WO2009111934A1 - 用于蜂窝网络的无线信号传播模型测试方法和系统 - Google Patents

用于蜂窝网络的无线信号传播模型测试方法和系统 Download PDF

Info

Publication number
WO2009111934A1
WO2009111934A1 PCT/CN2008/072746 CN2008072746W WO2009111934A1 WO 2009111934 A1 WO2009111934 A1 WO 2009111934A1 CN 2008072746 W CN2008072746 W CN 2008072746W WO 2009111934 A1 WO2009111934 A1 WO 2009111934A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
receiving
propagation model
signal
field strength
Prior art date
Application number
PCT/CN2008/072746
Other languages
English (en)
French (fr)
Inventor
吴岩巍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39947759&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009111934(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2010550016A priority Critical patent/JP2011515054A/ja
Priority to EP08873261.5A priority patent/EP2254362A4/en
Priority to US12/919,006 priority patent/US9179339B2/en
Priority to CA2715798A priority patent/CA2715798C/en
Priority to AU2008352847A priority patent/AU2008352847B2/en
Publication of WO2009111934A1 publication Critical patent/WO2009111934A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Definitions

  • FIG. 1 is a cellular network topology composed of a three-sector base station. Since the network topology resembles a honeycomb structure, it is named as a cellular network. As shown in FIG. 1, a circle 1 indicates the position of a three-sector base station, and an arrow 2 indicates the orientation of each sector. Each hexagonal cell 3 in the cellular network indicates the coverage of a base transceiver station, which is called Cell.
  • the terminal can establish a wireless communication link with the base station.
  • a plurality of transceivers form a network to achieve continuous coverage of a region, providing seamless wireless communication services for user terminals.
  • Figure 2 shows the traditional network planning process.
  • the wireless network plan begins with user requirements 202, including design capacity, coverage and coverage, and network performance KPI metrics.
  • the wireless network design needs analysis 204 is entered, including coverage area coverage radius prediction and user capacity distribution analysis.
  • the capacity distribution of the coverage area is based on the potential of user development in the network coverage area, and determines the device configuration and the size of the area coverage radius.
  • Comprehensive network coverage and user distribution are two factors, and the original design of the network topology structure is completed on the map 206.
  • site survey 208 Based on the original design of the network topology structure, the process of selecting an appropriate base station site in the actual coverage environment is referred to as site survey 208.
  • site exploration process engineering surveys may be carried out at the same time, and the owners may discuss the lease of the site and other related matters. Due to various factors, the actual available site may not be exactly the same as the design site. However, after site exploration, it is basically clear which sites have the necessary conditions for building a base station. Therefore, after the site is selected, it is necessary to verify through the network simulation 210 whether the network design requirement 212 is met.
  • the wireless signal propagation model used in network simulation can be an industry-standard statistical model or a corrected model. Based on the wireless signal propagation model, a typical propagation model for traditional cell coverage prediction includes Hata, Cost231, etc. In order to improve the accuracy of cell coverage prediction, it is usually necessary to implement propagation model correction for a typical terrain and landscape environment.
  • the model correction work can be implemented at any position before step 210 in the process shown in FIG. 2, and the working process is as shown in FIG.
  • Step 302 for a certain urban environment, select 3 to 5 typical regions, and select typical in a typical region. Site. You can choose one or more typical sites.
  • step 304 a continuous wave transmitter is erected at a typical station height to transmit at a fixed power. The vehicle continuous wave receiver moves in a typical area and measures the received field strength.
  • step 306 collects enough test data (the data of multiple test sites with similar topography may be combined, and the amount of one-time test data may be added to the area, etc.).
  • Step 308 Perform pre-processing on the test data, including averaging the test data on the repeated route, removing data that is too close or too far from the huge test site, and merging test data of multiple test points in the same typical region.
  • Step 310 Apply a model correction tool to modify the parameters of the propagation model to cover the actual wireless propagation model that is closer to the typical coverage area of the type.
  • Step 312 A wireless propagation model of a plurality of typical regions forms a model library for use in wireless network simulation.
  • the traditional propagation model correction method is for typical terrain and landforms. By selecting typical sites (usually multiple test sites need to be selected so that the test data covers various terrains, geomorphology and site heights), enough field strength tests are collected. Data, correcting the wireless propagation model. From the perspective of improving the accuracy of the model, the more test sites are selected, the more adequate the test data collection, the better the model correction effect (multiple parameters in the model are corrected, and various geomorphological corresponding parameters are corrected).
  • the present invention is directed to the problem of a large amount of work caused by repeated transmission device installation and reception field strength testing at each test point of a test area in the prior art, and aims to provide a wireless propagation model test method and system, Solve the above problem.
  • a wireless signal propagation model calibration test method for a cellular network comprising the steps of: selecting a test site to install a receiving test device; transmitting a device to move according to a test route, and transmitting a test signal when moving; And receiving the test device to receive the test signal, and detecting the strength of the received signal; and obtaining the field strength test data along the test route according to the time synchronization established between the transmitting device and the receiving test device.
  • a wireless signal strength test system for a cellular network comprising: a transmitting device for moving by a test route, transmitting a test signal when moving; and receiving a test device for It is installed at the selected test site, receives the test signal, and detects the strength of the received signal. Based on the time synchronization between the transmitting device and the receiving test device, the field strength test data along the test route is obtained.
  • the invention moves the test signal by the transmitting device according to the test route, installs the receiving test equipment at all test sites, completes the test of multiple sites at one time, and overcomes the prior art installation test of each test point in the test area.
  • FIG. 1 is a schematic diagram showing a related art cellular wireless communication network
  • FIG. 2 is a flowchart showing a conventional wireless network planning of the related art
  • FIG. 3 is a flowchart showing a conventional digital transmission correction process of the related art.
  • Figure 4 is a diagram showing a wireless signal propagation model test method for a cellular network in accordance with an embodiment of the present invention
  • 5 is a diagram showing a wireless signal propagation model test method for a cellular network in accordance with a preferred embodiment of the present invention
  • FIG. 6 is a diagram showing a wireless signal field for a cellular network according to an embodiment of the present invention.
  • Schematic diagram of a strong test system. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The problem of the large amount of work caused by repeating the installation of the transmitting device and the field strength test at each test point of the test area in the prior art is not mentioned.
  • the transmitting test signal is transmitted by the transmitting device according to the test route, the receiving test equipment is installed at all test sites, and the testing of multiple sites is completed at one time, which overcomes the above-mentioned problem of large workload and improves the field strength testing efficiency.
  • Step S10 selecting a test site to install a receiving test device
  • Step S20 transmitting a device according to a test route Moving, transmitting a test signal when moving
