WO2009110311A1 - Imaging lens, imaging device and method for manufacturing imaging lens - Google Patents

Imaging lens, imaging device and method for manufacturing imaging lens Download PDF

Info

Publication number
WO2009110311A1
WO2009110311A1 PCT/JP2009/052659 JP2009052659W WO2009110311A1 WO 2009110311 A1 WO2009110311 A1 WO 2009110311A1 JP 2009052659 W JP2009052659 W JP 2009052659W WO 2009110311 A1 WO2009110311 A1 WO 2009110311A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
imaging lens
block
substrate
Prior art date
Application number
PCT/JP2009/052659
Other languages
French (fr)
Japanese (ja)
Inventor
貴志 川崎
慶二 松坂
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2009110311A1 publication Critical patent/WO2009110311A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to an imaging lens of an imaging apparatus using a solid-state imaging device such as a CCD (Charge Coupled Device) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor, and more specifically for mass production.
  • a solid-state imaging device such as a CCD (Charge Coupled Device) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor, and more specifically for mass production.
  • the present invention relates to an imaging lens partially using a suitable wafer-scale lens, an imaging device using the imaging lens, and a manufacturing method of the imaging lens.
  • a compact and very thin imaging device (hereinafter also referred to as a camera module) is used in portable terminals that are compact and thin electronic devices such as mobile phones and PDAs (Personal Digital Assistants), and also uses a zoom lens.
  • Small imaging devices are used for small digital cameras, video cameras, and the like.
  • an image pickup element used in these image pickup apparatuses a solid-state image pickup element such as a CCD type image sensor or a CMOS type image sensor is used. In recent years, the number of pixels of an image sensor has been increased, and higher resolution and higher performance have been achieved.
  • an imaging lens for forming a subject image on these imaging elements is required to be compact in response to miniaturization of the imaging element, and the demand tends to increase year by year.
  • an optical system composed of a resin material lens and an optical system composed of a glass lens and a resin material lens are generally well known.
  • the optical performance is significantly deteriorated due to a manufacturing error in the lens manufacturing (for example, the optical axis of the lens does not match the optical axis of the optical system). Therefore, it can be said that it is difficult to achieve both further ultra-compactness and mass productivity required for these imaging devices.
  • a single focus lens is a triplet type lens as described in Patent Document 1
  • a zoom lens is a lens with optimized power arrangement and surface spacing as in Patent Document 2
  • Patent Document 3 Such alignment methods have been proposed. JP 2006-308789 A JP 2005-055592 A JP 2006-148662 A
  • the present invention has been made in view of such a situation, and an object thereof is to provide an imaging lens that suppresses performance deterioration due to a manufacturing error and is excellent in mass productivity.
  • the imaging lens according to claim 1 integrates at least two lens blocks each having a lens portion formed on at least one of an object side surface and an image side surface of a lens substrate, which is a parallel plate, via an interval defining portion.
  • lens substrate For the purpose of mass production and cost reduction of imaging lenses built in portable terminals, a large number of lens parts are simultaneously formed on a several inch wafer (lens substrate) by the replica method, and these are combined with the sensor wafer and then separated.
  • a method of mass-producing camera modules is known.
  • a lens substrate and a lens part formed in large quantities on the lens substrate are collectively referred to as a lens block unit, and one separated from the lens block unit is referred to as a lens block.
  • a lens that passes through a position where axial light rays are high is subject to collapsing due to a manufacturing error (the optical axis shift of the lens in a direction perpendicular to the optical axis of the optical system).
  • the so-called “one-sided blur” in which the resolving power on the image sensor becomes asymmetrical may occur, and the performance may be significantly degraded. That is, in order to suppress performance degradation due to manufacturing errors, it is necessary to align the optical axis of a lens with a high axial ray height with the optical axis of the optical system.
  • a lens group having a high axial ray height which is a constituent element of an imaging lens, is included in this lens group by integrating at least two lens blocks via a space defining part such as a spacer.
  • the maximum ray height of the on-axis light beam means the height (distance from the optical axis) of the light beam that forms the image on the optical axis and intersects the optical surface farthest from the optical axis.
  • imaging lens includes a so-called zoom lens having a zooming function.
  • the shape is limited due to the lens substrate being a parallel plate, but at least one lens group other than the lens group configured by a plurality of lens blocks is used.
  • the imaging lens which has a lens the freedom degree of a shape increases and it can be set as a higher performance imaging lens.
  • the imaging lens according to claim 2 is the invention according to claim 1, wherein the lens group includes at least two lens block units each having a plurality of lens blocks formed in a lattice shape. And a step of adhering via the interval defining portion, and a step of cutting the adhered lens block unit and the interval defining portion at the position of the lattice frame of the interval defining portion. It is characterized by being.
  • another lens block unit is laminated and bonded via a space defining portion such as a spacer member on the lens block unit formed with a large number of lens portions, and bonded. Disconnect.
  • a lens group having a small parallel decentration which is composed of at least two lens blocks and whose optical axes are aligned with high accuracy, can be produced in large quantities and at low cost in a short time. Furthermore, since it is bonded and fixed, it is possible to prevent the optical axes of the lens blocks from being shifted after the production.
  • this manufacturing method is not limited to the camera module, and a lens group in which a plurality of lens blocks are bonded can be mass-produced except for the sensor wafer.
  • the imaging lens according to claim 3 is the imaging lens according to claim 1 or 2, wherein E is a parallel decentering sensitivity at 70% image height of each of the lens groups, and each of the lens blocks.
  • Emax is the maximum absolute value of the 70% parallel decentration sensitivity
  • the lens group includes a parallel decentering sensitivity lens block having a sign opposite to Emax, and satisfies the following conditional expression: To do.
  • the parallel decentering sensitivity is a value of ⁇ M / ⁇ when the change amount ⁇ M of the meridional image plane with respect to the decentering amount ⁇ of the lens in the direction perpendicular to the optical axis of the image pickup lens is 70% image height. Is a height of 70% that is 1/2 of the diagonal length of the rectangular effective pixel region of the solid-state imaging device.
  • the lens group that is a component of the imaging lens includes a lens block having a parallel eccentricity sensitivity of the opposite sign to the lens block having the highest absolute value of the parallel eccentricity sensitivity.
  • conditional expression (1) even when the sensitivity of parallel decentering of the lens blocks constituting the lens group is high, the tilt of the image plane due to the parallel decentering of the lens group is reduced, and performance degradation due to single blurring is suppressed to a minimum. be able to.
  • conditional expression (1) is satisfied at a position where the value of
  • parallel decentering sensitivity means the value of ⁇ M / ⁇ when the change amount ⁇ M of the meridional image plane between the optical axis of the imaging lens and the decentering amount ⁇ of the lens in the vertical direction.
  • reverse sign means that the meridional image plane moves in the opposite direction parallel to the optical axis with respect to the eccentricity of each of the two lenses in the same vertical direction as the optical axis. The surface on which the meridional light beam forms the sharpest image is assumed.
  • the imaging lens according to claim 4 is an aperture stop on any lens substrate of the lens block forming the lens group in the invention according to any one of claims 1 to 3. It is characterized by having.
  • An aperture stop can be easily formed on the lens substrate by applying a light-shielding member on the surface of the lens substrate or by vacuum deposition.
  • the imaging lens according to claim 5 is the imaging lens according to any one of claims 1 to 4, wherein the lens portion is made of a resin material and the lens substrate is made of a glass material. It is characterized by.
  • An imaging lens that is easy to polish by using a glass substrate for the lens substrate, which is a parallel plate, and that has a complicated shape and a resin material with good moldability, so that high performance can be achieved at low cost. Can be formed.
  • the imaging lens according to claim 6 is characterized in that, in the invention according to any one of claims 1 to 5, the surface of the lens portion that contacts air is an aspherical surface. .
  • the difference in refractive index is the largest at the boundary surface between the air and the lens part, and the effect of the aspheric surface can be utilized to the maximum. Further, by making the lens surfaces all aspherical, the occurrence of various aberrations can be minimized, and high performance can be easily achieved.
  • the imaging lens according to claim 7 is characterized in that, in the invention according to any one of claims 1 to 6, the lens portion is made of an energy curable resin.
  • the energy curable resin material refers to a thermosetting resin material that is cured by heat, an ultraviolet (UV) curable resin material that is cured by light, or the like.
  • the energy curable resin material is preferably composed of a UV curable resin material.
  • the imaging lens according to claim 8 is the invention according to claims 1 to 7, wherein inorganic fine particles having a length of 30 nanometers or less are dispersed in the resin material. It is characterized by.
  • Dispersing inorganic fine particles of 30 nanometers or less in a lens part made of a resin material can reduce performance deterioration and image point position fluctuations even when the temperature changes, and also reduce light transmittance.
  • an imaging lens having excellent optical characteristics regardless of environmental changes can be provided.
  • the size of the fine particles should be smaller than the wavelength of the transmitted light beam. Thus, substantially no scattering can occur.
  • the resin material has a disadvantage that the refractive index is lower than that of the glass material, but it has been found that the refractive index can be increased by dispersing inorganic particles having a high refractive index in the resin material as a base material. Specifically, by dispersing inorganic particles of 30 nanometers or less in the resin material as the base material, preferably 20 nanometers or less, more preferably 15 nanometers or less in the resin material as the base material, A material having any temperature dependency can be provided.
  • the refractive index of the resin material decreases as the temperature rises
  • inorganic particles whose refractive index increases as the temperature rises are dispersed in the resin material as the base material, these properties will cancel each other. It is also known that the refractive index change with respect to the temperature change can be reduced. On the other hand, it is also known that when the inorganic particles whose refractive index decreases as the temperature rises are dispersed in the resin material as the base material, the refractive index change with respect to the temperature change can be increased.
  • inorganic particles of 30 nanometers or less in the resin material as the base material preferably 20 nanometers or less, more preferably 15 nanometers or less in the resin material as the base material, A material having any temperature dependency can be provided.
  • the temperature change A of the refractive index is expressed by the following equation by differentiating the refractive index n with respect to the temperature t based on the Lorentz-Lorentz equation (Equation 1).
  • the contribution of the second term is generally smaller than the first term in the formula, and can be almost ignored.
  • the contribution of the second term of the above formula is substantially increased, so as to cancel out the change due to the linear expansion of the first term. .
  • the mixing ratio can be appropriately increased or decreased in order to control the rate of change of the refractive index with respect to the temperature, and a plurality of types of nano-sized inorganic particles can be blended and dispersed.
  • the imaging lens according to claim 9 is the imaging lens according to any one of claims 1 to 8, wherein the lens substrate and the lens portion are formed through a thin film. It is characterized by having.
  • the optical member By forming an aperture stop or infrared cut filter formed of a thin film between the lens portion and the lens substrate, the optical member can be simplified and the cost can be reduced.
  • the imaging lens according to claim 10 is the invention according to any one of claims 1 to 9, wherein the lens group has a lens block in which a lens portion is formed only on one side. It is characterized by.
  • the aberration correction function is assigned to a surface having no curvature by design, so that the influence on the aberration performance can be reduced without forming a resin portion on one side. In such a case, it is better not to form the lens portion considering the balance between good aberration performance and low cost. Further, if one side has no curvature, a function such as infrared cut can be provided by depositing a thin film on the surface.
  • the imaging lens according to claim 11 is the imaging lens according to any one of claims 1 to 10, wherein the lens block is provided on one of the lens portion and the lens substrate, respectively. Means for aligning the optical axis is formed.
  • the optical axes can be aligned more accurately, the time for aligning the optical axes can be shortened, and mass productivity can be improved.
  • the imaging device according to claim 12 is characterized by using the imaging lens according to any one of claims 1 to 11, so that it can be used in a low-cost and high-humidity environment. Can be provided.
  • the imaging lens manufacturing method is a lens block unit in which a plurality of lens blocks each having a lens portion formed on at least one of an object side surface and an image side surface of a lens substrate that is a parallel plate are formed.
  • the present invention it is possible to provide an imaging lens that suppresses performance degradation due to manufacturing errors and is excellent in mass productivity.
  • FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along line II-II and viewed in the direction of the arrow. It is a figure which shows the state equipped with the imaging device 50 in the mobile telephone 100 as a portable terminal.
  • 3 is a control block diagram of the mobile phone 100.
  • FIG. It is a figure which shows the process of manufacturing the imaging lens concerning this Embodiment. It is sectional drawing of 1st Example.
  • FIG. 4 is an aberration diagram of the imaging lens shown in Example 1. It is sectional drawing of 2nd Example.
  • FIG. 6 is an aberration diagram of the imaging lens shown in Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens shown in Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens shown in Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens shown in Example 2.
  • FIG. 6 is an aberration diagram of the imaging lens shown in Example 2.
  • 3rd Example FIG. 6 is an aberration diagram of the imaging lens shown in Example 3.
  • Imaging lens 20 Case 50 Imaging device 51 Image sensor 51a Photoelectric conversion part 51b Signal processing circuit 52 Board
  • FIG. 1 is a perspective view of an imaging apparatus 50 according to the present embodiment
  • FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along the line II-II and viewed in the direction of the arrow.
  • the imaging device 50 includes a CMOS image sensor 51 as a solid-state imaging device having a photoelectric conversion unit 51 a, an imaging lens 10 that causes the photoelectric conversion unit 51 a of the image sensor 51 to capture a subject image, A substrate 52 having an external connection terminal (not shown) for holding the image sensor 51 and transmitting / receiving the electric signal is provided, and these are integrally formed.
  • the imaging lens 10 is held by a housing 20 and includes a first lens block B1, a second lens block B2, and a third lens L3.
  • a photoelectric conversion unit 51a as a light receiving unit in which pixels (photoelectric conversion elements) are two-dimensionally arranged is formed in the center of a plane on the light receiving side.
  • a processing circuit 51b is formed.
  • the signal processing circuit 51b forms a picture signal output by using a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and the digital signal. It consists of a signal processing unit and the like.
  • a number of pads (not shown) are arranged near the outer edge of the plane on the light receiving side of the image sensor 51, and are connected to the substrate 52 via wires (not shown).
  • the image sensor 51 converts the signal charge from the photoelectric conversion unit 51a into an image signal such as a digital YUV signal, and outputs the image signal to a predetermined circuit on the substrate 52 via a wire (not shown).
  • Y is a luminance signal
  • the solid-state imaging device is not limited to the CMOS image sensor, and other devices such as a CCD may be used.
  • the substrate 52 that supports the image sensor 51 is communicably connected to the image sensor 51 through a wiring (not shown).
  • the substrate 52 is connected to an external circuit (for example, a control circuit included in a host device of a portable terminal mounted with an imaging device) via an external connection terminal (not shown), and a voltage for driving the image sensor 51 from the external circuit. And a clock signal can be received, and a digital YUV signal can be output to an external circuit.
  • an external circuit for example, a control circuit included in a host device of a portable terminal mounted with an imaging device
  • an external connection terminal not shown
  • a clock signal can be received, and a digital YUV signal can be output to an external circuit.
  • the upper part of the image sensor 51 is sealed with a flat optical member F such as an infrared cut filter fixed on the upper surface of the substrate 52.
  • a flat optical member F such as an infrared cut filter fixed on the upper surface of the substrate 52.
  • the lower end of the third spacer SP3 which is a space defining portion, is fixed.
  • the flange portion of the third lens L3 is fixed to the upper end of the third spacer SP3, and the lower end of the second spacer SP2 that is the interval defining portion is fixed to the upper surface of the flange portion of the third lens L3.
  • the periphery of the second lens substrate B2b of the second lens block B2 is fixed to the upper end of the second spacer SP2, and the lower end of the first spacer SP1 that is the interval defining portion is fixed to the upper surface of the periphery of the second lens substrate B2b.
  • the periphery of the first lens substrate B1b of the first lens block B1 is fixed to the upper end of the first spacer SP1.
  • the first to third spacers SP1 to SP3 are configured as separate members as the interval defining portion.
  • the present invention is not limited to this.
  • the lens portion B1c formed on the lens substrate A shape corresponding to the function of the first spacer SP1 may be integrally formed as at least one of B2a as the space defining portion.
  • a shape corresponding to the second spacer SP2 and the third spacer SP3 may be formed as a spacer portion integrally with the flange portion of the third lens L3.
  • the first lens block B1 is formed on a first lens substrate B1b which is a glass parallel plate, a resin-made first object-side lens portion B1a formed on the object side surface, and an image side surface of the first lens substrate B1b.
  • the first image side lens portion B1c made of resin.
  • An aperture stop S is formed between the first object side lens unit B1a and the first lens substrate B1b by an optical thin film formed on the surface of the first lens substrate B1b.
  • the second lens block B2 is formed on a second lens substrate B2b which is a glass parallel plate, a resin second object side lens portion B2a formed on the object side surface, and an image side surface of the second lens substrate B2b.
  • the second image side lens portion B2c made of resin.
  • the maximum light beam height of the axial light beam passing through the lens group LG is the maximum light beam height of the axial light beam of the imaging lens 10.
  • Each lens part B1a, B1c, B2a, B2c is preferably made of a thermosetting resin or an ultraviolet curable resin material in which inorganic fine particles having a maximum length of 30 nanometers or less are dispersed. Is preferably an aspherical surface.
  • the lens part may be formed only on the object side surface or the image side surface of the lens substrates B1b and B2b.
  • FIG. 3 is a diagram illustrating a state in which the imaging device 50 is mounted on a mobile phone 100 as a mobile terminal that is a digital device.
  • FIG. 4 is a control block diagram of the mobile phone 100.
  • the imaging device 50 is provided, for example, such that the object-side end surface of the imaging lens is provided on the back surface of the mobile phone 100 (the liquid crystal display unit side is the front surface) and is located at a position corresponding to the lower side of the liquid crystal display unit.
  • the external connection terminal (not shown) of the imaging device 50 is connected to the control unit 101 of the mobile phone 100 and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.
  • the mobile phone 100 controls each unit in an integrated manner, and also supports a control unit (CPU) 101 that executes a program corresponding to each process, and inputs a number and the like with keys.
  • An input unit 60 a display unit 70 for displaying captured images and videos, a wireless communication unit 80 for realizing various information communications with an external server, a system program and various processing programs for the mobile phone 100,
  • a storage unit (ROM) 91 that stores necessary data such as a terminal ID, and various processing programs and data executed by the control unit 101, processing data, imaging data by the imaging device 50, and the like are temporarily stored.
  • a temporary storage unit (RAM) 92 used as a work area to be stored, a non-volatile storage unit 93 that records captured images and videos, and a non-illustrated my , It is equipped with a speaker or the like.
  • an image signal of a still image or a moving image is captured by the image sensor 51.
  • the image signal input from the imaging device 50 is displayed on the display unit 70 by the control unit 101 or recorded in the nonvolatile storage unit 93, and further externally as video information via the wireless communication unit 80. Will be sent.
  • FIG. 5 is a diagram illustrating a process of manufacturing a lens group that is a component of the imaging lens according to the present embodiment.
  • a lens block unit UT in which a plurality of lens blocks B are two-dimensionally arranged is manufactured. Since the first lens block unit UT1 and the second lens block unit UT2 are manufactured in the same process, only the first lens block unit UT1 will be described.
  • a replica method is used for the first lens block unit UT1, and a large number of lens portions B1a and B1c are formed on the lens substrate B1b.
  • the number of lens blocks included in the lens block unit is at least two, the lens portions formed on the lens substrate do not need to be provided on both sides, and may be provided on only one side.
  • lens group LG which is a component of imaging lens 10 is manufactured using lens block units UT1 and UT2 manufactured by such a method.
  • An example of the subsequent manufacturing process of this lens group LG is shown in FIGS.
  • the first lens block unit UT1 includes a first lens substrate B1b that is a parallel plate, a plurality of first object-side lens portions B1a formed on one plane thereof, and a plurality of first lenses formed on the other plane. And an image side lens portion B1c.
  • the first lens substrate B1b and the first object-side lens portion B1a are formed via a diaphragm S (see FIG. 2) formed of an optical thin film. It is preferable to provide the infrared cut filter and the diaphragm on the lens substrate because the number of constituent members can be reduced as compared with the case where it is provided separately.
  • the lens portions B1a and B1c are preferably formed directly on the lens substrate B1b, but may be formed using an adhesive or the like.
  • the second lens block unit UT2 includes a second lens substrate B2b that is a parallel plate, a plurality of second object-side lens portions B2a formed on one plane thereof, and a plurality of second lenses formed on the other plane. And an image side lens portion B2c.
  • a second lens substrate B2b that is a parallel plate
  • an image side lens portion B2c Similarly, if an antireflection coating is provided on the lens substrate, reflection between the lens portion and the lens substrate can be prevented, and flare and ghost can be reduced.
  • lens part B2a and B2c directly on lens board
  • a plurality of openings are formed, and a spacer SP as an interval defining portion formed of a light shielding material in a lattice shape is interposed between the first lens block unit UT1 and the second lens block unit UT2, and both lenses
  • the interval between the block units UT1 and UT2 is kept constant. In such a state, adjustment is made so that the optical axes of the lens portions B1a, B1c, B2a, and B2c located at the respective openings of the spacer SP are accurately aligned.
  • the lens substrate B1b and B2b, or the lens unit B1a or B1c and B2a or B2c is formed with a position reference mark that is observed as a feature point having different brightness from other parts
  • the optical axes of the lens block B1 and the lens block B2 can be aligned with high precision by adjusting the position so that they coincide with each other (see Japanese Patent Laid-Open No. 2006-146043).
  • the spacer SP is interposed between the first lens block unit UT1 and the second lens block unit UT2, the lens substrates B1b and B2b (the first image side lens unit B1c and the second object side) are arranged. Lens part B2a) is sealed and integrated.
  • the lens group LG is arranged at a position on the optical axis where the surface of the imaging lens 10 having the maximum light flux of the on-axis light beam is located in the lens group LG, and combined with the third lens L3. Further, the imaging lens 10 and the optical member F thus formed are held by the housing 20 so as to face the image sensor 51 assembled to the substrate 52, whereby the imaging apparatus shown in FIG. Obtainable.
  • each of the imaging lenses 10 Lens interval adjustment and assembly are simplified. Therefore, mass production of imaging devices that are expected to have high image quality is possible.
  • the spacer SP since the spacer SP has a lattice shape, the spacer SP also serves as a mark when the lens groups LG are separated. Therefore, the lens group LG can be easily cut out, and it does not take time and effort. As a result, the lens group LG can be mass-produced at a low cost.
  • the lens block units B1 and B2 each having a plurality of lens blocks each having a lens portion formed on the lens substrate are opened at positions corresponding to the lens portions.
  • the step of adhering via the lattice-shaped interval defining portion in which the portion is formed see FIG. 5B
  • the two lens block units integrated by adhesion and the interval defining portion at the position of the lattice frame And a step of cutting (see FIG. 5C).
  • Such a manufacturing method can reduce the mass production of the lens system.
  • the spacer that is the space defining portion is not a separate member, and a functional portion corresponding to the spacer SP may be integrally formed as a space defining portion on at least one of the lens portions B1c and B2a formed on the lens substrate. .
  • f Focal length of the entire imaging lens system
  • FB Back focus
  • F F number 2Y: Diagonal length of imaging surface of solid-state imaging device (diagonal length of rectangular effective pixel area of solid-state imaging device)
  • ENTP entrance pupil position (distance from the first surface to the entrance pupil)
  • EXTP Exit pupil position (distance from image plane to exit pupil)
  • H1 Front principal point position (distance from the first surface to the front principal point)
  • H2 Rear principal point position (distance from the final surface to the rear principal point)
  • R radius of curvature of refracting surface
  • D spacing between upper surfaces of axis
  • Nd refractive index of d-line of lens material at room temperature
  • ⁇ d Abbe number of lens material
  • the aspherical shape has an apex at the surface as the origin, light The X axis is taken in the axial direction, and the height
  • a power of 10 (for example, 2.5 ⁇ 10 ⁇ 02 ) is expressed using E (for example, 2.5E-02).
  • E for example, 2.5E-02
  • the surface number of the lens data was given in order with the object side of the first lens as one surface.
  • the unit of the numerical value showing the length as described in an Example shall be mm.
  • Example 1 Lens data of the imaging lens of Example 1 is shown in the following (Table 1).
  • Table 2 shows the maximum height (axial beam height) that intersects each lens surface among luminous fluxes (axial luminous flux) imaged on the optical axis in the imaging lens of Example 1.
  • FIG. 6 is a cross-sectional view of the imaging lens according to the first example.
  • a first lens block B1 including a first object side lens unit B1a, an aperture stop S, a first lens substrate B1b, and a first image side lens unit B1c;
  • a lens group LG composed of a second lens block B2 composed of a second object side lens unit B2a, a second lens substrate B2b, and a second image side lens unit B2c; a third lens L3 that is a single lens;
  • An optical member F which is a flat plate assuming an optical low-pass filter, an infrared cut filter, a seal glass of a solid-state imaging device, and the like is disposed.
  • Example 1 is an imaging surface of the solid-state imaging device. Further, in Example 1, all the air contact surfaces of the lens portions constituting the lens block have an aspherical shape, and the first lens block B1 and the second lens block B2 are bonded via a spacer SP.
  • the imaging lens of Example 1 has the highest light flux of the axial light beam on the first surface (surface in contact with the air of the lens unit B1a) constituting the lens group LG. ing. That is, the lens surface that has the maximum ray height of the axial light beam of the imaging lens of Example 1 is in the lens group LG configured by the first lens block B1 and the second lens block B2.
  • FIG. 7 is an aberration diagram (spherical aberration diagram (a), astigmatism diagram (b), distortion diagram (c), meridional coma aberration diagram (d)) of the imaging lens shown in Example 1.
  • the solid line represents the d line and the dotted line represents the g line
  • the solid line represents the sagittal image plane and the dotted line represents the meridional image plane.
  • Example 2 Lens data of the imaging lens of Example 2 is shown in the following (Table 3) and (Table 4).
  • Table 5 shows the maximum height (axial beam height) that intersects each lens surface among luminous fluxes (axial luminous flux) imaged on the optical axis in the imaging lens of Example 2.
  • FIG. 8 is a cross-sectional view of an imaging lens according to Example 2 which is a zoom lens.
  • Example 2 in order from the object side along the optical axis, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power (including an aperture stop S), and a positive refractive power
  • the third lens group G3, and an optical member F that is a flat plate assuming an optical low-pass filter, an infrared cut filter, a seal glass of a solid-state imaging device, and the like are disposed.
  • IS is an imaging surface of the solid-state imaging device.
  • the position of the third lens group G3 on the optical axis is unchanged, and the first lens group G1 moves to the image side as indicated by the arrow A, and then moves to the object side. Then, as the second lens group G2 is indicated by an arrow B, zooming can be performed by gradually moving toward the object side and changing the interval between the lens groups.
  • the second lens group G2 of Example 2 constitutes a lens group composed of lens blocks B3 and B4.
  • the material, manufacturing method, etc. are the same as those of the above-described example except for the shape thereof, and thus the description thereof is omitted. To do.
  • the first lens group G1 includes a negative lens L1 and a positive lens L2
  • the second lens group G2 includes a third object side lens unit B3a, a third lens substrate B3b, and a third image side lens unit.
  • a positive third lens block B3 composed of B3c
  • a negative fourth lens block B4 composed of a fourth object side lens unit B4a, a fourth lens substrate B4b, and a fourth image side lens unit B4c.
  • the third lens group G3 comprises solely a positive lens L5. All the air contact surfaces of the lens unit of the lens group including the lens blocks B3 and B4 are aspherical, and the third lens block B3 and the fourth lens block B4 are bonded via a spacer SP.
  • the imaging lens of Example 2 has a fifth surface in the lens group consisting of lens blocks B3 and B4 over the entire range from the wide-angle end (Wide) to the telephoto end (Tele).
  • the beam height of the axial light beam is the highest. That is, the lens surface that has the maximum ray height of the on-axis light beam of the imaging lens of the second embodiment is in the lens group that includes the third lens block B3 and the fourth lens block B4.
  • FIG. 9 to 11 are aberration diagrams (spherical aberration diagram (a), astigmatism diagram (b), distortion diagram (c), and meridional coma aberration (d)) of the imaging lens shown in Example 2.
  • FIG. . 9 is an aberration diagram with a focal length of 4.550 mm
  • FIG. 10 is an aberration diagram with a focal length of 8.640 mm
  • FIG. 11 is an aberration diagram with a focal length of 12.423 mm.
  • Example 3 Lens data of the imaging lens of Example 3 is shown in (Table 6) below.
  • Table 7 shows the maximum height (axial beam height) that intersects each lens surface among luminous fluxes (axial luminous flux) imaged on the optical axis in the imaging lens of Example 3.
  • FIG. 12 is a cross-sectional view of the imaging lens according to the third example.
  • a first lens block B1 including a first object side lens unit B1a, an aperture stop S, a first lens substrate B1b, and a first image side lens unit B1c;
  • a lens group LG composed of a second lens block B2 composed of a second object side lens portion B2a and a second lens substrate B2b, a third lens L3 that is a single lens, an optical low-pass filter, and an infrared cut filter
  • An optical member F which is a parallel plate assuming a sealing glass of a solid-state imaging device is disposed.
  • IS is an imaging surface of the solid-state imaging device.
  • all air contact surfaces of the lens portions constituting the lens block have an aspherical shape, and the first lens block B1 and the second lens block B2 are bonded via the spacer SP.
  • the imaging lens of Example 3 has the highest ray height of the axial light beam on the first surface (surface in contact with the air of the lens unit B1a) constituting the lens group LG. It has become. That is, the lens surface that has the maximum ray height of the on-axis light beam of the imaging lens of the third embodiment is in the lens group LG configured by the first lens block B1 and the second lens block B2.
  • FIG. 13 is an aberration diagram (spherical aberration diagram (a), astigmatism diagram (b), distortion diagram (c), meridional coma aberration diagram (d)) of the imaging lens shown in Example 3.
  • Example 2 shows the values of the example corresponding to the conditional expression (1).
  • Example 2 is a value at a focal length of 8.640 mm where the value of Expression (1) is the largest.

