WO2009110352A1 - 車両用バッテリ冷却装置 - Google Patents

車両用バッテリ冷却装置 Download PDF

Info

Publication number
WO2009110352A1
WO2009110352A1 PCT/JP2009/053270 JP2009053270W WO2009110352A1 WO 2009110352 A1 WO2009110352 A1 WO 2009110352A1 JP 2009053270 W JP2009053270 W JP 2009053270W WO 2009110352 A1 WO2009110352 A1 WO 2009110352A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
cooling
power supply
vehicle
heat
Prior art date
Application number
PCT/JP2009/053270
Other languages
English (en)
French (fr)
Inventor
雅 沢口
健一 孝井
松本 和彦
由和 高松
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to JP2010501856A priority Critical patent/JP5336467B2/ja
Priority to US12/864,133 priority patent/US8703311B2/en
Publication of WO2009110352A1 publication Critical patent/WO2009110352A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/08Air inlets for cooling; Shutters or blinds therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention belongs to the technical field of vehicle battery cooling devices.
  • a battery is cooled by blowing air from a cooling blower (for example, see Patent Document 1).
  • Patent Document 2 Patent Document 2 corresponds to WO03 / 103083.
  • JP 2006-143183 A page 2-19, full view
  • JP 2005-534143 A page 2-10, all figures
  • the present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is to efficiently cool the battery and stabilize the battery temperature when it becomes a situation that cannot be compensated by ordinary cooling means.
  • An object of the present invention is to provide a vehicular battery cooling device.
  • a first cooling means and a second cooling means for cooling a battery of a vehicle, a battery temperature estimating means for estimating the temperature of the battery, and the battery by the estimated temperature.
  • switching control means for switching from the first cooling means to the second cooling means when it is determined that the temperature has become equal to or higher than the predetermined temperature.
  • FIG. 1 is a schematic electrical diagram of a hybrid vehicle in which a vehicle battery cooling device according to a first embodiment is used. It is explanatory drawing of a part of battery cooling device for vehicles of Example 1, and a strong electric cooling system. It is a block schematic diagram of supervision battery monitoring control of Example 1. It is explanatory drawing of a cold plate. It is explanatory drawing of two states of the flow of the refrigerant
  • FIG. It is a figure explaining the structure of the battery cooling device for vehicles of Example 2, and two states of the flow of a refrigerant
  • embodiments for realizing the vehicle battery cooling device of the present invention correspond to the first embodiment corresponding to the inventions according to claims 1, 2, 3, 5 and 8, and the inventions according to claims 1 to 4.
  • the second embodiment will be described based on the second embodiment, the third embodiment corresponding to the invention according to claims 1 to 3, and the fourth embodiment corresponding to the invention according to claims 1 and 7.
  • FIG. 1 is a schematic electrical diagram of a hybrid vehicle in which the vehicle battery cooling device of the first embodiment is used.
  • the engine 1, the transmission 2, and the drive motor 3 constitute a hybrid drive unit such as a series system or a parallel system.
  • the strong electric system will be described.
  • the high power system includes a drive motor 3, an inverter 4, a joint box 5, a high power battery 6, an electric compressor 7, and a DC / DC converter 8.
  • the drive motor 3 is a three-phase coil motor and is connected to and driven by the inverter 4.
  • the inverter 4 is connected via a joint box 5 to a high-power battery 6 that outputs a high voltage, for example, configured by using a plurality of battery units as an assembled battery.
  • the high-power battery 6 supplies power to the drive motor 3 and charges from the drive motor 3.
  • an electric compressor 7 is connected to the joint box 5 and is driven for air conditioning control of the vehicle by a high voltage.
  • a DC / DC converter 8 is connected to the joint box 5, and the DC / DC converter 8 converts a high voltage into a low voltage and supplies power to the weak electric system.
  • the weak electric system includes a low electric battery 9 and various electrical components 10.
  • the low-power battery 9 stores power by supplying power converted from a high voltage to a low voltage by the DC / DC converter 8 and supplies power for starting the engine in the case of various electrical components 10 and a high-power battery running out.
  • Various electrical components 10 operate by receiving a low-voltage power supply from the low-power battery 9 and the DC / DC converter.
  • the water pump 11 circulates the refrigerant used for cooling the high electric system by driving the low electric current.
  • the high-power cooling system will be described.
  • the refrigerant dissipated by the sub radiator 12 is sent by the water pump 11, the drive motor 3 and the inverter 4 are cooled, and the absorbed refrigerant is sent to the sub radiator 12.
  • the refrigerant is circulated to cool the strong electricity.
  • the high-power battery 6, the joint box 5, and the DC / DC converter 8 are arranged outside the engine room, and other components are arranged inside the engine room.
  • FIG. 2 is an explanatory diagram of a part of the vehicle battery cooling device and the high-power cooling system according to the first embodiment.
  • the high-power cooling system of Example 1 will be further described with reference to FIG. 2 in addition to the schematic configuration of FIG. In the portion shown in FIG. 2, the high-power cooling system includes an inverter 4, a sub radiator 12, a cooling line 13, a cooling line 14, an electromagnetic valve 15, and an electromagnetic valve 16.
  • the inverter 4 and the sub-radiator 12 include a cooling line 13 that sends refrigerant from the inverter 4 to the sub-radiator 12 and a cooling line 14 that sends refrigerant from the sub-radiator 12 to the inverter 4. And it is the structure which provides the water pump 11 in the middle of the cooling line 13, and circulates a refrigerant
  • the cooling lines 13 and 14 cool not only the inverter 4 but also the drive motor 3 as shown in FIG. 1 (omitted in FIG. 2).
  • connection line 24 to the battery cooling system is connected in the middle of the cooling line 13, and an electromagnetic valve 15 that switches between a state where the cooling line 13 is connected to the connection line 24 and a state where it is not connected is provided.
  • a connection line 25 to the battery cooling system is connected in the middle of the cooling line 14, and an electromagnetic valve 16 that switches between a state where the cooling line 14 is connected to the connection line 25 and a state where it is not connected is provided.
  • the battery cooling system includes a cold plate 17, a heat exchanger 18, a cooling line 19, a cooling line 20, a water pump 21, an electromagnetic valve 22, and an electromagnetic valve 23.
  • the cold plate 17 has a plate shape and is arranged so as to be in contact with the high-power battery 6.
  • the high-power battery 6 is placed on the cold plate 17.
  • the cold plate 17 cools the battery by allowing the refrigerant sent from the cooling line 19 to pass inside.
  • the battery cooling system includes a cooling line 19 that sends the refrigerant from the heat exchanger 18 toward the cold plate 17, and a cooling line 20 that sends the refrigerant from the cold plate 17 toward the heat exchanger 18.
  • the water pump 21 is provided in the middle of the cooling line 20, and a refrigerant
  • coolant is circulated.
  • an electromagnetic valve 23 is provided in the middle of the cooling line 19 to connect a connection line 25 to the high-power cooling system and switch between a state where the cooling line 19 is connected to the connection line 25 and a state where it is not connected.
  • a solenoid valve 22 is provided in the middle of the cooling line 20 to connect a connection line 24 to the high-power cooling system and switch between a state where the cooling line 20 is connected to the connection line 24 and a state where it is not connected.
  • FIG. 3 is a block schematic diagram of monitoring control of the high-power battery according to the first embodiment.
  • the high-power battery 6 according to the first embodiment is connected to the drive motor 3 and the like via the joint box 5.
  • the voltage sensor 32 detects the voltage between the terminals, and the temperature sensor 33 detects the battery temperature. Further, for example, the internal resistance is detected by the current sensor 34 or another sensor.
  • the detection values of these sensors are output to the battery controller 31, and the battery controller 31 monitors and controls the state of the battery. Further, the battery controller 31 controls on / off driving of the electromagnetic valves 15, 16, 22, and 23.
  • FIG. 4 is an explanatory diagram of a cold plate.
  • the cold plate 17 allows the refrigerant to enter and exit from the left and right inlets and outlets, slowly passes in a U shape inside, and stores a predetermined amount of refrigerant to exchange heat with the high voltage battery 6. Is what you do.
  • the heat absorption part 27 of the inverter 4 is provided with the same structure as that of the cold plate 17, and the heat absorption part 26 of the drive motor 3 forms a flow path through which the refrigerant passes inside the drive motor 3. And endothermic structure.
  • FIG. 5 is an explanatory diagram of two states of the refrigerant flow of the vehicle battery cooling device of the first embodiment.
  • Normal time In the normal state, as shown by flows 101 to 104 in FIG. 5, cooling is performed with the high-power cooling system and the battery cooling system independent of each other.
  • the refrigerant sent out by the water pump 11 flows through the cooling line 13 and passes through the solenoid valve 15 on the way.
  • the electromagnetic valve 15 is in a state where the cooling line 13 is not connected to the connection line 24. Then, when the refrigerant passes through the heat radiation passage in the sub radiator 12 from the cooling line 13, the sub radiator 12 dissipates heat to the outside of the vehicle and cools the refrigerant.
  • the refrigerant flowing through the sub-radiator 12 is sent to the cooling line 14 and passes through the electromagnetic valve 16 on the way.
  • the electromagnetic valve 16 does not connect the cooling line 14 to the connection line 25.
  • the refrigerant flows from the cooling line 14 to the heat absorption part 26 of the drive motor 3 and the heat absorption part 27 of the inverter 4, and goes to the water pump 11. In this way, the inverter 4 and the drive motor 3 are cooled by the strong electric cooling system.
  • the refrigerant sent out by the water pump 21 flows through the cooling line 20 and passes through the solenoid valve 22 on the way.
  • the solenoid valve 22 is in a state where the cooling line 20 is not connected to the connection line 24.
  • the refrigerant passes through the heat exchanger 18 from the cooling line 20.
