WO2009110599A1 - 制御装置、位置決め装置、制御方法、及び計測装置 - Google Patents

制御装置、位置決め装置、制御方法、及び計測装置 Download PDF

Info

Publication number
WO2009110599A1
WO2009110599A1 PCT/JP2009/054307 JP2009054307W WO2009110599A1 WO 2009110599 A1 WO2009110599 A1 WO 2009110599A1 JP 2009054307 W JP2009054307 W JP 2009054307W WO 2009110599 A1 WO2009110599 A1 WO 2009110599A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
input value
spring
control input
generating
Prior art date
Application number
PCT/JP2009/054307
Other languages
English (en)
French (fr)
Inventor
博志 藤本
博圭 浅海
Original Assignee
国立大学法人横浜国立大学
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学, 株式会社ニコン filed Critical 国立大学法人横浜国立大学
Publication of WO2009110599A1 publication Critical patent/WO2009110599A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/021Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance

Definitions

  • the present invention relates to a control device that controls movement of an object, a positioning device, a control method, and a measurement device that measures friction characteristics of the object.
  • the ball screw drive stage is widely used in machine tools, exposure apparatuses, and the like as a mechanism for precisely positioning an object on the stage, and in recent years, there has been an increasing demand for improved positioning accuracy and higher positioning speed.
  • a tracking characteristic to a target value is obtained by a feedforward compensator using a control method called learning control disclosed in PTC (Perfect Tracking Control) or Non-Patent Document 1. Techniques to improve are taken.
  • the horizontal axis represents the stage displacement y
  • the vertical axis represents the generated frictional force F.
  • VNLS variable natural length spring
  • the reversal of the moving direction of the stage is detected, and the control is performed using the position of the object at the time of the reversal.
  • FIG. 10A a method of detecting that the moving speed v obtained by differentiating the displacement y becomes zero is used to detect the reversal of the moving direction.
  • noise is actually added to the signal obtained by measurement as shown in FIG. 10B, the reversal of the moving direction cannot be detected correctly (there are many points where it is determined that the moving direction has been reversed).
  • the position at the time of reversal cannot be known, and it is difficult to perform precise control, or the control algorithm becomes complicated.
  • An object of the present invention is to provide a control device capable of performing high-precision control even in a settling region with a simple configuration when controlling movement of an object.
  • One embodiment of the present invention is a control device that controls the movement of an object that moves with rolling friction, the input value generating means that generates a control input value for controlling the movement of the object, and the object
  • the frictional force of the rolling friction generated during the movement of the object is modeled as a spring force
  • the correction means for correcting the control input value based on the transfer function of the model, and the natural length of the spring in the spring force model is a variable value
  • a setting unit that sets the movement of the object according to the corrected control input value.
  • the setting means can set a natural length of the spring according to the length of the spring.
  • the setting means can set the natural length of the spring so that the extension becomes constant without exceeding the threshold when the extension of the spring reaches a predetermined threshold.
  • the input value generation means includes a feedforward control means for generating a control input value based on a target position of the object, a target position of the object, and a length of the spring (that is, Feedback control means for generating a control input value based on a difference from the position of the object).
  • an embodiment of the present invention is a positioning device including the control device and a stage device having a driving unit that moves the object.
  • the driving means may be configured to move the object by a ball screw.
  • the positioning apparatus may further include a measuring unit that measures the position of the object as the length of the spring.
  • One embodiment of the present invention is a control method for controlling movement of an object that moves with rolling friction, a process of generating a control input value for controlling movement of the object, and movement of the object
  • the process of modeling the frictional force of the rolling friction that is sometimes generated as a spring force, correcting the control input value based on the transfer function of the model, and the process of setting the natural length of the spring in the spring force model as a variable value And controlling the movement of the object according to the corrected control input value.
  • the natural length of the spring can be set according to the length of the spring.
  • the natural length of the spring can be set so that the elongation becomes constant without exceeding the threshold when the elongation of the spring reaches a predetermined threshold.
  • the process of generating the control input value includes a process of generating the control input value by feedforward control based on a target position of the object, a target position of the object, and the spring. At least one of a process of generating the control input value by feedback control based on a difference from the length of the input.
  • the object may be configured to be moved by a ball screw.
  • One embodiment of the present invention is a measuring device for measuring a friction characteristic of an object moving with rolling friction, and a friction force detecting means for detecting a friction force of the rolling friction generated when the object moves.
  • a displacement amount detecting means for detecting a displacement amount caused by the movement of the object, and the frictional force of the rolling friction generated when the object is moved is modeled as a spring force of a spring having a variable natural length,
  • a calculating means for calculating a friction characteristic of the object from the detected friction force and displacement based on the transfer function.
  • One embodiment of the present invention is a control device that controls the movement of an object that moves with rolling friction, the input value generating means that generates a control input value for controlling the movement of the object, and the object From the control input value generated by the input value generation means based on the transfer function of the first model in which the frictional force of the rolling friction generated when the object moves is expressed as a spring force with the natural length of the spring as a variable value. And a correction value generation means for generating a correction value of the control input value for the rolling friction, and the movement control of the object according to the control input value corrected by the correction value generated by the correction value generation means It is.
  • the correction value generation unit is configured to determine the position of the object based on a transfer function of a second model that represents a response of the object from the control input value generated by the input value generation unit. Information can be calculated, and the correction value of the object can be generated from the calculated position information based on the transfer function of the first model.
  • the input value generation means includes a feedforward control means for generating a control input value based on a target position of the object, a target position of the object, and a position of the object.
  • Feedback control means for generating a control input value based on the difference.
  • the feedback control unit may further include a disturbance correction unit that monitors a disturbance during the movement of the object and corrects the control input value based on the monitored disturbance.
  • One embodiment of the present invention is a positioning device including the control device and a stage device having a driving unit for moving the object.
  • the driving means may be configured to move the object by a ball screw.
  • the positioning device may further include a measuring unit that measures the position of the object.
  • One embodiment of the present invention is a control method for controlling movement of an object that moves with rolling friction, a process of generating a control input value for controlling movement of the object, and movement of the object
  • the control input value for the rolling friction from the generated control input value based on the transfer function of the first model in which the frictional force of the rolling friction that is sometimes generated is expressed as a spring force with the natural length of the spring as a variable value.
  • Generating a correction value for the object and controlling the movement of the object according to the control input value corrected by the generated correction value.
  • the step of generating the correction value calculates position information of the object based on a transfer function of a second model representing a response of the object from the generated control input value,
  • the correction value of the object can be generated from the calculated position information based on the transfer function of the first model.
  • the process of generating the control input value includes a process of generating the control input value by feedforward control based on a target position of the object, a target position of the object, and the object. At least one of a process of generating a control input value by feedback control based on a difference from the position of the object can be provided.
  • the feedback control may further include a process of monitoring a disturbance when the object is moving and correcting the control input value based on the monitored disturbance.
  • the object may be configured to be moved by a ball screw.
  • the control algorithm can be simplified. Since the natural length of the spring is obtained by measuring the position of the object, the characteristics of the settling region can be improved. Thus, according to one embodiment of the present invention, it is possible to perform highly accurate control even in the settling region with a simple configuration.
  • control system which is necessary in a control system employing a conventional VNLS model, so that the control algorithm can be simplified.
  • nonlinear friction is compensated, highly accurate control can be performed.
  • VNLS model It is explanatory drawing of a VNLS model. It is explanatory drawing of a VNLS model. It is the figure which contrasted and showed the dynamic characteristic of the target object actually measured, and the dynamic characteristic according to a VNLS model. It is a model figure of the target object made into the object which the control apparatus by one Embodiment of this invention performs positioning control. It is a block diagram of the control apparatus by one Embodiment of this invention. It is the figure which showed the dynamic characteristic of the multi-VNLS model. It is a block diagram of a disturbance estimation part (disturbance observer). It is a block diagram of the control apparatus by other embodiment of this invention. It is a block diagram of the control apparatus by one Embodiment of this invention.
  • a model called a VNLS model which will be described in detail below, is newly introduced to model an object for positioning control.
  • the object is modeled as shown in FIG.
  • the control device updates the natural length of the spring in the VNLS model as a variable value, and controls the object using the transfer function of the VNLS model based on the updated natural length spring.
  • a control algorithm is adopted.
  • FIG. 1A and 1B are explanatory diagrams of a VNLS (Variable Natural Length Spring) model.
  • VNLS Vehicle Natural Length Spring
  • FIG. 1A shows the time variation of the spring length y, the spring natural length y 0 , and the spring extension yy 0 .
  • 1B shows a natural length state of y 0 of the spring is variably set in accordance with the length y of the spring. Further, corresponding to FIG. 1B, showing an expression giving the natural length y 0 of the spring in the formula (1a) ⁇ (1c).
  • x l is the maximum elongation of the spring
  • the length y of the spring is a physical quantity measured as the actual position of the object, and may be regarded as the position of the tip of the spring.
  • the natural length y 0 of the spring the length of the spring can be regarded as the position of the tip of the spring when a natural length.
  • the natural length y 0 of length y and the spring of the spring instead of the position of the tip of the spring, for example, may be set as a stage position of the ball screw drive stage (measured point positions).
  • the increase is regarded as an increase in the natural length y 0 of the spring, and the spring elongation y ⁇ y 0 maintains a constant value x 1 . Accordingly, as shown in the lower diagram of FIG. 1A, the spring elongation remains the same as the value at point B and does not change with time, and the graph draws a straight line parallel to the time axis (horizontal axis). This situation continues until the moving direction of the object is reversed, that is, until the curve of the spring length y reaches the peak position (point C) in FIG. 1A.
  • the spring is in the state in FIG. 1B, a transition along a straight line parallel CD to the y-axis passing through the point C (the horizontal axis). Further, in FIG. 1A, the spring elongation yy 0 shown in the lower diagram decreases to the right from point C to point D as y decreases in the upper diagram.
  • the natural length y 0 of the spring decreases along the straight line DE.
  • the total length of the spring decreases, but the decrease is considered to be due to a decrease in natural length y 0 of the spring, elongation y-y 0 of the spring will maintain the constant value -x l. Therefore, as shown in the lower diagram of FIG. 1A, the extension of the spring remains the same as the value at point D and does not change with time, and the graph draws a straight line parallel to the time axis (horizontal axis). This situation continues until the moving direction of the object is reversed again, that is, until the curve of the spring length y reaches the lower limit peak position (point E) in FIG. 1A.
  • the natural length y 0 of the spring is the natural length value y 0h at the point E when the moving direction is reversed. It becomes constant.
  • the state of the spring changes according to the model described above.
  • Formula (2) is a formula that gives a spring force (friction force) F in the VNLS model.
  • K f is a spring constant
  • D f is a viscosity coefficient
  • ⁇ f is a time constant of a pseudo-differentiator.
  • FIG. 2 is a diagram showing a comparison between the actually measured dynamic characteristics of the object and the dynamic characteristics according to the VNLS model.
  • the dynamic characteristics of the VNLS model are obtained by fitting the parameters x 1 , K f , D f , and ⁇ f in the equations (1a) to (1c) and the equation (2) so as to match the actual dynamic characteristics.
  • D f 4.69 [Ns / m]
  • ⁇ f 1 [ms] Is required.
  • FIG. 3 shows a model of an object to be subjected to positioning control by the control device according to the embodiment of the present invention.
  • the object is a stage driven by a ball screw with rolling friction, and is represented by a portion represented by a rigid body model that follows a normal rigid body motion equation and the above-described VNLS model that generates nonlinear friction. And a portion to be made.
  • a ball screw drive stage can be used in a machine tool, an exposure apparatus or the like as a mechanism for precisely positioning a control target on the stage.
  • the following formula (3) represents this model with mathematical formulas.
  • is the force applied to the object from the control device (control input value)
  • y is the actual position of the object to be measured (control output value)
  • J is the rotation in the rigid model.
  • D is the viscosity coefficient in the rigid model
  • d is the disturbance (to the object) Including the applied external force and the modeling error of the object).
  • the model of FIG. 3 and Formula (3) generally represents an object to be positioned and controlled by the control device of the present embodiment.
  • This generalized model is a normal rigid body model whose transfer function is expressed by Expression (4) in the coarse motion region where y, which is the amount of displacement of the object, is large (
  • feedforward control and feedback control represented by the following equation (8) are performed on the control input value ⁇ 0 before correction.
  • r is a target position
  • the first term on the right side of Equation (8) corresponds to feedforward control
  • the second term corresponds to feedback control.
  • FIG. 4 is a block diagram of a control device according to an embodiment of the present invention.
  • the control device 1 includes a spring natural length setting unit 2, a control input value correction unit 3, an FF (feed forward) control unit 4, an FB (feedback) control unit 5, and addition units 6 to 8. ,have.
  • the spring natural length setting unit 2 receives the actual position y of the object 9 measured by a position sensor (not shown) as an input, updates the spring natural length y 0 as needed according to equations (1a) to (1c), and updates the updated y A value of 0 is output to the control input value correction unit 3.
  • a position sensor not shown
  • An encoder, an interferometer, or the like can be used as the position sensor.
  • the control input value correction unit 3 multiplies the spring natural length y 0 input from the spring natural length setting unit 2 by the transfer function C f (s) of the following equation (10), and outputs the result to the addition unit 6. To do. As a result, the control input value correction unit 3 corrects the control input value ⁇ 0 before correction as shown in the above-described equation (6).
  • the FF control unit 4 receives the target position r for positioning the object 9, and multiplies r by the transfer function C FF (s) of the following equation (11) corresponding to the first term on the right side of the above-described equation (8). Then, the result is output to the adding unit 8.
  • the FB control unit 5 receives the difference ry between the target position r for positioning the object 9 and the actual position y obtained from the position sensor, and sets the transfer function C FB (s) of the following equation (12) to r Multiply -y and output the result to adder 8.
  • the transfer functions shown in equations (10) to (12) are examples, and the present invention is not limited to these. Instead of the transfer functions in the equations (10) to (12), other transfer functions can be used as appropriate.
  • VNLS model of FIG. 2 in order to bring the model characteristics closer to the actual dynamic characteristics, the following expressions (13a) to (13c) and expressions (14), which are a combination of many VNLS models, are expressed.
  • a multiple VNLS model composed of a plurality of springs (multiple number (number of springs): n) can also be applied.
  • the dynamic characteristics of the multiple VNLS (Multi-VNLS) model match well with the actual dynamic characteristics, so that the positioning accuracy can be further improved.
  • y is the actual position of the tip of each spring, and corresponds to the actual position of the object, for example.
  • y i is the position of the tip of each spring when the spring length becomes natural length (natural length of each spring), and y ih is the natural length of each spring when the moving direction of the object is reversed.
  • X li is the maximum value of the extension of each spring.
  • the stage driven by a ball screw has been described as an example, but the present invention is not limited to this.
  • the stage moves with rolling friction, and the present invention can be applied. .
  • the first term on the right side of the equation (15) corresponds to the transfer function C FF (s) in the above equation (11), and the second term corresponds to the transfer function C f (s) in the above equation (10). It corresponds to.
  • the object model is expressed by the following equation (18).
  • FIG. 7 is a block diagram of a control device that combines the disturbance estimation unit 10 of FIG. In Expression (18), since the high-pass filter is applied to the disturbance d, the disturbance suppression characteristic is improved. Therefore, the control device of FIG. 7 can perform positioning with higher performance.
  • This measuring apparatus includes, for example, a friction force detecting means for detecting a frictional force of rolling friction generated when a target object such as a stage driven by a ball screw is moved, and a displacement amount for detecting a displacement amount caused by the movement of the target object.