Abstract

In an imaging lens, performance deterioration due to production error is suppressed, and the imaging lens is manufactured with excellent productivity. At least two lens groups, which are included in the imaging lens and have a high axial beam height, are manufactured by a replica method. Thus, optical axis of a lens block included in the lens group is accurately aligned, and by reducing parallel eccentricity of the lens group, performance deterioration due to production error can be suppressed.

Description

撮像レンズ、撮像装置及び撮像レンズの製造方法Imaging lens, imaging device, and manufacturing method of imaging lens
 本発明は、CCD(Charge Coupled Device)型イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像装置の撮像レンズに関するものであり、より詳しくは、大量生産に適するウエハスケールのレンズを一部に用いた撮像レンズ及び当該撮像レンズを用いた撮像装置、並びに撮像レンズの製造方法に関するものである。 The present invention relates to an imaging lens of an imaging apparatus using a solid-state imaging device such as a CCD (Charge Coupled Device) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor, and more specifically for mass production. The present invention relates to an imaging lens partially using a suitable wafer-scale lens, an imaging device using the imaging lens, and a manufacturing method of the imaging lens.
 コンパクトで非常に薄型の撮像装置(以下、カメラモジュールとも称す)が、携帯電話機やPDA(Personal Digital Assistant)等のコンパクトで、薄型の電子機器である携帯端末に用いられ、またズームレンズを用いた小型撮像装置が小型のデジタルカメラ、ビデオカメラなどに用いられている。これらの撮像装置に使用される撮像素子としては、CCD型イメージセンサやCMOS型イメージセンサ等の固体撮像素子が使用されている。近年では撮像素子の高画素化が進んでおり、高解像、高性能化が図られてきている。また、これら撮像素子上に被写体像を形成するための撮像レンズは、撮像素子の小型化に対応しコンパクト化が求められており、その要求は年々強まる傾向にある。 A compact and very thin imaging device (hereinafter also referred to as a camera module) is used in portable terminals that are compact and thin electronic devices such as mobile phones and PDAs (Personal Digital Assistants), and also uses a zoom lens. Small imaging devices are used for small digital cameras, video cameras, and the like. As an image pickup element used in these image pickup apparatuses, a solid-state image pickup element such as a CCD type image sensor or a CMOS type image sensor is used. In recent years, the number of pixels of an image sensor has been increased, and higher resolution and higher performance have been achieved. In addition, an imaging lens for forming a subject image on these imaging elements is required to be compact in response to miniaturization of the imaging element, and the demand tends to increase year by year.
 このような、撮像装置に用いる撮像レンズとして、樹脂材料レンズで構成される光学系および、ガラスレンズと樹脂材料レンズで構成される光学系が一般的によく知られている。しかしながら、これらの光学系ではレンズを小型化していくと、レンズ製造での製造誤差(レンズの光軸が光学系の光軸に合致しないなど)に起因した光学的性能の劣化が著しくなってしまうため、更なる超コンパクト化とこれら撮像装置に求められる量産性とを両立することは、困難であるといえる。 As such an imaging lens used in the imaging apparatus, an optical system composed of a resin material lens and an optical system composed of a glass lens and a resin material lens are generally well known. However, in these optical systems, when the lens is miniaturized, the optical performance is significantly deteriorated due to a manufacturing error in the lens manufacturing (for example, the optical axis of the lens does not match the optical axis of the optical system). Therefore, it can be said that it is difficult to achieve both further ultra-compactness and mass productivity required for these imaging devices.
 かかる問題点を克服するため、このような撮像レンズの設計においては、製造誤差に起因した光学性能の劣化が小さくなるように、各レンズのパワー配置やレンズ形状を最適化することが行われ、これにより量産性に優れた設計を目指しつつ、また製造においては平行偏心感度の高いレンズの調芯(レンズの傾きや光軸の調整)を行うことで、片ボケを低減させ性能を向上させるという手法が採られてきた。 In order to overcome such problems, in the design of such an imaging lens, optimization of the power arrangement and the lens shape of each lens is performed so that the deterioration of the optical performance due to the manufacturing error is reduced. While aiming for a design that is excellent in mass productivity, it is possible to reduce blurring and improve performance by aligning lenses with high parallel eccentricity sensitivity (inclination of the lens and adjustment of the optical axis). Approaches have been taken.
 こういった撮像レンズに関しては、単焦点レンズでは特許文献1に記載のようなトリプレットタイプのレンズ、ズームレンズでは特許文献2のようにパワー配置や面間隔を最適化したレンズや、特許文献3のような調芯の手法が提案されている。
特開2006-308789号公報 特開2005-055592号公報 特開2006-148662号公報
With regard to such an imaging lens, a single focus lens is a triplet type lens as described in Patent Document 1, a zoom lens is a lens with optimized power arrangement and surface spacing as in Patent Document 2, and Patent Document 3 Such alignment methods have been proposed.
JP 2006-308789 A JP 2005-055592 A JP 2006-148662 A
 しかしながら、このような従来技術では、製造誤差の抑制と量産性の確保とを高次元で両立させるには、未だ不十分である。 However, such conventional technology is still insufficient to achieve both high-dimensional compatibility between suppressing manufacturing errors and ensuring mass productivity.
 本発明は、このような状況を鑑みてなされたものであり、製造誤差による性能劣化を抑え、量産性に優れた撮像レンズを提供することを目的とする。 The present invention has been made in view of such a situation, and an object thereof is to provide an imaging lens that suppresses performance deterioration due to a manufacturing error and is excellent in mass productivity.
 請求の範囲第1項に記載の撮像レンズは、平行平板であるレンズ基板の物体側面及び像側面の少なくとも一方にレンズ部が形成されたレンズブロックの少なくとも2つを、間隔規定部を介して一体化したレンズ群と、樹脂材料またはガラス材料からなるレンズと、を有する撮像レンズであって、前記撮像レンズの軸上光束の最大光線高となる面が、前記レンズ群内にあることを特徴とする。 The imaging lens according to claim 1 integrates at least two lens blocks each having a lens portion formed on at least one of an object side surface and an image side surface of a lens substrate, which is a parallel plate, via an interval defining portion. An imaging lens having a lens group made of resin and a lens made of a resin material or a glass material, wherein a surface having a maximum ray height of an axial light beam of the imaging lens is in the lens group To do.
 携帯端末に内蔵される撮像レンズの大量生産や低コスト化を目的として、数インチのウエハ(レンズ基板)上にレプリカ法によってレンズ部を同時に大量に成形し、それらをセンサウエハと組み合わせた後、切り離し、カメラモジュールを大量生産する手法が知られている。本明細書においては、レンズ基板と当該レンズ基板上に大量に形成されたレンズ部を合わせてレンズブロックユニットと称し、このレンズブロックユニットから切り離された一つをレンズブロックと称している。 For the purpose of mass production and cost reduction of imaging lenses built in portable terminals, a large number of lens parts are simultaneously formed on a several inch wafer (lens substrate) by the replica method, and these are combined with the sensor wafer and then separated. A method of mass-producing camera modules is known. In this specification, a lens substrate and a lens part formed in large quantities on the lens substrate are collectively referred to as a lens block unit, and one separated from the lens block unit is referred to as a lens block.
 一般に、撮像レンズにおいて、軸上光線が高い位置を通過するレンズは、製造誤差により平行偏心(光学系の光軸と垂直方向へのレンズの光軸ずれ)すると、像面が倒れてしまうことにより撮像素子上での解像力が非対称になる、所謂「片ボケ」が生じ、著しく性能を劣化させる恐れがある。つまり、製造誤差による性能劣化を抑えるためには軸上光線高の高いレンズの光軸を光学系の光軸と合わせることが必要となる。 In general, in an imaging lens, a lens that passes through a position where axial light rays are high is subject to collapsing due to a manufacturing error (the optical axis shift of the lens in a direction perpendicular to the optical axis of the optical system). The so-called “one-sided blur” in which the resolving power on the image sensor becomes asymmetrical may occur, and the performance may be significantly degraded. That is, in order to suppress performance degradation due to manufacturing errors, it is necessary to align the optical axis of a lens with a high axial ray height with the optical axis of the optical system.
 本発明によれば、撮像レンズの構成要素である軸上光線高の高いレンズ群を、少なくとも2つのレンズブロックをスペーサ等の間隔規定部を介して一体化することで、このレンズ群に含まれるレンズブロックの光軸を精度良く合わせ、平行偏心を小さくすることで、製造誤差によって生じる性能劣化を小さく抑えることができる。尚、軸上光束の最大光線高とは光軸上に結像する光束のうち、光軸から最も離れて光学面と交叉する光束の高さ(光軸からの距離)をいう。また、本明細書中、「撮像レンズ」というときは、変倍機能を有する、いわゆるズームレンズも含むものとする。 According to the present invention, a lens group having a high axial ray height, which is a constituent element of an imaging lens, is included in this lens group by integrating at least two lens blocks via a space defining part such as a spacer. By aligning the optical axes of the lens blocks with high accuracy and reducing parallel decentering, performance degradation caused by manufacturing errors can be reduced. The maximum ray height of the on-axis light beam means the height (distance from the optical axis) of the light beam that forms the image on the optical axis and intersects the optical surface farthest from the optical axis. In this specification, the term “imaging lens” includes a so-called zoom lens having a zooming function.
 また、レンズ基板上にレンズ部が形成されたレンズブロックでは、レンズ基板が平行平板であることなどに起因し形状に制限があるが、複数のレンズブロックで構成されたレンズ群以外に少なくとも1つのレンズを有する撮像レンズとすることで、形状の自由度が増え、より高性能な撮像レンズとすることができる。 Further, in the lens block in which the lens portion is formed on the lens substrate, the shape is limited due to the lens substrate being a parallel plate, but at least one lens group other than the lens group configured by a plurality of lens blocks is used. By setting it as the imaging lens which has a lens, the freedom degree of a shape increases and it can be set as a higher performance imaging lens.
 請求の範囲第2項に記載の撮像レンズは、請求の範囲第1項に記載に発明において、前記レンズ群は、複数の前記レンズブロックが形成されたレンズブロックユニットの少なくとも2つを格子状の前記間隔規定部を介して接着する工程と、接着された前記レンズブロックユニット及び前記間隔規定部を、前記間隔規定部の格子枠の位置で切断する工程と、を有する製造方法により、製造されていることを特徴とする。 The imaging lens according to claim 2 is the invention according to claim 1, wherein the lens group includes at least two lens block units each having a plurality of lens blocks formed in a lattice shape. And a step of adhering via the interval defining portion, and a step of cutting the adhered lens block unit and the interval defining portion at the position of the lattice frame of the interval defining portion. It is characterized by being.
 複数のレンズブロックで構成されたレンズ群を製造する場合、大量にレンズ部が成形されたレンズブロックユニット上にさらに別のレンズブロックユニットをスペーサ部材等の間隔規定部を介して積層させ接着し、切断する。このように構成することで、レンズブロックユニットを積層させる際に二つのレンズブロックの光軸を合わせるだけで、他のレンズブロックの光軸もまとめて合わせることができる。このため、例えば少なくとも2つのガラスレンズまたはプラスチックレンズからなるレンズ群を一つずつ作成する場合と比較し、大量のレンズ群を構成するレンズブロック同士の光軸を同時かつ同様の精度で合わせることが可能になり、少なくとも2つのレンズブロックからなる高精度に光軸が合わせられた平行偏心の小さいレンズ群を短時間に大量かつ安価に生産することができる。さらに接着固定するため、作成後にレンズブロック相互の光軸がずれてしまうことを阻止できる。また、この製造方法は、カメラモジュールに限ったものではなく、センサウエハを除けば、複数のレンズブロックを接着したレンズ群を大量生産することもできる。 When manufacturing a lens group composed of a plurality of lens blocks, another lens block unit is laminated and bonded via a space defining portion such as a spacer member on the lens block unit formed with a large number of lens portions, and bonded. Disconnect. With this configuration, when the lens block units are stacked, the optical axes of the other lens blocks can be aligned together simply by aligning the optical axes of the two lens blocks. For this reason, the optical axes of the lens blocks constituting a large number of lens groups can be adjusted simultaneously and with the same accuracy as compared with the case where, for example, one lens group composed of at least two glass lenses or plastic lenses is created. Thus, a lens group having a small parallel decentration, which is composed of at least two lens blocks and whose optical axes are aligned with high accuracy, can be produced in large quantities and at low cost in a short time. Furthermore, since it is bonded and fixed, it is possible to prevent the optical axes of the lens blocks from being shifted after the production. In addition, this manufacturing method is not limited to the camera module, and a lens group in which a plurality of lens blocks are bonded can be mass-produced except for the sensor wafer.
 請求の範囲第3項に記載の撮像レンズは、請求の範囲第1項又は第2項に記載の発明において、前記レンズ群の7割像高における平行偏心敏感度をE、前記レンズブロックのそれぞれの7割像高の平行偏心敏感度のうち絶対値の最大のものをEmaxとし、前記レンズ群はEmaxと逆符号の平行偏心敏感度のレンズブロックを含み、下記条件式を満たすことを特徴とする。
|E/Emax| < 0.5   (1)
ただし、平行偏心敏感度とは、前記撮像レンズの光軸と垂直方向へのレンズの偏心量Δとのメリジオナル像面の変化量ΔMとしたとき、ΔM/Δの値であり、7割像高とは、固体撮像素子の矩形実効画素領域の対角線長の1/2の7割の高さである。
The imaging lens according to claim 3 is the imaging lens according to claim 1 or 2, wherein E is a parallel decentering sensitivity at 70% image height of each of the lens groups, and each of the lens blocks. Emax is the maximum absolute value of the 70% parallel decentration sensitivity, and the lens group includes a parallel decentering sensitivity lens block having a sign opposite to Emax, and satisfies the following conditional expression: To do.
| E / Emax | <0.5 (1)
However, the parallel decentering sensitivity is a value of ΔM / Δ when the change amount ΔM of the meridional image plane with respect to the decentering amount Δ of the lens in the direction perpendicular to the optical axis of the image pickup lens is 70% image height. Is a height of 70% that is 1/2 of the diagonal length of the rectangular effective pixel region of the solid-state imaging device.
 製造誤差により平行偏心したレンズの平行偏心敏感度が高いと、小さな平行偏心でもメリジオナル像面が撮像面に対して倒れが大きく、片ボケによる性能劣化も大きくなる。しかし、高い平行偏心敏感度を持ったレンズであっても、逆符号の平行偏心敏感度を持った単レンズと組み合わせて、レンズ群とすることで、レンズ群全体としての平行偏心敏感度を低くすることが可能である。そこで、本発明においては、撮像レンズの構成要素である前記レンズ群を、レンズブロックの中で平行偏心敏感度の絶対値の最も高いものに対し、逆符号の平行偏心敏感度のレンズブロックを含むレンズ群とすることで、レンズ群としての平行偏心敏感度を小さく抑えることができる。特に、条件式(1)を満たすことで、レンズ群を構成するレンズブロックの平行偏心敏感度が高い場合でも、レンズ群の平行偏心による像面の倒れが小さくなり片ボケによる性能劣化を小さく抑えることができる。ただし、変倍機能を有するレンズに関しては|E/Emax|の値が最も大きくなるポジションで、条件式(1)を満たすものとする。以下の条件式(1‘)、