  • the heat exchanger 18 incorporates a cooling line 28 for air conditioning of the vehicle, and heat exchange of the refrigerant is performed so that the temperature becomes lower than that of the high-power cooling system.
  • coolant which flows through the heat exchanger 18 is sent to the cooling line 19, and passes the solenoid valve 23 on the way.
  • the electromagnetic valve 23 does not connect the cooling line 19 to the connection line 25.
  • the refrigerant flows from the cooling line 19 through the cold plate 17 toward the water pump 21. In this way, the high-power battery 6 is cooled by the battery cooling system.
  • the battery controller 31 monitors the state of the high-power battery 6 based on the battery temperature, internal resistance, and voltage between terminals. If the battery controller 31 detects any abnormality in the battery cooling system, particularly an increase in battery temperature, and determines that the high-power battery 6 must be cooled, the battery controller 31 detects that the electromagnetic valve 15, the electromagnetic valve 16, The electromagnetic valve 22 and the electromagnetic valve 23 are operated.
  • the solenoid valve 15 is activated, the cooling line 13 and the connection line 24 are connected, and the solenoid valve 16 is activated, so that the cooling line 14 and the connection line 25 are connected.
  • the electromagnetic valve 22 is operated, the cooling line 20 and the connection line 24 are connected, and the electromagnetic valve 23 is operated, so that the cooling line 19 and the connection line 25 are connected.
  • the refrigerant that has passed through the sub-radiator 12 of the high-power cooling system flows from the solenoid valve 16 through the connection line 25 (see arrow 203 in FIG. 5), and flows from the solenoid valve 23 to the battery cooling system (see arrow 201 in FIG. 5). ).
  • coolant which passed the cold plate 17 and cooled the high voltage battery 6 flows through the cooling line 20, and passes the connection line 24 from the electromagnetic valve 22 (refer arrow 202 of FIG. 5). Then, the refrigerant passing through the connection line 24 flows from the electromagnetic valve 15 back to the high-power cooling system (see arrow 204 in FIG. 5).
  • the high-power battery 6 can be cooled by flowing and circulating the refrigerant of the high-power cooling system. Thereby, the temperature of the high-power battery 6 is stabilized. Further, in the case of an abnormality in the strong electric cooling system, it is also possible to cool the inverter 4 and the like by flowing a refrigerant from the battery cooling system and circulating it. Thus, in Example 1, the cooling system is stable against temperature rise. Even if an abnormality in which one of the cooling systems cannot be maintained occurs, the refrigerant is sent from the other to obtain better performance.
  • the battery controller 31 performs control so that the power supply from the high-power battery 6 is stopped.
  • the high-power battery 6 is often not in a state where it cannot be used at all.
  • the high-power battery 6 can be used, but when it is determined that power supply to the high-power system should be avoided, the power supply is performed from the high-power battery 6 to the DC / DC converter 8 via the joint box 5.
  • the weak electric system can be used. Therefore, changing to cool the high-power battery 6 using the cooling system of the sub-radiator 12 makes it possible to use the vehicle in a tenacious manner even when a malfunction of the high-power system or the weak power system occurs.
  • the vehicle battery cooling device has the effects listed below.
  • (1) The cooling system of the heat exchanger 18 and the cooling system of the sub-radiator 12 are provided so as to cool the high voltage battery 6, and the battery controller 31 that processes information such as the temperature sensor 33 causes the battery to become above a predetermined temperature.
  • the device for cooling the high-power battery 6 is switched from the cooling system of the heat exchanger 18 to the cooling system of the sub-radiator 12. Therefore, when the situation cannot be compensated by normal cooling means, the cooling is efficiently performed.
  • the battery temperature can be stabilized.
  • the high power system is a power system that can shut off the output when the high power battery 6 becomes high temperature
  • the low power system is a power system that can output when the temperature becomes high.
  • the high power system is a system of the high power battery 6 that supplies power to the drive motor 3 of the vehicle
  • the weak power system is a system of the low voltage low power battery 9 used for auxiliary equipment.
  • the electric compressor 7 of the cooling system of the heat exchanger 18 operates with a strong electric system of the heat exchanger 18 and the cooling system of the sub radiator 12 operates with a weak electric system, so that the power supply of the high electric battery 6 is reduced or stopped.
  • the high-power battery 6 can be cooled by the cooling system of the sub-radiator 12 that operates in the low-power system, and the cooling is efficiently performed when the situation cannot be compensated by normal cooling means. Yes, the battery temperature can be stabilized.
  • the above (1) to (3) include at least two heat exchangers: a cold plate 17 that contacts the high-power battery 6 and absorbs the heat of the high-power battery 6, and a heat exchanger 18 that radiates the heat absorbed to the outside.
  • the cold circuit 17 is provided so as to be able to exchange heat with the heat exchanger 18, and the heat exchanger 18 exchanges heat with the cooling line 28 for air conditioning of the vehicle. Therefore, in normal cooling, heat exchange with the cooling line 28 for air conditioning of the vehicle is performed to obtain a very high cooling performance, and the cold plate 17 brought into contact with the high voltage battery 6 is very strong. Cooling can be performed and the temperature of the high-power battery 6 can be maintained in a good state.
  • the strong electric system is the high electric battery 6 used for driving the vehicle
  • the weak electric system is the low voltage low electric battery 9 used for auxiliary equipment
  • the high electric system is abnormal to the high electric battery 6.
  • the electric compressor 7 used for heat exchange of the heat exchanger 18 is operated by a strong electric system
  • the cooling system of the sub radiator 12 is a cooling system.
  • the cooling system of the sub-radiator 12 is operated by the system to cool the high-power battery 6 and the situation cannot be compensated by the normal cooling means, the battery temperature is effectively reduced. It can be stabilized. Thereby, the vehicle can use the drive motor 3 persistently even if a malfunction occurs.
  • the second embodiment is an example in which a cooling line of a strong electric system cooling system is disposed inside a heat exchanger 18 of a battery cooling system.
  • FIG. 6 is a diagram illustrating the configuration of the vehicle battery cooling device of the second embodiment and two states of the refrigerant flow.
  • a cooling line 41 that branches from the middle of the cooling line 14 on the strong electric system cooling side and the middle of the cooling line 13 and performs heat exchange with the battery cooling line inside the heat exchanger 18 is provided.
  • the solenoid valve 15 switches the connection state of the cooling line 13 and the cooling line 41, and a non-connection state.
  • the solenoid valve 16 switches between a connected state and a disconnected state between the cooling line 14 and the cooling line 41.
  • the water pump 11 is provided in the cooling line 14 between the electromagnetic valve 16 and the sub radiator 12.
  • the cooling line of the battery comprised by the cooling lines 19 and 20 is arrange
  • the battery cooling system has a configuration in which refrigerant is circulated independently without connection of connection lines or solenoid valves. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the refrigerant flows through the cooling line 13 and passes through the electromagnetic valve 15 on the way.
  • the solenoid valve 15 does not connect the cooling line 13 to the cooling line 41.
  • the refrigerant flows through the cooling line 13 and passes through the heat dissipation passage in the sub-radiator 12, whereby the sub-radiator 12 dissipates heat to the outside of the vehicle and cools the refrigerant.
  • the refrigerant flowing through the sub-radiator 12 is sent to the cooling line 14, and then goes from the cooling line 14 to the water pump 11. In this way, the inverter 4 and the drive motor 3 are cooled by the strong electric cooling system.
  • the heat exchanger 18 includes a cooling line 28 for air conditioning of the vehicle and a cooling line 41 of a high-power cooling system, and heat exchange is performed with one of the cooling lines 41. In normal times, heat exchange is performed with the cooling line 28 for air conditioning of the vehicle, and heat exchange of the refrigerant is performed so that the temperature is lower than that of the high-power cooling system.
  • the refrigerant flowing through the heat exchanger 18 is sent to the cooling line 19, flows from the cooling line 19 through the cold plate 17, and goes to the water pump 21. In this way, the high-power battery 6 is cooled by the battery cooling system.
  • the battery controller 31 monitors the state of the high-power battery 6 based on the battery temperature, internal resistance, and voltage between terminals. When the battery controller 31 detects any abnormality in the battery cooling system, in particular, an increase in the battery temperature, and determines that the high-power battery 6 must be cooled, the battery controller 31 switches the electromagnetic valve 15 and the electromagnetic valve 16. Operate.
  • the electromagnetic valve 15 is activated, the cooling line 13 and the cooling line 41 are connected, and the electromagnetic valve 16 is activated, so that the cooling line 14 and the cooling line 41 are connected.
  • the refrigerant that has passed through the sub-radiator 12 of the high-power cooling system passes through the cooling line 41 (see arrow 203 in FIG. 6) from the electromagnetic valve 16 and flows inside the heat exchanger 18 of the battery cooling system. And heat exchange is performed with the internal part of the heat exchanger 18 of the cooling lines 19 and 20 which cool the high-power battery 6 here.
  • the refrigerant having exchanged heat with the heat exchanger 18 flows through the cooling line 41 and returns from the electromagnetic valve 15 to the high-power cooling system (see arrow 204 in FIG. 6).
  • the high-power battery 6 can be cooled by exchanging heat with the cooling line 41 of the high-power cooling system. Thereby, the temperature of the high-power battery 6 is stabilized.
