fischer et al., 2007) . La actividad aberrante de la histona acetiltransferasa (HAT) y de la histona deacetilasa (HDAC) puede ser también un mecanismo común en enfermedades neurológicas que contribuye a la neurodegeneración, como el infarto, la enfermedad de Huntington, esclerosis lateral amiotrófica, ataxia de Friedreich, y la enfermedad de Alzheimer (según la revisión de Langley et al., 2005) . Algunos estudios han demostrado que la transcripción génica se ha desregulado en algunas regiones cerebrales en asociación con la progresión de la enfermedad y apoyan la noción de la existencia de un mecanismo de disrupción de la transcripción del ARN en algunos trastornos degenerativos (Anderson et al., 2007) .
La subunidad GIuRl del receptor AMPA y PSD95 son marcadores postsinápticos de crucial importancia en la formación y función de sinapsis. Los déficits postsinápticos de PSD95 y GIuRl hallados en los cerebros de pacientes afectados por la enfermedad de Alzheimer y en los cerebros de ratones transgénicos Tg2576 pueden contribuir a la disfunción sináptica y a déficits de la función cognitiva (Almeida et al., 2005) . En concordancia con dicha noción, los investigadores observaron que los marcadores de la reducción en la expresión de la subunidad GIuRl del receptor AMPA y de PSD95 en los hipocampos de ratones transgénicos Tg2576 tratados con 4PBA experimentaron una mejoría (o restauración) que podría contribuir a la mejoría de las funciones cognitivas. Varios estudios ya han perfilado el espectro de genes alterados por 4PBA que previenen la neurotoxicidad en diferentes modelos de experimentación (Chang y Min, 2002; Kang et al., 2002; Ryu et al., 2005).
La patof isiología de muchos trastornos degenerativos, como la enfermedad de Alzheimer, y también la neuroprotección, comprenden probablemente numerosos mecanismos. En el caso particular de la enfermedad del Alzheimer, estos mecanismos patogénicos incluyen principalmente la agregación y depósito de AJ3 con el desarrollo de placas, la hiperfosforilación de tau con la formación de ovillos, la disfunción neurovascular, y otros mecanismos como las alteraciones del ciclo celular, los procesos inflamatorios, el estrés oxidativo y la disfunción mitocondrial . La hipótesis central sobre la causa de la enfermedad del Alzheimer es la hipótesis de la cascada amiloidea.
Se calcula que a lo largo de los próximos 50 años se triplicará el número de enfermos de la EA, llegando a los 13,2 millones de afectados en 2050. Este incremento se debe al crecimiento continuo de los grupos de edad avanzada. Cada cuatro años, la esperanza de vida se incrementa en uno. Para los enfermos de Alzheimer, también. Esto quiere decir que las personas afectadas van a vivir más tiempo (actualmente la esperanza de vida de los enfermos es de 10 a 12 años después del diagnóstico) . En cuanto al tratamiento preventivo, se detuvo la investigación de las vacunas debido a efectos secundarios en el sistema nervioso central.
Estas consideraciones demuestran que la enfermedad de Alzheimer será el gran reto de la planificación sociosanitaria de los próximos 50 años. Dado que no existe un tratamiento efectivo para la enfermedad de Alzheimer, esta invención describe la capacidad del 4PBA, mediante sus múltiples mecanismos, para revertir el deterioro en el proceso de aprendizaje y la función de la memoria característicos de la enfermedad de Alzheimer en un modelo murino.
Kim et al demostraron en 2004 que la expresión de la proteína amiloide precursora de los fragmentos C-terminales (APP-CTs) induce el aumento en la acetilación de la histona H3 y la histona H4, y que la citotoxicidad inducida por las APP-CTs es aumentada significativamente por el tratamiento con butirato de sodio en células PC12 NGF-diferenciadas y en neuronas corticales primarias de rata. En conjunto, los resultados sugieren que las APP-CTs intercambian neurotoxicidad mediante mecanismos de transcripción dependientes y esto puede contribuir a la patogénesis de la enfermedad de la EA.
Fischer et al mostraron en 2007 que el butirato de sodio, no el 4PBA, restablece el nivel de acetilación de las histonas, el aprendizaje y la memoria en un modelo de neurodegeneración en ratones, es decir, el ratón bi-transgénico CK-p25 Tg, en el que la expresión de p25, una proteína implicada en varias enfermedades neurodegenerativas, está bajo el control del promotor CamKII y puede ser activado o desactivado con una dieta con doxicilina. Sin embargo, el modelo animal empleado por
Fischer et al en 2007 no es un modelo representativo de la enfermedad del Alzheimer, dado que no reproduce los mecanismos patogénicos relativos a la proteína beta-amiloide humana o la fosforilación aberrante de tau. En particular, sólo representa la expresión deficiente de la proteína p25, una forma truncada de la p35, la cual es una subunidad reguladora de la quinasa dependiente de ciclina-5 (CDK5) . En cambio, los inventores de la presente invención, usando un modelo de ratón transgénico consensuado y validado para la enfermedad del Alzheimer, es decir Tg2576, el cual expresa una variedad de proteína humana precursora de beta-amiloide (APP) relacionada con la enfermedad del Alzheimer, sorprendentemente han encontrado que el 4-fenilbutirato es efectivo en el tratamiento de la enfermedad del Alzheimer. Los inventores han sido capaces de demostrar que se mejoran los síntomas clínicos así como la adquisición y retención de memoria, y lo más importante, también han demostrado que tras la administración de 4PBA se reducen los niveles de tau hiperfosforilada.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención describe el papel potencialmente beneficioso del 4PBA en la amnesia tipo Alzheimer. Encontramos que el tratamiento de ratones transgénicos Tg2576 de 16 meses de edad con 4PBA durante 5 semanas revirtió el déficit de memoria espacial. Los resultados obtenidos sugieren que es probable que el efecto del 4PBA sea mediado, por una parte por la protección que confiere a las células contra los efectos del estrés del retículo endoplásmico al aumentar los niveles de acompañantes moleculares e inducir la defosforilación de tau, y por otra parte al aumentar la acetilación de la histona H4 que induce la expresión de marcadores sinápticos, que a su vez conduce a la recuperación de la memoria espacial de largo plazo.
También se encontró en la investigación llevada a cabo que el nivel de GRP78 es menor en el hipocampo de ratones transgénicos Tg2576; es más, se observó que la expresión de GRP78 alcanzaba niveles similares en ratones no transgénicos después del tratamiento con 4PBA, lo que concuerda con las observaciones de Katayama (1999) . Se observó asimismo que una reducción en la acetilación de
H4 en las cortezas cerebrales de ratones transgénicos Tg2576 podría estar relacionada con una estructura de cromatina empaquetada muy densamente que correspondería a represión transcripcional .
Los resultados de las investigaciones sugieren la hipótesis de que 4PBA, al aumentar la acetilación de la histona H4 , activa la transcripción y la síntesis de proteínas que favorecen la plasticidad neuronal (subunidad GIuRl del receptor AMPA y PSD95) y de proteínas del retículo endoplásmico (GRP78) que a su vez conllevan la correcta función del hipocampo y conducen a la recuperación de la función de la memoria deteriorada.
También se observó un aumento del nivel de fosforilación de tau en la localización Ser202/Thr205 (AT8) en los hipocampos de ratones transgénicos Tg2576 tratados con solución salina, mientras que el nivel de fosforilación de tau entre los ratones transgénicos tratados con 4PBA y los de los ratones no transgénicos no se diferenciaban. La presente invención demuestra que al reducir los niveles de fosfo-tau se mejoran las funciones cognitivas en ratones transgénicos. Este hallazgo concuerda con recientes observaciones que sugieren que la reducción de tau tiene efectos beneficioso en la prevención de déficits de comportamiento en ratones transgénicos que expresan una proteína precursora de amiloide humano sin alterar sus niveles de AS (Roberson et al., 2007) .
Debido a que uno de los mecanismos de acción del PBA es la disminución de la forma hiperfosforilada de tau, se puede suponer que será también efectivo para el tratamiento cognitivo de otras demencias que cursan con taupatía además del Alzheimer, como la demencia frontotemporal, la parálisis progresiva supranuclear (PSP) , la enfermedad de Pick y la demencia con cuerpos de Lewy. La presente invención se refiere al uso del 4PBA o una de sus sales farmacéuticamente aceptables para la prevención y/o tratamiento de la enfermedad del Alzheimer. En otras palabras, la presente invención se refiere al uso del 4PBA o una de sus sales farmacéuticamente aceptables para la obtención de un medicamento para la prevención y/o tratamiento de la enfermedad del Alzheimer. De manera similar, la presente invención describe un método para prevenir o tratar la enfermedad del Alzheimer, el cual comprende la administración de una cantidad farmacéuticamente aceptable de 4PBA o una de sus sales farmacéuticamente aceptables a un sujeto en la necesidad de dicha prevención o tratamiento.
El término "4PBA" aquí empleado también se refiere a aquellos metabolitos o compuestos resultantes de su metabolización en el cuerpo. Las realizaciones de la presente invención relacionados con los diferentes usos terapéuticos de este compuesto también comprenden el uso de su metabolito, es decir, el fenilacetato.
En una realización, la presente invención se refiere al 4PBA o alguna de sus sales farmacéuticamente aceptables, o de una composición que comprende 4PBA o alguna de sus sales farmacéuticamente aceptables, para su uso en la prevención o tratamiento de demencias que cursan con taupatía, y más particularmente para su uso en la prevención o tratamiento de trastornos cognitivos en dichas demencias.
La invención se refiere también al uso de 4PBA o alguna de sus sales farmacéuticamente aceptables, o de una composición que comprende 4PBA o alguna de sus sales farmacéuticamente aceptables, en la preparación de un medicamento para prevención o tratamiento de demencias que cursan con taupatía, y en particular de los trastornos cognitivos asociados a dichas demencias.
En una realización, la invención se refiere particularmente a la sal sódica de 4PBA para su uso en la prevención o tratamiento de demencias que cursan con taupatía.
El 4PBA es el ácido 4-fenil-butírico (4-fenil-butirato) , producto disponible comercialmente, que puede obtenerse por ejemplo de SIGMA-ALDRICH (N° Producto: P21005) ; tiene número de registro CAS 1821-12-1; su fórmula química es C6H5 (CH2) 3COOH.
La sal sódica del 4PBA es también un producto disponible comercialmente, que puede obtenerse por ejemplo de BIOMOL International L. P. (Palatine House, Matford Court, Exeter EX2 8NL, UK; N° Catálogo EI320) ; tiene número de registro CAS 1716-12-7; su fórmula química es C6H5(CH2J3COONa; y su fórmula estructural es:
Figure imgf000015_0001
Alternativamente, este compuesto puede obtenerse por métodos conocidos .
Buphenyl® y Ammonaps® son marcas comerciales de composiciones de fenil-butirato sódico, autorizadas por la FDA y la EMEA respectivamente, para tratamiento de trastornos del ciclo de la urea. Puede encontrarse también bajo la marca comercial TriButyrate® (Triple Crown America) . El término "farmacéuticamente aceptable" significa que el compuesto o combinación de compuestos debe ser compatible con el resto de ingredientes de una formulación, y que no resulte deletérea para el sujeto o paciente que la recibe. Para el uso terapéutico, las sales de 4PBA son aquellas en las que el contra-ión es farmacéuticamente aceptable.
En una realización la composición que comprende 4PBA o una de sus sales farmacéuticamente aceptables es una composición farmacéutica, que comprende también un vehículo o excipiente farmacéuticamente aceptable.
Se considera que las sales farmacéuticamente aceptables anteriormente mencionadas comprenden las formas no tóxicas activas que puede formar el 4PBA. Las sales farmacéuticamente aceptables pueden obtenerse convenientemente mediante el tratamiento de la forma acida de 4PBA con los cationes apropiados. Las sales básicas apropiadas comprenden aquellas formadas con cationes orgánicos como la benzatina, la cloroprocaína, la colina, la dietanolamina, la etilendiamina, la meglumina, la procaína y aquellas formadas con cationes metálicos como el aluminio, el calcio, el litio, el magnesio, el potasio, el sodio y el zinc.
A la inversa, dichas formas de sales pueden ser convertidas en sus formas libres mediante el tratamiento con un ácido apropiado.
El término "sales" también pretende incluir los hidratos y los solvatos que es capaz de formar el 4PBA, como por ejemplo, alcoholatos como los metanolatos o etanolatos. El término "solvato" se refiere a aquellas formas cristalinas de 4PBA que comprenden cantidades de solvente tanto estequiométricas como no estequiométricas . Dado que el agua es un solvente, los solvatos también incluyen los hidratos. El término "pseudopolimorfo" es un sinónimo de solvato cuando éste se refiere a formas polimórficas cristalinas que poseen moléculas de solvente incorporadas en sus estructuras laminares. Los hidratos y los alcoholatos como los metanolatos o los etanolatos son ejemplos de este tipo de solvatos .
El término "prevención" se refiere al acto de "prevenir" , entendido este por evitar que ocurra, exista, o alternativamente retrasar, la aparición o recurrencia de una enfermedad, desorden o condición a la que se aplica dicho término, o de uno o varios de los síntomas asociados a la enfermedad, desorden o condición.
El término "tratamiento" se refiere al acto de "tratar" , término que a su vez se entiende por revertir, aliviar o inhibir la progresión de la enfermedad, desorden o condición a la que se aplica el término, o de uno o varios de los síntomas de dicha enfermedad, desorden o condición.
"Demencias que cursan con taupatía" se refiere a enfermedades neurodegenerativas en las que se produce una alteración del metabolismo de la proteína Tau y en las que uno de sus síntomas o consecuencias más relevantes es la aparición de trastornos cognitivos. En particular, el uso de 4PBA o sus sales es útil para la prevención o tratamiento de los trastornos cognitivos asociados a dichas demencias.
Una realización particular, la invención se relaciona con la prevención o tratamiento de enfermedades como el Alzheimer, la demencia frontotemporal, la parálisis progresiva supranuclear, la degeneración corticobasal , la enfermedad de Pick, la demencia de cuerpos de Lewy, la demencia con granos argirófilos, la enfermedad de Niemann-Pick tipo C, o la demencia pugilística.
En una realización más particular se relaciona con la prevención o tratamiento de la enfermedad de Alzheimer, y particularmente de los trastornos cognitivos asociados a esta enfermedad. Una realización más preferente de la presente invención es el uso de la sal sódica del 4PBA en la fabricación de un medicamento para el tratamiento de las enfermedades descritas.
En otro aspecto la invención se refiere una composición que comprende 4PBA o alguna de sus sales farmacéuticamente aceptables para su uso en la prevención o tratamiento de demencias que cursan con taupatía, y en particular de los trastornos cognitivos asociados a estas. En una realización particular la composición comprende la sal sódica de 4PBA. Una realización particular concierne una composición farmacéutica que comprende una sal farmacéuticamente aceptable de 4PBA y un vehículo farmacéuticamente aceptable para su uso en la prevención y tratamiento de la enfermedad del Alzheimer.
En estudios anteriores ya se ha demostrado que la mejora del proceso de aprendizaje y de la función de la memoria no siempre están asociadas a alteraciones detectables de niveles de Aβ en el cerebro (Dodart et al., 2002; Gong et al., 2004) . Si se considera esa información con los datos de la presente invención, los resultados sugieren que la relación entre concentraciones solubles e insolubles de Aβ en el cerebro y el deterioro de la memoria observado en ratones transgénicos es específica a la tarea, y compleja. Adicionalmente, no se ha hallado una clara correlación en estudios extensos entre las formas depositadas de Ap (como el caso de las placas) y el deterioro de la memoria en pacientes afectados con la enfermedad de Alzheimer (Hyman et al., 1984) . De hecho, informes más recientes sugieren que los niveles de Aβ soluble pueden tener más correlación con la neurodegeneración y el deterioro de la memoria (Lúe et al., 1999; McLean et al., 1999; Lesné et al., 2007) .
De modo que otra realización de la presente invención para conseguir potenciar su efecto curativo es una combinación que comprende 4PBA y/o alguna de sus sales farmacéuticamente aceptables como primer ingrediente activo junto con un segundo ingrediente activo agente que es un agente inductor o facilitador del aclaramiento de los depósitos de β-amiloide cerebral. Una realización más preferente utiliza como agente inductor de aclaramiento de dichos depósitos agentes quelantes de metales, enzimas catabolizantes de la forma soluble del péptido β-amiloide, cerebrolisina o nitrofenoles .
Otra realización de la presente invención ofrece una combinación farmacéutica aceptable que comprende 4PBA o una de sus sales farmacéuticas como primer ingrediente activo, un segundo agente ingrediente activo es un inductor o un agente facilitador del aclaramiento de los depósitos de β-amiloide en el cerebro, y un vehículo farmacéuticamente aceptable. Una realización más preferente utiliza como agente inductor de aclaramiento de dichos depósitos, agentes quelantes de metales, enzimas catabolizantes de la forma soluble del péptido β- amiloide, cerebrolisina o nitrofenoles.
Una realización más preferente aún es la utilización como agente inductor de aclaramiento el clioquinol, la cerebrolisina, o el 2 , 4-dinitrofenol o 3-nitrofenol .
Una realización más preferente aún es la utilización como agente inductor de aclaramiento de depósitos el clioquinol, la cerebrolisina, la enzima degradante de insulina IDE o neprilisina, o el 2 , 4-dinitrofenol o 3-nitrofenol .
Otra realización por tanto de la invención es el uso de un producto que contiene 4PBA y/o alguna de sus sales farmacéuticamente aceptables como primer ingrediente activo, y un segundo ingrediente activo que es un agente inductor o facilitador del aclaramiento de los depósitos de β-amiloide cerebral, como una preparación combinada para uso simultáneo en la prevención y/o tratamiento de trastornos cognitivos en demencias que cursan con taupatía. Otra realización es que esta preparación combinada se diseñe para un uso separado de ambos principios activos, y otra realización más es que lo sea para un uso secuencial.
Por tanto los dos componentes o ingredientes activos de la combinación farmacéutica de la invención pueden estar formando parte de una misma formulación farmacéutica unitaria; o formando parte de formulaciones farmacéuticas separadas para la coadministración de los dos componentes o ingredientes activos pero formando parte de un mismo régimen terapéutico. Cuando los dos componentes se administran en formulaciones separadas, no es necesario que se administren a un mismo tiempo, aunque podría hacerse si se desea.
En un aspecto adicional la invención se refiere a un producto o kit que comprende una combinación farmacéutica que comprende 4PBA y/o alguna de sus sales farmacéuticamente aceptables junto con un agente inductor o facilitador del aclaramiento de los depósitos de β-amiloide cerebral, en cualquiera de las realizaciones especificadas.
En otro aspecto, la invención se refiere a dicha combinación farmacéutica o kit que comprende dicha combinación farmacéutica para su uso en la prevención o tratamiento de demencias que cursan con taupatía, y particularmente de los trastornos cognitivos asociados. Dicha combinación o kit son útiles para la preparación de un medicamento para prevención de dichas demencias, en particular cualquiera de las que se han especificado anteriormente, y más particularmente de la enfermedad de Alzheimer.
En otro aspecto la invención se refiere también a un método para prevención o tratamiento de demencias que cursan con taupatía, y particularmente de los trastornos cognitivos asociados a ellas, que comprende administrar a un sujeto que necesita dicha prevención y/o tratamiento una cantidad farmacéuticamente efectiva de 4PBA o alguna de sus sales farmacéuticamente aceptables, o de una composición que comprende 4PBA o alguna de sus sales farmacéuticamente aceptables, o de una de una combinación farmacéutica que comprende 4PBA y/o alguna de sus sales farmacéuticamente aceptables junto con un agente inductor o facilitador del aclaramiento de los depósitos de β-amiloide cerebral.
El término "cantidad farmacéuticamente efectiva" se refiere a una cantidad de compuesto o combinación de compuestos activos que es efectiva en el tratamiento de la enfermedad, que mejora, atenúa o elimina uno o varios de sus síntomas; o previene o retrasa la aparición de uno o más síntomas de la enfermedad.
La dosis de sustancias activas de la presente invención, es decir, el 4PBA y/o sus sales farmacéuticamente aceptables, que debe ser administrada depende de cada caso individual y, habitualmente, tiene que ser adaptada a las condiciones individuales del caso para un efecto óptimo. Por tanto depende, por supuesto, de la frecuencia de administración y de la potencia y duración de la acción del compuesto empleado en cada caso para terapia o profilaxis, pero también en la naturaleza y severidad de la enfermedad y los síntomas, y en el sexo, edad, peso, co-medicación y la propia responsabilidad del humano o animal que es tratado y si la terapia es aguda o profiláctica.
La cantidad terapéuticamente efectiva de 4PBA y/o de sus sales farmacéuticamente aceptables, debe encontrarse en los siguientes rangos, desde 1 mg hasta 200 g al día, desde 2 mg hasta 150 g al día, desde 5 mg hasta 100 g al día, desde 10 mg hasta 75 g al día, desde 20 mg hasta 75 g al día, desde 50 mg hasta 75 g al día, desde 0.1 g hasta 75 g al día, desde 0.2 g hasta 75 g al día, desde 0.5 hasta 75 g al día, desde 1 g hasta 50 g al día y desde 5 g hasta 50 g al día.
El término "sujeto" significa un animal, en particular un mamífero como primates, perros, gatos, animales bovinos, caballos, ovejas y humanos. Se aplica particularmente a mamíferos humanos de ambos sexos.
Una forma de administración preferente de la preparación de medicamento que contiene 4PBA para los usos arriba descritos es en pastillas que contienen su sal sódica. La preparación farmacéutica de estas pastillas puede comprender excipientes como celulosa microcristalina, estearato de magnesio o dióxido de silicio coloidal.
Otra forma de administración preferente es un polvo que contiene la sal sódica de 4PBA y un excipiente para ser disuelto en agua. La preparación farmacéutica de este polvo puede comprender excipientes como estearato de calcio o dióxido de silicio coloidal.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura IA: Tiempos de latencia de los ratones transgénicos tratados con 4PBA y con salino, con respecto a ratones no transgénicos, en distintos días de medición de un test de Morris en la fase de plataforma visible.
Figura IB: Tiempos de latencia de los ratones transgénicos tratados con 4PBA y con salino, con respecto a ratones no transgénicos, en distintos días de medición de un test de Morris en la fase de plataforma invisible.
Figura IC: Tiempo de permanencia en el cuadrante correcto de los ratones transgénicos tratados con 4PBA y con salino, con respecto a ratones no transgénicos, en distintos días de medición de un test de Morris. Figura 2A: Niveles de derivados de péptidos Aβ42 y Aβ40 en extracto de corteza de ratones transgénicos tratados con 4PBA y con salino. Figura 2B: Mareaje de placas formadas por acumulación del péptido Aβ en cerebro de ratones transgénicos tratados con 4PBA y con salino comparado con ratones no transgénicos.
Figura 3A: Relación entre niveles de tau fosforilada respecto a la proteína normal en ratones transgénicos tratados con 4PBA y salino, respecto a ratones no transgénicos. Figura 3B: Relación entre niveles de GSK3 fosforilada (forma inactiva) respecto a la proteína sin fosforilar (forma activa) en ratones transgénicos tratados con 4PBA y salino, respecto a ratones no transgénicos . Figura 4: Niveles de expresión de GRP78 en extractos de hipocampo de ratones transgénicos tratados con 4PBA y salino, respecto a ratones no transgénicos.
Figura 5: Niveles de Histonas 4 (AcH4) e histona 3 (AcH3) acetilada en extractos de corteza de ratones transgénicos tratados con 4PBA y salino, respecto a ratones no transgénicos. Figura 6: Niveles de expresión de proteínas GIuRl, PSD95 y MAP- 2 en extractos proteicos enriquecidos en membrana obtenidos de hipocampo de ratones transgénicos tratados con 4PBA y salino, respecto a ratones no transgénicos.
MODOS DE REALIZACIÓN DE LA INVENCIÓN
La presente invención se ilustra adicionalmente mediante los siguientes Ejemplos, que junto con las Figuras descritas anteriormente ilustran la metodología experimental empleada para su desarrollo. Se entiende que los expertos en la materia serán capaces de comprender las modificaciones, variaciones y cambios que pueden hacerse dentro del alcance de la presente invención.
EJEMPLOS Ejemplo 1. Modelo de experimentación animal murino y tratamiento Utilizamos ratones transgénicos Tg2576 con la enfermedad de Alzheimer que expresan la isoforma humana 695-aa de APP que contiene la doble mutación sueca APPswe [(APP695) Lys670→Asn, Met671→Leu] desencadenada por un promotor criónico de hámster. En los ratones transgénicos Tg2576 que se utilizaron en el modelo experimental murino que sufrían la enfermedad de Alzheimer, el contenido del péptido Aβ en el cerebro se acumula de forma exponencial entre los 7 y los 12 meses de edad, y los ratones así manipulados mostraron deterioro de la función de la memoria cuando se los sometió a la prueba del laberinto acuático de Morris cuando alcanzaron edades comprendidas entre los 12 y los 15 meses. Por lo tanto, las hembras de ratón Tg2576 de 16 meses fueron tratadas una vez al día por vía intraperitoneal con 200 mg/kg 4PBA o su vehículo durante 5 semanas. Para ello se preparó una solución de 4PBA titulando cantidades équimoleculares de ácido 4-fenilbutírico (Sigma) e hidróxido sódico con un pH: 7.4. Como grupo de control se utilizó un grupo de ratones no alterados genéticamente, ratones normales, de cepas y edad similares. Todos los procedimientos del ensayo clínico se realizaron de acuerdo a la legislación europea y española (86/609/CEE; RD1201/2005) .
Ejemplo 2. Laberinto Acuático de Morris (MWM)
Se utilizó el laberinto acuático de Morris (MWM) para evaluar la función de memoria operativa y de referencia en respuesta al tratamiento con 4PBA en ratones Tg2576 tal como ya se ha descrito en la literatura (Ribe et al. 2005) . Se sometió a grupos de ratones hembras Tg2576 tratadas con 4PBA (n=6) , vehículo (n=7) y hermanos de carnada no transgénicos (n=10) , a pruebas de aprendizaje espacial y de memoria utilizando el laberinto acuático de Morris cuando alcanzaron 16 meses de edad. El laberinto consistía en una piscina circular llena de agua a 200C. Los ratones recibieron entrenamiento previo en una piscina con plataforma visible durante tres días consecutivos (8 pruebas/día) pudiendo nadar hasta una plataforma elevada por encima del nivel del agua. El entrenamiento con plataforma escondida duró 9 días consecutivos (4 pruebas/día) durante el que se permitió a los ratones 60 segundos para encontrar la plataforma sumergida a 1 cm por debajo de la superficie del agua. A los ratones que les resultó imposible alcanzar la plataforma se les guió hasta ella. Se permitió a todos los animales un descanso sobre la plataforma de 20 segundos y después se les sacó de ella para devolverlos a sus jaulas. Al principio del 4o, 1° y último día de la prueba, se realizó una prueba previa durante la que se retiró la plataforma de la piscina y se permitió a los ratones buscarla durante 60 segundos. Todas los intentos se monitorizaron con una cámara HVS y el programa Watermaze para analizar las latencias de escape y el porcentaje de tiempo de ocupación de cada cuadrante de la piscina durante las pruebas previas (con el programa Ethovision, Wageningen, Países Bajos) . Se excluyó de los análisis a los ratones que no fueron capaces de aprender a localizar la plataforma visible o a los ratones que exhibieron patrones de natación anormales o flotaban persistentemente.
Para estudiar los efectos de 4PBA en la función cognitiva se analizó si 5 semanas de tratamiento con 4PBA aliviarían el déficit de aprendizaje exhibido por ratones transgénicos Tg2576de 16 meses de edad al realizar la prueba del laberinto acuático de Morris. Al final del tratamiento, la proficiencia mostrada por los ratones transgénicos de 16 meses de edad tratados con el vehículo fue menor que la mostrada por ratones no alterados genéticamente de la misma edad. Por el contrario, la proficiencia de los ratones transgénicos tratados con 4PBA no se diferenció de la de los ratones del grupo de control de la misma edad (Figura IB) .
Después de 12, 24 y 32 pruebas, se sometió a todos los ratones a una prueba previa durante la que se les hizo nadar en la piscina de la que se había retirado la plataforma durante 15 segundos. Una medida de memoria de retención es el porcentaje de 15 segundos de natación en el cuadrante en el que estaba la plataforma durante las sesiones de entrenamiento (cuadrante diana) . El porcentaje de tiempo que pasaron los ratones transgénicos tratados con vehículo en el cuadrante diana fue significativamente menor que el que pasaron los ratones del grupo de control. La cantidad de tiempo que pasaron los ratones transgénicos tratados con 4PBA en dicho cuadrante no difirió del que pasaron los ratones del grupo de control de la misma edad (Fig. IC) . Aunque las diferencias se hicieron evidentes en la prueba de la plataforma invisible, las latencias de escape no difirieron significativamente durante las primeras pruebas de entrenamiento con plataforma visible (Fig. IA) . Estos datos sugieren que la administración crónica de 4PBA mejora la función de la memoria relativa a la prueba del laberinto acuático en ratones transgénicos Tg2576.
Ejemplo 3. Método para determinar los niveles de Ag
Debido a que el tratamiento con 4PBA demostró beneficiar claramente el proceso de adquisición y retención de memoria, el siguiente aspecto a explorar fue el efecto de los niveles de AJ3 y la patología de tau en Ratones transgénicos Tg2576. Se sacrificó a los ratones 24 horas después de que realizaran la última prueba en el laberinto acuático de Morris. Se diseccionaron el córtex y el hipocampo y se utilizaron para realizar análisis bioquímicos. A continuación se determinaron los niveles de AJ340 y AJ342 en la corteza cerebral mediante una prueba ELISA tipo sandwich.
Se homogeneizaron cortezas cerebrales en un tampón que contenía 5 M guanidina HCl y 50 mM Tris HCl, a pH = 8, inhibidores de proteasa (CompleteTM Protease Inhibitor Cocktail, de Roche) e inhibidores de fosfatasa (0,1 mM Na3VO4, 1 mM NaF) . Los homogeneizados así obtenidos se sonicaron durante 2 min y se centrifugaron a 100.000 x g durante 1 h. Se congelaron alícuotas del sobrenadante a -800C y se determinó la concentración de proteína mediante el método Bradford con el kit de Bio-Rad. Los niveles de Aβ42 se midieron con un kit de ELISA extra- sensible tipo sandwich de Biosource (Camarillo, Ca, USA) , para ello se depositaron 300 μg de proteína total del sobrenadante directamente en las placas de ELISA por duplicado de acuerdo a las instrucciones del fabricante.
Tal como se aprecia en la Fig. 2A, no se observó diferencia alguna entre los niveles de AJ340 o de Aβ42 en ratones transgénicos Tg2576 tratados con el vehículo en comparación con los ratones transgénicos tratados con 4PBA. No se detectó A{3 en hermanos de carnada no transgénicos . Se obtuvieron resultados similares cuando se midieron los niveles de Aβ y el porcentaje de área cubierta por inmunoreactividad Aβ para medir la carga de placas en el hipocampo (Figura 2B) .
Ejemplo 4. Producción de extractos proteínicos y análisis inmunológico tipo Western Blot Los ratones fueron sacrificados mediante dislocación cervical y se diseccionaron sus hipocampos rápidamente del cerebro. Se obtuvieron homogeneizados totales homogeneizando los hipocampos en un tampón RIPA enfriado con hielo (50 mM Tris-HCl, pH = 7.4, 0,25% DOC, 1% Nonidet P-40, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 μg/ml leupeptina, 1 μg/ml aprotinina, 1 mM Na3VO4, 1 mM NaF) , que se centrifugó a 14.000 x g 4°C durante 20 min y las alícuotas obtenidas del sobrenadante se congelaron a -80 "C, Para obtener la fracción de proteína enriquecida en membranas (P2 proteínas de membrana) , se utilizó un método estándar. Los hipocampos se homogeneizaron en un tampón Tris-EDTA enfriado con hielo (10 mM Tris-HCl y 5 mM EDTA, pH = 7.4) , que contenía 320 mM de sucrosa y los inhibidores de proteasa y fosfatasa previamente descritos. El tejido homogeneizado se centrifugó a 700 x g durante 10 min. El sobrenadante así obtenido se volvió a centrifugar a 37.000 x g durante 40 min a 4°C. Por último, se resuspendió el pellet (P2) en 10 mM de tampón Tris -HCl
(pH = 7.4) , que contenía la mezcla de inhibidores de enzimas descrita anteriormente. La concentración de proteína se determinó en ambos casos (con la prueba Bradford de Bio-Rad) y se almacenaron las alícuotas a -800C hasta su posterior uso.
Para el análisis tipo Western, se solubilizaron las fracciones de membrana P2 en condiciones de desnaturalización añadiendo un volumen de 0,1 de 10% deoxicolato de sodio en un tampón de 500 mM Tris -HCl (pH = 9) . Las muestras se incubaron durante 30 min a 36°C y se diluyeron añadiendo un volumen de 0,1 de 500 mM Tris-
HCl (pH = 9) /1% Tritón X-100, Después de centrifugar a
37.000 x g durante 10 min a 4°C, se almacenó el sobrenadante a -
800C.
Para el análisis de histonas, se obtuvieron extractos de corteza cerebral frontal de los ratones y se homogeneizaron en un tampón de lisis en frío con inhibidores de la proteasa (0,2 M NaCl, 0,1 M HEPES, 10% glicerol, 200 mM NaF, 2 mM Na4P2O7, 5 mM EDTA, 1 mM EGTA, 2 mM DTT, 0,5 mM PMSF, 1 mM Na3VO4, 1 mM benzamidina, 10 μg/ml leupeptina, 400 U/ml aprotinina) , y se centrifugaron a 14.000 x g 4°C durante 20 min y se obtuvieron alícuotas del sobrenadante que se almacenaron a -800C. La concentración total de proteínas se obtuvo con la prueba Bradford de BioRad Bradford (BioRad Laboratories, Hércules, California) .
Para efectuar el análisis Western-Blot se mezclaron muestras de proteínas en tampones al mismo volumen de 2 x Laemmli que se resolvieron en geles de SDS-poliacrilamida y se transfirieron a una membrana de nitrocelulosa. Las membranas se bloquearon con 5% leche, 0,05% Tween-20 en solución de bloqueo PBS o TBS seguido de un período de incubación durante toda la noche con los siguientes anticuerpos: monoclonal de ratón anti- fosfo tau AT8 (Pierce) , policlonal de conejo anti-pGSK3-Ser9 (CeIl Signalling) , policlonal de conejo anti-GSK3, policlonal de cabra anti-GRP78 (Santa Cruz) , policlonal de conejo anti- acetilado de histona 4 y 3 (Upstate) , policlonal de conejo anti- GIuRl (Chemicon) , monoclonal de ratón anti-PSD95 (Chemicon) , policlonal de conejo anti-MAP2 (Chemicon, Temecula, CA) , monoclonal de ratón anti-actina, y monoclonal de ratón anti- tubulina (Sigma) en las correspondientes soluciones tampón. Todos los anticuerpos se emplearon en diluciones 1:1000 excepto el monoclonal de ratón anti-actina, y monoclonal de ratón anti- tubulina que fueron empleados en diluciones 1:10000. Después de dos lavados en PBS/Tween-20 o TBS/Tween20 y uno solo en PBS o TBS, se detectaron bandas de proteínas inmunoetiquetadas utilizando un conjugado de HRP anti -conejo o anti-ratón (Santa Cruz; dilución 1:5000) seguido de un sistema de quimioluminiscencia (ECL Amersham Biosciences) , y exposición autoradiográf ica a HyperfiImTMECL (Amersham Biosciences) . Las señales se cuantificaron utilizando el programa Scion Image (Scion Corporation) .
Ejemplo 5. Marcadores patológicos de la enfermedad de Alzheimer Para investigar los cambios que pudieran explicar las diferencias observadas en la capacidad de aprendizaje de los ratones transgénicos después del tratamiento, se analizaron los niveles de fosforilación de tau en los hipocampos extraídos de los ratones utilizando AT8, un anticuerpo fosfoespecífico que reconoce epítopos aberrantes hiperfosforilados en Ser-202/Thr-
205. Se halló que la fosforilación de tau aumentaba en los hipocampos de ratones transgénicos Tg2576 de 16 meses de edad en comparación con la de los ratones no transgénicos, mientras que los niveles globales de tau no estaban alterados. Un hallazgo interesante fue que no se encontraron diferencias en la tau fosforilada en el sitio AT8 de ratones transgénicos tratados con
4PBA cuando se comparó está función en ratones no transgénicos
(Fig. 3A) . La función de fosforilación de tau está regulada por varias proteínas kinasas y fosfatasas. Se ha demostrado que GSK3b participa en la fosforilación patológica de tau. Se midieron los niveles de GSK3b inactivo, fosforilado en Ser 9, y se observó que eran más altos en los hipocampos de ratones transgénicos tratados con 4PBA cuando se compararan con los ratones tratados con el vehículo, lo que explicaría la reducción en la forma fosforilada de tau observada en los ratones tratados (Figura 3B) .
Ejemplo 6. Marcadores de estrés del retículo endoplásmico
El siguiente paso de la investigación fue analizar los niveles del acompañante molecular residente en el retículo endoplásmico GRP78 en los hipocampos de ratones transgénicos y de hermanos de carnada de los ratones del grupo de control . Se encontró que los niveles de GRP78 son menores en los hipocampos de ratones transgénicos de 16 meses de edad cuando se compararon con los de ratones de la misma edad. Como contraste, los niveles de GRP78 de ratones transgénicos tratados con 4PBA no se diferenciaron de los niveles de GRP78 hallados en ratones no transgénicos, lo que sugiere que el efecto del tratamiento con 4PBA se puede deber en parte a un aumento de la expresión de los niveles de GRP78 (Fig. 4) .
Ejemplo 7. Marcadores de plasticidad sináptica
Ratones transgénicos Tg2576 de 16 meses de edad mostraron niveles muy bajos de acetilación de H4 cuando se compararan con los de los ratones del grupo de control de la misma edad. Por lo tanto, se encontró inducción en la acetilación de la histona cortical 4 (H4) en ratones transgénicos que habían sido tratados con 4PBA (Fig. 5) .
La subunidad GIuRl del receptor AMPA, PSD95 y MAP- 2 son marcadores de plasticidad de vital importancia en la formación y función de la sinapsis. La descripción de los déficits postsinápticos de PSD95, GIuRl, y MAP- 2 en los cerebros de los pacientes de la EA y en los ratones Tg2576, pueden contribuir a la disfunción sináptica y provocar la deficiencia del aprendizaje. Se investigó a continuación si la expresión de los niveles de estos marcadores sinápticos se modificaba después del tratamiento con 4PBA y se encontró un aumento robusto (161, 37±27, 5%) en los niveles de expresión de la subunidad GIuRl del receptor AMPA en extractos de proteína del hipocampo enriquecidos en membrana en el grupo de ratones transgénicos que habían sido tratados con 4PBA comparados con los niveles hallados en los ratones tratados con el vehículo (81,18 ± 9,5%) y comparados con los niveles hallados en el grupo de ratones no alterados genéticamente (100,0+6.5%) . El tratamiento con 4PBA también indujo de forma significativa la expresión de los niveles de PSD95 en los mismos extractos (Fig. 6) .
La proteína de asociación a microtúbulos (MAP- 2) es una proteína localizada principalmente en las dendritas neuronales. La expresión de MAP-2 coincide con el crecimiento, ramificación y remodelación dendrítica post-lesión, sugiriendo que esta proteína juega un papel crucial en la plasticidad. Se realizó un análisis cuantitativo de MAP-2 mediante Western Blott, y se encontró que los niveles de expresión de MAP-2 eran significativamente menores que los del ratón no transgénico (54.9+10.7) comparado con los ratones no transgénicos (100.0±14.9) y parcialmente restablecidos tras el tratamiento con el 4PBA. (77.7±11.6) (Fig.6) . BIBLIOGRAFÍA
Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM, Gouras GK (2005) . Beta-amyloid accumulation in APP mutant neurons reduces PSD- 95 and GIuRl in synapses. Neurobiol Dis 20:187 - 198.
Anderson AN, Roncaroli F, Hodges A, Deprez M, Turkheimer FE (2007) Chromosomal profiles of gene expression in Huntington's disease. Brain.
Andreasi C, Angelozzi C, Tiziano FD, Vitali T, De Vicenzi E, Boninsegna A, et al., (2004) . Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Neuromuscul Disord 14 (2) :130 - 135.
Arendt T, Stieler J, Strijkstra AM, Hut RA, Rudiger J, Van der Zee EA, Harkany T, Holzer M, Hartig W (2003) . Reversible paired helical f ilament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animáis, J. Neurosci., 23:6972 - 6981.
Bailey CH, Kandel ER, Si K (2004) . The persistence of long- term memory: a molecular approach to self -sustaining changes in learning-induced synaptic growth . Neuron 44: 49 - 57.
Cummings JL, Colé G (2002) . Alzheimer disease. JAMA 287: 2335 - 2338. - Chang KT, Min KT. (2002) . Regulation of lifespan by histone deacetylase. Ageing Res Rev 1: 313 - 326.
Chaudhuri TK, Paul S (2006) . Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 273: 1331 - 1349. - Collins AF, Pearson HA, Giardina P, McDonagh KT, Brusilow Sw, Dover GJ (1995) . Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial . Blood 85: 43 - 49 .
Dasgupta S, Zhou Y, Jana M, Banik NL, Pahan K (2003) . Sodium phenylacetate inhibits adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice at múltiple steps . J Immunol 170: 3874 - 3882.
Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM. (2002) Immunization reverses memory déficits without reducing brain Abeta burden in Alzheimer's disease model . Nat Neurosci 5: 452 - 457.
Dover GJ, Brusilow S, Charache S (1994) . Induction of fetal hemoglobin production in subjects with sickle cell anemia by oral sodium phenylbutyrate . Blood 84(1) : 339 - 343.
Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (2007) . Recovery of learning and memory is associated with chromatin remodelling. Nature 447, 178 - 182.
Gong B, Vitólo OV, Trinchese F, Liu S, Shelanski M, Arancio 0 (2004) . Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 114: 1624 - 1634.
Hernández F, Ávila J (2007) . Tauopathies. Cell Mol Life Sci 64: 2219 - 2233.
Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) . Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225: 1168 - 1170.
Ikeda Y, Ishiguro K, Fujita SC (2007) . Ether stress- induced Alzheimer- like tau phosphorylation in the normal mouse brain. FEBS Lett 581: 891 - 897.
Kang HL, Benzer S, Min KT (2002) . Life extensión in Drosophila by feeding a drug. Proc Nati Acad Sci USA 99: 838 - 843. Katayama T, Imaizumi K, Sato N, Miyoshi K, Rudo T, Hitomi J, Morihara T, Yoneda T, Gomi F, Mori Y, Nakano Y, Takeda J, Tsuda T, Itoyama Y, Murayama 0, Takashima A, St George- Hyslop P, Takeda M, Tohyyama M. (1999) . Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response, Nat CeIl Biol 1, 479 - 485.
Katayama T, Imaizumi K, Honda A, Yoneda T, Kudo T, Takeda M, Mori K, Rozmahel R, Fraser P, George-Hyslop PS, Tohyama M (2001) . Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. J Biol Chem 276: 43446 - 43454.
Katayama T, Imaizumi K, Manabe T, Hitomi J, Kudo T, Tohyama M (2004) . Induction of neuronal death by ER stress in Alzheimer's disease. J Chem Neuroanat 28: 67 - 78. - Kim HS, Kim EM, Kim NJ, Chang KA, Choi Y, Ahn KW, Lee JH, Kim S, Park CH, Suh YH (2004) . Inhibition of histone deacetylation enhances the neurotoxicity induced by the C- terminal fragments of amyloid precursor protein. J Neurosci Res 75:117 - 124. - Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM (2007) . Histone deacetylase inhibitors exhibit anti-inf lammatory and neuroprotective effects in a rat permanent ischemic model of stroke: múltiple mechanisms of action. J Pharmacol Exp Ther 321: 892 - 901. - Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1998) . The presence of malfolded proteins in the endoplasmic reticulum signáis the induction of glucose- regulated proteins. Nature 332:462 - 464.
Kubota K, Niinuma Y, Kaneko M, Okuma Y, Sugai M, Omura T, Uesugi M, Uehara T, Hosoi T, Nomura Y (2006) . Suppressive effects of 4 -phenylbutyrate on the aggregation of Pael receptors and endoplasmic reticulum stress. J Neurochem 97:1259 - 1268. Langley B, Gensert JM, Beal MF, Ratan RR Curr Drug Targets CNS (2005) . Remodelling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Neurol Disord 4:41 - 50.
Lea MA, Randolph VM (1998) . Induction of repórter gene expression by inhibitors of histone deacetylase. Anticancer Res 18: 2717 - 2722.
Lesné S, Kotilinck L, Ashe KH (2007) . Plaque -bearing mice with reduced levéis of oligomeric amyloid-beta assemblies have intact memory function. Neuroscience Epub ahead of print .
Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6: 108 - 118. Lúe LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) . Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Patho 155: 853 - 862.
Maestri NE, Brusilow SW, Clissold DB, Bassett SS (1996) . Long-term treatment of girls with ornithine transcarbamylase deficiency. N Engl J Med 335:855 - 859.
Masatoshi I, Yoshihisa K, Hiroki T, Takashi Y, Kazuyuki T, Yuka K, Takashi T, Kanj i Y, Masahiko K, Yasunobu 0, Takahiro T, Hiroyoshi A, Shun S (2007) . Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4- phenylbutyrate , a chemical chaperone, Jour of Neurochem 101: 1491 - 1504.
McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush Al, Masters CL (1999) . Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol 46: 860 - 866. Mercuri E, Bertini E, Messina S, Pelliccioni M, D1 Amico A, Colitto F, et al., (2004) . Pilot trial of phenylbutyrate in spinal muscular atrophy. Neuromuscul Disord 14 (2) : 130 - 135. Mercuri E, Bertini E, Messina S, Solari A, D'Amico A, Angelozzi C, et al., (2007) . Randomized, double-bind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy. Neurol 68 (1) : 51 - 55.
Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H (2002) . ASKl is essential for endoplasmic reticulum stress -induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16: 1345 - 55.
Petri s, Kiaci M, Kipani K, Chen J, Calingasan NY, Crow JP, et al., (2006) . Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurol Dis 22 (1) : 40 - 49.
Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y (2004) . Sodium 4 -phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 66: 899 - 8908.
Ribé EM, Pérez M, Puig B, Gich Y, Lim F, Cuadrado M, Sesma T, Catena S, Sánchez B, Nieto M, Gómez-Ramos P, Moran MA, Cabodevilla F, Samaranch L, Ortiz L, Pérez A, Ferrer I, Avila J, Gómez-Isla T (2005) . Accelerated amyloid deposition, neurof ibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice. Neurobiol Dis 20: 814 - 822.
Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) . Reducing endogenous tau ameliorate amyloid beta-induced déficits in an Alzheimer's disease mouse model. Science 316:750 - 754.
Rubenstein RC, Zeitlin PL (2000) . Sodium 4 -phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR. Am J Physiol CeIl Physiol 278: 259 - 267.
Ryu EJ, Harding HP, Angelastro JM, Vitólo OV, Ron D, Greene L (2002) . Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci 22: 10690 - 10698.
Ryu H, Smith K, Camelo SI, Carreras I, Lee J, Iglesias AH, Dangond F, Cormier KA, Cudkowicz ME, Brown RH Jr, Ferrante RJ (2005) . Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem 93: 1087 - 1098.
Sato S, Ward CL, Krouse ME, Winc JJ, Kopito RR (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271:635 - 638.
Selkoe DJ (2004) . CeIl biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases, Nat CeIl Biol 6: 1054 - 1061. Steffan JS, Bodai L, Palios J, Poelman M, McCampbell A,
Apóstol BL, Kazantsev A, Schmidt E, Zhu YZ, Greenwald M,
Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM
(2001) . Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739 - 743.
Tul Iy T, Bourtchouladze A, Scott R, Tallman J (2003) . Targeting the CREB pathway for memory enhancers . Nat Rev Drug Discov 2: 267 - 277.
WO/1999/026657. Inderjit, S. (1999) . Inhibitors of nitric oxide synthase .

Claims

REIVINDICACIONES
1. 4-fenilbutirato (4PBA) o una de sus sales farmacéuticamente aceptables, para su uso en la prevención o tratamiento de la enfermedad del Alzheimer.
2. Uso de 4PBA o una de sus sales farmacéuticamente aceptables para la fabricación de un medicamento para la prevención o tratamiento de la enfermedad del Alzheimer.
3. 4PBA según la reivindicación 1 o 2, caracterizado porque la sal farmacéuticamente aceptable es la sal de sodio del 4PBA.
4. Una composición farmacéutica que comprende la sal sódica de 4PBA y un vehículo farmacéuticamente aceptable para su uso en la prevención y/o tratamiento de la enfermedad del Alzheimer.
5. Una composición farmacéutica caracterizada porque comprende 4PBA o alguna de sus sales farmacéuticamente aceptables como primer ingrediente activo, un segundo ingrediente activo es un agente inductor o facilitador del aclaramiento de los depósitos de β-amiloide cerebral y un vehículo farmacéuticamente aceptable.
6. Una combinación según la reivindicación 5, que comprende la sal sódica de 4PBA como primer ingrediente.
7. Una combinación según las reivindicaciones 5 u 6, caracterizada porque el agente inductor del aclaramiento de los depósitos de β-amiloide es un agente quelante de metales
8. Una combinación según la reivindicación7 , caracterizada porque dicho agente inductor es el clioquinol.
9. Una combinación según las reivindicaciones 5 o 6, caracterizada porque el agente inductor del aclaramiento de los depósitos de β-amiloide es una enzima catabolizante .
10. Una combinación según la reivindicación 9 caracterizada porque dicho agente inductor es la enzima degradante de insulina IDE, o la neprilisina.
11. Una combinación según las reivindicaciones 9 o 10, caracterizada porque el agente inductor del aclaramiento de los depósitos de β-amiloide es la cerebrolisina.
12. Una combinación según las reivindicaciones 9 o 10, caracterizada porque el agente inductor del aclaramiento de los depósitos de β-amiloide son nitrofenoles .
13. Una combinación según la reivindicación 12, caracterizada porque dicho nitrofenol es el 2 , 4-dinitrofenol, o el 3- nitrofenol .
14. Una combinación farmacéutica según cualquiera de las reivindicaciones 5 a 13 , para su uso en la prevención o tratamiento de la enfermedad del Alzheimer.
15. Un método para prevención o tratamiento de la enfermedad del Alzheimer que comprende administrar a un sujeto que necesita dicha prevención o tratamiento una cantidad farmacéuticamente efectiva de 4PBA o una de sus sales farmacéuticamente aceptables según cualquiera de las reivindicaciones 5 a 13.
PCT/ES2009/000121 2008-03-13 2009-03-06 Nuevos usos del 4-fenilbutirato de sodio (4 pba) y sus sales farmacéuticamente aceptables WO2009112609A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010550224A JP2011518119A (ja) 2008-03-13 2009-03-06 4−フェニル酪酸(4pba)およびその医薬上許容し得る塩についての新規用途
AU2009224613A AU2009224613A1 (en) 2008-03-13 2009-03-06 Novel uses of sodium 4-phenylbutyrate (4 PBA) and the pharmaceutically acceptable salts thereof
CN2009801183670A CN102036665A (zh) 2008-03-13 2009-03-06 4-苯基丁酸钠(4pba)及其药学上可接受的盐的新颖用途
EP09719846A EP2272515A1 (en) 2008-03-13 2009-03-06 Novel uses of sodium 4-phenylbutyrate (4 pba) and the pharmaceutically acceptable salts thereof
CA2718463A CA2718463A1 (en) 2008-03-13 2009-03-06 Novel uses for 4-phenylbutyrate (4pba) and its pharmaceutically acceptable salts
MX2010009933A MX2010009933A (es) 2008-03-13 2009-03-06 Nuevos usos del 4-fenilbutirato de sodio (4pba) y sus sales farmaceuticamente aceptables.
BRPI0909745A BRPI0909745A2 (pt) 2008-03-13 2009-03-06 novos usos de 4-fenil butirato de sódio (4pba) e de seus sais farmaceuticamente aceitáveis
US12/921,933 US20110027251A1 (en) 2008-03-13 2009-03-06 Novel uses for 4-phenylbutyrate (4pba) and its pharmaceutically acceptable salts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200800736A ES2332687B1 (es) 2008-03-13 2008-03-13 Nuevos usos de 4pba y sus sales farmaceuticamente aceptables.
ESP200800736 2008-03-13

Publications (1)

Publication Number Publication Date
WO2009112609A1 true WO2009112609A1 (es) 2009-09-17

Family

ID=40691368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000121 WO2009112609A1 (es) 2008-03-13 2009-03-06 Nuevos usos del 4-fenilbutirato de sodio (4 pba) y sus sales farmacéuticamente aceptables

Country Status (11)

Country Link
US (1) US20110027251A1 (es)
EP (1) EP2272515A1 (es)
JP (1) JP2011518119A (es)
CN (1) CN102036665A (es)
AU (1) AU2009224613A1 (es)
BR (1) BRPI0909745A2 (es)
CA (1) CA2718463A1 (es)
ES (1) ES2332687B1 (es)
MX (1) MX2010009933A (es)
RU (1) RU2010138638A (es)
WO (1) WO2009112609A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973868A (zh) * 2010-11-12 2011-02-16 北京恒瑞康达医药科技发展有限公司 苯丁酸钠ⅰ型结晶及其制备方法
CN102757334A (zh) * 2012-07-30 2012-10-31 北京恒瑞康达医药科技发展有限公司 苯丁酸钠ⅱ型晶体及其制备方法
JP2013523795A (ja) * 2010-04-06 2013-06-17 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 植物のストレス耐性を増強させるための4−フェニル酪酸及び/又はその塩の使用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2599479A1 (en) * 2011-11-30 2013-06-05 Lunamed AG 4-phenylbutyric acid for the treatment of alzheimer's disease
US9480673B2 (en) 2012-03-29 2016-11-01 The Regents Of The University Of Colorado, A Body Corporate Composition and method for treating neurodegenerative disease
US9872865B2 (en) * 2013-03-24 2018-01-23 Amylyx Pharmaceuticals Inc. Compositions for improving cell viability and methods of use thereof
WO2015006643A2 (en) * 2013-07-12 2015-01-15 Immuneering Corporation Systems, methods, and environment for automated review of genomic data to identify downregulated and/or upregulated gene expression indicative of a disease or condition
US11224668B2 (en) * 2016-02-29 2022-01-18 Neurovation Labs, Inc. Compositions and methods to detect GluA1 in brain and to identify the presence of GluA1-mediated PTSD
WO2017160345A1 (en) 2016-03-15 2017-09-21 Acer Therapeutics Inc. Palatable compositions including sodium phenylbutyrate and uses thereof
WO2017159484A1 (ja) * 2016-03-18 2017-09-21 学校法人同志社 2,4-ジアミノフェノール誘導体、及び、タウ及び/又はアミロイドβの凝集阻害剤
JP2019214546A (ja) * 2018-06-11 2019-12-19 学校法人福岡大学 終末糖化産物生成抑制剤及び医薬組成物
JP2020083827A (ja) * 2018-11-27 2020-06-04 国立研究開発法人農業・食品産業技術総合研究機構 ケミカルシャペロンまたは神経細胞死の抑制剤
US20220119794A1 (en) * 2018-12-27 2022-04-21 Virginia Polytechnic Institute And State University Chemically programmed neutrophils and uses thereof
US11583542B2 (en) 2019-12-16 2023-02-21 Amylyx Pharmaceuticals, Inc. Compositions of bile acids and phenylbutyrate compounds
US20240108593A1 (en) * 2020-12-07 2024-04-04 University Of Miami Method of treating polyamine imbalance-related disorders
CA3237768A1 (en) * 2021-11-08 2023-05-11 Amylyx Pharmaceuticals, Inc. Combination of turso and sodium phenyl butyrate for the treatment of neurodegenerative diseases
CN116099003A (zh) * 2022-11-28 2023-05-12 核工业总医院 内质网应激抑制剂在放射性认知功能障碍药物中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026657A1 (en) * 1997-11-25 1999-06-03 Musc Foundation For Research Development Inhibitors of nitric oxide synthase
WO2002090534A1 (en) * 2001-05-02 2002-11-14 The Regents Of The University Of California Method for treating neurodegenerative, psychiatric and other disorders with deacetylase inhibitors
US20060074104A1 (en) * 1998-03-06 2006-04-06 Bush Ashley I Use of clioquinol for the therapy of alzheimer's disease

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552415A (en) * 1993-12-21 1996-09-03 Eli Lilly And Company Method of inhibiting Alzheimer's Disease
PL188838B1 (pl) * 1996-08-13 2005-04-29 P N Gerolymatos Sa Zastosowanie kliochinolu do wytwarzania środka farmaceutycznego i środek farmaceutyczny
US20030165481A1 (en) * 2000-02-24 2003-09-04 Hersh Louis B. Amyloid peptide inactivating enzyme to treat Alzheimer's disease
US6664297B1 (en) * 2000-10-18 2003-12-16 Universidade Federal Do Rio De Janeiro Methods for inhibition and dissolution of amyloidoses by administration of compositions comprising 2,4-dinitrophenol
EP1482962A4 (en) * 2002-02-15 2009-12-23 Sloan Kettering Inst Cancer METHOD OF TREATING THIOREDOXIN-MEDIATED DISEASES (TRX)
WO2009133128A1 (en) * 2008-04-29 2009-11-05 Pharnext Combination compositions for treating alzheimer disease and related disorders with zonisamide and acamprosate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026657A1 (en) * 1997-11-25 1999-06-03 Musc Foundation For Research Development Inhibitors of nitric oxide synthase
US20060074104A1 (en) * 1998-03-06 2006-04-06 Bush Ashley I Use of clioquinol for the therapy of alzheimer's disease
WO2002090534A1 (en) * 2001-05-02 2002-11-14 The Regents Of The University Of California Method for treating neurodegenerative, psychiatric and other disorders with deacetylase inhibitors

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BLENNOW K ET AL: "Alzheimer's disease", LANCET THE, LANCET LIMITED. LONDON, GB, vol. 368, no. 9533, 29 July 2006 (2006-07-29), pages 387 - 403, XP025094408, ISSN: 0140-6736, [retrieved on 20060729] *
DE FELICE FERNANDA G ET AL: "Inhibition of Alzheimer's disease beta-amyloid aggregation, neurotoxicity, and in vivo deposition by nitrophenols: Implications for Alzheimer's therapy", FASEB JOURNAL, vol. 15, no. 7, May 2001 (2001-05-01), pages 1297 - 1299, XP007908887, ISSN: 0892-6638 *
FINDEIS ET AL: "The role of amyloid beta peptide 42 in Alzheimer's disease", PHARMACOLOGY AND THERAPEUTICS, ELSEVIER, GB, vol. 116, no. 2, 26 September 2007 (2007-09-26), pages 266 - 286, XP022272072, ISSN: 0163-7258 *
SALLOWAY S ET AL: "Disease-modifying therapies in Alzheimer's disease", ALZHEIMER'S & DEMENTIA: THE JOURNAL OF THE ALZHEIMER'SASSOCIATION, ELSEVIER, NEW YORK, NY, US, vol. 4, no. 2, 1 March 2008 (2008-03-01), pages 65 - 79, XP022613407, ISSN: 1552-5260, [retrieved on 20080220] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523795A (ja) * 2010-04-06 2013-06-17 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 植物のストレス耐性を増強させるための4−フェニル酪酸及び/又はその塩の使用
CN101973868A (zh) * 2010-11-12 2011-02-16 北京恒瑞康达医药科技发展有限公司 苯丁酸钠ⅰ型结晶及其制备方法
CN101973868B (zh) * 2010-11-12 2012-08-15 北京恒瑞康达医药科技发展有限公司 苯丁酸钠ⅰ型结晶及其制备方法
CN102757334A (zh) * 2012-07-30 2012-10-31 北京恒瑞康达医药科技发展有限公司 苯丁酸钠ⅱ型晶体及其制备方法
CN102757334B (zh) * 2012-07-30 2014-05-28 北京恒瑞康达医药科技发展有限公司 苯丁酸钠ⅱ型晶体及其制备方法

Also Published As

Publication number Publication date
CN102036665A (zh) 2011-04-27
RU2010138638A (ru) 2012-04-20
BRPI0909745A2 (pt) 2019-09-24
ES2332687A1 (es) 2010-02-10
EP2272515A1 (en) 2011-01-12
AU2009224613A1 (en) 2009-09-17
CA2718463A1 (en) 2009-09-17
MX2010009933A (es) 2010-12-06
US20110027251A1 (en) 2011-02-03
JP2011518119A (ja) 2011-06-23
ES2332687B1 (es) 2011-01-10

Similar Documents

Publication Publication Date Title
ES2332687B1 (es) Nuevos usos de 4pba y sus sales farmaceuticamente aceptables.
JP7365426B2 (ja) 精神障害、行動障害、認知障害を処置するための医薬組成物及び方法
Yang et al. New role of silent information regulator 1 in cerebral ischemia
Parry et al. Functional amyloid signaling via the inflammasome, necrosome, and signalosome: new therapeutic targets in heart failure
US10966989B2 (en) Pharmaceutical compositions and methods for treating mental, behavioral, cognitive disorders
Tian et al. Minocycline alleviates sevoflurane-induced cognitive impairment in aged rats
US20120316247A1 (en) Prevention and treatment of post-operative cognitive dysfunction (pocd)
WO2020222799A1 (en) A method of treating mental, behavioral, cognitive disorders
WO2019205748A1 (zh) 一种化合物在抑制A β蛋白聚积治疗老年痴呆方面的应用
Zhang et al. Montelukast ameliorates streptozotocin-induced cognitive impairment and neurotoxicity in mice
Wang et al. Win55, 212-2 improves neural injury induced by HIV-1 glycoprotein 120 in rats by exciting CB2R
Zhang et al. Liraglutide provides neuroprotection by regulating autophagy through the AMPK-FOXO3 signaling pathway in a spinal contusion injury rat model
Wang et al. Effects of curcumin on hippocampal Bax and Bcl-2 expression and cognitive function of a rat model of Alzheimer's disease*☆
JP2022528748A (ja) 蜂毒抽出物を有効成分として含有する神経炎症疾患の予防または治療用組成物
Sarode et al. Cerebrolysin reduces excitotoxicity by modulation of cell-death proteins in delayed hours of ischemic reperfusion injury
KR20210102208A (ko) 신경계 질환의 치료
TWI465234B (zh) Pipoxolan之新穎用途及基於此新穎用途的藥學組合物
Zhong et al. Tianma-Gouteng pair ameliorates the cognitive deficits on two transgenic mouse models of Alzheimer's disease
WO2017178685A1 (es) Tratamiento de enfermedades neurodegenerativas
Dayuan et al. Effect of α-mangostin on amyotrophic lateral sclerosis and its mechanism
Nakajima et al. Effects of Nobiletin in Animal Models of Cognitive Impairment: Current Insights and Future Perspectives
WO2014204956A1 (en) Materials for positive cathepsin b modulation and methods of use for treating mild cognitive impairment (mci), early dementia, a-synucleinopathy, traumatic brain injury, cardiomyopathy, eye disease and skin damage
ES2357934B2 (es) Uso de un espirolido analogos y derivados para el tratamiento y/o la prevencion de patologias relacionadas con las proteinas tau y b-amiloide.
JP2023531869A (ja) 神経保護を誘導するための化合物及び組成物
CA3125142A1 (en) Domperidone antineurodegenerative combinations and use

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118367.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/009933

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2718463

Country of ref document: CA

Ref document number: 2010550224

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009224613

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3401/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12921933

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009224613

Country of ref document: AU

Date of ref document: 20090306

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009719846

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010138638

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0909745

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100913