|E/Emax| < 0.3  (1‘)
を満足すると更に望ましい。
If the parallel decentering sensitivity of a lens decentered due to a manufacturing error is high, the meridional image plane is greatly tilted with respect to the imaging surface even with small decentering, and performance degradation due to single blurring also increases. However, even a lens with high parallel eccentricity sensitivity can be combined with a single lens with parallel eccentricity sensitivity of the opposite sign to make a lens group, which reduces the parallel eccentricity sensitivity of the entire lens group. Is possible. Therefore, in the present invention, the lens group that is a component of the imaging lens includes a lens block having a parallel eccentricity sensitivity of the opposite sign to the lens block having the highest absolute value of the parallel eccentricity sensitivity. By using the lens group, the parallel eccentric sensitivity as the lens group can be reduced. In particular, by satisfying conditional expression (1), even when the sensitivity of parallel decentering of the lens blocks constituting the lens group is high, the tilt of the image plane due to the parallel decentering of the lens group is reduced, and performance degradation due to single blurring is suppressed to a minimum. be able to. However, regarding a lens having a zoom function, conditional expression (1) is satisfied at a position where the value of | E / Emax | is the largest. The following conditional expression (1 ′),
| E / Emax | <0.3 (1 ′)
It is further desirable to satisfy
 尚、本明細書中、「平行偏心敏感度」とは、撮像レンズの光軸と垂直方向へのレンズの偏心量Δとのメリジオナル像面の変化量ΔMとしたとき、ΔM/Δの値をいい、「符号が逆」とは、光軸と垂直同方向への2つのレンズそれぞれの偏心に対しメリジオナル像面が光軸平行逆方向に移動することをいい、「メリジオナル像面」とは、子午光束がもっとも鮮鋭に結像する面をいうものとする。 In this specification, “parallel decentering sensitivity” means the value of ΔM / Δ when the change amount ΔM of the meridional image plane between the optical axis of the imaging lens and the decentering amount Δ of the lens in the vertical direction. Good, “reverse sign” means that the meridional image plane moves in the opposite direction parallel to the optical axis with respect to the eccentricity of each of the two lenses in the same vertical direction as the optical axis. The surface on which the meridional light beam forms the sharpest image is assumed.
 請求の範囲第4項に記載の撮像レンズは、請求の範囲第1項~第3項のいずれかに記載の発明において、前記レンズ群を形成するレンズブロックのいずれかのレンズ基板上に開口絞りを有することを特徴とする。 The imaging lens according to claim 4 is an aperture stop on any lens substrate of the lens block forming the lens group in the invention according to any one of claims 1 to 3. It is characterized by having.
 レンズ基板の表面に遮光性を有する部材を塗布あるいは真空蒸着することで、容易に開口絞りをレンズ基板上に形成することができる。 An aperture stop can be easily formed on the lens substrate by applying a light-shielding member on the surface of the lens substrate or by vacuum deposition.
 請求の範囲第5項に記載の撮像レンズは、請求の範囲第1項~第4項のいずれかに記載の発明において、前記レンズ部が樹脂材料からなり、前記レンズ基板がガラス材料からなることを特徴とする。 The imaging lens according to claim 5 is the imaging lens according to any one of claims 1 to 4, wherein the lens portion is made of a resin material and the lens substrate is made of a glass material. It is characterized by.
 平行平板であるレンズ基板をガラス材料とすることで、研磨加工を容易とし、形状の複雑なレンズ部を成形加工性のよい樹脂材料とすることで、低コストで高性能化が可能な撮像レンズを形成できる。 An imaging lens that is easy to polish by using a glass substrate for the lens substrate, which is a parallel plate, and that has a complicated shape and a resin material with good moldability, so that high performance can be achieved at low cost. Can be formed.
 請求の範囲第6項に記載の撮像レンズは、請求の範囲第1項~第5項のいずれかに記載の発明において、前記レンズ部の空気と接する面が非球面であることを特徴とする。 The imaging lens according to claim 6 is characterized in that, in the invention according to any one of claims 1 to 5, the surface of the lens portion that contacts air is an aspherical surface. .
 レンズ部の空気と接するレンズ面を非球面形状とすることで、空気とレンズ部の境界面において、最も屈折率差が大きく非球面の効果を最大限に活用できる。また、レンズ面をすべて非球面形状とすることで、諸収差の発生を最小限に押さえることができ、高性能化が容易に可能となる。 ¡By making the lens surface in contact with the air of the lens part an aspherical surface, the difference in refractive index is the largest at the boundary surface between the air and the lens part, and the effect of the aspheric surface can be utilized to the maximum. Further, by making the lens surfaces all aspherical, the occurrence of various aberrations can be minimized, and high performance can be easily achieved.
 請求の範囲第7項に記載の撮像レンズは、請求の範囲第1項~第6項のいずれかに記載の発明において、前記レンズ部がエネルギー硬化性樹脂からなることを特徴とする。 The imaging lens according to claim 7 is characterized in that, in the invention according to any one of claims 1 to 6, the lens portion is made of an energy curable resin.
 レンズ部をエネルギー硬化性樹脂材料によって構成することにより、ウエハ状のレンズ基板に金型によって同時に大量に、レンズ部を種々の手段によって硬化させることが可能となり、量産性を向上させることができるようになる。エネルギー硬化性樹脂材料とは、熱によって硬化する熱硬化性樹脂材料や、光によって硬化する紫外線(UV)硬化性樹脂材料等を指す。なお、エネルギー硬化性樹脂材料はUV硬化性の樹脂材料によって構成されることが望ましい。UV硬化性の樹脂材料で構成されることにより、硬化時間を短くでき量産性を改善できる。また、近年では耐熱性に優れた樹脂材料が開発されており、リフロー処理にも耐えることができる。 By constructing the lens portion with an energy curable resin material, it becomes possible to cure the lens portion to a wafer-like lens substrate in a large amount at the same time by a mold by various means, so that mass productivity can be improved. become. The energy curable resin material refers to a thermosetting resin material that is cured by heat, an ultraviolet (UV) curable resin material that is cured by light, or the like. The energy curable resin material is preferably composed of a UV curable resin material. By comprising a UV curable resin material, the curing time can be shortened and the mass productivity can be improved. In recent years, resin materials having excellent heat resistance have been developed and can withstand reflow treatment.
 請求の範囲第8項に記載の撮像レンズは、請求の範囲第1項~第7項に記載の発明において、前記樹脂材料には、長さ30ナノメートル以下の無機微粒子が分散されていることを特徴とする。 The imaging lens according to claim 8 is the invention according to claims 1 to 7, wherein inorganic fine particles having a length of 30 nanometers or less are dispersed in the resin material. It is characterized by.
 樹脂材料にて構成されるレンズ部に30ナノメートル以下の無機微粒子を分散させることで、温度が変化しても性能の劣化や、像点位置変動を低減でき、しかも光透過率を低下させることなく、環境変化に関わらず優れた光学特性を有する撮像レンズを提供できる。 Dispersing inorganic fine particles of 30 nanometers or less in a lens part made of a resin material can reduce performance deterioration and image point position fluctuations even when the temperature changes, and also reduce light transmittance. In addition, an imaging lens having excellent optical characteristics regardless of environmental changes can be provided.
 一般に透明な樹脂材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。 In general, mixing fine particles with a transparent resin material causes light scattering and decreases the transmittance, making it difficult to use as an optical material. However, the size of the fine particles should be smaller than the wavelength of the transmitted light beam. Thus, substantially no scattering can occur.
 また、樹脂材料はガラス材料に比べて屈折率が低いことが欠点であったが、屈折率の高い無機粒子を母材となる樹脂材料に分散させると、屈折率を高くできることがわかってきた。具体的には、母材となる樹脂材料に30ナノメートル以下、なお、望ましくは、母材となる樹脂材料に20ナノメートル以下、さらに望ましくは15ナノメートル以下の無機粒子を分散させることにより、任意の温度依存性を有する材料を提供できる。 Also, the resin material has a disadvantage that the refractive index is lower than that of the glass material, but it has been found that the refractive index can be increased by dispersing inorganic particles having a high refractive index in the resin material as a base material. Specifically, by dispersing inorganic particles of 30 nanometers or less in the resin material as the base material, preferably 20 nanometers or less, more preferably 15 nanometers or less in the resin material as the base material, A material having any temperature dependency can be provided.
 さらに、樹脂材料は温度が上昇することにより屈折率が低下してしまうが、温度が上昇すると屈折率が上昇する無機粒子を母材となる樹脂材料に分散させると、これらの性質を打ち消しあうように作用するので、温度変化に対する屈折率変化を小さくできることも知られている。また、逆に、温度が上昇すると屈折率が低下する無機粒子を母材となる樹脂材料に分散させると、温度変化に対する屈折率変化を大きくできることも知られている。具体的には、母材となる樹脂材料に30ナノメートル以下、なお、望ましくは、母材となる樹脂材料に20ナノメートル以下、さらに望ましくは15ナノメートル以下の無機粒子を分散させることにより、任意の温度依存性を有する材料を提供できる。 Furthermore, although the refractive index of the resin material decreases as the temperature rises, if inorganic particles whose refractive index increases as the temperature rises are dispersed in the resin material as the base material, these properties will cancel each other. It is also known that the refractive index change with respect to the temperature change can be reduced. On the other hand, it is also known that when the inorganic particles whose refractive index decreases as the temperature rises are dispersed in the resin material as the base material, the refractive index change with respect to the temperature change can be increased. Specifically, by dispersing inorganic particles of 30 nanometers or less in the resin material as the base material, preferably 20 nanometers or less, more preferably 15 nanometers or less in the resin material as the base material, A material having any temperature dependency can be provided.
 例えば、アクリル系樹脂に酸化アルミニウム(Al)やニオブ酸リチウム(LiNbO)の微粒子を分散させることにより、高い屈折率の樹脂材料が得られるとともに、温度に対する屈折率変化を小さくすることができる。 For example, by dispersing fine particles of aluminum oxide (Al 2 O 3 ) or lithium niobate (LiNbO 3 ) in an acrylic resin, a resin material having a high refractive index can be obtained, and the refractive index change with respect to temperature can be reduced. Can do.
 次に、屈折率の温度変化Aについて詳細に説明する。屈折率の温度変化Aは、ローレンツ・ローレンツの式(数1)に基づいて、屈折率nを温度tで微分することにより、以下の式で表される。 Next, the temperature change A of the refractive index will be described in detail. The temperature change A of the refractive index is expressed by the following equation by differentiating the refractive index n with respect to the temperature t based on the Lorentz-Lorentz equation (Equation 1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 樹脂材料の場合は、一般に式中第1項に比べ第2項の寄与が小さく、ほぼ無視できる。例えば、PMMA樹脂の場合、線膨張係数αは7×10-5であり、上記式に代入すると、dn/dt=-1.2×10-4[/℃]となり、実測値とおおむね一致する。 In the case of a resin material, the contribution of the second term is generally smaller than the first term in the formula, and can be almost ignored. For example, in the case of PMMA resin, the linear expansion coefficient α is 7 × 10 −5 , and if it is substituted into the above equation, dn / dt = −1.2 × 10 −4 [/ ° C.], which is almost the same as the actually measured value. .
 ここで、微粒子、望ましくは無機微粒子を樹脂材料中に分散させることにより、実質的に上記式の第2項の寄与を大きくし、第1項の線膨張による変化と打ち消しあうようにさせている。具体的には、従来は-1.2×10-4程度であった変化を、絶対値で8×10-5未満に抑えることが望ましい。 Here, by dispersing fine particles, desirably inorganic fine particles, in the resin material, the contribution of the second term of the above formula is substantially increased, so as to cancel out the change due to the linear expansion of the first term. . Specifically, it is desirable to suppress the change of about −1.2 × 10 −4 in the past to an absolute value of less than 8 × 10 −5 .
 また、第2項の寄与をさらに大きくして、母材の樹脂材料とは逆の温度特性を持たせることも可能である。つまり、温度が上昇することによって屈折率が低下するのではなく、逆に、屈折率が上昇するような素材を得ることもできる。また、これと同様にして、樹脂材料は吸水によって屈折率が上昇してしまうが、逆に、屈折率が低下するような素材を得ることができる。 It is also possible to further increase the contribution of the second term and to have temperature characteristics opposite to those of the base resin material. That is, it is possible to obtain a material whose refractive index increases instead of decreasing the refractive index as the temperature increases. Similarly, although the refractive index of the resin material increases due to water absorption, a material whose refractive index decreases can be obtained.
 混合させる割合は、屈折率の温度に対する変化の割合をコントロールするために、適宜増減できるし、複数種類のナノサイズの無機粒子をブレンドして分散させることも可能である。 The mixing ratio can be appropriately increased or decreased in order to control the rate of change of the refractive index with respect to the temperature, and a plurality of types of nano-sized inorganic particles can be blended and dispersed.
 請求の範囲第9項に記載の撮像レンズは、請求の範囲第1項~第8項のいずれかに記載の発明において、前記レンズ基板と前記レンズ部が薄膜を介して形成されたレンズブロックを有することを特徴とする。 The imaging lens according to claim 9 is the imaging lens according to any one of claims 1 to 8, wherein the lens substrate and the lens portion are formed through a thin film. It is characterized by having.
 レンズ部とレンズ基板との間に、薄膜で形成された開口絞りや赤外線カットフィルタを介して形成することにより、光学部材の簡略化が可能となり、低コスト化が実現できる。 By forming an aperture stop or infrared cut filter formed of a thin film between the lens portion and the lens substrate, the optical member can be simplified and the cost can be reduced.
 請求の範囲第10項に記載の撮像レンズは、請求の範囲第1項~第9項のいずれかに記載の発明において、前記レンズ群は、片側のみレンズ部が形成されたレンズブロックを有することを特徴とする。 The imaging lens according to claim 10 is the invention according to any one of claims 1 to 9, wherein the lens group has a lens block in which a lens portion is formed only on one side. It is characterized by.