  • the battery cooling system of the high-power battery 6 and the high-power cooling system such as the inverter 4 are configured such that the refrigerant is not mixed, and therefore, completely different refrigerants may be used. Since the target cooling temperature, heat capacity, and resistance to dewdrops are different between the battery cooling system and the strong electric cooling system, it is advantageous to be able to cool the other cooling system while using a refrigerant suitable for each.
  • the vehicle battery cooling device has the following effects in addition to the above (1) to (3).
  • the heat exchanger 18 includes both a cooling line 28 for air conditioning of the vehicle and a cooling line 41 of a high-power cooling system such as the inverter 4.
  • the cooling line of the battery cooling system is provided so as to be able to exchange heat, so that the battery cooling system in the heat exchanger 18 exchanges heat with the cooling line 28 for air conditioning of the vehicle or the cooling line 41 of the high-power cooling system.
  • the strong electric cooling system and the battery cooling system can use the incompatible refrigerant, and the other can be cooled. Since other functions and effects are the same as those of the first embodiment, description thereof is omitted.
  • the third embodiment is an example in which the cooling of the cooling plate that contacts and cools the high-power battery 6 is switched.
  • the configuration will be described.
  • FIG. 7 is a diagram illustrating the configuration of the vehicle battery cooling device of the third embodiment and two states of the refrigerant flow.
  • the battery cooling system is provided so that the cooling plate 51 contacts the high-power battery 6.
  • a cooling line 28 for vehicle air conditioning and a cooling line 41 branched from the strong electric cooling system are passed through the cooling plate 51 to directly pass the cooling line 28 for vehicle air conditioning or the strong electric cooling system.
  • the high-power battery 6 is cooled by the cooling line 41. Since other configurations are the same as those of the second embodiment, the description thereof is omitted.
  • the refrigerant flows through the cooling line 13 and passes through the electromagnetic valve 15 on the way.
  • the solenoid valve 15 does not connect the cooling line 13 to the cooling line 41.
  • the refrigerant flows through the cooling line 13 and passes through the heat dissipation passage in the sub-radiator 12, whereby the sub-radiator 12 dissipates heat to the outside of the vehicle and cools the refrigerant.
  • the refrigerant flowing through the sub-radiator 12 is sent to the cooling line 14, and then goes from the cooling line 14 to the water pump 11. In this way, the inverter 4 and the drive motor 3 are cooled by the strong electric cooling system.
  • a cooling line 28 for air conditioning of the vehicle and a cooling line 42 of the high-power cooling system are passed through a cooling plate 51 provided in contact with the high-power battery 6.
  • the cooling plate 51 is cooled by the cooling line 28 for air conditioning of the vehicle, and the heat generated by the high-power battery 6 is absorbed by the cooling plate 51. In this way, the high-power battery 6 is cooled by the battery cooling system.
  • the battery controller 31 monitors the state of the high-power battery 6 based on the battery temperature, internal resistance, and voltage between terminals. When the battery controller 31 detects any abnormality in the battery cooling system, in particular, an increase in the battery temperature, and determines that the high-power battery 6 must be cooled, the battery controller 31 switches the electromagnetic valve 15 and the electromagnetic valve 16. Operate.
  • the electromagnetic valve 15 is activated, the cooling line 13 and the cooling line 41 are connected, and the electromagnetic valve 16 is activated, so that the cooling line 14 and the cooling line 41 are connected.
  • the refrigerant that has passed through the sub-radiator 12 of the high-power cooling system passes through the cooling line 41 (see arrow 203 in FIG. 7) from the electromagnetic valve 16 and flows inside the cooling plate 51 of the battery cooling system. Then, the cooling plate 51 is cooled, and the heat generated by the high-power battery 6 is absorbed by the cooling plate 51. In this way, the refrigerant that has cooled the cooling plate 51 flows through the cooling line 41 and returns from the electromagnetic valve 15 to the high-power cooling system (see arrow 204 in FIG. 7).
  • the cooling plate 51 brought into contact with the high-power battery 6 is cooled by the cooling line 41 of the high-power cooling system. Therefore, the heat generated by the high-power battery 6 is absorbed, and the temperature of the high-power battery 6 is stabilized.
  • the cooling line 28 for air conditioning of the vehicle and the cooling line 41 of the high-power cooling system directly cool the high-power battery 6, more efficient cooling is performed.
  • the vehicle battery cooling device of the third embodiment has the following effects in addition to the above (1) to (3).
  • the cooling plate 51 includes a cooling plate 51 integrally including at least two heat exchanging portions with the heat exchanging structure portion 51, and the cooling plate 51 and the cooling line 41 branched from the cooling line 28 of the air conditioning for vehicles and the high-power cooling system and the heat Since it is provided so as to be replaceable, the cooling plate 51 that contacts the high-power battery 6 and absorbs the heat generated by the battery exchanges heat with the cooling line 28 for air conditioning of the vehicle or the cooling line 41 of the high-power cooling system, and normal cooling means When the situation cannot be compensated for, the battery can be efficiently cooled to stabilize the battery temperature. Further, it is possible to perform battery cooling more directly and efficiently. Since other functions and effects are the same as those of the second embodiment, description thereof is omitted.
  • the vehicle battery cooling device of the fourth embodiment is an example in which the cooling of the high-power battery 6 is switched from blowing.
  • FIG. 8 is a diagram illustrating the configuration of the vehicle battery cooling device of the fourth embodiment and two states of the refrigerant flow.
  • the battery cooling system is configured to accommodate the high-power battery 6 in the case 61, and the intake path 62 for taking in air from the vehicle interior is provided in the case 61.
  • a blower 63 for forcing air from the passenger compartment into the case 61 is provided in the intake passage 62.
  • the case 61 is provided with an exhaust path 64 for discharging the air inside the case 61 to the outside of the vehicle.
  • a cooling plate 65 that performs heat exchange in contact with the high-power battery 6 is provided inside the case 61. Then, the high-power battery 6 is cooled via the cooling plate 65 provided in the case 61 so that the cooling line 41 branched from the high-power cooling system is passed through the cooling plate 65 inside the case 61. Since other configurations are the same as those of the second embodiment, the description thereof is omitted.
  • the refrigerant flows through the cooling line 13 and passes through the electromagnetic valve 15 on the way.
  • the solenoid valve 15 does not connect the cooling line 13 to the cooling line 41.
  • the refrigerant flows through the cooling line 13 and passes through the heat dissipation passage in the sub-radiator 12, whereby the sub-radiator 12 dissipates heat to the outside of the vehicle and cools the refrigerant.
  • the refrigerant flowing through the sub-radiator 12 is sent to the cooling line 14, and then goes from the cooling line 14 to the water pump 11. In this way, the inverter 4 and the drive motor 3 are cooled by the strong electric cooling system.
  • the blower 63 forcibly sends the air in the passenger compartment to the case 61 in which the high-power battery 6 is housed through the intake passage 62 to cool the high-power battery 6.
  • the air that has absorbed the heat generated by the battery is discharged from the exhaust path 64 to the outside of the vehicle. In this way, the high-power battery 6 is cooled by the battery cooling system.
  • the battery controller 31 monitors the state of the high-power battery 6 based on the battery temperature, internal resistance, and voltage between terminals. When the battery controller 31 detects any abnormality in the battery cooling system, in particular, an increase in the battery temperature, and determines that the high-power battery 6 must be cooled, the battery controller 31 switches the electromagnetic valve 15 and the electromagnetic valve 16. Operate.
  • the electromagnetic valve 15 is activated, the cooling line 13 and the cooling line 41 are connected, and the electromagnetic valve 16 is activated, so that the cooling line 14 and the cooling line 41 are connected.
  • the refrigerant that has passed through the sub-radiator 12 of the high-power cooling system flows from the electromagnetic valve 16 through the cooling line 41 (see arrow 203 in FIG. 8) and flows through the cooling plate 65 provided inside the case 61. . Then, the cooling plate 65 is cooled. Since the cooled cooling plate 65 is in contact with the high voltage battery 6, it absorbs heat generated by the high voltage battery 6. In this way, the refrigerant that has cooled the high voltage battery 6 via the cooling plate 65 provided inside the case 61 flows through the cooling line 41 and returns from the electromagnetic valve 15 to the high voltage cooling system (see FIG. 8). (See arrow 204).
  • the cooling plate 65 provided in the case 61 housing the high-power battery 6 is cooled by the cooling line 41 of the high-power cooling system. Do. Therefore, the heat generated by the high-power battery 6 is absorbed, and the temperature of the high-power battery 6 is stabilized.
  • the vehicle battery cooling device has the following effects in addition to the above (1).
  • the first cooling means is cooling in which the air in the vehicle compartment is sent to the high-power battery 6 by the blower 63 and blown
  • the second cooling means is inside the case 61 so as to contact the high-power battery 6. Therefore, the cooling plate 65 that contacts the high-power battery 6 and absorbs the heat generated by the battery is heated with the cooling line 41 of the high-power cooling system. It is possible to stabilize the battery temperature by replacing it and cooling it efficiently when the situation cannot be compensated by normal air cooling.
  • FIG. 1 of Example 1 demonstrated the structure which has a weak electricity battery
  • the structure which does not have a weak electricity battery may be sufficient.
  • the contact portion that exchanges heat with the high-power battery 6 and the heat exchange portion between the two cooling lines are integrally provided. Good.
  • the refrigerant when switching the cooling line by the solenoid valve, in the state where the refrigerant is connected to the branching cooling line or the connecting line, the refrigerant may also flow through the original cooling line. You may make it not flow a refrigerant
  • coolant It may be determined depending on whether the system allows it.