  • the friction force of the rolling friction is modeled as a spring force of a spring with a variable natural length, and the friction characteristics of the object are calculated from the detected friction force and displacement based on the transfer function of the model.
  • Computing means as the friction characteristic, the relationship between the torque generated by the ball screw and the displacement of the stage is obtained, but it is not limited to this.
  • the frictional force detection means measures the motor current of the motor driving the ball screw with a current measuring device and converts it into a torque value, but is not limited to this.
  • the torque value may be obtained from other measuring means such as a torque meter or a load cell attached to a ball screw that drives the stage.
  • the displacement amount detection means for example, a laser interferometer configured to measure the position of the stage may be used, or an encoder for measuring the rotation amount of the ball screw and converting it to the displacement amount of the stage. Although you may use, it is not limited to these.
  • the computing means identifies the parameters of these equations in accordance with the VNLS models of equations (1a) to (1c) and equation (2), thereby obtaining the friction characteristics of the object (relationship between torque and stage displacement). Is to be calculated.
  • the frictional force of rolling friction generated when moving the stage is modeled as a spring force based on the VNLS model.
  • the frictional force of rolling friction generated when moving the stage is modeled as a spring force based on the VNLS model.
  • the feedback control of the second term on the right side of the equation (8) is made to function on the basis of the transfer function C FB1 (s) of the following equation (19), thereby enabling highly accurate positioning. is there.
  • the disturbance d includes many low-frequency components, but the gain of the feedback control system is large in the low-frequency region, so that the influence of the disturbance d due to the second term on the right side of the equation (9) becomes small enough to be ignored. It is.
  • Equation (7) the apparent transfer function is the same for both the coarse motion region and the fine motion region by the correction of Equation (6), so the control algorithm is the same (no need to switch).
  • FIG. 8 is a block diagram of a control device according to an embodiment of the present invention.
  • the control device models a target object for positioning control using a VNLS model, and corrects the control input value from the control input value for controlling the target object using the transfer function of the VNLS model. Is adopted.
  • the control device 101 includes a friction compensation unit 102, an FF (feed forward) control unit 103, an FB (feedback) control unit 104, a first filter unit 105, a second filter unit 106, and an addition unit. 107-110.
  • the FF control unit 103 receives a target position r for positioning the object 111 (where the target position r itself is generated by another device such as a target position generating device), and the following equation (20)
  • the transfer function P r ⁇ 1 (s) is multiplied by r and the result is output to the adder 108.
  • the FF control unit 103 is expressed by the equation (4) indicating the coarse movement region where y, which is the displacement amount of the object, is large (
  • a feedforward compensator configured by an inverse model of a normal rigid body model. Note that r in the above-described transfer function Pr indicates that the object is a rigid body model, and is described with the initial letter r of a rigid body (rigid).
  • the FB control unit 104 receives the difference ry between the target position r for positioning the object 111 and the actual position y of the object 111 measured by a position sensor (not shown), and uses the transfer function C FB of the following equation (21). Multiply (s) by ry and output the result to the adder 108.
  • the FB control unit 104 includes a feedback compensator composed of a PD (proportional, differential) compensator.
  • PD proportional, differential
  • An encoder, an interferometer, or the like can be used as the position sensor, but is not particularly limited.
  • K p is a proportional gain
  • K d is a differential gain
  • ⁇ d is a time constant of the differentiator.
  • the first filter unit 105 and the second filter unit 106 together operate as a feedback compensator. Further, this feedback compensator has a function of a disturbance observer that removes a disturbance to the object 111.
  • This disturbance observer receives the actual position y obtained from the position sensor as an input, and the transfer function representing the inverse model of the normal rigid body model described above and the filter coefficient Q (s of the primary disturbance observer shown in the following equation (22). ) And a control input for removing the disturbance of the object 111 is calculated, and the obtained value is output to the adding unit 110.
  • is the time constant of the low-pass filter (LPF).
  • the filter of the first filter unit 105 is represented by the following equation (23), and the filter of the second filter unit 106 is represented by the following equation (24).
  • the friction compensation unit 102 calculates a correction value from a control input value before correction for controlling the object 111 output from the addition unit 108 by a method described later, and outputs the correction value to the addition unit 110.
  • the friction compensation unit 102 includes an object mathematical model 121, a spring elongation calculation unit 122, and a correction unit 123.
  • Object mathematical model 121 the correction from the previous control input value outputted from the adder 108, y is greater the displacement amount of the object in VNLS model described above in (
  • the spring elongation calculation unit 122 calculates the spring elongation yy 0 based on the expression (1) of the VNLS model from the value of the position y of the object 111 estimated by the object mathematical model 121, and corrects the result. Output to the unit 123.
  • the correction unit 123 calculates the spring force (friction force) F in the VNLS model by multiplying the spring extension yy 0 input from the spring extension calculation unit 122 by the transfer function F n (s) of the following equation (25). The result is output to the adder 110. Thereby, the friction compensation unit 102 performs correction using the spring force (friction force) calculated from the control input value before correction as a correction value. That is, the spring force (friction force) F in the VNLS model expressed by the above equation (2) is set as a correction value.
  • D 0.150 [Ns / m]
  • D f 4.69 [Ns / m]
  • x 1 4 [ ⁇ m]
  • ⁇ f 1 [ms]
  • ⁇ fb 10 [ms]
  • K d 2.52 [N / m]
  • ⁇ d 1.4 [ms]
  • LPF low-pass filter
  • the normal positioning control system designed for the coarse motion model is configured only by a configuration in which the function of friction compensation by the VNLS model is added in parallel. Therefore, highly accurate positioning control can be easily performed in the entire control region.
  • a normal positioning control system is designed based on a mathematical model (coarse motion model) of a target portion in a region (coarse motion region) where the control amount is relatively large.
  • it is necessary to calculate based on the mathematical model of the object in a relatively small area (fine movement area). Therefore, it is necessary to redesign the control system when adding a friction compensator.
  • the nonlinear friction compensation performs high gain feedback control in the coarse motion region, the feedback control system may become unstable in the coarse motion region.
  • FIG. 11 is a schematic diagram showing the configuration of the exposure apparatus 1010.
  • the exposure apparatus 1010 includes a mask M on which a liquid crystal display element pattern is formed, and a glass plate (hereinafter referred to as “plate”) P as a substrate (and an object) held on a plate stage PST as a first stage. Then, the mask is relatively scanned in the same direction at the same speed along the first direction, that is, a predetermined scanning direction (here, the X-axis direction (the left-right direction in the drawing) in FIG. 11) with respect to the projection optical system PL.
  • a predetermined scanning direction here, the X-axis direction (the left-right direction in the drawing) in FIG. 11
  • This is a scanning exposure apparatus for liquid crystal of the same size batch transfer type that transfers a pattern formed on M onto a plate P.
  • the exposure apparatus 1010 illuminates a predetermined slit-shaped illumination area (a rectangular area or an arc-shaped area elongated in the Y-axis direction (the direction orthogonal to the paper surface) in FIG. 11) on the mask M with the exposure illumination light IL.
  • the system IOP, the mask stage MST as a second stage that moves in the X axis direction while holding the mask M on which the pattern is formed, and the exposure illumination light IL that has passed through the illumination area portion of the mask M are projected onto the plate P Projection optical system PL, main body column 1012, anti-vibration table (not shown) for removing vibration from the floor to main body column 1012, and main controller (stage controller) for controlling both stages MST and PST ) 1011 and the like.
  • the main control device 1011 includes, for example, a control device represented by the block diagram shown in FIG. 8, and the above-described control method is applied to the ball screw driving device provided in the exposure device 1010. The description of the ball screw drive unit will be
  • the illumination system IOP includes, for example, a light source unit, a shutter, a secondary light forming optical system, a beam splitter, a condensing lens system, a field stop (blind), and an image formation as disclosed in Japanese Patent Laid-Open No. 9-320956, for example.
  • the slit illumination area on the mask M which is composed of a lens system and the like (both not shown) and is placed and held on the mask stage MST described below, is illuminated with uniform illuminance.
  • the mask stage MST is levitated and supported above the upper surface of the upper surface plate 1012a constituting the main body column 1012 by a not-shown air pad via a clearance of about several ⁇ m, and is driven in the X-axis direction by the drive mechanism 1014.
  • a linear motor is used here as the driving mechanism 1014 for driving the mask stage MST, this driving mechanism is hereinafter referred to as a linear motor 1014.
  • the stator 1014a of the linear motor 1014 is fixed to the upper part of the upper surface plate 1012a and extends along the X-axis direction.
  • the mover 1014b of the linear motor 1014 is fixed to the mask stage MST.
  • the position of the mask stage MST in the X-axis direction is determined by a mask stage position measuring laser interferometer (hereinafter referred to as “mask interferometer”) 1018 fixed to the main body column 1012 on the basis of the projection optical system PL. It is constantly measured with a resolution, for example, a resolution of about several nm.
  • the X-axis position information S3 of the mask stage MST measured by the mask interferometer 1018 is supplied to the main controller (drive controller, stage controller) 1011.
  • the projection optical system PL is disposed below the upper surface plate 1012a of the main body column 1012 and is held by a holding member 1012c constituting the main body column 1012.
  • the projection optical system PL an apparatus that projects an equal-size erect image is used. Therefore, when the slit illumination area on the mask M is illuminated by the exposure illumination light IL from the illumination system IOP, an equal-magnification image (partial upright image) of the circuit pattern of the illumination area is displayed on the plate P. It is projected onto the exposure area conjugate to the illumination area.
  • the projection optical system PL may be composed of a plurality of sets of equal magnification upright projection optical system units.
  • a focus position detection system (not shown) that measures the position of the plate P in the Z direction, for example, an autofocus sensor (not shown) configured by a CCD or the like, holds the projection optical system PL. It is fixed to.
  • the Z position information of the plate P from this focal position detection system is supplied to the main controller 1011.
  • the main controller 1011 projects the Z position of the plate P based on this Z position information during scanning exposure, for example.
  • An autofocus operation for matching the imaging plane of the system PL is executed.
  • the plate stage PST is arranged below the projection optical system PL, and is levitated and supported by a not-shown air pad above the upper surface of the lower surface plate 1012b constituting the main body column 1012 with a clearance of about several ⁇ m.
  • the plate stage PST is driven in the X-axis direction by a linear motor 1016 as a drive mechanism.
  • the stator 1016a of the linear motor 1016 is fixed to the lower surface plate 1012b and extends along the X-axis direction.
  • a movable element 1016b as a movable part of the linear motor 1016 is fixed to the bottom of the plate stage PST.
  • the plate stage PST includes a moving table 1022 to which the mover 1016b of the linear motor 1016 is fixed, a Y driving mechanism 1020 mounted on the moving table 1022, and a Y movable mechanism provided on the Y driving mechanism 1020. And a child 1020a.
  • the position of the plate table 1019 in the X-axis direction is always measured by a plate interferometer 1025 fixed to the main body column 1012 with a predetermined resolution with respect to the projection optical system PL, for example, a resolution of about several nm.
  • a plate interferometer 1025 As the plate interferometer 1025, here, two length measuring beams in the X-axis direction separated by a predetermined distance L in the Y-axis direction orthogonal to the X-axis direction (the direction orthogonal to the paper surface in FIG. 1) are plate tables 1019. Is used, and the measurement values of each length measuring axis are supplied to the main controller 1011.
  • the amount of rotation of the plate table 1019 about the Z-axis can be obtained, but in the following description, the X described above is used as the X position information S1 of the plate table 1019 from the plate interferometer 1025 unless otherwise required. Shall be output.
  • the linear actuator 1016 and the Y drive mechanism 1020 constitute the first actuator.
  • the first actuator is driven in the Y direction. Only the configuration for achieving this may be the first actuator.
  • FIG. 12 is a diagram showing the configuration of the leveling unit 1050. Since each leveling unit 1050 has the same configuration, one of them will be described as an example.
  • the leveling unit 1050 includes a cam member 1051, a guide member 1052, a cam moving mechanism 1053, a support member 1054 provided on the Y movable element 1020a, and a bearing member 1055 provided on the plate table 1019 side. Yes.
  • the cam member 1051 is a member formed in a trapezoidal shape in cross section, and the lower surface 1051a is a flat surface in the horizontal direction.
  • the lower surface 1051 a of the cam member 1051 is supported by the guide member 1052.
  • An upper surface 1051b of the cam member 1051 is a flat surface provided to be inclined with respect to a horizontal plane.
  • a screw hole 1051d is formed in one side surface 1051c of the cam member 1051.
  • the guide member 1052 is provided on the support member 1054 along the cam member 1051 and extends in the left-right direction in the drawing.
  • the cam moving mechanism 1053 includes a servo motor 1056, a ball screw 1057, and a connecting member 1058.
  • the servo motor 1056 rotates the shaft member 1056a based on a signal from the control device 1011a.
  • the shaft member 1056a extends, for example, in the left-right direction in the figure.
  • the ball screw 1057 is connected to the shaft member 1056a of the servo motor 1056 via the connecting member 1058, so that the rotation of the shaft member 1056a is transmitted.
  • the ball screw 1057 is provided with a screw portion in the left-right direction in the drawing (the same direction as the axial direction of the rotation shaft of the servo motor 1056), and the screw portion is inserted into a screw hole 1051d formed in the side surface 1051c of the cam member 1051. It is screwed.
  • the shaft member 1056a and the ball screw 1057 are supported by the protruding portions 1054a and 1054b of the support member 1054, respectively.
  • the bearing member 1055 has a hemispherical portion 1055a on the lower side in the figure, and the lower surface 1055b of the hemispherical portion 1055a is provided so as to contact the upper surface 1051b of the cam member 1051.
  • the contact position between the lower surface 1055b of the bearing member 1055 and the upper surface 1051b of the cam member 1051 changes, and the lower surface changes by changing the contact position with the upper surface 1051b.
  • the position of 1055b in the Z direction changes. With this change in position, the position of the plate table 1019 in the Z direction is finely adjusted.
  • the position in the Z direction of the plate table 1019 can be detected by the detection device 1059.
  • a plurality of, for example, three detection devices 1059 are also provided for the plate table 1019.
  • Each detection device 1059 includes, for example, an optical sensor 1059a and a detected member 1059b, and the position of the detected member 1059b in the Z direction is detected by detecting the position of the detected member 1059b by the optical sensor 1059a. Is supposed to be detected.
  • the optical sensor 1059a is fixed to a protruding portion 1020b provided on the Y mover 1020a. Therefore, the detection device 1059 can detect the position, posture, and the like of the plate table 1019 with respect to the upper surface 1020c of the Y movable element 1020a.
  • the position information detected by the detection device 1059 is transmitted to the main control device 1011.
  • the main control device 1011 includes, for example, the control device represented by the block diagram of FIG. 8, and controls the ball screw 1057 as described above (control of rotation of the servo motor 1056).
  • the drive signal of the servo motor 1056 is the main signal so that the target position r in FIG. 8 matches the position obtained from this detection result.
  • the drive target of the ball screw 1057 is the plate table 1019 (or the Z position of the glass plate exposure surface placed on the table 1019).
  • the object in FIG. It is also possible to set the moving mechanism 1053 or the leveling unit 1050 as a whole. 8 can be set based on the characteristics of the ball screw 1057 and the like.
  • one end of the plate table 1019 is connected to a protruding portion 1020d on the Y movable element 1020a by an elastic member 1060.
  • One end of the elastic member 1060 is fixed to the end portion 1019b of the plate table 1019 by a fixing member 1060a, and the other end is fixed to the protruding portion 1020d by the fixing member 1060b.
  • the elastic member 1060 can allow the movement in the Z direction while suppressing the movement of the plate table 1019 in the X direction and the Y direction.
  • the plate stage PST moves the moving table 1022 (linear motor 1016) so that a predetermined area to be exposed on the plate P held by the plate table 1019 is positioned in an exposure area by the projection optical system PL.
  • the Y movable element 1020 can be moved in the Y direction (positioning of the Y position) with respect to the moving table 1022.
  • the position of the plate P in the ⁇ z direction may be adjusted.
  • the leveling unit 1050 (second actuator) causes the plate table so that the Z position of the plate P is just focused (coincides with the imaging point of the projection optical system PL) based on the detection result of the autofocus sensor.
  • 1019 can be moved in the Z direction, the ⁇ x direction, and the ⁇ y direction with respect to the Y mover 1020a (positioning in the Z position, the ⁇ x direction, and the ⁇ y direction).
  • the present invention is not limited to this.
  • the mask stage MST and the plate stage PST can be used as a drive device (Y drive mechanism or the like) that moves in the X-axis direction or the Y-axis direction.
  • the exposure apparatus is not limited to an exposure apparatus for liquid crystal, but for manufacturing an exposure apparatus for manufacturing a semiconductor, an organic EL, a thin film magnetic head, an image sensor (CCD, etc.), a macro machine, a DNA chip, and the like.
  • the present invention can be widely applied to other exposure apparatuses.
  • the ball screw driving unit is not limited to one that drives the stage.
  • the stage it can be used for a moving arm of a machine tool robot or a transfer robot, and the control method of the present embodiment may be applied to drive control thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Feedback Control In General (AREA)

Abstract

 制御装置は、転がり摩擦を伴って移動する対象物を移動制御するための制御入力値を生成する入力値生成手段と、対象物の移動時に発生する転がり摩擦の摩擦力をばね力としてモデル化し、該モデルの伝達関数に基づき制御入力値を補正する補正手段と、ばね力のモデルにおけるばねの自然長を可変値として設定する設定手段と、を備え、補正された制御入力値に従って対象物を移動制御する。

Description

制御装置、位置決め装置、制御方法、及び計測装置
 本発明は、対象物を移動制御する制御装置、位置決め装置、及び制御方法、並びに対象物の摩擦特性を計測する計測装置に関する。
 本願は、2008年3月6日に出願された特願2008-056860号、及び2008年7月31日に出願された特願2008-198548号に基づき優先権を主張し、その内容をここに援用する。
 ボールねじ駆動ステージは、ステージ上の対象物を精密に位置決めする機構として工作機械や露光装置等に広く利用されており、近年、位置決め精度の向上や位置決めの高速化に対する要求が大きくなっている。この要求に応えるため、例えば、PTC(Perfect Tracking Control:完全追従制御)や非特許文献1に開示されている学習制御と呼ばれる制御方式を用いたフィードフォワード補償器によって、目標値への追従特性を向上させる手法がとられている。
 ボールねじ駆動ステージを始めとする転がりガイドを用いたボールねじ機構には、ボールねじ部やガイド部等の転がり要素が弾性変形することに起因して転がり摩擦が発生する。この転がり摩擦の特性は、微小変位領域では、図9のようなヒステリシスを持った非線形ばね特性(非線形摩擦)を示すことが知られている(例えば非特許文献2参照)。このような非線形摩擦を生じさせる対象物のモデルとして、従来、転がり摩擦モデルと呼ばれるモデルが利用されている。図9を参照して、転がり摩擦モデルの概要を説明する。
 図9において、横軸はステージの変位y、縦軸は発生する摩擦力Fである。系の状態が図中のA点にあると仮定する。この状態から変位yが増加すると、変位yと摩擦力Fは図中の曲線C1に沿って変化していく。B点まで達した時にステージの移動方向が反転すると、変位yと摩擦力Fは図中の曲線C2に沿ってA点まで変化する。ステージが移動する幅が小さい場合は、このように曲線C1及びC2に沿ってA点とB点の間を系の状態が遷移することになる。ステージが移動する幅が大きくなって、変位yの増加によって摩擦力Fがある所定の値Fc(クーロン摩擦力)まで増加すると(C点)、以降、変位yの増加に拘らず摩擦力は一定値Fcを保ったまま、系の状態はC点→D点と変化する。D点まで達した時にステージの移動方向が反転すると、変位yの減少に伴って系の状態は曲線C4に沿ってD点からA点まで変化する。A点での摩擦力はクーロン摩擦力Fcであり、その後も変位yが減少すれば、摩擦力は一定値Fcを保ったまま系の状態はA点→E点と変化する。また、C点でステージの移動方向が反転した場合には、曲線C3に沿って系の状態はC点からA点まで変化する。
 また、この転がり摩擦モデルの非線形ばね特性(非線形摩擦)を装置への適用が容易なVNLS(可変自然長ばね:Variable Natural Length Spring)によってモデル化して、上記非線形摩擦を補償する方法が提案されている(例えば非特許文献3参照)。
H. Asaumi, H. Fujimoto、"Proposal on Precise Positioning Control of Ball Screw Stage Based on ILC with PTC"、Papers of Technical Meeting on IIC、IEE、2007年、IIC-07-128、pp.145-151 T. Koizumi, O. Kuroda、"Analysis of Damped Vibration of a System with Rolling Friction -Rolling Friction Depends on the Displacement-"、Journal of Japanese Society of Tribologists、1990年、pp.435-439 H. Asaumi, H. Fujimoto、"Proposal on nonlinear friction compensation based on variable natural length spring model"、Papers of Technical Meeting on IIC、IEE、2008年、IIC-08-48、pp.75-80
 しかしながら、上述したフィードフォワード制御を行う手法では、ステージ移動中の過渡状態における特性向上に効果はあるものの、ステージが整定領域に達して動きが収束する状態となった際の特性を向上させることができないという問題がある。
 また、上述した転がり摩擦モデルに基づく制御方法では、ステージの移動方向の反転を検出し、その反転時の対象物の位置を用いて制御を行う。移動方向反転の検出には、図10Aに示すように、変位yを微分して得られる移動速度vがゼロになることを検出する方法を用いる。しかしながら、実際に測定で求まる信号に図10Bのようにノイズがのってしまうと、移動方向の反転を正しく検出することができない(移動方向が反転したと判定される点が多数存在する)ため反転時の位置を知ることができず、精確な制御を行うことが困難、あるいは制御アルゴリズムが複雑になるという問題がある。
 本発明の目的は、対象物を移動制御するに際し簡易な構成で整定領域においても高精度な制御を行うことが可能な制御装置を提供することにある。
 本発明の一実施形態は、転がり摩擦を伴って移動する対象物を移動制御する制御装置であって、前記対象物を移動制御するための制御入力値を生成する入力値生成手段と、前記対象物の移動時に発生する前記転がり摩擦の摩擦力をばね力としてモデル化し、該モデルの伝達関数に基づき前記制御入力値を補正する補正手段と、前記ばね力のモデルにおけるばねの自然長を可変値として設定する設定手段と、を備え、前記補正された制御入力値に従って前記対象物を移動制御する制御装置である。
 上記制御装置であって、前記設定手段は、前記ばねの長さに応じてばねの自然長を設定することができる。
 また、上記制御装置であって、前記設定手段は、前記ばねの伸びが所定の閾値に達すると伸びがその閾値を超えることなく一定となるように該ばねの自然長を設定することができる。
 また、上記制御装置であって、前記入力値生成手段は、前記対象物の目標位置に基づき制御入力値を生成するフィードフォワード制御手段と、前記対象物の目標位置と前記ばねの長さ(即ち対象物の位置)との差分に基づき制御入力値を生成するフィードバック制御手段と、を備えることができる。
 また、本発明の一実施形態は、上記制御装置と、前記対象物を移動させる駆動手段を有するステージ装置と、を備えた位置決め装置である。
 また、上記位置決め装置であって、前記駆動手段は、ボールねじにより前記対象物を移動させるように構成され得る。
 また、上記位置決め装置であって、前記対象物の位置を前記ばねの長さとして計測する計測手段を更に備えることができる。
 本発明の一実施形態は、転がり摩擦を伴って移動する対象物を移動制御する制御方法であって、前記対象物を移動制御するための制御入力値を生成する過程と、前記対象物の移動時に発生する前記転がり摩擦の摩擦力をばね力としてモデル化し、該モデルの伝達関数に基づき前記制御入力値を補正する過程と、前記ばね力のモデルにおけるばねの自然長を可変値として設定する過程と、を備え、前記補正された制御入力値に従って前記対象物を移動制御する制御方法である。
 上記制御方法であって、前記ばねの自然長は、前記ばねの長さに応じて設定され得る。
 また、上記制御方法であって、前記ばねの自然長は、前記ばねの伸びが所定の閾値に達すると伸びがその閾値を超えることなく一定となるように設定され得る。
 また、上記制御方法であって、前記制御入力値を生成する過程は、前記対象物の目標位置に基づくフィードフォワード制御により前記制御入力値を生成する過程と、前記対象物の目標位置と前記ばねの長さとの差分に基づくフィードバック制御により前記制御入力値を生成する過程と、の少なくとも一方を備えることができる。
 また、上記制御方法であって、前記対象物は、ボールねじにより移動させるように構成され得る。
 本発明の一実施形態は、転がり摩擦を伴って移動する対象物の摩擦特性を計測する計測装置であって、前記対象物の移動時に発生する前記転がり摩擦の摩擦力を検出する摩擦力検出手段と、前記対象物の移動によって生じる変位量を検出する変位量検出手段と、前記対象物の移動時に発生する前記転がり摩擦の摩擦力を自然長が可変なばねのばね力としてモデル化し、該モデルの伝達関数に基づいて、前記検出された摩擦力と変位量とから対象物の摩擦特性を算出する演算手段と、を備える計測装置である。
 本発明の一実施形態は、転がり摩擦を伴って移動する対象物を移動制御する制御装置であって、前記対象物を移動制御するための制御入力値を生成する入力値生成手段と、前記対象物の移動時に発生する前記転がり摩擦の摩擦力をばねの自然長を可変値としたばね力として表した第1のモデルの伝達関数に基づいて、前記入力値生成手段が生成した制御入力値から前記転がり摩擦に対する該制御入力値の補正値を生成する補正値生成手段と、を備え、前記補正値生成手段が生成した補正値によって補正された制御入力値に従って前記対象物を移動制御する制御装置である。
 また、上記制御装置であって、前記補正値生成手段は、前記入力値生成手段が生成した制御入力値から前記対象物の応答を表す第2のモデルの伝達関数に基づいて前記対象物の位置情報を算出し、該算出した位置情報から前記第1のモデルの伝達関数に基づいて前記対象物の前記補正値を生成することができる。
 また、上記制御装置であって、前記入力値生成手段は、前記対象物の目標位置に基づき制御入力値を生成するフィードフォワード制御手段と、前記対象物の目標位置と前記対象物の位置との差分に基づき制御入力値を生成するフィードバック制御手段と、を備えることができる。
 また、上記制御装置であって、前記フィードバック制御手段は、前記対象物の移動時の外乱を監視し、該監視した外乱に基づき前記制御入力値を補正する外乱補正手段をさらに備えることができる。
 本発明の一実施形態は、上記制御装置と、前記対象物を移動させる駆動手段を有するステージ装置と、を備えた位置決め装置である。
 また、上記位置決め装置であって、前記駆動手段は、ボールねじにより前記対象物を移動させるように構成され得る。
 また、上記位置決め装置であって、前記対象物の位置を計測する計測手段をさらに備えることができる。
 本発明の一実施形態は、転がり摩擦を伴って移動する対象物を移動制御する制御方法であって、前記対象物を移動制御するための制御入力値を生成する過程と、前記対象物の移動時に発生する前記転がり摩擦の摩擦力をばねの自然長を可変値としたばね力として表した第1のモデルの伝達関数に基づいて、前記生成した制御入力値から前記転がり摩擦に対する該制御入力値の補正値を生成する過程と、を備え、前記生成した補正値によって補正された制御入力値に従って前記対象物を移動制御する制御方法である。
 上記制御方法であって、前記補正値を生成する過程は、前記生成した制御入力値から前記対象物の応答を表す第2のモデルの伝達関数に基づいて前記対象物の位置情報を算出し、該算出した位置情報から前記第1のモデルの伝達関数に基づいて前記対象物の前記補正値を生成することができる。
 また、上記制御方法であって、前記制御入力値を生成する過程は、前記対象物の目標位置に基づくフィードフォワード制御により前記制御入力値を生成する過程と、前記対象物の目標位置と前記対象物の位置との差分に基づくフィードバック制御により制御入力値を生成する過程と、の少なくとも一方を備えることができる。
 また、上記制御方法であって、前記フィードバック制御は、前記対象物の移動時の外乱を監視し、該監視した外乱に基づき前記制御入力値を補正する過程をさらに備えることができる。
 また、上記制御方法であって、前記対象物は、ボールねじにより移動させるように構成され得る。
 本発明の一実施形態では、従来の転がり摩擦モデルのように移動方向の反転を検出する必要がないので、制御アルゴリズムを簡易なものとすることができる。前記ばねの自然長は、対象物の位置を計測することにより求まるので、整定領域の特性を向上させることができる。このように、本発明の一実施形態によれば、簡易な構成で整定領域においても高精度な制御を行うことが可能である。
 また、本発明の一実施形態によれば、従来のVNLSモデルを採用した制御系においては必要となっていた当該制御系の再設計が必要ないため、制御アルゴリズムを簡易なものとすることができる。また、非線形摩擦を補償しているため、高精度な制御を行うことが可能である。
VNLSモデルの説明図である。 VNLSモデルの説明図である。 実際に測定した対象物の動特性とVNLSモデルに従う動特性とを対比して示した図である。 本発明の一実施形態による制御装置が位置決め制御を行う対象とする対象物のモデル図である。 本発明の一実施形態による制御装置のブロック図である。 多重VNLSモデルの動特性を示した図である。 外乱推定部(外乱オブザーバ)のブロック図である。 本発明の他の実施形態による制御装置のブロック図である。 本発明の一実施形態による制御装置のブロック図である。 転がり摩擦の非線形ばね特性を示す図である。 転がり摩擦モデルで利用される移動方向反転の検出方法を説明する図である。 転がり摩擦モデルで利用される移動方向反転の検出方法を説明する図である。 露光装置の構成を示す概略図である。 露光装置の一部の構成を示す断面図である。
符号の説明
 1…制御装置 2,12…ばね自然長設定部 3,13…制御入力値補正部 4,14…FF制御部 5…FB制御部 6~8…加算部 9…対象物 10…外乱推定部 101…制御装置 102…摩擦補償部 103…FF(フィードフォワード)制御部 104…FB(フィードバック)制御部 105…第1フィルタ部 106…第2フィルタ部 107~110…加算部 111…対象物 121…対象物数式モデル 122…ばね伸び算出部 123…補正部 PST…プレートステージ(物体、ステージ)、1010…露光装置、1011…主制御装置(駆動信号生成装置)、1011a…制御装置(駆動制御装置、ステージ制御装置)、1016…リニアモータ(第1アクチュエータ)、1056…サーボモータ(第2アクチュエータ)
発明を実施するための形態
 以下、図面を参照しながら本発明の実施形態について詳しく説明する。
 本発明の一実施形態では、以下に詳述するVNLSモデルと称するモデルを新たに導入して位置決め制御の対象物をモデル化する。対象物は、後述の図3のようにモデル化される。本発明の一実施形態による制御装置は、VNLSモデルにおけるばねの自然長を可変値として更新し、この更新された自然長のばねに基づくVNLSモデルの伝達関数を用いて対象物を制御する、という制御アルゴリズムを採用している。
 図1A及び1Bは、VNLS(可変自然長ばね:Variable Natural Length Spring)モデルの説明図である。VNLSモデルでは、転がり摩擦を伴って移動する対象物の摩擦力を、以下に説明するようなばね力とみなしてモデル化する。図1は、このばね力を生じさせるばねの特性を表しており、図1Aは、ばねの長さy,ばねの自然長y,及びばねの伸びy-yの時間変化を示し、図1Bは、ばねの長さyに応じて可変に設定されるばねの自然長yの状態を示している。また、図1Bに対応する、ばねの自然長yを与える式を式(1a)~(1c)に示す。
Figure JPOXMLDOC01-appb-M000001
 ここで、xはばねの伸びの最大値、y0hは対象物の移動方向が反転した時点でのばねの自然長(初期値=0)である。ばねの長さyは、対象物の実位置として計測される物理量であり、ばねの先端の位置とみなしてもよい。また同様に、ばねの自然長yは、ばねの長さが自然長となった時のばねの先端の位置とみなすことができる。なお、ばねの長さyとばねの自然長yは、ばねの先端の位置の代わりに、例えば、ボールねじ駆動ステージのステージ位置(位置の被測定点)として設定してもよい。
 まず、初期状態のA点では、ばねの長さ及び自然長ともに値がゼロ(y=y=0)であるとする。対象物が移動してばねが伸びる(ばねの長さyが増加する)と、ばねの伸びy-yが最大値xに達するまでは式(1c)の条件が成り立ち、ばねの自然長はy=y0h(=0(初期値))となる。即ち、ばねの自然長yは初期状態のままで変化しない。このとき、図1Bに示すように、ばねの状態(yとyの関係)はy軸(横軸)に沿ってA点からB点まで遷移し、ばねの全長は伸びるがその自然長yは0のままである。また、図1Aにおいては、ばねの自然長yは変化せず、ばねの伸びy-yが増加しながらA点からB点まで変化する。
 ばねの伸びy-yが最大値xに達し(B点)、更にそれ以上ばねが伸びようとすると、式(1a)の条件が成り立ち、ばねの自然長はy=y-xで表される。即ち、ばねが伸びの最大値xを超えて伸びようとした場合には、ばねの長さyの増加に応じてばねの自然長yが増加する。このとき、図1Bでは、ばねの自然長yは直線BCに沿って増加していく。つまり、ばねの全長は増加していくが、その増加分はばねの自然長yの増加によるものとみなされ、ばねの伸びy-yは一定値xを維持することになる。したがって、図1Aの下段の図に示されるように、ばねの伸びはB点での値と同じままで時間変化せず、グラフは時間軸(横軸)と平行な直線を描く。この状況は、対象物の移動方向が反転するまで、即ち、図1Aにおいてばねの長さyの曲線がピーク位置に達する(C点)まで、継続する。
 その後、対象物の移動方向が反転してばねの長さyが減少し始めるが、ばねの自然長yの値は式(1c)の条件から移動方向反転時点の値であるy0h(=C点での値)を維持する。即ち、C点でのばねの自然長y0hが新たなyの値として更新される。その結果、ばねの自然長yは一定値となるので、図1Bにおいてばねの状態は、C点を通るy軸(横軸)に平行な直線CDに沿って遷移する。また、図1Aにおいては、下段の図に示すばねの伸びy-yは、上段の図に示すyの減少に伴ってC点からD点へ向かって右下がりに減少する。
 ばねの長さyが減少していくと、あるところで長さyがC点での自然長y=y0hよりも短くなり、ばねが縮んだ状態になる。更にばねの長さyが減少してばねの伸びy-yが最小値-xに達し(D点)、それ以上ばねが縮もうとすると、式(1b)が成り立ち、ばねの自然長はy=y+xとなる。即ち、ばねが伸びの最小値-xを超えて縮もうとした場合は、ばねの長さyの減少に応じてばねの自然長yが減少する。このとき、図1Bでは、ばねの自然長yは直線DEに沿って減少していく。つまり、ばねの全長は減少していくが、その減少分はばねの自然長yの減少によるものとみなされ、ばねの伸びy-yは一定値-xを維持することになる。したがって、図1Aの下段の図に示されるように、ばねの伸びはD点での値と同じままで時間変化せず、グラフは時間軸(横軸)と平行な直線を描く。この状況は、対象物の移動方向が再度反転するまで、即ち、図1Aにおいてばねの長さyの曲線が下限のピーク位置に達する(E点)まで、継続する。
 以降、同様にして、E点からF点までは式(1c)の条件が成り立つので、ばねの自然長yは、移動方向反転時であるE点での自然長の値y0hをとって一定になる。F点を過ぎた後も同様に、上述したモデルに従ってばねの状態が変化していく。
 したがって、移動方向反転の前後において、ばねの自然長yはその反転時の値y0hを保持しておくだけで求めることができる。
 式(2)は、VNLSモデルにおいて、ばね力(摩擦力)Fを与える式である。
Figure JPOXMLDOC01-appb-M000002
 ここで、Kはばね定数、Dは粘性係数、τは擬似微分器の時定数である。
 このように、VNLSモデルでは、ばねの自然長yを式(1a)~(1c)に従って随時更新して可変値として扱っている。したがって、VNLSモデルに基づく後述する制御アルゴリズムは、転がり摩擦モデルのように対象物の移動方向反転を検出する必要がないため、制御装置への実装が容易な簡単なアルゴリズムとすることができる。
 図2は、実際に測定した対象物の動特性とVNLSモデルに従う動特性とを対比して示した図である。VNLSモデルの動特性は、実際の動特性と合うように式(1a)~(1c)及び式(2)のパラメータx,K,D,τをフィッティングにより求めたものである。具体的には、図2に示す実際の動特性の場合、各パラメータの値は、
=x/5=4[μm]
=Fc/x=2750[N・m]D=4.69[Ns/m]
τ=1[ms]
と求められる。
 次に、本発明の一実施形態による制御装置が位置決め制御を行う対象とする対象物のモデルを図3に示す。本実施形態において、対象物は、転がり摩擦を伴うボールねじで駆動されるステージであって、通常の剛体運動方程式に従う剛体モデルで表される部分と、非線形摩擦を生じさせる上述したVNLSモデルで表される部分と、からなる。このようなボールねじ駆動ステージは、ステージ上の制御対象を精密に位置決めする機構として工作機械や露光装置等で用いることができるものである。このモデルを数式で表したものが次の式(3)である。
Figure JPOXMLDOC01-appb-M000003
 ここで、図3及び式(3)において、τは制御装置から対象物に与える力(制御入力値)、yは計測される対象物の実位置(制御出力値)、Jは剛体モデルにおける回転駆動機構(モータやカップリングやねじ)で作られる慣性モーメントと並進機構(ステージ)の質量を換算した回転軸まわりの慣性モーメントの合計、Dは剛体モデルにおける粘性係数、dは外乱(対象物に加わる外力と対象物のモデル化誤差とを含む)、である。
 図3及び式(3)のモデルは、本実施形態の制御装置が位置決め制御する対象物を一般的に表したものである。この一般化したモデルは、対象物の変位量であるyが大きい(|y|>>x)粗動領域では、伝達関数が式(4)で表される通常の剛体モデルになる。
Figure JPOXMLDOC01-appb-M000004
 また、対象物の変位量が小さい(|y|<x)微動領域では、上述した図1A及び1Bの説明からy=0であるので、伝達関数は次式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 さて、上式(3)において、対象物へ与える制御入力値τを次の式(6)のように補正することを考える。但し、τは補正前の制御入力値である。
Figure JPOXMLDOC01-appb-M000006
 このような補正を行うと、上述した本実施形態における一般化した対象物のモデルを表す式(3)は、次式(7)のようになる。
Figure JPOXMLDOC01-appb-M000007
 ここで、補正前の制御入力値τに対して、次式(8)で表されるようなフィードフォワード制御とフィードバック制御を行う。但し、rは目標位置であり、式(8)の右辺第1項はフィードフォワード制御に対応し、第2項はフィードバック制御に対応する。式(8)の補償を施すことで、目標位置r及び外乱rから実位置yまでの伝達関数は式(9)のようになる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 したがって、外乱が存在しない理想環境下で式(8)の補償を行うと、式(9)より、y=r、即ち、目標位置rから実位置yまでの伝達関数は1となり、位置決め誤差のない高精度な制御を実現することができる。外乱dが存在する場合には、式(8)の右辺第2項のフィードバック制御を機能させることで、高精度な位置決めが可能である。これは、外乱dは低周波成分を多く含むがフィードバック制御系のゲインは低周波領域で小さいため、式(9)の右辺第2項に起因する外乱dの影響は無視できる程度に小さくなるからである。このように、VNLSモデルによれば、上述した式(6)のように制御入力値を補正することによって、非常に高精度な位置決めをすることが可能である。なお、式(7)から分かるように、式(6)の補正により粗動領域も微動領域も見かけ上の伝達関数は同じになるので、制御アルゴリズムも同一である。
 次に、以上説明したVNLSモデルの制御アルゴリズムを実行する制御装置の構成を説明する。図4は、本発明の一実施形態による制御装置のブロック図である。
 図4において、制御装置1は、ばね自然長設定部2と、制御入力値補正部3と、FF(フィードフォワード)制御部4と、FB(フィードバック)制御部5と、加算部6~8と、を有している。
 ばね自然長設定部2は、図示しない位置センサによって計測した対象物9の実位置yを入力として、式(1a)~(1c)に従ってばねの自然長yを随時更新し、更新後のyの値を制御入力値補正部3に出力する。前記位置センサとしては、エンコーダや干渉計等を使用することができる。
 制御入力値補正部3は、ばね自然長設定部2から入力されるばねの自然長yに次式(10)の伝達関数C(s)を乗算し、その結果を加算部6へ出力する。これにより、制御入力値補正部3は補正前の制御入力値τを上述した式(6)のように補正する。
Figure JPOXMLDOC01-appb-M000010
 FF制御部4は、対象物9を位置決めする目標位置rを入力とし、上述した式(8)の右辺第1項に相当する次式(11)の伝達関数CFF(s)をrに乗算してその結果を加算部8へ出力する。
Figure JPOXMLDOC01-appb-M000011
 FB制御部5は、対象物9を位置決めする目標位置rと前記位置センサから得られた実位置yの差分r-yを入力とし、次式(12)の伝達関数CFB(s)をr-yに乗算してその結果を加算部8へ出力する。
Figure JPOXMLDOC01-appb-M000012
 但し、上式(10)~(12)において、各パラメータは図2の実際の動特性に対して求めたパラメータを用い、
J=0.133[kg・m]
D=0.150[Ns/m]
τfb=10[ms]
とする。
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
 例えば、式(10)~(12)に示した伝達関数は一例であり、本発明はこれらに限定されるものではない。式(10)~(12)の伝達関数に代えて、適宜、他の伝達関数を用いることができる。
 また、図2のVNLSモデルにおいて、モデルの特性を実際の動特性により近づけるために、VNLSモデルを多数組み合わせた、次の式(13a)~(13c)及び式(14)で表されるように複数個のばねで構成される多重VNLSモデル(多重数(ばねの個数):n)を適用することもできる。この場合は、図5に示すように、多重VNLS(Multi-VNLS)モデルの動特性が実際の動特性と良く合うので、位置決めの精度を更に向上させることができる。ここで、yは各ばねの先端の実位置であり、例えば対象物の実位置に相当する。また、yはばねの長さが自然長となった時の各ばねの先端の位置(各ばねの自然長)、yihは対象物の移動方向が反転した時点での各ばねの自然長、xliは各ばねの伸びの最大値、である。
Figure JPOXMLDOC01-appb-M000013
 また、本実施形態では、ボールねじで駆動されるステージを例にとって説明したが、これに限定されるものではない。例えば、リニアモータで駆動力を生成し、ボールベアリングでガイドされるように構成されたステージにおいても、ステージは転がり摩擦を伴った移動をすることになり、本発明を適用することが可能である。
 また、VNLSモデルに基づいて外乱dを推定することによって、以下に説明するようにより高性能な制御装置を実現することもできる。上述した式(3)をdについて解くと次式(15)が得られる。
Figure JPOXMLDOC01-appb-M000014
 ここで、式(15)の右辺の第1項は上述の式(11)の伝達関数CFF(s)に相当し、第2項は上述の式(10)の伝達関数C(s)に相当している。この式(15)に従って計算した値dを次式(16)で与えられる時定数τのローパスフィルタに通すことで、式(17)のように外乱dの推定値d’が得られる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 したがって、図6のようにばね自然長設定部12と制御入力値補正部13とFF制御部14とからなる外乱推定部(外乱オブザーバ)10を用いて、対象物の実位置yから推定外乱d’を推定しフィードバック制御する場合、対象物のモデルは次式(18)で表される。
Figure JPOXMLDOC01-appb-M000017
 図7は、図6の外乱推定部10を組み合わせた制御装置のブロック図である。式(18)では外乱dにハイパスフィルタがかかっているので、外乱抑圧特性が向上する。そのため、図7の制御装置はより高性能な位置決めが可能である。
 更に、転がり摩擦を伴って移動する対象物の摩擦特性を計測する計測装置に本発明を適用することが可能である。この計測装置は、例えば、ボールねじで駆動されるステージ等の対象物の移動時に発生する転がり摩擦の摩擦力を検出する摩擦力検出手段と、対象物の移動によって生じる変位量を検出する変位量検出手段と、転がり摩擦の摩擦力を自然長が可変なばねのばね力としてモデル化し、該モデルの伝達関数に基づいて、前記検出された摩擦力と変位量とから対象物の摩擦特性を算出する演算手段と、を備えている。ここでは摩擦特性として、ボールねじが発生するトルクとステージの変位との関係を求めることとするが、それに限定されるものではない。
 摩擦力検出手段は、ボールねじを駆動するモータのモータ電流を電流測定器によって測定してトルク値に換算するものであるが、これに限定されない。例えば、ステージを駆動するボールねじに取り付けられたトルク計やロードセル等の他の計測手段からトルク値を求めるようにしてもよい。変位量検出手段としては、例えば、ステージの位置を測定するように構成されたレーザ干渉計を用いてもよいし、ボールねじの回転量を測定してステージの変位量に換算するためのエンコーダを用いてもよいが、これらに限定されるものではない。演算手段は、式(1a)~(1c)及び式(2)のVNLSモデルに従って、これらの式の各パラメータを同定することで、対象物の摩擦特性(トルクとステージの変位との関係)を算出するものである。
 このように構成された計測装置では、ステージを移動する際に発生する転がり摩擦の摩擦力は、VNLSモデルに基づくばね力としてモデル化されている。このとき、従来のようにステージの移動方向の反転位置を検出する必要がないため計測装置への実装が容易なことから、モデル化した結果を容易に検証することが可能となる。
 ここで、上述したように、外乱が存在しない理想環境下で式(8)の補償を行うと、式(9)より、y=r、即ち、目標位置rから実位置yまでの伝達関数は1となり、位置決め誤差のない高精度な制御を実現することができる。外乱dが存在する場合には、式(8)の右辺第2項のフィードバック制御を次式(19)の伝達関数CFB1(s)に基づいて機能させることで、高精度な位置決めが可能である。これは、外乱dは低周波成分を多く含むがフィードバック制御系のゲインは低周波領域で大きいため、式(9)の右辺第2項に起因する外乱dの影響は無視できる程度に小さくなるからである。このように、VNLSモデルによれば、上述した式(6)のように制御入力値を補正することによって、非常に高精度な位置決めをすることが可能である。なお、式(7)から分かるように、式(6)の補正により粗動領域も微動領域も見かけ上の伝達関数は同じになるので、制御アルゴリズムも同一(切り替える必要がない)となる。
Figure JPOXMLDOC01-appb-M000018
 以下、VNLSモデルを用いた制御装置の別の構成を説明する。図8は、本発明の一実施形態による制御装置のブロック図である。本実施形態において、制御装置は、VNLSモデルによって位置決め制御の対象物をモデル化し、対象物を制御する制御入力値から、該VNLSモデルの伝達関数を用いて該制御入力値を補正するという制御アルゴリズムを採用している。
 図8において、制御装置101は、摩擦補償部102と、FF(フィードフォワード)制御部103と、FB(フィードバック)制御部104と、第1フィルタ部105と、第2フィルタ部106と、加算部107~110と、から構成される。
 FF制御部103は、対象物111を位置決めする目標位置r(ここで、目標位置r自身は目標位置生成装置等の別の装置で生成されるものとする)を入力とし、次式(20)の伝達関数P -1(s)をrに乗算してその結果を加算部108へ出力する。
 なお、このFF制御部103は、上述した図3の対象物のモデルにおいて対象物の変位量であるyが大きい(|y|>>x)粗動領域を示す式(4)で表される通常の剛体モデルの逆モデルによって構成されたフィードフォワード補償器を備えている。なお、前述の伝達関数Prのrは、対象物が剛体モデルであることを表すもので、剛体(rigid)の頭文字のrを添えて表記したものである。
Figure JPOXMLDOC01-appb-M000019
 FB制御部104は、対象物111を位置決めする目標位置rと図示しない位置センサによって計測した対象物111の実位置yとの差分r-yを入力とし、次式(21)の伝達関数CFB(s)をr-yに乗算してその結果を加算部108へ出力する。
 なお、このFB制御部104は、PD(比例,微分)補償器で構成されたフィードバック補償器を備えている。前記位置センサとしては、エンコーダや干渉計等を使用することができるが、特に限定されるものではない。
Figure JPOXMLDOC01-appb-M000020
 式(21)において、Kは比例ゲイン、Kは微分ゲイン、τは微分器の時定数である。
 第1フィルタ部105と第2フィルタ部106は、両者合わせてフィードバック補償器として動作する。また、このフィードバック補償器は、対象物111への外乱を除去する外乱オブザーバの機能を有する。この外乱オブザーバは、前記位置センサから得られた実位置yを入力として、上述した通常の剛体モデルの逆モデルを表す伝達関数と次式(22)に示す1次外乱オブザーバのフィルタ係数Q(s)とに基づいて、対象物111の外乱を除去するための制御入力を計算し、得られた値を加算部110へ出力する。
Figure JPOXMLDOC01-appb-M000021
 ここで、τは低域通過フィルタ(LPF)の時定数である。
 また、第1フィルタ部105のフィルタは次式(23)で表され、第2フィルタ部106のフィルタは次式(24)で表される。
Figure JPOXMLDOC01-appb-M000022
 以上の構成により、対象物111の外乱の影響を抑制することが可能となる。
 摩擦補償部102は、加算部108から出力された対象物111を制御する補正前の制御入力値から後述する方法で補正値を算出し、加算部110へ出力する。摩擦補償部102は、対象物数式モデル121と、ばね伸び算出部122と、補正部123と、から構成される。
 対象物数式モデル121は、加算部108から出力された補正前の制御入力値から、上述したVNLSモデルにおいて対象物の変位量であるyが大きい(|y|>>x)粗動領域で表される通常の剛体モデルを示す式(4)の伝達関数P(s)に基づいて対象物111の位置yを算出し、その結果をばね伸び算出部122へ出力する。即ち、目標位置rからFF制御部103とFB制御部104により求められた制御入力値から上述の式(7)の一般化した補正後の対象物モデルを用いて対象物111の実位置yを推測する。なお、上述のように外乱が存在しない理想環境下では、目標位置rから実位置yまでの伝達関数は1であるため、y=rである。
 ばね伸び算出部122は、対象物数式モデル121によって推測された対象物111の位置yの値からVNLSモデルの式(1)に基づいてばねの伸びy-yを算出し、その結果を補正部123へ出力する。
 補正部123は、ばね伸び算出部122から入力されたばねの伸びy-yに次式(25)の伝達関数F(s)を乗算してVNLSモデルにおけるばね力(摩擦力)Fを算出し、その結果を加算部110へ出力する。これにより、摩擦補償部102は補正前の制御入力値から算出されたばね力(摩擦力)を補正値とした補正を行う。すなわち、上述の式(2)に表されるVNLSモデルにおけるばね力(摩擦力)Fを補正値とする。
Figure JPOXMLDOC01-appb-M000023
 但し、上式(19)~(25)において、各パラメータは図2の実際の動特性に対して求めたパラメータを用い、
J=0.133[kg・m]
D=0.150[Ns/m]
=4.69[Ns/m]
=Fc/x=2750[N/m]x=4[μm]
τ=1[ms]
τfb=10[ms]
とする。
 また、閉ループ極を-100[rad/s]としたときの上式(21)の各パラメータ値は、
=133.3[N/m]
=2.52[N/m]
τ=1.4[ms]
とする。
 また、上式(22)に示した1次外乱オブザーバで用いる低域通過フィルタ(LPF)の時定数は、
τ=3[ms]
とする。
 上記に述べたとおり、本発明の一実施形態によれば、粗動モデルに対して設計した通常の位置決め制御系に対して、VNLSモデルによる摩擦補償の機能を並列に追加する構成のみで構成されるため、簡易に全制御領域で高精度な位置決め制御を行うことが可能となる。
 従来において、通常の位置決め制御系は、制御量が比較的大きい領域(粗動領域)の対象部の数式モデル(粗動モデル)を基に設計するが、VNLSモデルに基づく制御方法は、制御量が比較的小さな領域(微動領域)の対象物の数式モデルを基に計算する必要があった。そのため、摩擦補償器を追加する場合に制御系を再設計する必要があった。また従来において、非線形摩擦補償は、粗動領域でハイゲインのフィードバック制御を行うため、粗動領域でフィードバック制御系が不安定になる可能性があった。
 本実施形態によれば、対象物を移動制御するに際し、制御系を再設計することなく、全制御領域で高精度な位置決め制御を行うことが可能な制御装置が提供可能である。
 次に、ボールねじ駆動装置を備え、このボールねじ駆動装置に上記の位置決め制御系を適用させた例として露光装置1010について説明する。図11は、露光装置1010の構成を示す概略図である。この露光装置1010は、液晶表示素子パターンが形成されたマスクMと、第1ステージとしてのプレートステージPSTに保持された基板(及び物体)としてのガラスプレート(以下、「プレート」という)Pとを、投影光学系PLに対して第1方向、すなわち所定の走査方向(ここでは、図11のX軸方向(紙面内左右方向)とする)に沿って同一速度で同一方向に相対走査し、マスクMに形成されたパターンをプレートP上に転写する等倍一括転写型の液晶用走査型露光装置である。
 この露光装置1010は、露光用照明光ILによりマスクM上の所定のスリット状照明領域(図11のY軸方向(紙面直交方向)に細長く延びる長方形の領域または円弧状の領域)を照明する照明系IOP、パターンが形成されたマスクMを保持してX軸方向に移動する第2ステージとしてのマスクステージMST、マスクMの上記照明領域部分を透過した露光用照明光ILをプレートPに投射する投影光学系PL、本体コラム1012、前記本体コラム1012への床からの振動を除去するための除振台(図示せず)、及び前記両ステージMST、PSTを制御する主制御装置(ステージ制御装置)1011等を備えている。主制御装置1011は、例えば、図8に記載されたブロック図で表される制御装置を含んでおり、露光装置1010が備えるボールねじ駆動装置に関しては、前述のような制御方法を適用させる。ボールねじ駆動装置部分の説明は後述する。
 前記照明系IOPは、例えば特開平9-320956号公報に開示されたように、光源ユニット、シャッタ、2次光一形成光学系、ビームスプリッタ、集光レンズ系、視野絞り(ブラインド)、及び結像レンズ系等(いずれも図示省略)から構成され、次に述べるマスクステージMST上に載置され保持されたマスクM上の上記スリット状照明領域を均一な照度で照明する。
 マスクステージMSTは、不図示のエアパッドによって、本体コラム1012を構成する上部定盤1012aの上面の上方に数μm程度のクリアランスを介して浮上支持されており、駆動機構1014によってX軸方向に駆動される。
 マスクステージMSTを駆動する駆動機構1014としては、ここではリニアモータが用いられているので、以下、この駆動機構をリニアモータ1014と呼ぶ。このリニアモータ1014の固定子1014aは、上部定盤1012aの上部に固定され、X軸方向に沿って延設されている。また、リニアモータ1014の可動子1014bはマスクステージMSTに固定されている。また、マスクステージMSTのX軸方向の位置は、本体コラム1012に固定されたマスクステージ位置計測用レーザ干渉計(以下、「マスク用干渉計」という)1018によって投影光学系PLを基準として所定の分解能、例えば数nm程度の分解能で常時計測されている。このマスク用干渉計1018で計測されるマスクステージMSTのX軸位置情報S3は、主制御装置(駆動制御装置、ステージ制御装置)1011に供給されるようになっている。
 投影光学系PLは、本体コラム1012の上部定盤1012aの下方に配置され、本体コラム1012を構成する保持部材1012cによって保持されている。投影光学系PLとしては、ここでは等倍の正立正像を投影するものが用いられている。従って、照明系IOPからの露光用照明光ILによってマスクM上の上記スリット状照明領域が照明されると、その照明領域部分の回路パターンの等倍像(部分正立像)がプレートP上の前記照明領域に共役な被露光領域に投影されるようになっている。なお、例えば、特開平7-57986号公報に開示されるように、投影光学系PLを、複数組の等倍正立の投影光学系ユニットで構成しても良い。
 さらに、本実施形態では、プレートPのZ方向位置を計測する不図示の焦点位置検出系、例えばCCDなどから構成されるオートフォーカスセンサ(図示せず)が投影光学系PLを保持する保持部材1012cに固定されている。この焦点位置検出系からのプレートPのZ位置情報が主制御装置1011に供給されており、主制御装置1011では例えば、走査露光中にこのZ位置情報に基づいてプレートPのZ位置を投影光学系PLの結像面に一致させるオートフォーカス動作を実行するようになっている。
 プレートステージPSTは、投影光学系PLの下方に配置され、不図示のエアパッドによって、本体コラム1012を構成する下部定盤1012bの上面の上方に数μm程度のクリアランスを介して浮上支持されている。このプレートステージPSTは、駆動機構としてのリニアモータ1016によってX軸方向に駆動される。
 このリニアモータ1016の固定子1016aは、下部定盤1012bに固定され、X軸方向に沿って延設されている。また、リニアモータ1016の可動部としての可動子1016bはプレートステージPSTの底部に固定されている。プレートステージPSTは、前記リニアモータ1016の可動子1016bが固定された移動テーブル1022と、この移動テーブル1022上に搭載されたY駆動機構1020と、このY駆動機構1020の上部に設けられたY可動子1020aとを備えている。
 前記プレートテーブル1019のX軸方向の位置は、本体コラム1012に固定されたプレート用干渉計1025によって投影光学系PLを基準としての所定の分解能、例えば数nm程度の分解能で常時計測されている。このプレート用干渉計1025としては、ここでは、X軸方向に直交するY軸方向(図1における紙面直交方向)に所定距離Lだけ離れた2本のX軸方向の測長ビームをプレートテーブル1019に対して照射する2軸干渉計が用いられており、各測長軸の計測値が主制御装置1011に供給されている。
 このプレート用干渉計1025の各測長軸の計測値をX1、X2とすると、X=(X1+X2)/2によりプレートテーブル1019のX軸方向の位置を求め、θ=(X1-X2)/Lによりプレートテーブル1019のZ軸回りの回転量を求めることができるが、以下の説明においては、特に必要な場合以外は、プレート用干渉計1025から上記のXがプレートテーブル1019のX位置情報S1として出力されるものとする。
 本実施形態においては、リニアモータ1016とY駆動機構1020とによって第1アクチュエータを構成するものとするが、X方向に駆動するための構成だけを前記第1アクチュエータとしてもよいし、Y方向に駆動するための構成だけを前記第1アクチュエータとしてもよい。
 図12は、レベリングユニット1050の構成を示す図である。各レベリングユニット1050はそれぞれ同一の構成となっているので、そのうちの1つを例に挙げてその構成を説明する。
 レベリングユニット1050は、Y可動子1020a上に設けられたカム部材1051、ガイド部材1052、カム移動機構1053及び支持部材1054と、プレートテーブル1019側に設けられたベアリング部材1055とを含んで構成されている。
 カム部材1051は、断面視台形に形成された部材であり、下面1051aが水平方向に平坦な面になっている。カム部材1051の当該下面1051aは、ガイド部材1052に支持されている。カム部材1051の上面1051bは、水平面に対して傾斜して設けられた平坦面である。カム部材1051の一方の側面1051cには、ネジ穴1051dが形成されている。ガイド部材1052は、支持部材1054上にカム部材1051に沿って設けられており、図中左右方向に延在している。
 カム移動機構1053は、サーボモータ1056と、ボールネジ1057と、連結部材1058とを含んで構成されている。サーボモータ1056は、制御装置1011aからの信号に基づいて軸部材1056aを回転させるようになっている。この軸部材1056aは、ここでは例えば図中左右方向に延在している。ボールネジ1057は、連結部材1058を介してサーボモータ1056の軸部材1056aに連結されており、軸部材1056aの回転が伝達されるようになっている。このボールネジ1057は、図中左右方向(サーボモータ1056の回転軸の軸方向と同一方向)にネジ部が設けられており、当該ネジ部がカム部材1051の側面1051cに形成されたネジ穴1051dに螺合されている。軸部材1056a及びボールネジ1057は、支持部材1054の突出部1054a及び1054bによってそれぞれ支持されている。
 このカム移動機構1053は、サーボモータ1056の回転によってボールネジ1057が回転し、ボールネジ1057の回転によって当該ボールネジ1057に螺合されたカム部材1051がガイド部材1052に沿って図中左右方向に移動するようになっている。
 ベアリング部材1055は、図中下側に半球状に形成された部分1055aを有し、当該半球状の部分1055aの下面1055bがカム部材1051の上面1051bに当接するように設けられている。カム部材1051が移動することで、ベアリング部材1055の下面1055bとカム部材1051の上面1051bとの当接位置が変化するようになっており、当該上面1051bとの当接位置が変化することによって下面1055bのZ方向上の位置が変化するようになっている。この位置の変化によってプレートテーブル1019のZ方向の位置が微調節されるようになっている。
 プレートテーブル1019のZ方向上の位置に関しては、検出装置1059によって検出可能になっている。この検出装置1059についても、プレートテーブル1019に対して複数、例えば3つ設けられている。各検出装置1059は、例えば光センサ1059aと、被検出部材1059bとを含んで構成されており、光センサ1059aによって被検出部材1059bの位置を検出することで、被検出部材1059bのZ方向の位置を検出するようになっている。また、光センサ1059aは、Y可動子1020a上に設けられた突出部1020bに固定されている。したがって、当該検出装置1059は、Y可動子1020aの上面1020cを基準としたときのプレートテーブル1019の位置や姿勢等を検出可能となっている。この検出装置1059によって検出された位置情報は、主制御装置1011に送信されるようになっている。
 主制御装置1011は、前述のように、例えば、図8のブロック図で表される制御装置を含んでおり、前述のようなボールネジ1057の制御(サーボモータ1056の回転の制御)を行う。例えば、検出装置1059の検出結果は図8における変位量yに反映されるので、図8における目標位置rとこの検出結果から得られる位置とが一致するように、サーボモータ1056の駆動信号が主制御装置1011(1011a)から出力される。この場合、ボールネジ1057の駆動対象はプレートテーブル1019(あるいはテーブル1019に載置されるガラスプレート露光面のZ位置)であるが、図8における対象物としては、プレートテーブル1019としてもよいし、カム移動機構1053あるいはレベリングユニット1050全体として設定することも可能である。また、図8の対象物数式モデル121は、ボールネジ1057の特性等に基づいて設定することができる。
 また、プレートテーブル1019の一端は、弾性部材1060によってY可動子1020a上の突出部1020dに接続されている。弾性部材1060は、一端が固定部材1060aによってプレートテーブル1019の端部1019bに固定されており、他端が固定部材1060bによって突出部1020dに固定されている。この弾性部材1060によって、プレートテーブル1019がX方向及びY方向へ移動するのを抑えつつ、Z方向に対しての移動を許容できるようになっている。
 以上のような構成により、プレートステージPSTは、プレートテーブル1019に保持されているプレートPの所定の露光すべき領域が投影光学系PLによる露光領域に位置するように、移動テーブル1022(リニアモータ1016の可動子)をX方向に移動(X位置の位置決め)させ、さらに移動テーブル1022に対してY可動子1020をY方向に移動(Y位置の位置決め)させることができる。このとき、プレートPのθz方向の位置を調整できるようにしてもよい。さらに、レベリングユニット1050(第2アクチュエータ)により、前記オートフォーカスセンサの検出結果を基に、プレートPのZ位置がジャストフォーカス(投影光学系PLの結像点と一致)となるように、プレートテーブル1019をY可動子1020aに対してZ方向、θx方向、およびθy方向に移動させる(Z位置、θx方向、およびθy方向の位置決め)ことができる。
 なお、露光装置1010においては、ボールねじ駆動部がレベリングユニット1050に用いられた例について説明したがこれに限定されるものではない。例えば、リニアモータに代えて、マスクステージMSTやプレートステージPSTをX軸方向やY軸方向に移動させる駆動装置(Y駆動機構等)として用いることも可能である。また、露光装置としては液晶用の露光装置に限定されるものではなく、半導体製造用の露光装置や有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。
 また、ボールねじ駆動部は、ステージを駆動するものに限定されるものではない。例えば、ステージに代えて、工作機械用ロボットの移動アームや搬送ロボットに用いることができ、その駆動制御に本実施形態の制御方法を適用させてもよい。
 なお、法令で許容される限りにおいて、上述の各実施形態及び変形例で引用した全ての文献の開示を援用して本文の記載の一部とする。
 なお、上述のように本発明の実施形態を説明したが、本発明は上述した全ての構成要素を適宜組み合わせて用いる事が可能であり、また、一部の構成要素を用いない場合もある。

Claims (25)

  1.  転がり摩擦を伴って移動する対象物を移動制御する制御装置であって、
     前記対象物を移動制御するための制御入力値を生成する入力値生成手段と、
     前記対象物の移動時に発生する前記転がり摩擦の摩擦力をばね力としてモデル化し、該モデルの伝達関数に基づき前記制御入力値を補正する補正手段と、
     前記ばね力のモデルにおけるばねの自然長を可変値として設定する設定手段と、を備え、
     前記補正された制御入力値に従って前記対象物を移動制御する制御装置。
  2.  前記設定手段は、前記ばねの長さに応じてばねの自然長を設定する、請求項1に記載の制御装置。
  3.  前記設定手段は、前記ばねの伸びが所定の閾値に達すると伸びがその閾値を超えることなく一定となるように該ばねの自然長を設定する、請求項2に記載の制御装置。
  4.  前記入力値生成手段は、
     前記対象物の目標位置に基づき制御入力値を生成するフィードフォワード制御手段と、
     前記対象物の目標位置と前記ばねの長さとの差分に基づき制御入力値を生成するフィードバック制御手段と、
     を備える請求項1から請求項3のいずれか1の項に記載の制御装置。
  5.  請求項1から請求項4のいずれか1の項に記載の制御装置と、前記対象物を移動させる駆動手段を有するステージ装置と、を備えた位置決め装置。
  6.  前記駆動手段は、ボールねじにより前記対象物を移動させるように構成されている請求項5に記載の位置決め装置。
  7.  前記対象物の位置を前記ばねの長さとして計測する計測手段を更に備える請求項5又は請求項6に記載の位置決め装置。
  8.  転がり摩擦を伴って移動する対象物を移動制御する制御方法であって、
     前記対象物を移動制御するための制御入力値を生成する過程と、
     前記対象物の移動時に発生する前記転がり摩擦の摩擦力をばね力としてモデル化し、該モデルの伝達関数に基づき前記制御入力値を補正する過程と、
     前記ばね力のモデルにおけるばねの自然長を可変値として設定する過程と、を備え、
     前記補正された制御入力値に従って前記対象物を移動制御する制御方法。
  9.  前記ばねの自然長は、前記ばねの長さに応じて設定される請求項8に記載の制御方法。
  10.  前記ばねの自然長は、前記ばねの伸びが所定の閾値に達すると伸びがその閾値を超えることなく一定となるように設定される請求項9に記載の制御方法。
  11.  前記制御入力値を生成する過程は、
     前記対象物の目標位置に基づくフィードフォワード制御により前記制御入力値を生成する過程と、
     前記対象物の目標位置と前記ばねの長さとの差分に基づくフィードバック制御により前記制御入力値を生成する過程と、
     の少なくとも一方を備える請求項8から請求項10のいずれか1の項に記載の制御方法。
  12.  前記対象物は、ボールねじにより移動させるように構成されている請求項8から請求項11のいずれか1の項に記載の制御方法。
  13.  転がり摩擦を伴って移動する対象物の摩擦特性を計測する計測装置であって、
     前記対象物の移動時に発生する前記転がり摩擦の摩擦力を検出する摩擦力検出手段と、
     前記対象物の移動によって生じる変位量を検出する変位量検出手段と、
     前記対象物の移動時に発生する前記転がり摩擦の摩擦力を自然長が可変なばねのばね力としてモデル化し、該モデルの伝達関数に基づいて、前記検出された摩擦力と変位量とから対象物の摩擦特性を算出する演算手段と、
     を備える計測装置。
  14.  転がり摩擦を伴って移動する対象物を移動制御する制御装置であって、
     前記対象物を移動制御するための制御入力値を生成する入力値生成手段と、
     前記対象物の移動時に発生する前記転がり摩擦の摩擦力をばねの自然長を可変値としたばね力として表した第1のモデルの伝達関数に基づいて、前記入力値生成手段が生成した制御入力値から前記転がり摩擦に対する該制御入力値の補正値を生成する補正値生成手段と、
     を備え、
     前記補正値生成手段が生成した補正値によって補正された制御入力値に従って前記対象物を移動制御する制御装置。
  15.  前記補正値生成手段は、
     前記入力値生成手段が生成した制御入力値から前記対象物の応答を表す第2のモデルの伝達関数に基づいて前記対象物の位置情報を算出し、該算出した位置情報から前記第1のモデルの伝達関数に基づいて前記対象物の前記補正値を生成する請求項14に記載の制御装置。
  16.  前記入力値生成手段は、
     前記対象物の目標位置に基づき制御入力値を生成するフィードフォワード制御手段と、
     前記対象物の目標位置と前記対象物の位置との差分に基づき制御入力値を生成するフィードバック制御手段と、
     を備える請求項14又は請求項15に記載の制御装置。
  17.  前記フィードバック制御手段は、
     前記対象物の移動時の外乱を監視し、該監視した外乱に基づき前記制御入力値を補正する外乱補正手段をさらに備える請求項14から請求項16のいずれか1の項に記載の制御装置。
  18.  請求項14から請求項17のいずれか1の項に記載の制御装置と、前記対象物を移動させる駆動手段を有するステージ装置と、を備えた位置決め装置。
  19.  前記駆動手段は、ボールねじにより前記対象物を移動させるように構成されている請求項18に記載の位置決め装置。
  20.  前記対象物の位置を計測する計測手段をさらに備える請求項18又は請求項19に記載の位置決め装置。
  21.  転がり摩擦を伴って移動する対象物を移動制御する制御方法であって、
     前記対象物を移動制御するための制御入力値を生成する過程と、
     前記対象物の移動時に発生する前記転がり摩擦の摩擦力をばねの自然長を可変値としたばね力として表した第1のモデルの伝達関数に基づいて、前記生成した制御入力値から前記転がり摩擦に対する該制御入力値の補正値を生成する過程と、
     を備え、
     前記生成した補正値によって補正された制御入力値に従って前記対象物を移動制御する制御方法。
  22.  前記補正値を生成する過程は、
     前記生成した制御入力値から前記対象物の応答を表す第2のモデルの伝達関数に基づいて前記対象物の位置情報を算出し、該算出した位置情報から前記第1のモデルの伝達関数に基づいて前記対象物の前記補正値を生成する請求項21に記載の制御方法。
  23.  前記制御入力値を生成する過程は、
     前記対象物の目標位置に基づくフィードフォワード制御により前記制御入力値を生成する過程と、
     前記対象物の目標位置と前記対象物の位置との差分に基づくフィードバック制御により制御入力値を生成する過程と、
     の少なくとも一方を備える請求項21又は請求項22に記載の制御方法。
  24.  前記フィードバック制御は、
     前記対象物の移動時の外乱を監視し、該監視した外乱に基づき前記制御入力値を補正する過程をさらに備える請求項21から請求項23のいずれか1の項に記載の制御方法。
  25.  前記対象物は、ボールねじにより移動させるように構成されている請求項21ら請求項24のいずれか1の項に記載の制御方法。
PCT/JP2009/054307 2008-03-06 2009-03-06 制御装置、位置決め装置、制御方法、及び計測装置 WO2009110599A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-056860 2008-03-06
JP2008056860 2008-03-06
JP2008-198548 2008-07-31
JP2008198548 2008-07-31

Publications (1)

Publication Number Publication Date
WO2009110599A1 true WO2009110599A1 (ja) 2009-09-11

Family

ID=41056148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054307 WO2009110599A1 (ja) 2008-03-06 2009-03-06 制御装置、位置決め装置、制御方法、及び計測装置

Country Status (2)

Country Link
TW (1) TW200943318A (ja)
WO (1) WO2009110599A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055673A1 (ja) * 2008-11-13 2010-05-20 株式会社ニコン 移動体の駆動制御方法、露光方法、ロボット制御方法、駆動制御装置、露光装置、及び、ロボット装置
TWI563356B (en) * 2014-10-09 2016-12-21 Mitsubishi Electric Corp Control device and control method
JPWO2016051542A1 (ja) * 2014-09-30 2017-04-27 株式会社牧野フライス製作所 送り軸制御方法および数値制御工作機械
US10754306B2 (en) 2015-08-06 2020-08-25 Thk Co., Ltd. Position control apparatus and method
WO2024048070A1 (ja) * 2022-09-02 2024-03-07 株式会社鷺宮製作所 試験システム、試験システムの制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491497B2 (ja) * 2015-02-26 2019-03-27 山洋電気株式会社 モータ制御装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105527A1 (ja) * 2006-03-07 2007-09-20 National University Cooperation Nagoya Institute Of Technology 位置決め機構の制御方法および制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105527A1 (ja) * 2006-03-07 2007-09-20 National University Cooperation Nagoya Institute Of Technology 位置決め機構の制御方法および制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055673A1 (ja) * 2008-11-13 2010-05-20 株式会社ニコン 移動体の駆動制御方法、露光方法、ロボット制御方法、駆動制御装置、露光装置、及び、ロボット装置
JPWO2016051542A1 (ja) * 2014-09-30 2017-04-27 株式会社牧野フライス製作所 送り軸制御方法および数値制御工作機械
TWI563356B (en) * 2014-10-09 2016-12-21 Mitsubishi Electric Corp Control device and control method
US10754306B2 (en) 2015-08-06 2020-08-25 Thk Co., Ltd. Position control apparatus and method
WO2024048070A1 (ja) * 2022-09-02 2024-03-07 株式会社鷺宮製作所 試験システム、試験システムの制御方法

Also Published As

Publication number Publication date
TW200943318A (en) 2009-10-16

Similar Documents

Publication Publication Date Title
Butler Position control in lithographic equipment [applications of control]
WO2009110599A1 (ja) 制御装置、位置決め装置、制御方法、及び計測装置
JP6236543B2 (ja) リソグラフィマシンワークピーステーブル、及びその垂直位置初期化方法
KR101913273B1 (ko) 광학장치, 투영 광학계, 노광 장치, 및 물품의 제조 방법
JP2004006688A (ja) 高精度ステージにおけるケーブルの負荷抵抗の補償
JPH0551170B2 (ja)
US11422477B2 (en) Vibration isolation system and lithographic apparatus
US20110046795A1 (en) Drive control method, drive control apparatus, stage control method, stage control apparatus, exposure method, exposure apparatus and measuring apparatus
US20100013354A1 (en) Adjusting device with high position resolution, even in the nano-or subnanometer range
WO2010055673A1 (ja) 移動体の駆動制御方法、露光方法、ロボット制御方法、駆動制御装置、露光装置、及び、ロボット装置
US20230168077A1 (en) Method for calibration of an optical measurement system and optical measurement system
Butler Acceleration feedback in a lithographic tool
JP2019121656A (ja) 制御方法、制御装置、リソグラフィ装置、および物品の製造方法
Serge et al. Motion systems: An overview of linear, air bearing, and piezo stages
US20220326627A1 (en) Actuator assemblies comprising piezo actuators or electrostrictive actuators
JP2010266760A (ja) 移動体装置、露光装置、及び移動体制御方法
KR20080063102A (ko) 노광장치 및 디바이스 제조방법
US6287735B2 (en) Method and apparatus for controlling the leveling table of a wafer stage
JPH10277771A (ja) X−yステージの制御装置
JP2010272686A (ja) 移動体制御装置、露光装置、及び移動体制御方法
JP2009088018A (ja) ステージ制御方法、ステージ制御装置、露光方法及び露光装置並びにデバイス製造方法
KR20220046483A (ko) 위치결정 장치, 리소그래피 장치, 및 물품 제조 방법
JP2010039004A (ja) ステージ装置、露光装置、及びステージ制御方法
US20230334331A1 (en) Management apparatus, processing system, management method, and article manufacturing method
WO2023217460A1 (en) Mechatronic system control method, lithographic apparatus control method and lithographic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09718049

Country of ref document: EP

Kind code of ref document: A1