 レンズ基板が平行平板である場合、設計により曲率を持たない面に収差補正機能を担わせることで、その片側に樹脂部を構成せずとも収差性能に影響が少なくすることができる。こうした場合良好な収差性能とローコスト化のバランスを考えるとレンズ部を形成しない方がよい。また、片側が曲率を持たない面であれば、その面に薄膜を蒸着することにより、赤外線カットなどの機能を持たせることができる。 When the lens substrate is a parallel plate, the aberration correction function is assigned to a surface having no curvature by design, so that the influence on the aberration performance can be reduced without forming a resin portion on one side. In such a case, it is better not to form the lens portion considering the balance between good aberration performance and low cost. Further, if one side has no curvature, a function such as infrared cut can be provided by depositing a thin film on the surface.
 請求の範囲第11項に記載の撮像レンズは、請求の範囲第1項~第10項のいずれかに記載の発明において、前記レンズブロックは、それぞれ前記レンズ部及び前記レンズ基板のいずれか一方に光軸合わせのための手段が形成されていることを特徴とする。 The imaging lens according to claim 11 is the imaging lens according to any one of claims 1 to 10, wherein the lens block is provided on one of the lens portion and the lens substrate, respectively. Means for aligning the optical axis is formed.
 光軸合わせのための手段として、たとえばレンズ基板の一部にマークを付与することにより、例えばレプリカ法によりレンズ基板にレンズ部を形成する際や、複数のレンズブロック同士或いは、複数のレンズブロックユニット同士をスペーサ部材等の間隔規定部を介して接着する際に、光軸をより精度良く合わせることができ、かつ光軸を合わせるための時間が短縮でき、量産性を向上させることができる。 As a means for aligning the optical axis, for example, by providing a mark on a part of the lens substrate, for example, when forming a lens portion on the lens substrate by a replica method, or between a plurality of lens blocks or a plurality of lens block units When bonding them together via a space defining portion such as a spacer member, the optical axes can be aligned more accurately, the time for aligning the optical axes can be shortened, and mass productivity can be improved.
 請求の範囲第12項に記載の撮像装置は、請求の範囲第1項~第11項のいずれかに記載の撮像レンズを用いたことを特徴とするので、低コストかつ湿度の高い環境でも使用に耐えうる撮像装置を提供することができる。 The imaging device according to claim 12 is characterized by using the imaging lens according to any one of claims 1 to 11, so that it can be used in a low-cost and high-humidity environment. Can be provided.
 請求の範囲第13項に記載の撮像レンズの製造方法は、平行平板であるレンズ基板の物体側面及び像側面の少なくとも一方にレンズ部が形成されたレンズブロックが複数形成されたレンズブロックユニットの少なくとも2つを格子状の前記間隔規定部を介して接着する工程と、接着された前記レンズブロックユニット及び前記間隔規定部を、前記間隔規定部の格子枠の位置で切断してレンズ群を得る工程と、前記レンズ群を、撮像レンズの軸上光束の最大光線高となる面が前記レンズ群内の位置となる光軸上の位置に配置する工程、とを備えたことを特徴とする。これにより、撮像レンズの構成要素である軸上光線高の高いレンズ群を、大量かつ安価に生産でき、製造誤差によって生じる性能劣化を小さく抑えた撮像レンズを製造することができる。 The imaging lens manufacturing method according to claim 13 is a lens block unit in which a plurality of lens blocks each having a lens portion formed on at least one of an object side surface and an image side surface of a lens substrate that is a parallel plate are formed. A step of bonding the two through the lattice-shaped interval defining portion, and a step of cutting the bonded lens block unit and the interval defining portion at the position of the lattice frame of the interval defining portion to obtain a lens group And a step of arranging the lens group at a position on the optical axis where the surface having the maximum light flux of the on-axis light beam of the imaging lens is located in the lens group. Thereby, a lens group having a high axial ray height, which is a component of the imaging lens, can be produced in a large amount and at a low cost, and an imaging lens with reduced performance degradation caused by a manufacturing error can be manufactured.
 本発明によれば、製造誤差による性能劣化を抑え、量産性に優れた撮像レンズを提供することができる。 According to the present invention, it is possible to provide an imaging lens that suppresses performance degradation due to manufacturing errors and is excellent in mass productivity.
本実施の形態にかかる撮像装置50の斜視図である。It is a perspective view of the imaging device 50 concerning this Embodiment. 図1の構成を矢印II-II線で切断して矢印方向に見た断面図である。FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along line II-II and viewed in the direction of the arrow. 撮像装置50を携帯端末としての携帯電話機100に装備した状態を示す図である。It is a figure which shows the state equipped with the imaging device 50 in the mobile telephone 100 as a portable terminal. 携帯電話機100の制御ブロック図である。3 is a control block diagram of the mobile phone 100. FIG. 本実施の形態にかかる撮像レンズを製造する工程を示す図である。It is a figure which shows the process of manufacturing the imaging lens concerning this Embodiment. 第1実施例の断面図である。It is sectional drawing of 1st Example. 実施例1に示す撮像レンズの収差図である。FIG. 4 is an aberration diagram of the imaging lens shown in Example 1. 第2実施例の断面図である。It is sectional drawing of 2nd Example. 実施例2に示す撮像レンズの収差図である。FIG. 6 is an aberration diagram of the imaging lens shown in Example 2. 実施例2に示す撮像レンズの収差図である。FIG. 6 is an aberration diagram of the imaging lens shown in Example 2. 実施例2に示す撮像レンズの収差図である。FIG. 6 is an aberration diagram of the imaging lens shown in Example 2. 第3実施例の断面図である。It is sectional drawing of 3rd Example. 実施例3に示す撮像レンズの収差図である。FIG. 6 is an aberration diagram of the imaging lens shown in Example 3.
符号の説明Explanation of symbols
 10 撮像レンズ
 20 筐体
 50 撮像装置
 51 イメージセンサ
 51a 光電変換部
 51b 信号処理回路
 52 基板
 60 入力部
 70 表示部
 80 無線通信部
 92 一時記憶部
 93 不揮発性記憶部
 100 携帯電話機
 101 制御部
 B1 第1レンズブロック
 B1a 第1物体側レンズ部
 B1b 第1レンズ基板
 B1c 第1像側レンズ部
 B2 第2レンズブロック
 B2a 第2物体側レンズ部
 B2b 第2レンズ基板
 B2c 第2像側レンズ部
 F 光学部材
 L3 第3レンズ
 LG レンズ群
 SP スペーサ
 SP1 第1スペーサ
 SP2 第2スペーサ
 SP3 第3スペーサ
 UT1 第1レンズブロックユニット
 UT2 第2レンズブロックユニット
DESCRIPTION OF SYMBOLS 10 Imaging lens 20 Case 50 Imaging device 51 Image sensor 51a Photoelectric conversion part 51b Signal processing circuit 52 Board | substrate 60 Input part 70 Display part 80 Wireless communication part 92 Temporary memory | storage part 93 Nonvolatile memory | storage part 100 Cellular phone 101 Control part B1 1st Lens block B1a First object side lens unit B1b First lens substrate B1c First image side lens unit B2 Second lens block B2a Second object side lens unit B2b Second lens substrate B2c Second image side lens unit F Optical member L3 First 3 lenses LG lens group SP spacer SP1 first spacer SP2 second spacer SP3 third spacer UT1 first lens block unit UT2 second lens block unit
 以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる撮像装置50の斜視図であり、図2は、図1の構成を矢印II-II線で切断して矢印方向に見た断面図である。図2に示すように、撮像装置50は、光電変換部51aを有する固体撮像素子としてのCMOS型イメージセンサ51と、このイメージセンサ51の光電変換部51aに被写体像を撮像させる撮像レンズ10と、イメージセンサ51を保持すると共にその電気信号の送受を行う外部接続用端子(不図示)を有する基板52とを備え、これらが一体的に形成されている。尚、撮像レンズ10は、筐体20により保持されてなり、第1レンズブロックB1と、第2レンズブロックB2と、第3レンズL3とを有する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an imaging apparatus 50 according to the present embodiment, and FIG. 2 is a cross-sectional view of the configuration of FIG. 1 taken along the line II-II and viewed in the direction of the arrow. As shown in FIG. 2, the imaging device 50 includes a CMOS image sensor 51 as a solid-state imaging device having a photoelectric conversion unit 51 a, an imaging lens 10 that causes the photoelectric conversion unit 51 a of the image sensor 51 to capture a subject image, A substrate 52 having an external connection terminal (not shown) for holding the image sensor 51 and transmitting / receiving the electric signal is provided, and these are integrally formed. The imaging lens 10 is held by a housing 20 and includes a first lens block B1, a second lens block B2, and a third lens L3.
 上記イメージセンサ51は、その受光側の平面の中央部に、画素(光電変換素子)が2次元的に配置された、受光部としての光電変換部51aが形成されており、その周囲には信号処理回路51bが形成されている。かかる信号処理回路51bは、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。また、イメージセンサ51の受光側の平面の外縁近傍には、多数のパッド(図示略)が配置されており、不図示のワイヤを介して基板52に接続されている。イメージセンサ51は、光電変換部51aからの信号電荷をデジタルYUV信号等の画像信号等に変換し、ワイヤ(不図示)を介して基板52上の所定の回路に出力する。ここで、Yは輝度信号、U(=R-Y)は赤と輝度信号との色差信号、V(=B-Y)は青と輝度信号との色差信号である。なお、固体撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD等の他のものを使用しても良い。 In the image sensor 51, a photoelectric conversion unit 51a as a light receiving unit in which pixels (photoelectric conversion elements) are two-dimensionally arranged is formed in the center of a plane on the light receiving side. A processing circuit 51b is formed. The signal processing circuit 51b forms a picture signal output by using a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and the digital signal. It consists of a signal processing unit and the like. A number of pads (not shown) are arranged near the outer edge of the plane on the light receiving side of the image sensor 51, and are connected to the substrate 52 via wires (not shown). The image sensor 51 converts the signal charge from the photoelectric conversion unit 51a into an image signal such as a digital YUV signal, and outputs the image signal to a predetermined circuit on the substrate 52 via a wire (not shown). Here, Y is a luminance signal, U (= RY) is a color difference signal between red and the luminance signal, and V (= BY) is a color difference signal between blue and the luminance signal. Note that the solid-state imaging device is not limited to the CMOS image sensor, and other devices such as a CCD may be used.
 イメージセンサ51を支持する基板52は、不図示の配線により、イメージセンサ51に対して通信可能に接続されている。 The substrate 52 that supports the image sensor 51 is communicably connected to the image sensor 51 through a wiring (not shown).
 基板52は、不図示の外部接続用端子を介して外部回路(例えば、撮像装置を実装した携帯端末の上位装置が有する制御回路)と接続し、外部回路からイメージセンサ51を駆動するための電圧やクロック信号の供給を受けたり、また、デジタルYUV信号を外部回路へ出力したりすることを可能とする。 The substrate 52 is connected to an external circuit (for example, a control circuit included in a host device of a portable terminal mounted with an imaging device) via an external connection terminal (not shown), and a voltage for driving the image sensor 51 from the external circuit. And a clock signal can be received, and a digital YUV signal can be output to an external circuit.
 イメージセンサ51の上部は、基板52の上面に固定された赤外線カットフィルタなどの平板の光学部材Fにより封止されている。光学部材Fの周囲上面には、間隔規定部である第3スペーサSP3の下端が固定されている。第3スペーサSP3の上端には、第3レンズL3のフランジ部が固定され、第3レンズL3のフランジ部の上面には、間隔規定部である第2スペーサSP2の下端が固定されている。第2スペーサSP2の上端には、第2レンズブロックB2の第2レンズ基板B2b周辺が固定され、第2レンズ基板B2b周辺の上面には、間隔規定部である第1スペーサSP1の下端が固定され、第1スペーサSP1の上端には、第1レンズブロックB1の第1レンズ基板B1b周辺が固定されている。なお、図示では、間隔規定部として第1~第3スペーサSP1~SP3を別部材で構成した例を示しているが、これに限るものでなく、例えばレンズ基板上に形成されるレンズ部B1c、B2aの少なくとも一方に、間隔規定部として第1スペーサSP1の機能に相当する形状を一体で形成してもよい。また、第3レンズL3のフランジ部に一体でスペーサ部として、第2スペーサSP2、第3スペーサSP3に相当する形状を形成してもよい。 The upper part of the image sensor 51 is sealed with a flat optical member F such as an infrared cut filter fixed on the upper surface of the substrate 52. On the upper surface around the optical member F, the lower end of the third spacer SP3, which is a space defining portion, is fixed. The flange portion of the third lens L3 is fixed to the upper end of the third spacer SP3, and the lower end of the second spacer SP2 that is the interval defining portion is fixed to the upper surface of the flange portion of the third lens L3. The periphery of the second lens substrate B2b of the second lens block B2 is fixed to the upper end of the second spacer SP2, and the lower end of the first spacer SP1 that is the interval defining portion is fixed to the upper surface of the periphery of the second lens substrate B2b. The periphery of the first lens substrate B1b of the first lens block B1 is fixed to the upper end of the first spacer SP1. In the drawing, an example is shown in which the first to third spacers SP1 to SP3 are configured as separate members as the interval defining portion. However, the present invention is not limited to this. For example, the lens portion B1c formed on the lens substrate, A shape corresponding to the function of the first spacer SP1 may be integrally formed as at least one of B2a as the space defining portion. In addition, a shape corresponding to the second spacer SP2 and the third spacer SP3 may be formed as a spacer portion integrally with the flange portion of the third lens L3.
 第1レンズブロックB1は、ガラス製の平行平板である第1レンズ基板B1bと、その物体側面に形成された樹脂製の第1物体側レンズ部B1aと、第1レンズ基板B1bの像側面に形成された樹脂製の第1像側レンズ部B1cとからなる。第1物体側レンズ部B1aと第1レンズ基板B1bとの間には、第1レンズ基板B1bの表面に成膜された光学薄膜により開口絞りSが形成されている。第2レンズブロックB2は、ガラス製の平行平板である第2レンズ基板B2bと、その物体側面に形成された樹脂製の第2物体側レンズ部B2aと、第2レンズ基板B2bの像側面に形成された樹脂製の第2像側レンズ部B2cとからなる。第1レンズブロックB1と第2レンズブロックB2とで構成されたレンズ群LGは、通過する軸上光束の最大光線高が、撮像レンズ10の軸上光束の最大光線高となっている。各レンズ部B1a、B1c、B2a、B2cは、最大長30ナノメートル以下の無機微粒子を分散させた熱硬化性樹脂又は紫外線硬化性樹脂材料からなると好ましく、又、その空気に触れる光学面は、いずれも非球面となっていると好ましい。尚、レンズ基板B1b、B2bの物体側面もしくは像側面にのみ、レンズ部が形成されたものであってもよい。 The first lens block B1 is formed on a first lens substrate B1b which is a glass parallel plate, a resin-made first object-side lens portion B1a formed on the object side surface, and an image side surface of the first lens substrate B1b. The first image side lens portion B1c made of resin. An aperture stop S is formed between the first object side lens unit B1a and the first lens substrate B1b by an optical thin film formed on the surface of the first lens substrate B1b. The second lens block B2 is formed on a second lens substrate B2b which is a glass parallel plate, a resin second object side lens portion B2a formed on the object side surface, and an image side surface of the second lens substrate B2b. The second image side lens portion B2c made of resin. In the lens group LG composed of the first lens block B1 and the second lens block B2, the maximum light beam height of the axial light beam passing through the lens group LG is the maximum light beam height of the axial light beam of the imaging lens 10. Each lens part B1a, B1c, B2a, B2c is preferably made of a thermosetting resin or an ultraviolet curable resin material in which inorganic fine particles having a maximum length of 30 nanometers or less are dispersed. Is preferably an aspherical surface. In addition, the lens part may be formed only on the object side surface or the image side surface of the lens substrates B1b and B2b.