Abstract

【課題】 通常の冷却手段で補いきれない状況になった場合でも効率的に冷却を行い, バッテリ温度を安定化させることができる車両用バッテリ冷却装置を提供すること。 【解決手段】 熱交換器18の冷却系とサブラジエータ12の冷却系を強電バッテリ6の冷却を行うよう有し、温度センサ33等の情報を処理するバッテリコントローラ31によりバッテリが所定温度以上になったと判断した際に強電バッテリ6の冷却を行う装置を熱交換器18の冷却系からサブラジエータ12の冷却系に切り替えるようにした。

Description

車両用バッテリ冷却装置
 本発明は、車両用バッテリ冷却装置の技術分野に属する。
 従来では、冷却用ブロワの送風によりバッテリを冷却している(例えば、特許文献1参照。)。
 また、循環する冷媒を備え、バッテリに密着させているものもある(例えば、特許文献2(特許文献2は、WO03/103083に対応する)参照。)。
特開2006-143183号公報(第2-19頁、全図) 特表2005-534143号公報(第2-10頁、全図)
 しかしながら、従来にあっては、通常の冷却手段で補いきれない温度上昇状態になった時、バッテリの劣化が考えられる。
 本発明は、上記課題に着目してなされたもので、その目的とするところは、通常の冷却手段で補いきれない状況になった際に効率的に冷却を行いバッテリ温度を安定化させることができる車両用バッテリ冷却装置を提供することにある。
 上記目的を達成するため、本発明では、車両のバッテリを冷却する第1の冷却手段及び第2の冷却手段と、前記バッテリの温度を推定するバッテリ温度推定手段と、前記推定温度により前記バッテリが所定温度以上になったと判断すると、第1冷却手段から第2冷却手段に切り替える切替制御手段と、を備えたことを特徴とする。
 よって、本発明にあっては、通常の冷却手段で補いきれない状況になった際に効率的に冷却を行いバッテリ温度を安定化させることができる。
実施例1の車両用バッテリ冷却装置が用いられるハイブリッド車の概略電装図である。 実施例1の車両用バッテリ冷却装置及び強電冷却系の一部の説明図である。 実施例1の強電バッテリの監視制御のブロック概略図である。 コールドプレートの説明図である。 実施例1の車両用バッテリ冷却装置の冷媒の流れの2つの状態の説明図である。 実施例2の車両用バッテリ冷却装置の構成と、冷媒の流れの2つの状態を説明する図である。 実施例3の車両用バッテリ冷却装置の構成と、冷媒の流れの2つの状態を説明する図である。 実施例4の車両用バッテリ冷却装置の構成と、冷媒の流れの2つの状態を説明する図である。
符号の説明
  1 エンジン
  2 トランスミッション
  3 駆動モータ
  4 インバータ
  5 ジョイントボックス
  6 強電バッテリ
  7 電動コンプレッサ
  8 コンバータ
  9 弱電バッテリ
 10 各種電装品
 11 ウォーターポンプ
 12 サブラジエータ
 13 冷却ライン
 14 冷却ライン
 15 電磁弁
 15 途中電磁弁
 16 電磁弁
 17 コールドプレート
 18 熱交換器
 19 冷却ライン
 20 冷却ライン
 21 ウォーターポンプ
 22 電磁弁
 23 電磁弁
 24 接続ライン
 25 接続ライン
 26 吸熱部
 27 吸熱部
 28 冷却ライン
 31 バッテリコントローラ
 32 電圧センサ
 33 温度センサ
 34 電流センサ
 41 冷却ライン
 42 冷却ライン
 51 冷却プレート
 61 ケース
 62 吸気路
 63 送風機
 64 排気路
 65 冷却プレート
201~204 矢印
 以下、本発明の車両用バッテリ冷却装置を実現する実施の形態を、請求項1,2,3,5,8に係る発明に対応する実施例1と、請求項1~4に係る発明に対応する実施例2と、請求項1~3,6に係る発明に対応する実施例3と、請求項1,7に係る発明に対応する実施例4とに基づいて説明する。
 まず、構成を説明する。
図1は実施例1の車両用バッテリ冷却装置が用いられるハイブリッド車の概略電装図である。
実施例1の車両用バッテリ冷却装置が用いられるハイブリッド車では、エンジン1とトランスミッション2、駆動モータ3によりシリーズ方式やパラレル方式等のハイブリッド駆動部を構成する。
まず強電系について説明する。図1の概略構成において強電系は、駆動モータ3、インバータ4、ジョイントボックス5、強電バッテリ6、電動コンプレッサ7、DC/DCコンバータ8により構成されている。
 駆動モータ3は、3相コイルモータであり、インバータ4に接続され駆動される。
インバータ4は、ジョイントボックス5を介して例えば複数の電池単位を組電池にして構成される高電圧の出力を行う強電バッテリ6に接続される。
強電バッテリ6は、駆動モータ3への電源供給、及び駆動モータ3からの充電を行うものである。
さらにジョイントボックス5には、電動コンプレッサ7が接続され高電圧により車両の空調制御のために駆動される。
また、ジョイントボックス5には、DC/DCコンバータ8が接続され、DC/DCコンバータ8は高電圧を低電圧に変換して、弱電系への電源供給を行う。
 次に弱電系について説明する。図1の概略構成において弱電系は、弱電バッテリ9と各種電装品10により構成されている。
弱電バッテリ9は、DC/DCコンバータ8により高電圧から低電圧に変換された電源供給により、蓄電を行い、各種電装品10及び強電系のバッテリ切れ等の場合のエンジン始動のための電源供給を行う。
各種電装品10は、弱電バッテリ9及びDC/DCコンバータからの低電圧の電源供給を受けて作動する。
ウォーターポンプ11は、強電系の冷却に用いる冷媒を弱電の駆動により循環させる。
 次に強電冷却系について説明する。
図1の概略構成では、サブラジエータ12で放熱した冷媒をウォーターポンプ11で送り、駆動モータ3、インバータ4を冷却して、吸熱した冷媒をサブラジエータ12へ送る。このように冷媒を循環させて強電の冷却を行う。
なお、上記図1の概略構成において、強電バッテリ6、ジョイントボックス5、DC/DCコンバータ8は、エンジンルーム外に配置され、他の構成要素は、エンジンルーム内に配置される。
 図2は実施例1の車両用バッテリ冷却装置及び強電冷却系の一部の説明図である。
実施例1の強電冷却系について、図1の概略構成に加えて、図2を参照してさらに説明する。
図2に示す部分では、強電冷却系はインバータ4、サブラジエータ12、冷却ライン13、冷却ライン14、電磁弁15、電磁弁16を備えている。
 インバータ4とサブラジエータ12は、インバータ4からサブラジエータ12へ冷媒を送る冷却ライン13と、サブラジエータ12からインバータ4へ冷媒を送る冷却ライン14を備えている。そして、冷却ライン13の途中にウォーターポンプ11を設けて、冷媒を循環させる構成である。
また、この冷却ライン13、14は、図1に示すようにインバータ4のみならず駆動モータ3を冷却する(図2では省略)。
 さらに、冷却ライン13の途中にはバッテリ冷却系への接続ライン24を接続し、冷却ライン13が接続ライン24へ接続する状態と接続しない状態を切り替える電磁弁15を設ける。
また、冷却ライン14の途中にはバッテリ冷却系への接続ライン25を接続し、冷却ライン14が接続ライン25へ接続する状態と接続しない状態を切り替える電磁弁16を設ける。
 次に、実施例1のバッテリ冷却系について図2を参照して説明する。
バッテリ冷却系は、コールドプレート17、熱交換器18、冷却ライン19、冷却ライン20、ウォーターポンプ21、電磁弁22、電磁弁23を備えている。コールドプレート17は、板形状で強電バッテリ6と面接するように配置される。例えば、コールドプレート17上に強電バッテリ6を載置するなどである。
さらにコールドプレート17は、冷却ライン19から送られる冷媒を内部に通過させるようにして、バッテリの冷却を行う。
 また、バッテリ冷却系は、熱交換器18から冷媒をコールドプレート17に向かって送る冷却ライン19と、コールドプレート17から熱交換器18に向かって冷媒を送る冷却ライン20を備える。そして、冷却ライン20の途中にウォーターポンプ21を設けて冷媒を循環させる。
さらに、冷却ライン19の途中には、強電冷却系への接続ライン25を接続し、冷却ライン19が接続ライン25と接続する状態と接続しない状態を切り替える電磁弁23を設ける。
また、冷却ライン20の途中には、強電冷却系への接続ライン24を接続し、冷却ライン20が接続ライン24と接続する状態と接続しない状態を切り替える電磁弁22を設ける。
 図3は、実施例1の強電バッテリの監視制御のブロック概略図である。
実施例1の強電バッテリ6は、ジョイントボックス5を介して駆動モータ3などと接続されるが、電圧センサ32により端子間電圧が検出され、温度センサ33によりバッテリ温度が検出される。さらに例えば電流センサ34もしくは他のセンサにより内部抵抗を検出する。これらセンサの検出値は、バッテリコントローラ31に出力され、バッテリコントローラ31では、バッテリの状態を監視し、制御する構成である。また、バッテリコントローラ31は、電磁弁15、16、22、23のオンオフ駆動を制御する。
 図4は、コールドプレートの説明図である。
コールドプレート17の具体例を図4に示す。例えば、コールドプレート17は、左右に配置した取入口、取出口から冷媒を出入りさせ、内部でU字状にゆっくり通過させるとともに、所定量の冷媒を収容して、強電バッテリ6との熱交換を行うものである。なお、実施例1ではインバータ4の吸熱部27をコールドプレート17と同様の構造で設けたものとし、駆動モータ3の吸熱部26は、駆動モータ3の内部に冷媒を通過させる流路を形成して吸熱構造にしたものとする。
 [温度上昇時のバッテリ温度安定化作用]
図5は実施例1の車両用バッテリ冷却装置の冷媒の流れの2つの状態の説明図である。
(通常時)
通常時では、図5に流れ101~104に示すように、強電冷却系とバッテリ冷却系をそれぞれ独立させて、冷却を行う。
通常時の強電冷却系では、ウォーターポンプ11で送り出した冷媒は、冷却ライン13を流れ、途中電磁弁15を通過する。電磁弁15は、冷却ライン13を接続ライン24と接続しない状態にしている。そして、冷媒が冷却ライン13からサブラジエータ12内の放熱通路を通過することにより、サブラジエータ12は車外へ放熱を行い、冷媒を冷却する。
 サブラジエータ12を流れる冷媒は、冷却ライン14に送られ、途中電磁弁16を通過する。電磁弁16は、冷却ライン14を接続ライン25と接続しない状態にしている。そして、冷却ライン14から駆動モータ3の吸熱部26、インバータ4の吸熱部27へ冷媒は流れ、ウォーターポンプ11へ向かう。
このようにして、強電冷却系により、インバータ4、駆動モータ3が冷却される。
 次に、バッテリ冷却系について説明する。
通常時のバッテリ冷却系では、ウォーターポンプ21で送り出した冷媒は、冷却ライン20を流れ、途中電磁弁22を通過する。電磁弁22は、冷却ライン20が接続ライン24と接続しない状態にしている。そして、冷媒が冷却ライン20から熱交換器18内を通過する。熱交換器18は、図5に示すように、車両の空調用の冷却ライン28が組み込まれており、強電冷却系よりもさらに低温となるよう冷媒の熱交換が行われる。
 そして、熱交換器18を流れる冷媒は冷却ライン19へ送られ、途中電磁弁23を通過する。電磁弁23は、冷却ライン19を接続ライン25と接続しない状態にしている。そして冷媒は冷却ライン19からコールドプレート17の内部を流れ、ウォーターポンプ21へ向かう。
このようにして、バッテリ冷却系により強電バッテリ6が冷却される。
 (温度上昇時)
実施例1では、バッテリコントローラ31によって、強電バッテリ6の状態を、バッテリ温度、内部抵抗、端子間電圧により監視している。そして、バッテリコントローラ31によりバッテリの冷却系に何らかの異常、特にバッテリ温度上昇が検出され、強電バッテリ6を冷却しなければならないと判断した場合には、バッテリコントローラ31が電磁弁15、電磁弁16、電磁弁22、電磁弁23を作動させる。
 すると、電磁弁15が作動し、冷却ライン13と接続ライン24を接続状態にし、さらに電磁弁16が作動し、冷却ライン14と接続ライン25を接続状態にする。また、電磁弁22が作動し、冷却ライン20と接続ライン24を接続状態にし、さらに電磁弁23が作動し、冷却ライン19と接続ライン25を接続状態にする。
 これによって、強電冷却系のサブラジエータ12を通過した冷媒は、電磁弁16から接続ライン25を通り(図5の矢印203参照)、電磁弁23からバッテリ冷却系に流れる(図5の矢印201参照)。
そして、コールドプレート17を通過し、強電バッテリ6を冷却した冷媒は、冷却ライン20を流れ、電磁弁22から接続ライン24を通る(図5の矢印202参照)。そして、接続ライン24を通る冷媒は電磁弁15から強電冷却系へ戻る流れとなる(図5の矢印204参照)。
 そのため、バッテリ冷却系に異常が生じ、バッテリの冷却が良好に行えなくなった際に、強電冷却系の冷媒を流し、循環させるようにして強電バッテリ6の冷却を行うことができる。これにより強電バッテリ6の温度は安定化する。
また、強電冷却系の異常の場合に、逆にバッテリ冷却系から冷媒を流し、循環させるようにしてインバータ4等の冷却を行うことも可能である。
このように、実施例1では、冷却系は温度上昇に対し安定する。片方の冷却系が維持できない異常が生じても、他方から冷媒を送り、性能をより良好に得る。
 また、強電バッテリ6の系統に何らかの異常が生じた場合、強電バッテリ6からの電力供給が停止するようにバッテリコントローラ31は制御を行う。但し、この停止制御の際に、強電バッテリ6は全く使用できない状態ではないことが多い。強電バッテリ6は使用できるが、強電系への電力供給は避けるべきと判断している場合には、強電バッテリ6からジョイントボックス5を介してDC/DCコンバータ8へは供給を行う。これにより弱電系は使用できることになる。
そのため、サブラジエータ12の冷却系を用いて強電バッテリ6を冷却するよう変更することは、この強電系、弱電系の不具合等が生じた場合でも粘り強く車両を使用可能にすることになる。
 効果を説明する。実施例1の車両用バッテリ冷却装置にあっては、下記に列挙する効果を有する。
(1)熱交換器18の冷却系とサブラジエータ12の冷却系を強電バッテリ6の冷却を行うよう有し、温度センサ33等の情報を処理するバッテリコントローラ31によりバッテリが所定温度以上になったと判断した際に強電バッテリ6の冷却を行う装置を熱交換器18の冷却系からサブラジエータ12の冷却系に切り替えるため、通常の冷却手段で補いきれない状況になった際に、効率的に冷却を行い、バッテリ温度を安定化させることができる。
 (2)上記(1)において、車両電源は少なくとも2系統あり、強電系は強電バッテリ6が高温になった際に出力を遮断され、弱電系は高温になった際に出力可能な電源系で、強電バッテリ6が所定温度以上になったと判断したときに強電系が遮断され、弱電系で作動するサブラジエータ12の冷却系が作動するため、強電系が電力供給を遮断しても、弱電系によりサブラジエータ12の冷却系を作動させ、強電バッテリ6の冷却を行い、通常の冷却手段で補いきれない状況になった場合でも効率的に冷却を行い、バッテリ温度を安定化させることができる。
 (3)上記(2)において、強電系は車両の駆動モータ3に電源を供給する強電バッテリ6の系統であり、弱電系は補機用に使用される低電圧の弱電バッテリ9の系統であり、熱交換器18の冷却系の電動コンプレッサ7は、熱交換器18の強電系で作動し、サブラジエータ12の冷却系は弱電系で作動するため、強電バッテリ6の電力供給が低下、又は停止したような場合であっても、弱電系で作動するサブラジエータ12の冷却系で強電バッテリ6を冷却することができ、通常の冷却手段で補いきれない状況になった際に効率的に冷却を行い、バッテリ温度を安定化させることができる。
 上記(1)~(3)において、強電バッテリ6と接触し強電バッテリ6の熱を吸熱するコールドプレート17と、吸熱した熱を外部に放熱する熱交換器18の少なくとも2つの熱交換器を含んだ循環回路を冷却ライン19、20で接続して構成して備えコールドプレート17は熱交換器18と熱交換可能に設けられ、熱交換器18は、車両の空調用の冷却ライン28と熱交換可能に設けられたため、通常の冷却では、車両の空調用の冷却ライン28と熱交換を行い非常に性能の高い冷却性能を得るようにし、強電バッテリ6に接触させたコールドプレート17により非常に強く冷却を行うようにでき、強電バッテリ6の温度を良好な状態に維持できる。
 エンジン1と駆動モータ3の作動を切り替える車両で、強電系は車両の駆動に用いる強電バッテリ6で、弱電系は補機用に用いる低電圧の弱電バッテリ9で、強電系は強電バッテリ6に異常が検出された際に出力を遮断されエンジン駆動に切り替えられる車両のバッテリ冷却装置で、熱交換器18の熱交換で用いられる電動コンプレッサ7は、強電系で作動し、サブラジエータ12の冷却系は弱電系で作動し、強電系の遮断を検出した際に、熱交換器18の冷却系の作動からサブラジエータ12の冷却系の作動へ切り替えるため、強電系が電力供給を遮断しても、弱電系によりサブラジエータ12の冷却系を作動させ、強電バッテリ6の冷却を行い、通常の冷却手段で補いきれない状況になった場合でも、効率的に冷却を行いバッテリ温度を安定化させることができる。これにより、車両は駆動モータ3を不具合が生じても粘り強く使用することができる。
 実施例2は、バッテリ冷却系の熱交換器18の内部へ強電系冷却系の冷却ラインを配設した例である。
構成を説明する。
図6は実施例2の車両用バッテリ冷却装置の構成と、冷媒の流れの2つの状態を説明する図である。
実施例2では、強電系冷却側の冷却ライン14の途中と、冷却ライン13の途中とからそれぞれ分岐し、熱交換器18の内部でバッテリの冷却ラインと熱交換を行う冷却ライン41を配設する。そして、電磁弁15は冷却ライン13と冷却ライン41の接続状態、非接続状態を切り替える。また、電磁弁16は冷却ライン14と冷却ライン41との接続状態、非接続状態を切り替える。
 さらに、ウォーターポンプ11は、電磁弁16とサブラジエータ12の間の冷却ライン14に設けるようにする。
そして、熱交換器18では、冷却ライン19、20で構成されるバッテリの冷却ラインが、車両の空調用の冷却ライン28及び冷却ライン41と熱交換可能なように配設するようにする。
なお、バッテリ冷却系は、接続ラインの接続や電磁弁を設けず、独立して冷媒が循環する構成である。
その他構成は、実施例1と同様であるので説明を省略する。
 作用を説明する。
[温度上昇時のバッテリ温度安定化作用]
(通常時)
通常時では、強電冷却系とバッテリ冷却系をそれぞれ独立させて、冷却を行う。
通常時の強電冷却系では、ウォーターポンプ11で送り出した冷媒は、冷却ライン14を流れ、途中電磁弁16を通過する。電磁弁16は、冷却ライン14を冷却ライン41と接続しない状態にしている。そして、冷媒が冷却ライン14から駆動モータ3の吸熱部26、インバータ4の吸熱部27へ冷媒は流れ冷却ライン13へ向かう。
 そして、冷媒は冷却ライン13を流れ、途中電磁弁15を通過する。電磁弁15は、冷却ライン13を冷却ライン41と接続しない状態にしている。そして、冷媒は冷却ライン13を流れ、サブラジエータ12内の放熱通路を通過することにより、サブラジエータ12は車外へ放熱を行い、冷媒を冷却する。次に、サブラジエータ12を流れる冷媒は冷却ライン14に送られ、そして、冷却ライン14から、ウォーターポンプ11へ向かう。
このようにして、強電冷却系により、インバータ4、駆動モータ3が冷却される。
 次に、バッテリ冷却系について説明する。
バッテリ冷却系では、通常時も温度上昇時も冷媒の流れとしては同じになる。
ウォーターポンプ21で送り出した冷媒は、冷却ライン20を流れ、熱交換器18内を通過する。熱交換器18は、図6に示すように、車両の空調用の冷却ライン28及び強電冷却系の冷却ライン41が組み込まれており、どちらかの冷却ライン41と熱交換が行われる。通常時では、車両の空調用の冷却ライン28と熱交換が行われ、強電冷却系よりもさらに低温となるよう冷媒の熱交換が行われる。
 そして、熱交換器18を流れる冷媒は冷却ライン19へ送られ、冷却ライン19からコールドプレート17の内部を流れ、ウォーターポンプ21へ向かう。
このようにして、バッテリ冷却系により強電バッテリ6が冷却される。
 (温度上昇時)
実施例2では、バッテリコントローラ31によって、強電バッテリ6の状態を、バッテリ温度、内部抵抗、端子間電圧により監視している。そして、バッテリコントローラ31によりバッテリの冷却系に何らかの異常、特にバッテリ温度上昇が検出され、強電バッテリ6を冷却しなければならないと判断した場合には、バッテリコントローラ31が電磁弁15、電磁弁16を作動させる。
 すると、電磁弁15が作動し、冷却ライン13と冷却ライン41を接続状態にし、さらに電磁弁16が作動し、冷却ライン14と冷却ライン41を接続状態にする。
 これによって、強電冷却系のサブラジエータ12を通過した冷媒は、電磁弁16から冷却ライン41を通り(図6の矢印203参照)、バッテリ冷却系の熱交換器18の内部を流れる。そして、ここで、強電バッテリ6を冷却する冷却ライン19、20の熱交換器18の内部部分と熱交換を行う。このようにして、熱交換器18で熱交換を行った冷媒は、冷却ライン41を流れ、電磁弁15から強電冷却系へ戻る流れとなる(図6の矢印204参照)。
 そのため、バッテリ冷却系に異常が生じ、バッテリの冷却が良好に行えなくなった場合でも、強電冷却系の冷却ライン41と熱交換を行い強電バッテリ6の冷却を行うことができる。これにより強電バッテリ6の温度は安定化する。
 また、実施例2では、強電バッテリ6のバッテリ冷却系と、インバータ4等の強電冷却系は、冷媒が混合しない構成であるので、全く異なる冷媒をそれぞれ用いればよい。バッテリ冷却系と強電冷却系では、目標の冷却温度、熱容量、対露滴性等が異なるため、それぞれに適した冷媒を用いつつ、他方の冷却系を冷却できることは有利である。
 効果を説明する。実施例2の車両用バッテリ冷却装置にあっては、上記の(1)~(3)に加えて、以下の効果を有する。
(4)上記(1)~(3)において、強電バッテリ6と接触し強電バッテリ6の熱を吸熱するコールドプレート17と、吸熱した熱を外部に放熱する熱交換器18の少なくとも2つの熱交換器を含んだ循環回路を冷却ライン19,20で構成して備え、熱交換器18は、その内部において車両の空調用の冷却ライン28と、インバータ4等の強電冷却系の冷却ライン41の両方に対してバッテリ冷却系の冷却ラインが熱交換可能に設けられているため、熱交換器18におけるバッテリ冷却系が車両の空調用の冷却ライン28又は強電冷却系の冷却ライン41と熱交換するようにして、通常の冷却手段で補いきれない状況になった場合でも効率的に冷却を行いバッテリ温度を安定化させることができる。また強電冷却系とバッテリ冷却系とが互換性のない冷媒を用いることができつつ、他方を冷却することができる。
その他作用効果は実施例1と同様であるので説明を省略する。
 実施例3は強電バッテリ6に接触して冷却する冷却プレートの冷却を切り替える例である。
構成を説明する。
図7は実施例3の車両用バッテリ冷却装置の構成と、冷媒の流れの2つの状態を説明する図である。
実施例3では、バッテリ冷却系が、冷却プレート51を強電バッテリ6に接触させるように設ける。そしてこの冷却プレート51の内部に、車両の空調用の冷却ライン28と、強電冷却系から分岐させた冷却ライン41を通過させるようにして、直接的に車両空調用の冷却ライン28又は強電冷却系の冷却ライン41で強電バッテリ6を冷却する構成である。
その他構成は、実施例2と同様であるので説明を省略する。
 作用を説明する。
[温度上昇時のバッテリ温度安定化作用]
(通常時)
通常時では、強電冷却系とバッテリ冷却系をそれぞれ独立させて、冷却を行う。
通常時の強電冷却系では、ウォーターポンプ11で送り出した冷媒は、冷却ライン14を流れ、途中電磁弁16を通過する。電磁弁16は、冷却ライン14を冷却ライン41と接続しない状態にしている。そして、冷媒が冷却ライン14から駆動モータ3の吸熱部26、インバータ4の吸熱部27へ冷媒は流れ冷却ライン13へ向かう。
 そして、冷媒は冷却ライン13を流れ、途中電磁弁15を通過する。電磁弁15は、冷却ライン13を冷却ライン41と接続しない状態にしている。そして、冷媒は冷却ライン13を流れ、サブラジエータ12内の放熱通路を通過することにより、サブラジエータ12は車外へ放熱を行い、冷媒を冷却する。次に、サブラジエータ12を流れる冷媒は冷却ライン14に送られ、そして、冷却ライン14から、ウォーターポンプ11へ向かう。
このようにして、強電冷却系により、インバータ4、駆動モータ3が冷却される。
 次にバッテリ冷却系について説明する。
バッテリ冷却系では、強電バッテリ6に接触させて設けられた冷却プレート51の内部に、車両の空調用の冷却ライン28と、強電冷却系の冷却ライン42を通過させるようにしている。通常時では、車両の空調用の冷却ライン28によって、冷却プレート51を冷却し、冷却プレート51により強電バッテリ6の発熱を吸熱する。このようにして、バッテリ冷却系により強電バッテリ6が冷却される。
 (温度上昇時)
実施例3では、バッテリコントローラ31によって、強電バッテリ6の状態を、バッテリ温度、内部抵抗、端子間電圧により監視している。そして、バッテリコントローラ31によりバッテリの冷却系に何らかの異常、特にバッテリ温度上昇が検出され、強電バッテリ6を冷却しなければならないと判断した場合には、バッテリコントローラ31が電磁弁15、電磁弁16を作動させる。
 すると、電磁弁15が作動し、冷却ライン13と冷却ライン41を接続状態にし、さらに電磁弁16が作動し、冷却ライン14と冷却ライン41を接続状態にする。
 これによって、強電冷却系のサブラジエータ12を通過した冷媒は、電磁弁16から冷却ライン41を通り(図7の矢印203参照)、バッテリ冷却系の冷却プレート51の内部を流れる。そして、冷却プレート51を冷却し、冷却プレート51により強電バッテリ6の発熱を吸熱する。このようにして、冷却プレート51を冷却した冷媒は、冷却ライン41を流れ、電磁弁15から強電冷却系へ戻る流れとなる(図7の矢印204参照)。
 そのため、バッテリ冷却系に異常が生じ、バッテリの冷却が良好に行えなくなった際に、強電冷却系の冷却ライン41により強電バッテリ6と接触させた冷却プレート51の冷却を行う。そのため強電バッテリ6の発熱は吸熱され、強電バッテリ6の温度は安定化する。
なお、実施例3では、車両の空調用の冷却ライン28と、強電冷却系の冷却ライン41が直接的に強電バッテリ6を冷却するので、より効率的な冷却を行うことになる。
 効果を説明する。実施例3の車両用バッテリ冷却装置にあっては、上記(1)~(3)に加えて、以下の効果を有する。
(6)上記(1)~(3)において、強電バッテリ6と接触し強電バッテリ6の熱を吸熱する冷却プレート51の強電バッテリ6との接触部分と、吸熱した熱を外部に放熱する冷却プレート51の熱交換構造部分との少なくとも2つの熱交換部分を一体に含んだ冷却プレート51を備え、冷却プレート51は車両用の空調の冷却ライン28及び強電冷却系から分岐させた冷却ライン41と熱交換可能に設けられているため、強電バッテリ6と接触してバッテリ発熱を吸熱する冷却プレート51が車両の空調用の冷却ライン28又は強電冷却系の冷却ライン41と熱交換し、通常の冷却手段で補いきれない状況になった際に効率的に冷却を行いバッテリ温度を安定化させることができる。また、より直接的にバッテリ冷却を行い効率のよい冷却を行うことができる。
その他作用効果は実施例2と同様であるので説明を省略する。
 実施例4の車両用バッテリ冷却装置は、強電バッテリ6の冷却を送風から切り替える例である。
構成を説明する。
図8は実施例4の車両用バッテリ冷却装置の構成と、冷媒の流れの2つの状態を説明する図である。
実施例4では、バッテリ冷却系が、強電バッテリ6をケース61の内部に収容する構成に、このケース61の内部に車室内から空気を取り込む吸気路62を設ける。そして、この吸気路62の途中に、車室内からの空気を強制的にケース61の内部に送り込む送風機63を設ける。
さらに、ケース61には、ケース61の内部の空気を車外へ排出する排気路64を設ける。
 またさらに、ケース61の内部には、強電バッテリ6に接触して熱交換を行う冷却プレート65を設ける。そして、強電冷却系から分岐させた冷却ライン41をこのケース61の内部の冷却プレート65に通過させるようにして、ケース61に設けた冷却プレート65を介して強電バッテリ6を冷却する構成である。
その他構成は、実施例2と同様であるので説明を省略する。
 作用を説明する。
[温度上昇時のバッテリ温度安定化作用]
(通常時)
通常時では、強電冷却系とバッテリ冷却系をそれぞれ独立させて、冷却を行う。
通常時の強電冷却系では、ウォーターポンプ11で送り出した冷媒は、冷却ライン14を流れ、途中電磁弁16を通過する。電磁弁16は、冷却ライン14を冷却ライン41と接続しない状態にしている。そして、冷媒が冷却ライン14から駆動モータ3の吸熱部26、インバータ4の吸熱部27へ冷媒は流れ冷却ライン13へ向かう。
 そして、冷媒は冷却ライン13を流れ、途中電磁弁15を通過する。電磁弁15は、冷却ライン13を冷却ライン41と接続しない状態にしている。そして、冷媒は冷却ライン13を流れ、サブラジエータ12内の放熱通路を通過することにより、サブラジエータ12は車外へ放熱を行い、冷媒を冷却する。次に、サブラジエータ12を流れる冷媒は冷却ライン14に送られ、そして、冷却ライン14から、ウォーターポンプ11へ向かう。
このようにして、強電冷却系により、インバータ4、駆動モータ3が冷却される。
 次にバッテリ冷却系について説明する。
バッテリ冷却系では、送風機63によって、強電バッテリ6を内部に収容したケース61に車室内の空気を吸気路62を介して強制的に送り、強電バッテリ6の冷却を行う。バッテリ発熱を吸熱した空気は、排気路64から車外へ排出される。このようにして、バッテリ冷却系により強電バッテリ6が冷却される。
 (温度上昇時)
実施例3では、バッテリコントローラ31によって、強電バッテリ6の状態を、バッテリ温度、内部抵抗、端子間電圧により監視している。そして、バッテリコントローラ31によりバッテリの冷却系に何らかの異常、特にバッテリ温度上昇が検出され、強電バッテリ6を冷却しなければならないと判断した場合には、バッテリコントローラ31が電磁弁15、電磁弁16を作動させる。
 すると、電磁弁15が作動し、冷却ライン13と冷却ライン41を接続状態にし、さらに電磁弁16が作動し、冷却ライン14と冷却ライン41を接続状態にする。
 これによって、強電冷却系のサブラジエータ12を通過した冷媒は、電磁弁16から冷却ライン41を通り(図8の矢印203参照)、ケース61の内部に設けられた冷却プレート65を流れることになる。そして、冷却プレート65を冷却する。冷却された冷却プレート65は、強電バッテリ6に接触しているので、強電バッテリ6の発熱を吸熱する。このようにして、ケース61の内部に設けられた冷却プレート65を介して強電バッテリ6を冷却した冷媒は、冷却ライン41を流れ、電磁弁15から強電冷却系へ戻る流れとなる(図8の矢印204参照)。
 そのため、バッテリ冷却系に異常が生じ、バッテリの冷却が良好に行えなくなった際に、強電冷却系の冷却ライン41により強電バッテリ6を内部に収容したケース61に設けられた冷却プレート65の冷却を行う。そのため強電バッテリ6の発熱は吸熱され、強電バッテリ6の温度は安定化する。
 効果を説明する。実施例4の車両用バッテリ冷却装置にあっては、上記(1)に加えて以下の効果を有する。
上記(1)において、第1の冷却手段は、強電バッテリ6に車室内の空気を送風機63で送って吹き付ける冷却であり、第2の冷却手段は、強電バッテリ6に接触するようケース61の内部に設けられた冷却プレート65とその内部へ通過させる冷却ライン41を含む冷媒循環路であるため、強電バッテリ6と接触してバッテリ発熱を吸熱する冷却プレート65が強電冷却系の冷却ライン41と熱交換し、通常の空冷で補いきれない状況になった際に効率的に冷却を行い, バッテリ温度を安定化させることができる。
 以上、本発明の車両用バッテリ冷却装置を第1実施例~第4実施例に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 例えば、実施例1の図1では、弱電バッテリを有する構成について説明したが、弱電バッテリを有しない構成であってもよい。
例えば, 実施例3では、強電バッテリ6と熱交換する接触部分と、2系統の冷却ラインとの熱交換部分を一体に設けたが、熱伝達媒体を介して別体にしたものであってもよい。
 例えば, 各実施例では、電磁弁による冷却ラインの切り替えにおいて、分岐する冷却ライン又は接続ラインへ冷媒を接続する状態では、元の冷却ラインにも冷媒を流すようにしてもよく、元の冷却ラインに冷媒を流さないようにしてもよい。システム上許容されるかどうか等により決めればよい。