  • step S30 receiving the test device receives the test signal, and detecting the strength of the received signal
  • step S40 based on the time synchronization established between the transmitting device and the receiving test device, to obtain the field along the test route Strong test data.
  • the wireless signal propagation model test method for a cellular network of the above embodiment overcomes the prior art by performing a test test device at all test sites by transmitting a test signal by a test device by a test route.
  • the test equipment is installed in turn at each test point in the test area, and then the problem of large workload caused by repeated signal field strength test is repeated for each station, thereby improving the field strength test efficiency.
  • the launch device can be installed in a motor vehicle such that the launch device can easily move along the test route and simultaneously transmit signals.
  • step S10 specifically includes: selecting a plurality of test sites in one or more types of regions, and selecting a typical height-mounted receiving test device at a plurality of test sites, and one or more receiving devices can be installed at each test site.
  • Test equipment oriented in one or more directions. Typical site selection principles are well known to those in the industry, including as much as possible to test the test route covering a variety of features, various terrains and various possible antenna heights.
  • the above preferred embodiment installs and receives the test equipment in multiple directions by selecting a plurality of types of regions and a typical height of a plurality of test sites, so that the receiving device can better receive the test signal, thereby avoiding the adverse effect of the complex environment on the test accuracy.
  • the transmitting device in step S20 is not limited to one. At the same time, multiple transmitting devices move along the test route, which can effectively shorten the test time and improve the test efficiency.
  • step S30 further includes: the plurality of receiving test devices simultaneously detect the test signal, and test the received signal field strength.
  • the step S40 further includes: selectively combining the field strength test data according to the time synchronization established between the transmitting device and the receiving test device, and the topographical features along the test route; and performing wireless propagation model correction according to the field strength test data.
  • Step 502 Selecting 3 to 5 typical regions for an urban environment, which may be: Intensive urban areas, ordinary urban areas, suburbs, open areas, etc. There are many similar definitions of the topography of typical areas in the industry, but they are not completely unified, and the definition of similar landform features is easy to produce different understandings. The present invention does not focus on model correction and planning simulation bias introduced due to the ambiguity of typical region definitions.
  • step 502 a plurality of typical sites are selected in each typical area.
  • Step 504 A continuous wave (CW receiver) (CW receiver) is installed at a typical site and an optional hang-up, and the continuous wave receiver includes a GPS receiving module.
  • Car The continuous wave transmitter (CW transmitter) moves in a typical area according to the set route, and transmits at a fixed power and a set frequency point; the continuous wave transmitter includes a GPS receiving module. All CW receivers measure the received field strength and record the measurement time; the CW transmitter is not limited to one, and the CW transmitter transmits the test signal while recording the transmission time and the positioning information on the test route.
  • multiple transmitters can be distinguished by setting different frequency points, so that multiple transmitters can be tested in parallel in different overlapping regions; or different CW transmitters can be made by dividing mutually non-overlapping regions. You can use the same frequency to complete testing in different areas.
  • the mobile transmitter transmits the CW and performs the test according to the test route.
  • Step 508 Collect test data of all test sites and time and location information of the transmitter, and determine a mapping relationship between the test data and the test route according to the synchronization time. Pre-processing the classified test data, including averaging the test data on the repeated route, removing the data of the test site that is too close or too far, and combining the test of multiple test points in the same typical area. Data, etc.
  • the model correction tool is applied to correct the parameters of the propagation model to cover the actual wireless propagation model that is closer to the typical coverage area of the type.
  • the wireless propagation models of several typical areas are classified into a model library for use in wireless network simulation.
  • the signal transmitted by the mobile transmitter is not limited to a continuous wave signal, but may be a pseudo random code spread spectrum signal or the like.
  • the GPS system is used to provide synchronization time, and synchronization between the transmitter and the receiver can be established in other ways, as is well known in the art. Similar modifications are within the scope of the invention.
  • FIG. 6 is a schematic diagram showing a wireless signal field strength test system for a cellular network according to an embodiment of the present invention, including: a transmitting device 10 for moving by a test route, transmitting a test signal when moving; and receiving a test device 20, installed at the selected test site, used to receive the test signal, and detect the strength of the received signal, and obtain the field strength test data along the test route according to the synchronization time established between the transmitter and the receiver.
  • the wireless signal field strength test system for the cellular network of the above embodiment moves the test signal by the test equipment according to the test route, and the test equipment is installed at all test sites, and the test device is completed once.
  • the receiving test device comprises: a receiving module, configured to receive a test signal; a test module, configured to test the strength of the received signal; and a clock synchronization module, configured to establish time synchronization with the transmitting device.
  • the clock synchronization module may be a GPS receiving module for acquiring synchronization time.
  • the transmitting device is not limited to one.
  • the transmitting device includes: a transmitting module, configured to transmit a test signal; a clock synchronization module, configured to establish and synchronize clock synchronization between the test device; and a positioning module, configured to record positioning information of the test route.
  • the clock synchronization module may be a GPS module for acquiring synchronization time and recording test route location information.
  • multiple transmitting devices move along the test route, which can effectively shorten the test time and improve the test efficiency.
  • the receiving test device comprises one or more receiving test devices mounted at a typical height of a plurality of test sites selected in one or more types of zones and oriented towards one or more directions, respectively.
  • the wireless signal field strength test system further includes a model analysis device, configured to analyze the field strength test data to obtain a wireless propagation model of the area of the test route, and the method includes: a merge module, configured to use the terrain along the test route Geomorphic features, selectively combining field strength test data; and a correction module for performing field propagation model corrections for wireless propagation model correction to form a wireless propagation model in one or more environments.
  • the above preferred embodiment can better utilize the test data of the test area by the model analysis device, thereby improving the accuracy of the wireless propagation model correction.
  • the wireless signal propagation model test method and system for a cellular network overcomes the test of installing a plurality of sites at one time by installing a test device at all test sites by transmitting a test signal by a test device according to a test route.
  • the test equipment is installed in turn at each test point in the test area, and then the problem of large workload caused by receiving the signal field strength test is repeated for each station, thereby improving the field strength test efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