 上述した撮像装置50の使用態様について説明する。図3は、撮像装置50をデジタル機器である携帯端末としての携帯電話機100に装備した状態を示す図である。また、図4は携帯電話機100の制御ブロック図である。 The usage mode of the imaging device 50 described above will be described. FIG. 3 is a diagram illustrating a state in which the imaging device 50 is mounted on a mobile phone 100 as a mobile terminal that is a digital device. FIG. 4 is a control block diagram of the mobile phone 100.
 撮像装置50は、例えば、撮像レンズの物体側端面が携帯電話機100の背面(液晶表示部側を正面とする)に設けられ、液晶表示部の下方に相当する位置になるよう配設される。 The imaging device 50 is provided, for example, such that the object-side end surface of the imaging lens is provided on the back surface of the mobile phone 100 (the liquid crystal display unit side is the front surface) and is located at a position corresponding to the lower side of the liquid crystal display unit.
 撮像装置50の外部接続用端子(不図示)は、携帯電話機100の制御部101と接続され、輝度信号や色差信号等の画像信号を制御部101側に出力する。 The external connection terminal (not shown) of the imaging device 50 is connected to the control unit 101 of the mobile phone 100 and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.
 一方、携帯電話機100は、図4に示すように、各部を統括的に制御すると共に、各処理に応じたプログラムを実行する制御部(CPU)101と、番号等をキーにより支持入力するための入力部60と、撮像した画像や映像等を表示する表示部70と、外部サーバとの間の各種情報通信を実現するための無線通信部80と、携帯電話機100のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)91と、制御部101によって実行される各種処理プログラムやデータ、若しくは処理データ、或いは撮像装置50による撮像データ等を一時的に格納する作業領域として用いられる一時記憶部(RAM)92と、撮像した画像や映像等を記録する不揮発性記憶部93と、不図示のマイク、スピーカ等を備えている。 On the other hand, as shown in FIG. 4, the mobile phone 100 controls each unit in an integrated manner, and also supports a control unit (CPU) 101 that executes a program corresponding to each process, and inputs a number and the like with keys. An input unit 60, a display unit 70 for displaying captured images and videos, a wireless communication unit 80 for realizing various information communications with an external server, a system program and various processing programs for the mobile phone 100, A storage unit (ROM) 91 that stores necessary data such as a terminal ID, and various processing programs and data executed by the control unit 101, processing data, imaging data by the imaging device 50, and the like are temporarily stored. A temporary storage unit (RAM) 92 used as a work area to be stored, a non-volatile storage unit 93 that records captured images and videos, and a non-illustrated my , It is equipped with a speaker or the like.
 携帯電話機100を把持する撮影者が、被写体に対して撮像装置50の撮像レンズ10を向けると、イメージセンサ51に静止画又は動画の画像信号が取り込まれる。所望のシャッタチャンスで、図3に示すボタンBTを撮影者が押すことでレリーズが行われ、画像信号が撮像装置50に取り込まれることとなる。撮像装置50から入力された画像信号は、制御部101により、表示部70で表示されたり、或いは不揮発性記憶部93に記録されたり、さらには、無線通信部80を介して映像情報として外部に送信されることとなる。 When the photographer holding the mobile phone 100 points the imaging lens 10 of the imaging device 50 toward the subject, an image signal of a still image or a moving image is captured by the image sensor 51. When the photographer presses the button BT shown in FIG. 3 at a desired photo opportunity, release is performed, and the image signal is taken into the imaging device 50. The image signal input from the imaging device 50 is displayed on the display unit 70 by the control unit 101 or recorded in the nonvolatile storage unit 93, and further externally as video information via the wireless communication unit 80. Will be sent.
 本実施の形態にかかる撮像レンズの製造方法について説明する。図5は、本実施の形態にかかる撮像レンズの構成要素であるレンズ群を製造する工程を示す図である。まず、図5(a)の断面図に示すように、複数のレンズブロックBが二次元的に並べて形成されたレンズブロックユニットUTを製造する。なお、第1のレンズブロックユニットUT1と第2のレンズブロックユニットUT2は同様の工程で製造されるため、第1のレンズブロックユニットUT1のみで説明する。第1のレンズブロックユニットUT1は、例えばレプリカ法等が用いられ、レンズ基板B1b上に、多数のレンズ部B1a、B1cが形成される。尚、レンズブロックユニットに含まれるレンズブロックの数は少なくとも2つであるが、レンズ基板上に形成されるレンズ部は、両側に有する必要はなく、片側のみであっても良い。 A method for manufacturing the imaging lens according to the present embodiment will be described. FIG. 5 is a diagram illustrating a process of manufacturing a lens group that is a component of the imaging lens according to the present embodiment. First, as shown in the sectional view of FIG. 5A, a lens block unit UT in which a plurality of lens blocks B are two-dimensionally arranged is manufactured. Since the first lens block unit UT1 and the second lens block unit UT2 are manufactured in the same process, only the first lens block unit UT1 will be described. For example, a replica method is used for the first lens block unit UT1, and a large number of lens portions B1a and B1c are formed on the lens substrate B1b. Although the number of lens blocks included in the lens block unit is at least two, the lens portions formed on the lens substrate do not need to be provided on both sides, and may be provided on only one side.
 そして、これらのような方法によって製造されたレンズブロックユニットUT1、UT2を用いて、撮像レンズ10の構成要素であるレンズ群LGが製造される。このレンズ群LGの、以降の製造工程の一例を、図5(b)、(c)に示す。 And lens group LG which is a component of imaging lens 10 is manufactured using lens block units UT1 and UT2 manufactured by such a method. An example of the subsequent manufacturing process of this lens group LG is shown in FIGS.
 第1のレンズブロックユニットUT1は、平行平板である第1レンズ基板B1bと、その一方の平面に形成された複数の第1物体側レンズ部B1aと、他方の平面に形成された複数の第1像側レンズ部B1cと、で構成されている。このとき、第1レンズ基板B1bと第1物体側レンズ部B1aとは、光学薄膜で形成された絞りS(図2参照)を介して形成される。赤外線カットフィルタや絞りをレンズ基板上に設けると、別に設ける場合よりも、構成部材を削減できるので好ましい。更に、レンズ基板上に反射防止コートを設ければ、レンズ部とレンズ基板での反射を防止でき、フレアやゴーストを低減できる。尚、レンズ基板B1b上に、レンズ部B1aおよびB1cを直接形成することが好ましいが、接着剤等を用いて形成されたものでもよい。 The first lens block unit UT1 includes a first lens substrate B1b that is a parallel plate, a plurality of first object-side lens portions B1a formed on one plane thereof, and a plurality of first lenses formed on the other plane. And an image side lens portion B1c. At this time, the first lens substrate B1b and the first object-side lens portion B1a are formed via a diaphragm S (see FIG. 2) formed of an optical thin film. It is preferable to provide the infrared cut filter and the diaphragm on the lens substrate because the number of constituent members can be reduced as compared with the case where it is provided separately. Furthermore, if an antireflection coating is provided on the lens substrate, reflection between the lens portion and the lens substrate can be prevented, and flare and ghost can be reduced. The lens portions B1a and B1c are preferably formed directly on the lens substrate B1b, but may be formed using an adhesive or the like.
 第2のレンズブロックユニットUT2は、平行平板である第2レンズ基板B2bと、その一方の平面に形成された複数の第2物体側レンズ部B2aと、他方の平面に形成された複数の第2像側レンズ部B2cと、で構成される。同様に、レンズ基板上に反射防止コートを設ければ、レンズ部とレンズ基板での反射を防止でき、フレアやゴーストを低減できる。尚、レンズ基板B2b上に、レンズ部B2aおよびB2cを直接形成することが好ましいが、接着剤等を用いて形成されたものでもよい。 The second lens block unit UT2 includes a second lens substrate B2b that is a parallel plate, a plurality of second object-side lens portions B2a formed on one plane thereof, and a plurality of second lenses formed on the other plane. And an image side lens portion B2c. Similarly, if an antireflection coating is provided on the lens substrate, reflection between the lens portion and the lens substrate can be prevented, and flare and ghost can be reduced. In addition, although it is preferable to form lens part B2a and B2c directly on lens board | substrate B2b, what was formed using the adhesive agent etc. may be used.
 複数の開口部が形成され、格子状に遮光材で形成された間隔規定部としてのスペーサSPを、第1のレンズブロックユニットUT1と第2のレンズブロックユニットUT2との間に介在させ、両レンズブロックユニットUT1、UT2の間隔を一定に保つ。かかる状態で、スペーサSPの各開口部に位置する、各レンズ部B1a、B1c、B2a、B2cの光軸が精度良く一致するよう調整する。尚、光軸合わせを行う手段として、たとえばレンズ基板B1bとB2bや、レンズ部B1a又はB1cとB2a又はB2cに他の部分と明るさの異なる特徴点として観察される位置基準マークを形成し、それらを光学的に観察しつつ、それらが合致するように位置調整を行なうことで、レンズブロックB1とレンズブロックB2の光軸を精度良く合わせることができる(特開2006-146043号公報参照)。 A plurality of openings are formed, and a spacer SP as an interval defining portion formed of a light shielding material in a lattice shape is interposed between the first lens block unit UT1 and the second lens block unit UT2, and both lenses The interval between the block units UT1 and UT2 is kept constant. In such a state, adjustment is made so that the optical axes of the lens portions B1a, B1c, B2a, and B2c located at the respective openings of the spacer SP are accurately aligned. As means for aligning the optical axes, for example, the lens substrate B1b and B2b, or the lens unit B1a or B1c and B2a or B2c is formed with a position reference mark that is observed as a feature point having different brightness from other parts, The optical axes of the lens block B1 and the lens block B2 can be aligned with high precision by adjusting the position so that they coincide with each other (see Japanese Patent Laid-Open No. 2006-146043).
 ここで、スペーサSPが、第1のレンズブロックユニットUT1と第2のレンズブロックユニットUT2との間に介在することで、レンズ基板B1b、B2b同士(第1像側レンズ部B1cと第2物体側レンズ部B2aと)が封止され一体化する。 Here, since the spacer SP is interposed between the first lens block unit UT1 and the second lens block unit UT2, the lens substrates B1b and B2b (the first image side lens unit B1c and the second object side) are arranged. Lens part B2a) is sealed and integrated.
 そして、スペーサSPを介して連結された第1レンズ基板B1bと第2レンズ基板B2bが、スペーサSPの格子枠(破線Qの位置)に沿って切断されると、図5(c)に示すように、レンズブロック毎にそれぞれ一体化した2枚玉構成のレンズ群LGが、複数個効率的に形成されることとなる。その後、かかるレンズ群LGを撮像レンズ10の軸上光束の最大光線高となる面がレンズ群LG内の位置となる光軸上の位置に配置し、第3レンズL3と組み合わせることで撮像レンズ10が形成され、更に、形成された撮像レンズ10と光学部材Fとを、基板52に組み付けたイメージセンサ51に対向するようにして、筐体20で保持することにより、図2に示す撮像装置を得ることができる。 Then, when the first lens substrate B1b and the second lens substrate B2b connected via the spacer SP are cut along the lattice frame (position of the broken line Q) of the spacer SP, as shown in FIG. In addition, a plurality of lens groups LG having a two-lens structure integrated with each lens block are efficiently formed. After that, the lens group LG is arranged at a position on the optical axis where the surface of the imaging lens 10 having the maximum light flux of the on-axis light beam is located in the lens group LG, and combined with the third lens L3. Further, the imaging lens 10 and the optical member F thus formed are held by the housing 20 so as to face the image sensor 51 assembled to the substrate 52, whereby the imaging apparatus shown in FIG. Obtainable.
 このように、複数のレンズ群LGが形成された2つのレンズブロックユニットが、格子の位置で切り離されて、撮像レンズ10の構成要素であるレンズ群LGが製造されると、撮像レンズ10の各レンズ間隔の調整および組み立てが簡素化される。そのため、高画質が期待される撮像装置の大量生産が可能となる。 As described above, when the two lens block units in which the plurality of lens groups LG are formed are separated at the position of the grating and the lens group LG which is a component of the imaging lens 10 is manufactured, each of the imaging lenses 10 Lens interval adjustment and assembly are simplified. Therefore, mass production of imaging devices that are expected to have high image quality is possible.
 しかも、スペーサSPが格子形状であるため、このスペーサSPが、各レンズ群LGを切り離す場合の印にもなる。したがって、レンズ群LGを容易に切り出すことができ、手間がかからない。その結果、レンズ群LGを安価に大量生産できる。 Moreover, since the spacer SP has a lattice shape, the spacer SP also serves as a mark when the lens groups LG are separated. Therefore, the lens group LG can be easily cut out, and it does not take time and effort. As a result, the lens group LG can be mass-produced at a low cost.
 すなわち、撮像レンズ10の構成要素であるレンズ群LGの製造方法は、レンズ基板にレンズ部の形成されたレンズブロックが複数形成されたレンズブロックユニットB1、B2を各レンズ部に対応する位置に開口部が形成された格子状の間隔規定部を介して接着する工程(図5(b)参照)と、接着により一体化された2つのレンズブロックユニット及び間隔規定部を、その格子枠の位置で切断する工程(図5(c)参照)と、を有している。このような製造方法は、レンズ系の量産を安価にすることができる。尚、2つのレンズブロックユニットを、間隔規定部であるスペーサを介して接着する例で説明したが、これに限るものでなく、3つ以上のレンズブロックユニットを、間隔規定部を介して接着及び間隔規定部の格子枠の位置で切断するものであってもよい。 That is, in the manufacturing method of the lens group LG which is a constituent element of the imaging lens 10, the lens block units B1 and B2 each having a plurality of lens blocks each having a lens portion formed on the lens substrate are opened at positions corresponding to the lens portions. The step of adhering via the lattice-shaped interval defining portion in which the portion is formed (see FIG. 5B), and the two lens block units integrated by adhesion and the interval defining portion at the position of the lattice frame And a step of cutting (see FIG. 5C). Such a manufacturing method can reduce the mass production of the lens system. In addition, although the example which adhere | attaches two lens block units through the spacer which is a space | interval definition part was demonstrated, it is not restricted to this, Three or more lens block units are adhere | attached via a space | interval definition part, and You may cut | disconnect in the position of the lattice frame of a space | interval prescription | regulation part.