Claims (8)

  1.  第1の冷却手段と第2の冷却手段を有し、バッテリ温度推定手段によりバッテリが所定温度以上になったと判断した際に前記第1の冷却手段から前記第2の冷却手段に切り替えることを特徴とする車両用バッテリ冷却装置。
  2.  請求項1に記載の車両用バッテリ冷却装置において、
     車両電源は少なくとも2系統あり、第1の電源系はバッテリが高温になった際に出力を遮断され、第2の電源系は高温になった際に出力可能な電源系で、前記バッテリが所定温度以上になったと判断したときに第1の電源系が遮断され、前記第2の冷却手段が作動する、
     ことを特徴とする車両用バッテリ冷却装置。
  3.  請求項2に記載の車両用バッテリ冷却装置において、
     前記第1の電源系は車両駆動装置印加用高電圧電源であり、第2の電源系は補機用低電圧電源系であり、第1の冷却手段の冷凍サイクル圧縮機は、第1の電源系で作動し、第2の冷却手段は第2の電源系で作動する、
     ことを特徴とする車両用バッテリ冷却装置
  4.  請求項1~請求項3のいずれか1項に記載の車両用バッテリ冷却装置において、
     前記バッテリと接触し前記バッテリの熱を吸熱するバッテリ熱交換器と、
     吸熱した熱を外部に放熱する少なくとも2つの熱交換器を含んだ循環回路を備え、
     前記熱交換器は、第1の冷却手段と第2の冷却手段と熱交換可能に設けられている、
     ことを特徴とする車両用バッテリ冷却装置。
  5.  請求項1~請求項4のいずれか1項に記載の車両用バッテリ冷却装置において、
     前記バッテリと接触し前記バッテリの熱を吸熱するバッテリ熱交換器と、
     吸熱した熱を外部に放熱する少なくとも2つの熱交換器を含んだ循環回路を備え、
     一の熱交換器は第1の冷却手段と、二の熱交換器は第2の冷却手段と熱交換可能に設けられている、
     ことを特徴とする車両用バッテリ冷却装置。
  6.  請求項1~請求項3のいずれか1項に記載の車両用バッテリ冷却装置において、
     前記バッテリと接触し前記バッテリの熱を吸熱するバッテリ熱交換器と、
     吸熱した熱を外部に放熱する少なくとも2つの熱交換器を含んだ循環回路を備え、
     前記熱交換器は第1の冷却手段及び第2の冷却手段と熱交換可能に設けられている、
     ことを特徴とする車両用バッテリ冷却装置。
  7.  請求項1に記載の車両用バッテリ冷却装置において、
     前記第1の冷却手段は、前記バッテリに室内風を吹き付ける冷却であり、
     前記第2の冷却手段は、前記バッテリに接触するバッテリ熱交換器と放熱器を含む冷媒回路である、
     ことを特徴とする車両用バッテリ冷却装置。
  8.  エンジンと駆動用モータの作動を切り替える車両で、第1の電源系は車両駆動装置印加用高電圧電源で、第2の電源系は補機用低電圧電源系で、第1の電源系はバッテリに異常が検出された際に出力を遮断されエンジン駆動に切り替えられる車両のバッテリ冷却装置で、第1の冷却手段の冷凍サイクル圧縮機は、第1の電源系で作動し、第2の冷却手段は第2の電源系で作動し、第1の電源系の遮断を検出した際に、第1の冷却手段の作動から第2の冷却手段の作動へ切り替える、ことを特徴とする車両用バッテリ冷却装置。
PCT/JP2009/053270 2008-03-05 2009-02-24 車両用バッテリ冷却装置 WO2009110352A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010501856A JP5336467B2 (ja) 2008-03-05 2009-02-24 車両用バッテリ冷却装置
US12/864,133 US8703311B2 (en) 2008-03-05 2009-02-24 Vehicle battery cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-054180 2008-03-05
JP2008054180 2008-03-05

Publications (1)

Publication Number Publication Date
WO2009110352A1 true WO2009110352A1 (ja) 2009-09-11

Family

ID=41055912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053270 WO2009110352A1 (ja) 2008-03-05 2009-02-24 車両用バッテリ冷却装置

Country Status (3)

Country Link
US (1) US8703311B2 (ja)
JP (1) JP5336467B2 (ja)
WO (1) WO2009110352A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100622A (ja) * 2009-11-06 2011-05-19 Toyota Motor Corp 固体電池システム
JP2012049031A (ja) * 2010-08-27 2012-03-08 Denso Corp 電池管理装置
US20130177791A1 (en) * 2010-09-30 2013-07-11 Hitachi, Ltd. Electrical Storage Apparatus
WO2013137119A1 (ja) * 2012-03-12 2013-09-19 ダイムラー・アクチェンゲゼルシャフト ハイブリッド電気自動車の冷却装置
KR101363133B1 (ko) 2012-08-29 2014-02-24 세종공업 주식회사 하이브리드 자동차의 배터리 보호를 위한 제어 시스템 및 시스템 제어방법.
JP2014229480A (ja) * 2013-05-22 2014-12-08 株式会社デンソー 電池温調システム
JPWO2013094050A1 (ja) * 2011-12-22 2015-04-27 トヨタ自動車株式会社 車両
JP2016030923A (ja) * 2014-07-28 2016-03-07 日立建機株式会社 ハイブリッド式作業機
CN108237891A (zh) * 2016-12-23 2018-07-03 中华汽车工业股份有限公司 中度混合动力车辆用电池充电控制装置及具该装置的电源
WO2020129259A1 (ja) * 2018-12-21 2020-06-25 本田技研工業株式会社 温度調整回路
CN112440664A (zh) * 2019-08-27 2021-03-05 本田技研工业株式会社 温度调节回路
WO2024023942A1 (ja) * 2022-07-26 2024-02-01 日産自動車株式会社 車両冷却系構造