用于蜂窝网络的无线信号传播模型测试方法和系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种用于蜂窝网络的无线信号传 播模型测试方法和系统。 背景技术 目前, 蜂窝组网是无线通信最常见的组网方式, 图 1为三扇区基站构成 的蜂窝网络拓朴结构。 由于网络拓朴结构酷似蜂巢结构, 因此得名蜂窝网。 如图 1所示, 圓圏 1表示三扇区基站的位置, 箭头 2表示每个扇区的朝向, 蜂窝网中每个六边形蜂窝单元 3表示一个基站收发信机的覆盖范围, 称为小 区 (cell )。 在小区的覆盖区域中, 终端可以与基站建立无线通信链路。 多个 收发信机之间组成网络, 实现一片区域的连续覆盖, 为用户终端提供无缝无 线通信服务。 图 2为传统的网络规划流程。 如图 2所示, 无线网络规划始于用户需求 202, 包括设计容量, 覆盖范围及覆盖率, 网络性能 KPI指标。 明确设计需 求以后进入无线网络设计需求分析 204, 包括覆盖区域覆盖半径预测和用户 容量分布分析。 覆盖区域容量分布则是根据网络覆盖区域用户发展的潜力, 确定设备配置及 '』、区覆盖半径的大小。综合网络覆盖与用户分布两方面因素, 在地图上完成网络拓朴结构原始设计 206。 基于网络拓朴结构原始设计,在实际覆盖环境中选择合适的基站站址的 过程称为站点勘察 208。 在站点勘查过程中可能同时实施工程勘察, 与业主 商讨站址租赁等相关事宜。 由于种种因素的制约, 实际可用站址不一定与设 计站址完全一致。 但是经过站点勘查, 基本明确了哪些地点具备建设基站的 必要条件。 因此在站址选定后, 有必要通过网络仿真 210验证是否满足网络 设计需求 212。 如果满足设计需求, 则输出网络设计, 进入网络工程施工阶 段 214; 否则在仿真平台上调整站点参数, 找到合适的站点位置、 天线挂高 等, 重新到现场勘查更合适的站址。 网络仿真釆用的无线信号传播模型可以 是业内标准的统计模型, 也可以釆用校正后的模型。 基于无线信号传播模型, 传统的小区覆盖预测的典型传播模型包括 Hata, Cost231等。 为了提高小区覆盖预测精度, 通常需要针对典型的地形地 貌环境实施传播模型校正。 模型校正工作可以在图 2所示流程中步骤 210以前的任何位置实施,其 工作过程如图 3所示: 步骤 302 , 针对某个城市环境, 选取 3~5个典型区域, 在典型区域选择 典型站点。 典型站点可以选择一个, 也可以选择多个。 步骤 304 , 在典型的站点高度架设连续波发射机, 以固定功率发射。 车 载连续波接收机在典型区域内移动, 测量接收场强。 步骤 306收集足够多的测试数据(可以将多个地形地貌相似的测试站点 的数据合并, 也可以对该区域增加一次性测试数据量等)。 步骤 308 , 对测试数据实施预处理, 包括对重复路线上的测试数据作平 均处理, 除去 巨测试站点过近或过远的数据, 合并同一类典型区域中多个测 试点的测试数据等。 步骤 310 , 应用模型校正工具对传播模型的参数进行修正, 使其覆盖预 测更接近该类典型覆盖区域的实际无线传播模型。 步骤 312 , 若干典型区域的无线传播模型形成模型库, 供无线网络仿真 使用。 传统的传播模型校正方法针对典型的地形、地貌,通过选择典型站址(通 常需要选择多个测试站址, 以便测试数据覆盖各种地形、 地貌和站址高度), 收集足够多的场强测试数据, 校正无线传播模型。 从提高模型精度角度考虑,选择的测试站址越多,测试数据收集越充分, 模型校正效果越好 (模型中多个参数均得到校正, 各种地貌对应参数都得到 校正)。 在测试无线信号场强时,需要在测试区域的每个测试点依次实施发射设 备安装、 针对每个站点的覆盖区域依次作无线信号接收场强测试; 测试 η个 站点, 就需要 η次设备安装和测试, 这导致工作量较大。 发明内容 针对现有技术中在测试区域的每个测试点重复进行发射设备安装和接 收场强测试所导致工作量较大的问题, 本发明旨在提供一种无线传播模型测 试方法和系统, 以解决上述问题。 根据本发明的一方面,提供了一种用于蜂窝网络的无线信号传播模型校 正测试方法, 包括以下步骤: 选择测试站址安装接收测试设备; 发射设备按 测试路线移动, 移动时发射测试信号; 以及接收测试设备接收测试信号, 并 检测接收信号的强度; 根据发射设备与接收测试设备之间建立的时间同步, 得到沿测试路线的场强测试数据。 根据本发明的另一方面,还提供了一种用于蜂窝网络的无线信号场强测 试系统, 包括: 发射设备, 用于按测试路线移动, 移动时发射测试信号; 以 及接收测试设备, 用于被安装于选择的测试站址, 接收测试信号, 并检测接 收信号的强度, 基于发射设备与接收测试设备之间的时间同步, 得到沿测试 路线的场强测试数据。 本发明通过发射设备按测试路线移动发射测试信号,在所有测试站点安 装接收测试设备, 一次性完成多个站点的测试, 克服了现有技术中的在测试 区域的每个测试点依次安装发射测试设备, 然后针对每个站点重复进行接收 信号场强测试而导致的工作量较大的问题, 进而提高了场强测试效率。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1示出了相关技术的蜂窝无线通信网络的示意图; 图 2示出了相关技术的传统无线网络规划的流程图; 图 3示出了相关技术的传统传模校正的流程图; 图 4 示出了根据本发明实施例的用于蜂窝网络的无线信号传播模型测 试方法的 ¾ u程图; 图 5 示出了根据本发明优选实施例的用于蜂窝网络的无线信号传播模 型测试方法的 ¾ u程图; 图 6 示出了才艮据本发明实施例的用于蜂窝网络的无线信号场强测试系 统的示意图。 具体实施方式 功能相无述 针对现有技术中在测试区域的每个测试点重复进行发射设备安装和接 收场强测试而导致的工作量较大的问题, 在本发明的实施例提供的技术方案 中, 通过发射设备按测试路线移动发射测试信号, 在所有测试站点安装接收 测试设备, 一次性完成多个站点的测试, 克服了上述工作量较大的问题, 提 高了场强测试效率。 下面将参考附图并结合实施例, 来详细说明本发明。 图 4 示出了根据本发明实施例的用于蜂窝网络的无线信号传播模型测 试方法的流程图, 包括以下步骤: 步骤 S10, 选择测试站址安装接收测试设备; 步骤 S20, 发射设备按测试路线移动, 移动时发射测试信号; 步骤 S30, 接收测试设备接收测试信号, 并检测接收信号的强度; 以及 步骤 S40 , 基于发射设备与接收测试设备之间建立的时间同步, 以得到 沿测试路线的场强测试数据。 上述实施例的用于蜂窝网络的无线信号传播模型测试方法因为通过发 射设备按测试路线移动发射测试信号, 在所有测试站点安装接收测试设备, 一次性完成多个站点的测试克服了现有技术中在测试区域的每个测试点依次 安装发射测试设备, 然后针对每个站点重复进行接收信号场强测试而导致的 工作量较大的问题, 进而提高了场强测试效率。 通常, 可以将发射设备安装于机动车中, 这样发射设备可以 艮容易地沿 着测试路线移动并同时发射信号。 优选地, 步骤 S10具体包括: 在一类或多类区域选择多个测试站址, 以 及在多个测试站址选择典型的高度安装接收测试设备, 在每个测试站点可以 安装一个或多个接收测试设备, 分别朝向一个或多个方向。 典型站点选择原则为业内人士所公知,包括尽可能使测试路线覆盖各种 地物, 各种地形和各种可能的天线挂高等。 上述优选的实施例通过选择多类 区域、 多个测试站址的典型高度朝向多个方向安装接收测试设备, 可以使接 收设备更好地接收测试信号, 避免了现场复杂环境对测试精度的不利影响。 优选地, 步骤 S20中的发射设备不限于一个。 同时多个发射设备沿测试 路线移动, 可以有效地缩短测试时间, 提高测试效率。 优选地, 步骤 S30还包括: 多个接收测试设备同时检测测试信号, 并测 试接收信号场强。 优选地, 步骤 S40还包括: 根据发射设备与接收测试设备之间建立的时 间同步, 以及沿测试路线的地形地貌特征, 选择性合并场强测试数据; 并根 据场强测试数据进行无线传播模型校正, 形成至少一种环境下的无线传播模 型。 上述优选的实施例通过选择性合并场强测试数据校正无线传播模型,可 以更好地利用测试区域较典型的测试数据, 进而提高无线传播模型校正的精 度。 图 5 示出了根据本发明优选实施例的用于蜂窝网络的无线信号传播模 型测试方法的流程图, 具体包括: 步骤 502, 针对某个城市环境, 选取 3~5个典型区域, 可以为: 密集城 区、 普通城区、 郊区、 开阔地等。 业内对典型区域的地形地貌有多种类似定 义, 但不完全统一, 而对同类地貌特征的定义容易产生不同的理解。 本发明 不关注由于典型区域定义模糊而引入的模型校正和规划仿真偏差。 在步骤 502 中, 在每个典型区域选择多个典型站点。 典型站点选择原则为业内人士 所公知, 包括尽可能使测试路线覆盖各种地物, 各种地形和各种可能的天线 挂高等。 步骤 504 , 在典型的站点和可选挂高架设连续波( Continuous Wave , 简 称为 CW )接收机(CW接收机), 连续波接收机内含 GPS接收模块。 车载 连续波发射机 ( CW发射机 ) 按设定路线在典型区域内移动, 以固定功率和 设定的频点发射; 连续波发射机内含 GPS接收模块。 所有 CW接收机测量接 收场强, 记录测量时间; CW发射机不限于 1 台, CW发射机发射测试信号 的同时记录发射时间和在测试路线上的定位信息。 具体地, 可以通过设定不 同的频点区分多个发射机, 使多个发射机在不同的、 有一定重叠的区域中并 行测试; 也可以通过划分相互不重叠区域, 使不同的 CW发射机可以釆用相 同的频率完成不同区域的测试等。 步骤 506, 移动发射机发射 CW, 按测试路线实施测试。 步骤 508 , 收集所有测试站址的测试数据和发射机的时间、 定位信息, 根据同步时间确定测试数据与测试路线之间的映射关系。 并对归类后的测试 数据实施预处理, 包括对重复路线上的测试数据作平均处理, 除去 ]ί巨测试站 点过近或过远的数据, 合并同一类典型区域中多个测试点的测试数据等。 步骤 510, 应用模型校正工具对传播模型的参数进行校正, 使其覆盖预 测更接近该类典型覆盖区域的实际无线传播模型。 步骤 512, 将若干典型区域的无线传播模型归入模型库, 供无线网络仿 真使用。 本实施例仅是根据发明方法给出的一种实施例。本专利方法实现方式还 有多种变形。 例如, 移动发射机发射的信号不仅限于连续波信号, 还可能是 伪随机码扩频信号等等。 再例如, 本实施例釆用 GPS系统提供同步时间, 也 可以釆用其他方式建立发射机与接收机之间的同步,相关技术为业内所公知。 类似变形都属于本发明的保护范围。 图 6 示出了才艮据本发明实施例的用于蜂窝网络的无线信号场强测试系 统的示意图, 包括: 发射设备 10, 用于按测试路线移动, 移动时发射测试信号; 以及 接收测试设备 20, 安装于选择的测试站址, 用于接收测试信号, 并检 测接收信号的强度, 根据发射机与接收机之间建立的同步时间, 获取沿测试 路线的场强测试数据。 上述实施例的用于蜂窝网络的无线信号场强测试系统通过发射设备按 测试路线移动发射测试信号, 在所有测试站点安装接收测试设备, 一次性完 成多个站点的测试克服了现有技术在测试区域的每个测试点依次安装发射测 试设备, 然后针对每个站点重复进行接收信号场强测试而产生的工作量较大 的问题, 进而提高了场强测试效率。 优选地,接收测试设备包括: 接收模块, 用于接收测试信号; 测试模块, 用于测试接收信号的强度; 以及时钟同步模块, 用于与发射设备建立时间同 步。 例如, 时钟同步模块可以是 GPS接收模块, 用于获取同步时间。 优选地, 发射设备不限于一台。 发射设备包括: 发射模块, 用于发射测 试信号; 时钟同步模块, 用于建立与接收测试设备之间的时钟同步; 定位模 块, 用于记录测试路线的定位信息。 例如, 时钟同步模块可以是 GPS模块, 用于获取同步时间, 记录测试路线定位信息。 同时多个发射设备沿测试路线 移动, 可以有效地缩短测试时间, 提高测试效率。 优选地,接收测试设备包括一台或多台接收测试设备, 其被安装于在一 类或多类区域中选择的多个测试站址的典型高度, 并分别朝向一个或多个方 向。 上述优选的实施例通过选择多类区域、 多个测试站址的典型高度朝向多 个方向安装接收测试设备, 可以使接收设备更好地接收测试信号, 避免了现 场复杂环境对测试精度的不利影响。 优选地, 上述无线信号场强测试系统, 还包括模型分析装置, 用于分析 场强测试数据以得到关于测试路线的区域的无线传播模型, 其包括: 合并模 块, 用于根据沿测试路线的地形地貌特征, 选择性合并场强测试数据; 以及 校正模块, 用于釆用场强测试数据进行无线传播模型校正以形成一种或多种 环境下的无线传播模型。 上述优选的实施例通过模型分析装置可以更好地利用测试区域较典型 的测试数据, 进而提高无线传播模型校正的精度。 本发明上述实施例的用于蜂窝网络的无线信号传播模型测试方法和系 统因为通过发射设备按测试路线移动发射测试信号, 在所有测试站点安装接 收测试设备, 一次性完成多个站点的测试克服了现有技术中在测试区域的每 个测试点依次安装发射测试设备, 然后针对每个站点重复进行接收信号场强 测试而产生的工作量较大的问题, 进而提高了场强测试效率。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变^^ 凡在本发明的^^申和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种用于蜂窝网络的无线信号传播模型测试方法, 其特征在于, 包括: 选择测试站址安装接收测试设备;
发射设备按测试路线移动, 移动时发射测试信号;
所述接收测试设备接收所述测试信号,并检测所述接收的测试信号 的强度; 以及
基于所述发射设备与所述接收测试设备建立的时间同步,获得沿所 述测试路线的场强测试数据。
2. 根据权利要求 1所述的无线信号传播模型测试方法, 其特征在于, 所述 选择测试站址安装接收测试设备具体包括:
在至少一类区域选择至少一个测试站址。
3. 根据权利要求 1所述的无线信号传播模型测试方法, 其特征在于, 所述 选择测试站址安装接收测试设备具体包括:
在所述测试站址选择至少一个高度安装至少一个所述接收测试设 备, 至少一个所述接收测试设备分别朝向至少一个方向。
4. 根据权利要求 1所述的无线信号传播模型测试方法, 其特征在于, 所述 发射设备包括至少一台。
5. 根据权利要求 1所述的无线信号传播模型测试方法, 其特征在于, 还包 括:
根据沿所述测试路线的地形地貌特征,选择性合并所述场强测试数 据; 以及
才艮据所述场强测试数据进行无线传播模型校正,形成至少一种环境 下的无线传播模型。
6. 一种用于蜂窝网络的无线信号场强测试系统, 其特征在于, 具体包括: 发射设备, 用于在按测试路线移动时发射测试信号; 以及 接收测试设备, 安装于选择的测试站址, 用于接收所述测试信号, 并检测所述接收的测试信号的强度; 以及根据所述发射设备与所述接收 测试设备建立的时间同步, 获得沿所述测试路线的场强测试数据。 根据权利要求 6所述的无线信号场强测试系统, 其特征在于, 所述接收 测试设备包括:
接收模块, 用于接收所述测试信号;
测试模块, 用于测试所述接收的测试信号的强度; 以及 时钟同步模块, 用于与所述发射设备建立时间同步。 根据权利要求 6所述的无线信号场强测试系统, 其特征在于, 所述接收 测试设备包括至少一台所述接收测试设备, 其被安装于在至少一类区域 中选择的至少一个测试站址的至少一个高度安装, 并分别朝向至少一个 方向。 根据权利要求 6所述的无线信号场强测试系统, 其特征在于, 所述发射 设备包括至少一台所述发射设备, 所述发射设备包括:
发射模块, 用于移动时发射所述测试信号;
时 4f同步模块, 用于建立与所述接收测试设备之间的时 4f同步; 定位模块, 用于记录所述测试路线的定位信息。
10. 根据权利要求 6所述的无线信号场强测试系统, 其特征在于, 还包括模 型分析装置, 用于分析所述场强测试数据以得到关于所述测试路线的区 域的无线传播模型, 其包括:
合并模块, 用于根据沿所述测试路线的地形地貌特征, 选择性合并 所述场强测试数据; 以及
校正模块,用于釆用所述场强测试数据进行无线传播模型校正以形 成至少一种环境下的无线传播模型。
PCT/CN2008/072746 2008-03-11 2008-10-17 用于蜂窝网络的无线信号传播模型测试方法和系统 WO2009111934A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010550016A JP2011515054A (ja) 2008-03-11 2008-10-17 セルラーネットワーク用無線信号伝播モデルのテスト方法及びシステム
EP08873261.5A EP2254362A4 (en) 2008-03-11 2008-10-17 METHOD AND SYSTEM FOR TESTING THE MODEL OF PROPAGATION OF WIRELESS SIGNALS IN A CELLULAR NETWORK
US12/919,006 US9179339B2 (en) 2008-03-11 2008-10-17 Method and system for testing the wireless signal propagation model of the cellular network
CA2715798A CA2715798C (en) 2008-03-11 2008-10-17 A method and system for testing the wireless signal propagation model of the cellular network
AU2008352847A AU2008352847B2 (en) 2008-03-11 2008-10-17 A method and system for testing the wireless signal propagation model of the cellular network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100073666A CN101247613B (zh) 2008-03-11 2008-03-11 用于蜂窝网络的无线信号传播模型测试方法和系统
CN200810007366.6 2008-03-11

Publications (1)

Publication Number Publication Date
WO2009111934A1 true WO2009111934A1 (zh) 2009-09-17

Family

ID=39947759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072746 WO2009111934A1 (zh) 2008-03-11 2008-10-17 用于蜂窝网络的无线信号传播模型测试方法和系统

Country Status (7)

Country Link
US (1) US9179339B2 (zh)
EP (1) EP2254362A4 (zh)
JP (1) JP2011515054A (zh)
CN (1) CN101247613B (zh)
AU (1) AU2008352847B2 (zh)
CA (1) CA2715798C (zh)
WO (1) WO2009111934A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247613B (zh) 2008-03-11 2012-07-18 中兴通讯股份有限公司 用于蜂窝网络的无线信号传播模型测试方法和系统
US20120108226A1 (en) 2010-09-21 2012-05-03 Htc Corporation Method and apparatus for controlling timing of network performance logging in a wireless communication system
CN103200584B (zh) * 2012-01-04 2018-11-23 中兴通讯股份有限公司 室内传播模型的校正方法及装置
CN102547770A (zh) * 2012-03-22 2012-07-04 北京邮电大学 一种基于灰度矩阵和加权平均的无线传播模型的实现方法及系统
CN105021915B (zh) * 2014-04-30 2018-03-23 中国移动通信集团广东有限公司 一种生成天线信号测试采集路线的方法、装置和移动终端
CN105407492A (zh) * 2014-09-15 2016-03-16 普天信息技术有限公司 一种网络规划的方法及装置
CN107170220A (zh) * 2017-05-05 2017-09-15 合肥智圣系统集成有限公司 一种快速无线地勘系统及其使用方法
CN109862586B (zh) * 2019-03-02 2023-03-24 湖南城市学院 一种实现无线网络通信场强覆盖仿真系统及方法
CN113194483A (zh) * 2021-03-29 2021-07-30 新华三技术有限公司 一种无线网络工勘的方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040547A1 (en) * 1996-04-19 1997-10-30 Lgc Wireless, Inc. Antennas in an rf distribution system
US6571082B1 (en) * 1999-10-29 2003-05-27 Verizon Laboratories Inc. Wireless field test simulator
CN1541001A (zh) * 2003-10-29 2004-10-27 中兴通讯股份有限公司 一种无线网络质量评估方法
CN1547340A (zh) * 2003-12-11 2004-11-17 中兴通讯股份有限公司 一种cdma系统的无线网络优化方法
CN101247613A (zh) * 2008-03-11 2008-08-20 中兴通讯股份有限公司 用于蜂窝网络的无线信号传播模型测试方法和系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095500A (en) * 1989-12-07 1992-03-10 Motorola, Inc. Cellular radiotelephone diagnostic system
JPH05327602A (ja) * 1992-05-27 1993-12-10 Nippon Telegr & Teleph Corp <Ntt> 置局設計システム
JP2973806B2 (ja) 1993-12-13 1999-11-08 松下電器産業株式会社 コードレス電話試験システム
FI97094C (fi) * 1994-11-21 1996-10-10 Nokia Telecommunications Oy Tukiasemaverkon testauslaitteisto
US5613217A (en) * 1995-05-03 1997-03-18 Telefonaktiebolaget Lm Ericsson Transceiver site selection a cellular communications system
SE512115C2 (sv) * 1997-09-08 2000-01-24 Ericsson Telefon Ab L M Testsändare samt förfarande för tillverkning av en mobil testsändare för ett mobiltelekommunikationssystem
DE19941880B4 (de) * 1999-09-02 2008-08-28 Willtek Communications Gmbh Verfahren und Vorrichtung zur Vermessung eines Funkweges
US6404388B1 (en) * 2000-01-21 2002-06-11 At&T Wireless Services, Inc. Method and apparatus for enhanced 911 location using power control in a wireless system
US7853267B2 (en) 2000-07-10 2010-12-14 Andrew Llc Wireless system signal propagation collection and analysis
US6711404B1 (en) * 2000-07-21 2004-03-23 Scoreboard, Inc. Apparatus and method for geostatistical analysis of wireless signal propagation
JP2002141855A (ja) 2000-10-30 2002-05-17 Denso Corp 基地局設置場所探索システム及び記録媒体
JP2006093778A (ja) 2004-09-21 2006-04-06 Victor Co Of Japan Ltd 移動通信基地局の設置方法
JP4745131B2 (ja) 2006-05-29 2011-08-10 株式会社日立製作所 通信カード

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040547A1 (en) * 1996-04-19 1997-10-30 Lgc Wireless, Inc. Antennas in an rf distribution system
US6571082B1 (en) * 1999-10-29 2003-05-27 Verizon Laboratories Inc. Wireless field test simulator
CN1541001A (zh) * 2003-10-29 2004-10-27 中兴通讯股份有限公司 一种无线网络质量评估方法
CN1547340A (zh) * 2003-12-11 2004-11-17 中兴通讯股份有限公司 一种cdma系统的无线网络优化方法
CN101247613A (zh) * 2008-03-11 2008-08-20 中兴通讯股份有限公司 用于蜂窝网络的无线信号传播模型测试方法和系统

Also Published As

Publication number Publication date
CN101247613B (zh) 2012-07-18
CN101247613A (zh) 2008-08-20
CA2715798C (en) 2018-04-03
EP2254362A4 (en) 2015-06-24
EP2254362A1 (en) 2010-11-24
CA2715798A1 (en) 2009-09-17
JP2011515054A (ja) 2011-05-12
AU2008352847A1 (en) 2009-09-17
AU2008352847B2 (en) 2013-07-11
US20110039548A1 (en) 2011-02-17
US9179339B2 (en) 2015-11-03

Similar Documents

Publication Publication Date Title
WO2009111934A1 (zh) 用于蜂窝网络的无线信号传播模型测试方法和系统
US11800373B2 (en) System and method for 3D propagation modelling for planning of a radio network
US9967853B2 (en) Using information on neighbor cells of other network types and/or other operators for mobile terminal positioning
CN101860958B (zh) 无线移动通信网络内使用移动站确定基站位置参数
JP4207081B2 (ja) 電波伝搬特性推定システム及びその方法並びにプログラム
CN105474031A (zh) 用于移动终端的3d定位的3d扇区化路径损耗模型
CN103945331B (zh) 一种利用wifi场强进行离去角度估计的定位方法
JP5536230B2 (ja) 協働するワイヤレスアクセスネットワークのための自動カバレッジ評価のための方法及びシステム
CN107801195A (zh) 一种车联网定位中的路边单元优化部署方法
US9264919B2 (en) Method, node and system for management of a mobile network
US9913146B2 (en) Using geographical features to reduce in-field propagation experimentation
KR101696387B1 (ko) 기지국 위치 추정 시스템 및 방법
Raviglione et al. Experimental assessment of IEEE 802.11-based V2I communications
KR100894633B1 (ko) 측위를 위한 지에스엠 패턴 데이터베이스 구축 방법,지에스엠 패턴 데이터베이스를 이용한 기지국 정보 생성방법 및 측위 데이터베이스 구축 시스템
JP2005229453A (ja) 伝搬モデルをチューニングする方法および装置
US20060217120A1 (en) Method for planning cellular communication networks, corresponding network and computer program product therefor
Neuland et al. Influence of positioning error on X-map estimation in LTE
CN100455103C (zh) 直放站监控系统及利用该系统实现移动定位的方法
CN103796222A (zh) 无线通信方法和设备
CN108632868B (zh) 一种干扰源定位方法及装置
Whitehouse Understanding the prediction gap in multi-hop localization
CN106796277B (zh) 移动通信网络中的位置调整
US20230059993A1 (en) Wireless telecommunications network
US20230077238A1 (en) Method and system for generating site survey information
Zirari et al. Geometric and signal strength dilution of precision (dop) wi-fi

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2715798

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008873261

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008352847

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010550016

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008352847

Country of ref document: AU

Date of ref document: 20081017

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12919006

Country of ref document: US