 また、間隔規定部であるスペーサを別部材とせず、レンズ基板上に形成されるレンズ部B1c、B2aの少なくとも一方に間隔規定部として、スペーサSPに相当する機能部を一体で形成してもよい。 In addition, the spacer that is the space defining portion is not a separate member, and a functional portion corresponding to the spacer SP may be integrally formed as a space defining portion on at least one of the lens portions B1c and B2a formed on the lens substrate. .
 以下に、上記の実施の形態に適用される撮像レンズの実施例を示す。各実施例に使用する記号は下記のとおりである。
f:撮像レンズ全系の焦点距離
fB:バックフォーカス
F:Fナンバー
2Y:固体撮像素子の撮像面対角線長(固体撮像素子の矩形実効画素領域の対角線長)
ENTP:入射瞳位置(第1面から入射瞳までの距離)
EXTP:射出瞳位置(像面から射出瞳までの距離)
H1:前側主点位置(第1面から前側主点までの距離)
H2:後側主点位置(最終面から後側主点までの距離)
R:屈折面の曲率半径
D:軸上面間隔
Nd:レンズ材料のd線の常温での屈折率
νd:レンズ材料のアッベ数
 各実施例において非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして、以下の(数2)式で表す。
Examples of the imaging lens applied to the above embodiment will be described below. Symbols used in each example are as follows.
f: Focal length of the entire imaging lens system fB: Back focus F: F number 2Y: Diagonal length of imaging surface of solid-state imaging device (diagonal length of rectangular effective pixel area of solid-state imaging device)
ENTP: entrance pupil position (distance from the first surface to the entrance pupil)
EXTP: Exit pupil position (distance from image plane to exit pupil)
H1: Front principal point position (distance from the first surface to the front principal point)
H2: Rear principal point position (distance from the final surface to the rear principal point)
R: radius of curvature of refracting surface D: spacing between upper surfaces of axis Nd: refractive index of d-line of lens material at room temperature νd: Abbe number of lens material In each example, the aspherical shape has an apex at the surface as the origin, light The X axis is taken in the axial direction, and the height in the direction perpendicular to the optical axis is h.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、以降(表のレンズデータを含む)において、10のべき乗数(例えば、2.5×10-02)をE(例えば2.5E-02)を用いて表すものとする。また、レンズデータの面番号は第1レンズの物体側を1面として順に付与した。なお、実施例に記載の長さを表す数値の単位はすべてmmとする。 In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed using E (for example, 2.5E-02). The surface number of the lens data was given in order with the object side of the first lens as one surface. In addition, the unit of the numerical value showing the length as described in an Example shall be mm.
 (実施例1)
 実施例1の撮像レンズのレンズデータを、以下の(表1)に示す。また、実施例1の撮像レンズにおける、光軸上に結像する光束(軸上光束)のうち、各レンズ面と交叉する最大の高さ(軸上光線高)を(表2)に示す。
Example 1
Lens data of the imaging lens of Example 1 is shown in the following (Table 1). Table 2 shows the maximum height (axial beam height) that intersects each lens surface among luminous fluxes (axial luminous flux) imaged on the optical axis in the imaging lens of Example 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図6は、実施例1にかかる撮像レンズの断面図である。実施例1において、光軸に沿って物体側から順に、第1物体側レンズ部B1a、開口絞りS、第1レンズ基板B1b、第1像側レンズ部B1cより構成された第1レンズブロックB1と第2物体側レンズ部B2a、第2レンズ基板B2b、第2像側レンズ部B2cより構成された第2レンズブロックB2とで構成されたレンズ群LGと、単レンズである第3レンズL3と、光学的ローパスフィルタ、赤外線カットフィルタ、固体撮像素子のシールガラス等を想定した平板である光学部材Fとが配置されている。ISは、固体撮像素子の撮像面である。また、実施例1ではレンズブロックを構成するレンズ部の全ての空気と接する面は非球面形状であり、第1レンズブロックB1と第2レンズブロックB2とはスペーサSPを介して接着されている。 FIG. 6 is a cross-sectional view of the imaging lens according to the first example. In Example 1, in order from the object side along the optical axis, a first lens block B1 including a first object side lens unit B1a, an aperture stop S, a first lens substrate B1b, and a first image side lens unit B1c; A lens group LG composed of a second lens block B2 composed of a second object side lens unit B2a, a second lens substrate B2b, and a second image side lens unit B2c; a third lens L3 that is a single lens; An optical member F which is a flat plate assuming an optical low-pass filter, an infrared cut filter, a seal glass of a solid-state imaging device, and the like is disposed. IS is an imaging surface of the solid-state imaging device. Further, in Example 1, all the air contact surfaces of the lens portions constituting the lens block have an aspherical shape, and the first lens block B1 and the second lens block B2 are bonded via a spacer SP.
 (表2)及び図6に示すように、実施例1の撮像レンズは、レンズ群LGを構成する第1面(レンズ部B1aの空気と接する面)で軸上光束の光線高が最も高くなっている。すなわち、実施例1の撮像レンズの軸上光束の最大光線高となるレンズ面は、第1レンズブロックB1と第2レンズブロックB2とで構成されたレンズ群LG内にある。 As shown in Table 2 and FIG. 6, the imaging lens of Example 1 has the highest light flux of the axial light beam on the first surface (surface in contact with the air of the lens unit B1a) constituting the lens group LG. ing. That is, the lens surface that has the maximum ray height of the axial light beam of the imaging lens of Example 1 is in the lens group LG configured by the first lens block B1 and the second lens block B2.
 図7は、実施例1に示す撮像レンズの収差図(球面収差図(a)、非点収差図(b)、歪曲収差図(c)、メリディオナルコマ収差図(d))である。尚、以降の収差図において、球面収差図では、実線がd線、点線がg線を表し、非点収差図では、実線がサジタル像面、点線がメリジオナル像面をあらわすものとする。 FIG. 7 is an aberration diagram (spherical aberration diagram (a), astigmatism diagram (b), distortion diagram (c), meridional coma aberration diagram (d)) of the imaging lens shown in Example 1. In the following aberration diagrams, in the spherical aberration diagram, the solid line represents the d line and the dotted line represents the g line, and in the astigmatism diagram, the solid line represents the sagittal image plane and the dotted line represents the meridional image plane.
 (実施例2)
 実施例2の撮像レンズのレンズデータを、以下の(表3)、(表4)に示す。また、実施例2の撮像レンズにおける、光軸上に結像する光束(軸上光束)のうち、各レンズ面と交叉する最大の高さ(軸上光線高)を(表5)に示す。
(Example 2)
Lens data of the imaging lens of Example 2 is shown in the following (Table 3) and (Table 4). Table 5 shows the maximum height (axial beam height) that intersects each lens surface among luminous fluxes (axial luminous flux) imaged on the optical axis in the imaging lens of Example 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図8は、ズームレンズである実施例2にかかる撮像レンズの断面図である。実施例2において、光軸に沿って物体側から順に、負の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2(開口絞りSを含む)と、正の屈折力の第3レンズ群G3と、光学的ローパスフィルタ、赤外線カットフィルタ、固体撮像素子のシールガラス等を想定した平板である光学部材Fとが配置されている。ISは、固体撮像素子の撮像面である。広角端から望遠端への変倍に際し、第3レンズ群G3の光軸上の位置は不変であり、第1レンズ群G1が矢印Aに示すごとく、像側へ移動し、その後物体側へ移動し、第2レンズ群G2が矢印Bに示すごとく、物体側へ漸次移動して、各レンズ群の間隔を変えることにより変倍を行なうことができる。また、実施例2の第2レンズ群G2は、レンズブロックB3、B4からなるレンズ群を構成しているが、その形状以外、素材、製法等は上述の実施例と同様であるため説明を省略する。 FIG. 8 is a cross-sectional view of an imaging lens according to Example 2 which is a zoom lens. In Example 2, in order from the object side along the optical axis, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power (including an aperture stop S), and a positive refractive power The third lens group G3, and an optical member F that is a flat plate assuming an optical low-pass filter, an infrared cut filter, a seal glass of a solid-state imaging device, and the like are disposed. IS is an imaging surface of the solid-state imaging device. During zooming from the wide-angle end to the telephoto end, the position of the third lens group G3 on the optical axis is unchanged, and the first lens group G1 moves to the image side as indicated by the arrow A, and then moves to the object side. Then, as the second lens group G2 is indicated by an arrow B, zooming can be performed by gradually moving toward the object side and changing the interval between the lens groups. In addition, the second lens group G2 of Example 2 constitutes a lens group composed of lens blocks B3 and B4. However, the material, manufacturing method, etc. are the same as those of the above-described example except for the shape thereof, and thus the description thereof is omitted. To do.
 より具体的には、第1レンズ群G1は、負レンズL1と正レンズL2からなり、第2レンズ群G2は、第3物体側レンズ部B3aと第3レンズ基板B3bと第3像側レンズ部B3cより構成される正の第3レンズブロックB3と、第4物体側レンズ部B4aと第4レンズ基板B4bと第4像側レンズ部B4cより構成される負の第4レンズブロックB4とからなり、第3レンズ群G3は正レンズのL5のみからなる。レンズブロックB3、B4からなるレンズ群のレンズ部の全ての空気と接する面は非球面形状であり、第3レンズブロックB3と第4レンズブロックB4とはスペーサSPを介して接着されている。 More specifically, the first lens group G1 includes a negative lens L1 and a positive lens L2, and the second lens group G2 includes a third object side lens unit B3a, a third lens substrate B3b, and a third image side lens unit. A positive third lens block B3 composed of B3c, and a negative fourth lens block B4 composed of a fourth object side lens unit B4a, a fourth lens substrate B4b, and a fourth image side lens unit B4c. The third lens group G3 comprises solely a positive lens L5. All the air contact surfaces of the lens unit of the lens group including the lens blocks B3 and B4 are aspherical, and the third lens block B3 and the fourth lens block B4 are bonded via a spacer SP.
 (表5)及び図8に示すように、実施例2の撮像レンズは、広角端(Wide)~望遠端(Tele)の全範囲にわたってレンズブロックB3、B4からなるレンズ群内の第5面(レンズ部B3aの空気と接する面)で、軸上光束の光線高が最も高くなっている。すなわち、実施例2の撮像レンズの軸上光束の最大光線高となるレンズ面は、第3レンズブロックB3と第4レンズブロックB4とで構成されたレンズ群内にある。 As shown in Table 5 and FIG. 8, the imaging lens of Example 2 has a fifth surface in the lens group consisting of lens blocks B3 and B4 over the entire range from the wide-angle end (Wide) to the telephoto end (Tele). On the surface of the lens portion B3a that is in contact with the air), the beam height of the axial light beam is the highest. That is, the lens surface that has the maximum ray height of the on-axis light beam of the imaging lens of the second embodiment is in the lens group that includes the third lens block B3 and the fourth lens block B4.
 図9~11は、実施例2に示す撮像レンズの収差図(球面収差図(a)、非点収差図(b)、歪曲収差図(c)、メリディオナルコマ収差(d))である。ここで、図9は焦点距離4.550mmの収差図で、図10は焦点距離8.640mmの収差図で、図11は焦点距離12.423mmの収差図である。 9 to 11 are aberration diagrams (spherical aberration diagram (a), astigmatism diagram (b), distortion diagram (c), and meridional coma aberration (d)) of the imaging lens shown in Example 2. FIG. . 9 is an aberration diagram with a focal length of 4.550 mm, FIG. 10 is an aberration diagram with a focal length of 8.640 mm, and FIG. 11 is an aberration diagram with a focal length of 12.423 mm.
 (実施例3)
 実施例3の撮像レンズのレンズデータを、以下の(表6)に示す。また、実施例3の撮像レンズにおける、光軸上に結像する光束(軸上光束)のうち、各レンズ面と交叉する最大の高さ(軸上光線高)を(表7)に示す。
(Example 3)
Lens data of the imaging lens of Example 3 is shown in (Table 6) below. Table 7 shows the maximum height (axial beam height) that intersects each lens surface among luminous fluxes (axial luminous flux) imaged on the optical axis in the imaging lens of Example 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図12は、実施例3にかかる撮像レンズの断面図である。実施例3において、光軸に沿って物体側から順に、第1物体側レンズ部B1a、開口絞りS、第1レンズ基板B1b、第1像側レンズ部B1cより構成された第1レンズブロックB1と第2物体側レンズ部B2a、第2レンズ基板B2bより構成された第2レンズブロックB2とで構成されたレンズ群LGと、単レンズである第3レンズL3と、光学的ローパスフィルタ、赤外線カットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である光学部材Fとが配置されている。ISは、固体撮像素子の撮像面である。また、実施例3ではレンズブロックを構成するレンズ部の全ての空気と接する面は非球面形状であり、第1レンズブロックB1と第2レンズブロックB2とはスペーサSPを介して接着されている。 FIG. 12 is a cross-sectional view of the imaging lens according to the third example. In Example 3, in order from the object side along the optical axis, a first lens block B1 including a first object side lens unit B1a, an aperture stop S, a first lens substrate B1b, and a first image side lens unit B1c; A lens group LG composed of a second lens block B2 composed of a second object side lens portion B2a and a second lens substrate B2b, a third lens L3 that is a single lens, an optical low-pass filter, and an infrared cut filter An optical member F which is a parallel plate assuming a sealing glass of a solid-state imaging device is disposed. IS is an imaging surface of the solid-state imaging device. In Example 3, all air contact surfaces of the lens portions constituting the lens block have an aspherical shape, and the first lens block B1 and the second lens block B2 are bonded via the spacer SP.
 (表7)及び図12に示すように、実施例3の撮像レンズは、レンズ群LGを構成する第1面(レンズ部B1aの空気と接する面)で、軸上光束の光線高が最も高くなっている。すなわち、実施例3の撮像レンズの軸上光束の最大光線高となるレンズ面は、第1レンズブロックB1と第2レンズブロックB2とで構成されたレンズ群LG内にある。 As shown in Table 7 and FIG. 12, the imaging lens of Example 3 has the highest ray height of the axial light beam on the first surface (surface in contact with the air of the lens unit B1a) constituting the lens group LG. It has become. That is, the lens surface that has the maximum ray height of the on-axis light beam of the imaging lens of the third embodiment is in the lens group LG configured by the first lens block B1 and the second lens block B2.
 図13は、実施例3に示す撮像レンズの収差図(球面収差図(a)、非点収差図(b)、歪曲収差図(c)、メリディオナルコマ収差図(d))である。 FIG. 13 is an aberration diagram (spherical aberration diagram (a), astigmatism diagram (b), distortion diagram (c), meridional coma aberration diagram (d)) of the imaging lens shown in Example 3.
 条件式(1)に対応する実施例の値を(表8)に示す。但し、実施例2については、式(1)の値が最も大きくなる焦点距離8.640mmでの値である。 (Table 8) shows the values of the example corresponding to the conditional expression (1). However, Example 2 is a value at a focal length of 8.640 mm where the value of Expression (1) is the largest.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010