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110352A1 (ja) * 2008-03-05 2009-09-11 カルソニックカンセイ株式会社 車両用バッテリ冷却装置
US20110206967A1 (en) * 2010-02-25 2011-08-25 Sanyo Electric Co., Ltd. Battery cooling/heating structure and battery module
JP5611731B2 (ja) * 2010-09-07 2014-10-22 Ntn株式会社 インホイールモータ型電気自動車
JP5522264B2 (ja) * 2010-10-06 2014-06-18 日産自動車株式会社 車両用空調装置
KR20130007819A (ko) * 2011-07-11 2013-01-21 현대자동차주식회사 하이브리드 차량용 파워팩의 냉각장치 및 냉각방법
EP2551982B1 (de) * 2011-07-27 2013-09-25 Siemens Aktiengesellschaft Thermische Überwachung eines Umrichters
CN104010883A (zh) * 2011-12-22 2014-08-27 丰田自动车株式会社 车辆
JP5725064B2 (ja) * 2012-09-21 2015-05-27 トヨタ自動車株式会社 電動車両
JP6113455B2 (ja) 2012-10-12 2017-04-12 日野自動車株式会社 車載用電力制御装置の冷却システム及びその異常診断方法
WO2014068896A1 (ja) * 2012-10-29 2014-05-08 三洋電機株式会社 車載用電池システム
EP2803855A1 (en) * 2013-05-16 2014-11-19 Siemens Aktiengesellschaft Cooling system with two bridged cooling circuits, wind turbine with such a cooling system
US11028947B2 (en) 2013-11-22 2021-06-08 Ford Global Technologies, Llc Coupling for electric vehicle battery pack
JP6132273B2 (ja) * 2014-07-28 2017-05-24 日立建機株式会社 ハイブリッド式作業機
US10293804B2 (en) * 2016-05-19 2019-05-21 GM Global Technology Operations LLC Hybrid vehicle engine starter systems and methods
US10505415B2 (en) 2016-05-19 2019-12-10 GM Global Technology Operations LLC Permanent magnet electric machine
DE102016118743B4 (de) * 2016-10-04 2020-01-02 Rheinmetall Landsysteme Gmbh Bodenstartgerät zum Starten und Warten von Strahltriebwerken von Flugzeugen und anderen Fluggeräten
US10605217B2 (en) 2017-03-07 2020-03-31 GM Global Technology Operations LLC Vehicle engine starter control systems and methods
FR3067860B1 (fr) * 2017-06-15 2021-04-16 Airbus Group Sas Systeme de charge d'au moins une batterie d'accumulateurs d'un vehicule et procede de gestion de recharge de ladite au moins une batterie
US10480476B2 (en) 2018-04-24 2019-11-19 GM Global Technology Operations LLC Starter system and method of control
US10436167B1 (en) 2018-04-24 2019-10-08 GM Global Technology Operations LLC Starter system and method of control
DE102019100329A1 (de) * 2019-01-08 2020-07-09 Jungheinrich Ag System und Verfahren zur Temperierung einer Batterieeinheit
US11370266B2 (en) * 2019-05-16 2022-06-28 Polaris Industries Inc. Hybrid utility vehicle
FR3111705B1 (fr) * 2020-06-17 2022-07-29 Speedinnov Véhicule à batterie embarquée
CN112389274B (zh) * 2020-11-24 2022-03-25 浙江吉利控股集团有限公司 一种用于车辆的冷却模块及车辆
DE102021110381A1 (de) * 2021-04-23 2022-10-27 Bayerische Motoren Werke Aktiengesellschaft Elektrobaugruppe und Kraftfahrzeug mit einer solchen sowie Verfahren zum Betreiben einer solchen
KR20240009005A (ko) * 2022-07-12 2024-01-22 엘지전자 주식회사 에너지 저장장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191104A (ja) * 2000-10-13 2002-07-05 Honda Motor Co Ltd 車両用バッテリ冷却装置
JP2004076603A (ja) * 2002-08-12 2004-03-11 Toyota Motor Corp 多重冷却システム
JP2006216303A (ja) * 2005-02-02 2006-08-17 Denso Corp 発熱機器の冷却構造
JP2007018826A (ja) * 2005-07-06 2007-01-25 Sanyo Electric Co Ltd 車両用の電源装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871526A (en) * 1993-10-13 1999-02-16 Gibbs; Roselle Portable temperature control system
JP3451141B2 (ja) * 1994-11-14 2003-09-29 本田技研工業株式会社 バッテリ温度調節装置
JP4123541B2 (ja) * 1997-07-02 2008-07-23 株式会社デンソー 電池冷却装置
JP4046463B2 (ja) * 2000-08-03 2008-02-13 三洋電機株式会社 電源装置
DE10223782B4 (de) 2002-05-29 2005-08-25 Daimlerchrysler Ag Batterie mit wenigstens einer elektrochemischen Speicherzelle und einer Kühleinrichtung und Verwendung einer Batterie
JP2006143183A (ja) 2004-10-18 2006-06-08 Denso Corp 車両用バッテリ冷却装置
DE102005049200A1 (de) * 2004-10-18 2006-05-11 Denso Corp., Kariya Batteriekühlvorrichtung zur Fahrzeugnutzung
US8049460B2 (en) * 2007-07-18 2011-11-01 Tesla Motors, Inc. Voltage dividing vehicle heater system and method
US20090107657A1 (en) * 2007-10-31 2009-04-30 Montminy Jeffrey E Adjustable cooling system for airplane electronics
US7854282B2 (en) * 2007-12-10 2010-12-21 International Humanities Center Hybrid electric vehicle
WO2009110352A1 (ja) * 2008-03-05 2009-09-11 カルソニックカンセイ株式会社 車両用バッテリ冷却装置
US20090288390A1 (en) * 2008-05-23 2009-11-26 Thomas Clayton Pavia Simplified thrust chamber recirculating cooling system
US20130192272A1 (en) * 2008-10-23 2013-08-01 Gentherm Incorporated Temperature control systems with thermoelectric devices
US20100157527A1 (en) * 2008-12-23 2010-06-24 Ise Corporation High-Power Ultracapacitor Energy Storage Pack and Method of Use
US8399118B2 (en) * 2009-07-29 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
DE102009042774A1 (de) * 2009-09-25 2011-03-31 Behr Gmbh & Co. Kg System für ein Kraftfahrzeug zum Erwärmen und/oder Kühlen einer Batterie und eines Kraftfahrzeuginnenraumes
WO2011073424A1 (de) * 2009-12-18 2011-06-23 Magna E-Car Systems Gmbh & Co Og Kühl-/heizelement für einen akkumulator
US8329325B2 (en) * 2010-02-18 2012-12-11 Denso International America, Inc. Battery cooling with mist evaporation and condensation
US8415041B2 (en) * 2010-06-30 2013-04-09 Nissan North America, Inc. Vehicle battery temperature control system fluidly coupled to an air-conditioning refrigeration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191104A (ja) * 2000-10-13 2002-07-05 Honda Motor Co Ltd 車両用バッテリ冷却装置
JP2004076603A (ja) * 2002-08-12 2004-03-11 Toyota Motor Corp 多重冷却システム
JP2006216303A (ja) * 2005-02-02 2006-08-17 Denso Corp 発熱機器の冷却構造
JP2007018826A (ja) * 2005-07-06 2007-01-25 Sanyo Electric Co Ltd 車両用の電源装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100622A (ja) * 2009-11-06 2011-05-19 Toyota Motor Corp 固体電池システム
JP2012049031A (ja) * 2010-08-27 2012-03-08 Denso Corp 電池管理装置
US9325040B2 (en) * 2010-09-30 2016-04-26 Hitachi, Ltd. Electric storage apparatus including battery modules, first cooling passage, and second cooling passage used to cool battery module after replacement
US20130177791A1 (en) * 2010-09-30 2013-07-11 Hitachi, Ltd. Electrical Storage Apparatus
JPWO2013094050A1 (ja) * 2011-12-22 2015-04-27 トヨタ自動車株式会社 車両
WO2013137119A1 (ja) * 2012-03-12 2013-09-19 ダイムラー・アクチェンゲゼルシャフト ハイブリッド電気自動車の冷却装置
JP2013188098A (ja) * 2012-03-12 2013-09-19 Daimler Ag ハイブリッド電気自動車の冷却装置
KR101363133B1 (ko) 2012-08-29 2014-02-24 세종공업 주식회사 하이브리드 자동차의 배터리 보호를 위한 제어 시스템 및 시스템 제어방법.
JP2014229480A (ja) * 2013-05-22 2014-12-08 株式会社デンソー 電池温調システム
JP2016030923A (ja) * 2014-07-28 2016-03-07 日立建機株式会社 ハイブリッド式作業機
CN108237891A (zh) * 2016-12-23 2018-07-03 中华汽车工业股份有限公司 中度混合动力车辆用电池充电控制装置及具该装置的电源
WO2020129259A1 (ja) * 2018-12-21 2020-06-25 本田技研工業株式会社 温度調整回路
JPWO2020129259A1 (ja) * 2018-12-21 2021-11-11 本田技研工業株式会社 温度調整回路
JP7042362B2 (ja) 2018-12-21 2022-03-28 本田技研工業株式会社 温度調整回路
US11888139B2 (en) 2018-12-21 2024-01-30 Honda Motor Co., Ltd. Temperature adjustment circuit
CN112440664A (zh) * 2019-08-27 2021-03-05 本田技研工业株式会社 温度调节回路
CN112440664B (zh) * 2019-08-27 2023-08-08 本田技研工业株式会社 温度调节回路
WO2024023942A1 (ja) * 2022-07-26 2024-02-01 日産自動車株式会社 車両冷却系構造

Also Published As

Publication number Publication date
JP5336467B2 (ja) 2013-11-06
US8703311B2 (en) 2014-04-22
JPWO2009110352A1 (ja) 2011-07-14
US20100300646A1 (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5336467B2 (ja) 車両用バッテリ冷却装置
CN110676537B (zh) 一种低能耗电动汽车热管理系统及动力电池加热方法
KR102522330B1 (ko) 차량용 배터리의 열관리 시스템
US11394064B2 (en) Temperature adjustment circuit and control method thereof
KR20160046262A (ko) 차량용 배터리 냉각 시스템
JP6997883B2 (ja) 温度調整回路
CN213920592U (zh) 车辆热管理系统及电动汽车
JP6997884B2 (ja) 車両
CN111873854B (zh) 一种电动汽车热管理系统
WO2020059712A1 (ja) 車両の熱交換システム及び当該車両の熱交換システムに用いられるモータユニット
JP7038231B2 (ja) 車両
US11888139B2 (en) Temperature adjustment circuit
CN110854475B (zh) 一种电动汽车温控系统
KR100747304B1 (ko) 하이브리드 차량의 에어컨시스템
CN115056630B (zh) 用于电动卡车的热管理系统总成以及电动卡车
WO2022107381A1 (ja) 温調装置
CN113942366B (zh) 一种前后双电机电动汽车的冷热循环系统及控制方法
KR101250278B1 (ko) 자동차의 보조 냉난방 장치용 열전소자 모듈장치
US20240025224A1 (en) Electric drive vehicle provided with a thermoregulation system
WO2022107428A1 (ja) 温調装置
CN115782694A (zh) 用于电动设备的热管理系统及电动车
CN116901648A (zh) 热管理设备、热管理系统和电动车辆
CN117863825A (zh) 集成式热管理系统
CN115503561A (zh) 车辆热管理系统、车辆及车辆热管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718142

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501856

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12864133

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09718142

Country of ref document: EP

Kind code of ref document: A1