Claims (13)

  1.  平行平板であるレンズ基板の物体側面及び像側面の少なくとも一方にレンズ部が形成されたレンズブロックの少なくとも2つを、間隔規定部を介して一体化したレンズ群と、
     樹脂材料またはガラス材料からなるレンズと、を有する撮像レンズであって、
     前記撮像レンズの軸上光束の最大光線高となる面が、前記レンズ群内にあることを特徴とする撮像レンズ。
    A lens group in which at least two lens blocks each having a lens portion formed on at least one of an object side surface and an image side surface of a lens substrate that is a parallel plate are integrated via a space defining portion;
    An imaging lens having a lens made of a resin material or a glass material,
    The imaging lens according to claim 1, wherein a surface having a maximum ray height of the axial light beam of the imaging lens is in the lens group.
  2.  前記レンズ群は、
     複数の前記レンズブロックが形成されたレンズブロックユニットの少なくとも2つを格子状の前記間隔規定部を介して接着する工程と、
     接着された前記レンズブロックユニット及び前記間隔規定部を、前記間隔規定部の格子枠の位置で切断する工程と、を有する製造方法により、製造されていることを特徴とする請求の範囲第1項に記載の撮像レンズ。
    The lens group is
    Bonding at least two of the lens block units formed with a plurality of the lens blocks via the lattice-shaped spacing defining portion;
    The bonded lens block unit and the interval defining portion are manufactured by a manufacturing method having a step of cutting at a position of a lattice frame of the interval defining portion. The imaging lens described in 1.
  3.  前記レンズ群の7割像高における平行偏心敏感度をE、前記レンズブロックのそれぞれの7割像高の平行偏心敏感度のうち絶対値の最大のものをEmaxとし、前記レンズ群はEmaxと逆符号の平行偏心敏感度のレンズブロックを含み、下記条件式を満たすことを特徴とする請求の範囲第1項又は第2項に記載の撮像レンズ。
     |E/Emax| < 0.5   (1)
    ただし、平行偏心敏感度とは、前記撮像レンズの光軸と垂直方向へのレンズの偏心量Δとのメリジオナル像面の変化量ΔMとしたとき、ΔM/Δの値であり、7割像高とは、固体撮像素子の矩形実効画素領域の対角線長の1/2の7割の高さである。
    The parallel decentering sensitivity at 70% image height of the lens group is E, and the maximum decentering sensitivity of 70% image height of each lens block is Emax, and the lens group is opposite to Emax. 3. The imaging lens according to claim 1, wherein the imaging lens includes a lens block having a parallel decentering sensitivity of a symbol and satisfies the following conditional expression.
    | E / Emax | <0.5 (1)
    However, the parallel decentering sensitivity is a value of ΔM / Δ when the change amount ΔM of the meridional image plane with respect to the decentering amount Δ of the lens in the direction perpendicular to the optical axis of the image pickup lens is 70% image height. Is a height of 70% that is 1/2 of the diagonal length of the rectangular effective pixel region of the solid-state imaging device.
  4.  前記レンズ群を形成するレンズブロックのいずれかのレンズ基板上に開口絞りを有することを特徴とする請求の範囲第1項~第3項のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 3, further comprising an aperture stop on any lens substrate of the lens block forming the lens group.
  5.  前記レンズ部が樹脂材料からなり、前記レンズ基板がガラス材料からなることを特徴とする請求の範囲第1項~第4項のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 4, wherein the lens portion is made of a resin material and the lens substrate is made of a glass material.
  6.  前記レンズ部の空気と接する面が非球面であることを特徴とする請求の範囲第1項~第5項のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 5, wherein a surface of the lens portion that contacts air is an aspherical surface.
  7.  前記レンズ部がエネルギー硬化性樹脂からなることを特徴とする請求の範囲第1項~第6項のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 6, wherein the lens portion is made of an energy curable resin.
  8.  前記樹脂材料には、長さ30ナノメートル以下の無機微粒子が分散されていることを特徴とする請求の範囲第1項~第7項のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 7, wherein inorganic fine particles having a length of 30 nanometers or less are dispersed in the resin material.
  9.  前記レンズ基板と前記レンズ部が薄膜を介して形成されたレンズブロックを有することを特徴とする請求の範囲第1項~第8項のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 8, wherein the lens substrate and the lens portion have a lens block formed through a thin film.
  10.  前記レンズ群は、片側のみレンズ部が形成されたレンズブロックを有することを特徴とする請求の範囲第1項~第9項のいずれかに記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 9, wherein the lens group includes a lens block in which a lens portion is formed only on one side.
  11.  前記レンズブロックは、それぞれ前記レンズ部及び前記レンズ基板のいずれか一方に光軸合わせのための手段が形成されていることを特徴とする請求の範囲第1項~第10項のいずれかに記載の撮像レンズ。 11. The lens block according to claim 1, wherein means for aligning an optical axis is formed on one of the lens portion and the lens substrate, respectively. Imaging lens.
  12.  請求の範囲第1項~第11項のいずれかに記載の撮像レンズを用いたことを特徴とする撮像装置。 An image pickup apparatus using the image pickup lens according to any one of claims 1 to 11.
  13.  平行平板であるレンズ基板の物体側面及び像側面の少なくとも一方にレンズ部が形成されたレンズブロックが複数形成されたレンズブロックユニットの少なくとも2つを格子状の前記間隔規定部を介して接着する工程と、
     接着された前記レンズブロックユニット及び前記間隔規定部を、前記間隔規定部の格子枠の位置で切断してレンズ群を得る工程と、
    前記レンズ群を、撮像レンズの軸上光束の最大光線高となる面が前記レンズ群内の位置となる光軸上の位置に配置する工程、とを備えたことを特徴とする撮像レンズの製造方法。
    Adhering at least two lens block units each having a plurality of lens blocks each having a lens portion formed on at least one of the object side surface and the image side surface of a lens substrate that is a parallel plate through the lattice-shaped spacing defining portion. When,
    Cutting the bonded lens block unit and the interval defining portion at a position of a lattice frame of the interval defining portion to obtain a lens group;
    And a step of arranging the lens group at a position on the optical axis where a surface having the maximum light flux of the axial light beam of the imaging lens is a position in the lens group. Method.
PCT/JP2009/052659 2008-03-07 2009-02-17 Imaging lens, imaging device and method for manufacturing imaging lens WO2009110311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-057893 2008-03-07
JP2008057893 2008-03-07

Publications (1)

Publication Number Publication Date
WO2009110311A1 true WO2009110311A1 (en) 2009-09-11

Family

ID=41055872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052659 WO2009110311A1 (en) 2008-03-07 2009-02-17 Imaging lens, imaging device and method for manufacturing imaging lens

Country Status (1)

Country Link
WO (1) WO2009110311A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005539276A (en) * 2002-09-17 2005-12-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ CAMERA DEVICE AND METHOD FOR MANUFACTURING CAMERA DEVICE AND WAFER SCALE PACKAGE
JP2006323365A (en) * 2005-05-18 2006-11-30 Samsung Electro-Mechanics Co Ltd Wafer-scale lens, and optical system equipped with the same
JP2006349948A (en) * 2005-06-15 2006-12-28 Canon Inc Optical system and optical equipment having the same
JP4022246B1 (en) * 2007-05-09 2007-12-12 マイルストーン株式会社 Imaging lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005539276A (en) * 2002-09-17 2005-12-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ CAMERA DEVICE AND METHOD FOR MANUFACTURING CAMERA DEVICE AND WAFER SCALE PACKAGE
JP2006323365A (en) * 2005-05-18 2006-11-30 Samsung Electro-Mechanics Co Ltd Wafer-scale lens, and optical system equipped with the same
JP2006349948A (en) * 2005-06-15 2006-12-28 Canon Inc Optical system and optical equipment having the same
JP4022246B1 (en) * 2007-05-09 2007-12-12 マイルストーン株式会社 Imaging lens

Similar Documents

Publication Publication Date Title
US9557536B2 (en) Zoom lens and image pickup device
JP5321954B2 (en) Imaging lens, imaging device, and portable terminal
JP5440032B2 (en) Imaging lens and small imaging device
JP5311043B2 (en) An imaging lens, an imaging device, a portable terminal, an imaging lens manufacturing method, and an imaging device manufacturing method.
JP5267825B2 (en) IMAGING LENS, IMAGING DEVICE, DIGITAL DEVICE, AND IMAGING LENS MANUFACTURING METHOD
US8385011B2 (en) Image pickup lens, image pickup apparatus, mobile terminal, and manufacturing method of image pickup lens
JP2006209100A (en) Zoom lens and imaging apparatus
JP2009251367A (en) Imaging lens, method for manufacturing imaging lens and imaging apparatus
JP5648689B2 (en) Imaging lens and imaging apparatus
WO2010047178A1 (en) Imaging lens, imaging device, and portable terminal
JP5621782B2 (en) Zoom lens and imaging device
JPWO2009069467A1 (en) Imaging lens, imaging device, and portable terminal
JP2009251366A (en) Method for manufacturing imaging lens, imaging lens, and imaging apparatus
KR20080020717A (en) Zoom lens optical system and digital photographing device comprising the same
WO2009125654A1 (en) Lens block manufacturing method, lens block, imaging lens, imaging device and portable terminal
JP5267773B2 (en) IMAGING LENS, IMAGING DEVICE, DIGITAL DEVICE, AND IMAGING LENS MANUFACTURING METHOD
JP5391822B2 (en) Imaging lens, imaging device, and portable terminal
KR20120109515A (en) Optical unit and imaging device
JP2009251368A (en) Imaging lens and imaging apparatus
WO2010140415A1 (en) Image taking lens, image taking device, and portable terminal
WO2009110311A1 (en) Imaging lens, imaging device and method for manufacturing imaging lens
JP2009204877A (en) Imaging lens and imaging apparatus
JP2004199037A (en) Imaging lens
WO2010146899A1 (en) Image taking lens, image taking device, and portable terminal
WO2010134376A1 (en) Image pickup lens, image pickup device, and portable terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09716564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP