WO2009110051A1 - 胎動時にも有効なオンライン生体信号処理方法およびその装置 - Google Patents

胎動時にも有効なオンライン生体信号処理方法およびその装置 Download PDF

Info

Publication number
WO2009110051A1
WO2009110051A1 PCT/JP2008/053739 JP2008053739W WO2009110051A1 WO 2009110051 A1 WO2009110051 A1 WO 2009110051A1 JP 2008053739 W JP2008053739 W JP 2008053739W WO 2009110051 A1 WO2009110051 A1 WO 2009110051A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
electrocardiogram
fetal
unit
maternal
Prior art date
Application number
PCT/JP2008/053739
Other languages
English (en)
French (fr)
Inventor
芳孝 木村
光之 中尾
拓哉 伊藤
一成 大和田
Original Assignee
株式会社 東北テクノアーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東北テクノアーチ filed Critical 株式会社 東北テクノアーチ
Priority to PCT/JP2008/053739 priority Critical patent/WO2009110051A1/ja
Publication of WO2009110051A1 publication Critical patent/WO2009110051A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4343Pregnancy and labour monitoring, e.g. for labour onset detection
    • A61B5/4362Assessing foetal parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/344Foetal cardiography

Definitions

  • the present invention relates to on-line reference system independent component analysis, and more particularly to a biological signal separation method for online detection of an electrocardiogram of a fetus from a pregnant mother even during fetal movement.
  • a method using a second-order estimator has been mainly proposed as a method for measuring a fetal electrocardiogram in real time.
  • Callerterts, D., et al. which repeatedly performs a singular value decomposition method for real-time extraction of fetal ECGs.
  • Selvan, S., et al. which is a method for calculating an abdominal wall fetal electrocardiogram using neural network adaptive information processing (see Non-Patent Document 1 below).
  • Martens, S. which is a robust fetal electrocardiogram measurement method from the abdominal wall.
  • M.M. M.M. Have been proposed (see Non-Patent Document 3 below).
  • the maternal electrocardiogram is removed only by linear transformation using a second-order estimator, and the fetal electrocardiogram is extracted by using mutual information and similarity with past values for each channel. Therefore, it cannot respond to fetal movements or fetuses with arrhythmias that are inherently vulnerable to noise and have a low correlation with past values. Also, since the fetal electrocardiogram is calculated for each channel, the meaning of multi-channel measurement becomes ambiguous, and every time the fetal position changes to derive a certain lead from each channel, a recalculation that matches the change is necessary become. For this reason, it is impossible to continue to depict the fetal electrocardiogram viewed with constant guidance even during fetal movement.
  • the fetal electrocardiogram extraction technique proposes the above-mentioned problems, it requires prior information for generating a reference system such as a fetal heart Doppler signal. In a state where the cardiac Doppler signal is off and the reference signal cannot be created, the fetal electrocardiogram may not be extracted. Further, when the self-reference system is directly created from the electrode signals, the electrocardiogram signal components such as T-waves remain in the linear estimation maternal electrocardiogram processing, and an accurate self-reference system may not be created.
  • JP 2006-204759 A Callaerts, D.C. Sansen, W .; , Vandwalle, J .; , Vantrappen, G .; Janssens, J .; , “Description of a real-time system to extract the fetal electrocardiogram”, Clinical Physics and Psychological Measurements, 1989, Vol. 10, pp. 7-10 Selvan, S.M. , Srinivasan, R .; , “A novel adaptive filtering technical for the processing of abdominal fetal electrocardiogram using neural networks and Simplified systems.”, “A novel adaptive filtering technology.
  • an object of the present invention is to provide an on-line biological signal processing method and apparatus that can be stably measured even during fetal movement and that are effective during fetal movement.
  • the present invention provides [1] In an on-line biological signal processing method that is effective even during fetal movement, to extract a fetal electrocardiogram signal online from a biopotential signal including a maternal and fetal electrocardiogram signal input by an electrode attached to the pregnant mother.
  • a self-reference system creation unit (19) that creates a reference system from the measurement signal itself, and a reference signal from the self-reference system creation unit (19) are input, and an electrocardiogram signal of the fetus is obtained.
  • a reference system independent component analyzing unit (12) for outputting, and a series of operations of the respective units are repeatedly used.
  • the maternal electrocardiogram removal unit (11) includes a nonlinear signal removal unit (21) for removing a nonlinear signal portion of the mother, And a multidimensional linear filtering unit (27) for removing the remaining linear portion.
  • the nonlinear signal removal unit (21) includes a first bandpass filter (22) that stabilizes the baseline, and feature extraction.
  • the multidimensional linear filtering unit (27) outputs a residual signal output from the first difference calculation unit (26) ( G) a base signal creation unit (28) for creating a basis for estimating a residual component of another channel from a maximum residual of the maternal ECG signal component measured from one channel including a large electrocardiogram of the mother of G), A maternal component estimator (29) for estimating the maternal ECG component signal residual component of another channel using the created basis, and an output signal from the maternal component estimator (29) are again removed from the residual signal (G). And a second difference calculation unit (30).
  • the self-reference system creation unit (19) includes a pre-processing unit (31) for creating a reference signal, and a probability of a fetal electrocardiogram A fetal electrocardiogram-containing channel estimation unit (35) for estimating a fetal electrocardiogram-containing channel from the distribution; and a reference signal creation unit (38) for generating a reference system by feature extraction for the estimated fetal electrocardiogram-containing channel.
  • the preprocessing unit (31) removes a large noise from the bandpass filter (32) for emphasizing fetal electrocardiogram characteristics.
  • a target signal positive value display unit (34) for displaying the R wave of the fetal electrocardiogram component in the positive direction.
  • the fetal electrocardiogram-containing channel estimation unit (35) is a probability distribution estimation unit (36) that estimates the probability distribution of the fetal electrocardiogram of each channel.
  • a fetal electrocardiogram channel estimation unit (37) for estimating a fetal electrocardiogram-containing channel based on the estimated probability distribution.
  • the reference signal creation unit (38) is a fetal electrocardiogram R-wave position estimation unit that identifies the R-wave position of the fetal electrocardiogram ( A target signal feature extraction unit (39) and a reference signal generation unit (40) that generates a reference signal based on an output signal from the fetal electrocardiogram R-wave position estimation unit (39).
  • an on-line biosignal processing apparatus that is also effective during fetal movement, to extract a fetal electrocardiogram signal online from a biopotential signal including a maternal and fetal electrocardiogram signal input by an electrode attached to the pregnant maternal body
  • a maternal electrocardiogram removal unit (11) that performs non-linear estimation of the maternal electrocardiogram and completely removes the maternal electrocardiogram from the measurement signal, and other fetal heart Doppler signals such as during fetal movement, arrhythmia, and ultrasonic fetal heart Doppler signal.
  • a self-reference system creation unit (19) that creates a reference system from the measurement signal itself and a signal including an output signal from the self-reference system creation unit (19) are input, and an electrocardiogram of the fetus And a reference system independent component analysis unit (12) for outputting a signal, wherein a series of operations of each unit is used repeatedly.
  • the maternal electrocardiogram removal unit (11) includes a nonlinear signal removal unit (21) for removing a nonlinear signal portion of the mother; And a multi-dimensional linear filtering unit (27) for removing the remaining linear portion.
  • the nonlinear signal removal unit (21) includes a first bandpass filter (22) that stabilizes the baseline, and feature extraction.
  • the multidimensional linear filtering unit (27) outputs a residual signal output from the first difference calculation unit (26) ( G) a base signal generator (28) for generating a base for estimating the residual component of the other channel from the maximum residual of the maternal electrocardiogram signal component measured from the first channel, and the other using the generated base
  • a maternal component estimator (29) for estimating the maternal electrocardiogram signal residual component of the channel
  • a second difference calculator for removing again the output signal from the maternal component estimator (29) from the residual signal (G) (30).
  • the self-reference system creation unit (19) includes a pre-processing unit (31) for creating a reference signal, and a probability of a fetal electrocardiogram A fetal electrocardiogram-containing channel estimation unit (35) for estimating a fetal electrocardiogram-containing channel from the distribution, and a reference signal creation unit (38) for generating a reference system by feature extraction for the estimated fetal electrocardiogram-containing channel. And
  • the preprocessing unit (31) removes a large noise from the bandpass filter (32) for emphasizing fetal electrocardiogram characteristics.
  • a target signal positive value display unit (34) for displaying the R wave of the fetal electrocardiogram component in the positive direction.
  • the fetal electrocardiogram-containing channel estimation unit (35) estimates a probability distribution of a fetal electrocardiogram of each channel (36 And a fetal electrocardiogram channel estimation unit (37) for estimating a fetal electrocardiogram-containing channel based on the estimated probability distribution.
  • the reference signal generation unit (38) is a fetal electrocardiogram R-wave position estimation unit that specifies the position of the R-wave of the fetal electrocardiogram ( A target signal feature extraction unit (39) and a reference signal generation unit (40) that generates a reference signal based on an output signal from the fetal electrocardiogram R-wave position estimation unit (39).
  • FIG. 6 is a comparison of waveforms obtained when a maternal electrocardiogram is removed by the conventional method and the two-stage estimation method according to the present invention. It is a figure which shows the waveform obtained with the online biosignal processing apparatus of this invention.
  • FIG. 2 is a drawing-substituting photograph showing a measurement / analysis separation type on-line biological signal processing apparatus according to the present invention and an output waveform on the screen. It is a figure which shows the measurement-analysis integrated screen of the online biosignal processing apparatus concerning this invention.
  • FIG. 1 is a schematic configuration diagram of an on-line biological signal processing apparatus showing an embodiment of the present invention.
  • a biopotential signal including an electrocardiogram signal of a mother and a fetus inputted by an electrode attached to a pregnant mother is measured by a biopotential signal measuring unit 1.
  • the measured signal A is temporarily stored as data blocks 1 to N sequentially in the register 3 in the computer every predetermined number of seconds via the measurement amplifier / AD converter 2 and sent to the fetal electrocardiogram extraction unit 4. .
  • a fetal electrocardiogram is extracted from the transmitted data, recorded in the data recording unit 5, and then output to the monitor screen 6.
  • FIG. 2 is a block diagram of the fetal electrocardiogram extraction unit of the online biological signal processing apparatus showing an embodiment of the present invention.
  • 11 is a maternal electrocardiogram removal unit
  • 12 is a reference system independent component analysis unit
  • 13 is a reference signal system generation unit
  • this reference signal system generation unit 13 is a signal processing unit to which a Doppler measurement signal B is input.
  • 14, a timing function signal generation unit 15, a check unit 16, a feedback unit 17, and a reference signal generation processing unit 18.
  • Reference numeral 19 denotes a self-reference system creation unit, and output signals from the maternal electrocardiogram removal unit 11 and the check unit 16 of the reference signal system generation unit 13 are input to the reference system independent component analysis unit 12.
  • the Doppler signal B cannot be measured due to fetal movement or the like and the reference system cannot be created, this state is determined by the check unit 16 of the reference signal system generation unit 13 and the self-reference system creation unit 19 operates, and the self-reference is made. Create a system.
  • the signal-to-noise ratio is good, there is no problem even if a self-reference system is used from the beginning for fetal electrocardiogram extraction.
  • FIG. 3 is a block diagram of the maternal electrocardiogram removal unit of the online biological signal processing apparatus showing an embodiment of the present invention.
  • reference numeral 21 denotes a nonlinear signal removing unit.
  • the nonlinear signal removing unit 21 receives an output signal from the first bandpass filter 22, the second bandpass filter 23, and the second bandpass filter 23.
  • the first difference calculation section 26 outputs a residual signal G.
  • the first difference calculation section 26 receives the output signal from the first difference calculation section 26.
  • the multidimensional linear filtering unit 27 receives a base signal generation unit 28 to which the residual signal G output from the first difference calculation unit 26 is input, and an output signal from the base signal generation unit 28.
  • the matrix component estimator 29 includes a second difference calculator 30 to which the residual signal G and the output signal from the matrix component estimator 29 are input.
  • the second difference calculator 30 displays the measurement result. Output.
  • the measurement signal A (see FIG. 2) sent to the maternal electrocardiogram removal unit 11 is input to the bandpass filters 22 and 23 of the nonlinear signal removal unit 21.
  • this non-linear signal removing unit 21 an R-wave generation time is calculated by a maternal RR interval calculating unit 24 from a maternal R-wave signal extracted by the second band pass filter 23, and based on this, a maternal electrocardiogram waveform non-linear model is calculated.
  • the estimation unit 25 obtains a non-linear model F of the maternal electrocardiogram waveform. Then, the residual signal G is obtained by subtracting the nonlinear model F from the output signal E obtained by the first bandpass filter 22.
  • a 1-100 Hz band pass filter is used as the first band pass filter 22, and a 30-100 Hz band pass filter is used as the second band pass filter 23.
  • a weighted electrocardiogram PQRST waveform addition average for each N waveform including the maternal T wave is calculated for each R wave as a non-linear model, and the residual signal G is obtained from the signal obtained by removing the baseline fluctuation by the first bandpass filter 22. It was created.
  • the non-linear model F is also obtained using adaptive information processing in consideration of signal characteristics.
  • the remaining maternal electrocardiogram components are extracted from the residual signal G as bases in the base signal generation unit 28 of the multidimensional linear filtering unit 27.
  • the maternal component estimator 29 linearly estimates the maternal ECG components of other channels using this basis and removes the maternal ECG residual components from each channel (two-stage estimation method).
  • FIG. 4 is a block diagram of the self-referencing system creation unit of the online biological signal processing apparatus showing an embodiment of the present invention.
  • reference numeral 31 denotes a preprocessing unit of the self-referencing system creation unit 19 (see FIG. 2).
  • the preprocessing unit 31 removes the fluctuation of the signal base line by the bandpass filter 32, and the noise signal processing unit 33 suddenly Removes large noise such as sine waves. Further, the sign of the signal is adjusted so that the target signal positive value display unit 34 takes a maximum value as a positive value.
  • a 30-60 Hz Butterworth filter is used as the bandpass filter 32. Further, in the noise signal processing unit 33, a signal having a variance of 10 times or more as a sine wave is removed.
  • Reference numeral 35 denotes a fetal electrocardiogram-containing channel estimation unit, which includes a probability distribution estimation unit 36 and a fetal electrocardiogram channel estimation unit 37.
  • the cumulant of each channel was calculated, and the channel having the maximum value was defined as a fetal electrocardiogram-containing channel.
  • Reference numeral 38 denotes a reference signal generation unit, which includes a fetal electrocardiogram R wave position estimation unit 39 and a reference signal generation unit 40, and estimates the position of the fetal R wave and generates a reference signal.
  • a range of 2 to 10 times the standard deviation of the fetal electrocardiogram-containing estimation channel is considered as the existence range of the fetal electrocardiogram, a signal in this range is left, and a reference signal is created with other locations being zero.
  • FIG. 5 is a comparison of waveforms obtained when the maternal electrocardiogram is removed by the conventional method and the two-stage estimation method according to the present invention.
  • FIG. 5 (a) is a measurement signal A including the maternal and fetal electrocardiogram signals measured by the electrodes attached to the maternal body, and the arrow indicates the maternal electrocardiogram R wave.
  • FIG. 5B shows the result of removing the maternal electrocardiogram by a conventional method using a linear filter. In this case, it can be seen that a maternal electrocardiogram component (arrow portion) including a T-wave component remains.
  • FIG. 5 (c) shows the result when the maternal electrocardiogram is removed by the two-stage estimation method according to the present invention. It can be seen that the matrix component including the T wave is sufficiently removed.
  • FIG. 6 is a diagram showing waveforms obtained by the on-line biological signal processing apparatus of the present invention.
  • FIG. 6A is a diagram showing the measurement signal A, and the maternal electrocardiogram is removed from the measurement signal A, and a signal as shown in FIG. 6B is obtained.
  • FIG. 6C shows a self-reference system created by the self-reference system creation unit based on the signal of FIG.
  • a fetal electrocardiogram as shown in FIG. 6D is obtained.
  • FIG. 7 is a drawing-substituting photograph showing the measurement / analysis separation type on-line biological signal processing apparatus according to the present invention and the output waveform on the screen.
  • FIG. 7A is an overall view of the measurement / analysis separation type processing apparatus of the present invention.
  • reference numeral 41 denotes a measurement computer (measurement unit)
  • 42 denotes an analysis computer (analysis unit).
  • the measurement unit 41 and the analysis unit 42 are connected by a wireless LAN. Even if the measurement unit 41 and the analysis unit 42 are arranged apart from each other, they are designed to work effectively on the same floor.
  • FIGS. 7B and 7C show the screens of the analysis computer 42. 7B and 7C, 43 is a maternal electrocardiogram signal, 44 is a fetal heart Doppler signal, 45 is a fetal electrocardiogram, and 46 is a noise component. Even if the fetal heart Doppler signal 44 obtained in FIG.
  • FIG. 8 shows an integrated measurement / analysis screen of the online biological signal processing apparatus according to the present invention.
  • the left side is measurement data 51 and the right side is analysis data 52.
  • the channel moves with the movement of the fetus, and the version informing the fetus is displayed.
  • the maternal abdominal wall can be stably stabilized even during fetal movement.
  • Fetal electrocardiogram can be measured online.
  • the on-line biological signal processing method and fetal electrocardiogram measuring apparatus that are also effective during fetal movement according to the present invention can be applied to various fetal diagnoses such as fetal monitoring, fetal arrhythmia diagnosis, and fetal heart disease.
  • the algorithm produced by the present invention can be widely used as an online signal separation means.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pediatric Medicine (AREA)
  • Pregnancy & Childbirth (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

 胎動時にも安定して胎児心電図を計測可能な、胎動時にも有効なオンライン生体信号処理方法およびその装置を提供する。  妊娠中の母体に取り付けられた電極により入力される母体と胎児の心電図信号を含む生体電位信号から胎児の心電図信号をオンラインで抽出するための生体信号処理装置であって、母体心電図を非線形推定し、これを計測信号から完全に取り除く母体心電図除去部11と、胎動時や不整脈時や、超音波胎児心ドプラ信号などの他の参照できる計測信号がない場合に、前記計測信号自体から参照系を作る自己参照系作成部19と、この自己参照系作成部19からの出力信号を含む信号が入力され、前記胎児の心電図信号を入力する参照系独立成分分析部12とを備え、前記各部の一連の操作を繰り返し用いる。

Description

胎動時にも有効なオンライン生体信号処理方法およびその装置
 本発明は、参照系独立成分分析法のオンライン化に係わり、特に、妊娠中の母体から胎動時でも胎児の心電図をオンライン検出するための生体信号の分離方法に関するものである。
 腹壁誘導胎児心電図を胎児モニターとして用いる場合、子宮内での胎児の動き、すなわち胎動によって計測ができなくなるようなことがあっては、正確な診断ができないだけでなくモニターとしての機能を発揮できない。
 従来、実時間で胎児心電図を計測する方法としては、2次の推定量を用いる方法が主に提唱されてきた。例えば、胎児心電図の実時間抽出に関して特異値分解法を繰り返し行うCallaerts,D.らの方法(下記非特許文献1参照)、ニューラルネットワーク適応情報処理を用いた腹壁胎児心電図計算方法であるSelvan,S.らの方法(下記非特許文献2参照)、腹壁からのロバスト胎児心電図計測法であるMartens,S.M.M.等の方法(下記非特許文献3参照)が提案されている。これらの方法では2次の推定量を用い線形変換のみで母体心電図を取り除き、また、胎児心電図の抽出は各チャンネル毎に過去の値との相互情報量や類似性を用いて行っている。従って、もともと雑音混入に弱く、過去の値との相関が低くなる胎動時や胎児に不整脈がある場合に対応できない。また、チャンネル毎に胎児心電図を計算するため、多チャンネル計測の意味が曖昧になり、各チャンネルからある決められた誘導を導くために胎児の位置が変化するたびにその変化に合わせた再計算が必要になる。そのため、一定の誘導で見た胎児心電図を胎動時も描出し続けることは不可能である。
 これに対し、4次の統計量に基づく独立成分分析法を繰り返し用いて腹壁誘導胎児心電図を抽出する方法が考えられるが、この方法では、各抽出毎に胎児心電図が抽出されるチャンネルが一定しないだけでなく、抽出された心電図の大きさは物理的な意味が失われており、各抽出毎に抽出信号の振幅が変化するので、実時間での計測は不可能である。
 本願発明者らの提唱した参照系独立成分分析法による胎児心電図抽出技術は上記した問題を解決するものの、胎児心ドプラ信号などの参照系を生成するための事前情報が必要であり、胎動時に胎児心ドプラ信号が外れ参照信号が作成できなくなった状態では胎児心電図が抽出不能になることがある。また、自己参照系を電極信号から直接作り出す場合、線形推定の母体心電図処理ではT波などの心電信号成分が残ってしまい、正確な自己参照系を作れなくなる場合が生じる。
 このように、腹壁誘導の胎児心電図の信号処理では胎動時にも安定して働くオンライン信号処理を行うことは困難であった。
特開2006-204759号公報 Callaerts,D.,Sansen,W., Vandewalle,J., Vantrappen,G.,Janssens,J.,"Description of a real-time system to extract the fetal electrocardiogram",Clinical Physics and Psychological Measurements,1989,Vol.10,pp.7-10 Selvan,S.,Srinivasan,R.,"A novel adaptive filtering technique for the processing of abdominal fetal electrocardiogram using neural network",Adaptive Systems for Signal Processing,Communications,and Control Symposium 2000.AS-SPCC.The IEEE 2000,pp.289-292 Martens,S.M.M.,Rabotti,C.,Mischi,M.,Sluijter,R.J.,"A robust fetal ECG detection method for abdominal recordings",Physiol.Meas.28,2007,pp.373-388.
 上記のように、従来の技術では心電図モニターに欠かせない胎動時にも安定して胎児心電図を得ることができないといった問題があった。
 本発明は、上記状況に鑑みて、胎動時にも安定して計測を行うことができる、胎動時にも有効なオンライン生体信号処理方法およびその装置を提供することを目的とする。
 本発明は、上記目的を達成するために、
 〔1〕胎動時にも有効なオンライン生体信号処理方法において、妊娠中の母体に取り付けられた電極により入力される母体と胎児の心電図信号を含む生体電位信号から胎児の心電図信号をオンラインで抽出するための生体信号処理方法であって、母体心電図を非線形推定し、これを計測信号から完全に取り除く母体心電図除去部(11)と、胎動時や不整脈時や、超音波胎児心ドプラ信号などの他の参照できる計測信号がない場合に、前記計測信号自体から参照系を作る自己参照系作成部(19)と、この自己参照系作成部(19)からの参照信号が入力され、胎児の心電図信号を出力する参照系独立成分分析部(12)とを有し、前記各部の一連の操作を繰り返し用いることを特徴とする。
 〔2〕上記〔1〕記載の胎動時にも有効なオンライン生体信号処理方法において、前記母体心電図除去部(11)は、母体の非線形信号部分を除去するための非線形信号除去部(21)と、残りの線形部分を除去する多次元線形フィルタリング部(27)とを有することを特徴とする。
 〔3〕上記〔2〕記載の胎動時にも有効なオンライン生体信号処理方法において、前記非線形信号除去部(21)は、基線を安定化させる第1のバンドパスフィルター(22)と、特徴抽出のための第2のバンドパスフィルター(23)と、母体RR間隔算出部(24)と、信号の周期性に基づく母体心電図波形非線形モデル推定部(25)と、前記第1のバンドパスフィルター(22)の出力信号(E)から前記母体心電図波形非線形モデル推定部(25)で得られた母体心電図波形非線形モデル(F)を引き算する第1の差分演算部(26)とを有することを特徴とする。
 〔4〕上記〔3〕記載の胎動時にも有効なオンライン生体信号処理方法において、前記多次元線形フィルタリング部(27)は、前記第1の差分演算部(26)より出力された残差信号(G)の母体の心電図を大きく含む1つのチャンネルより計測された母体心電図信号成分の最大残差から他チャンネルの残差成分を推定するための基底を作成する基底信号作成部(28)と、この作成された基底を用い他チャンネルの母体心電図成分信号残差成分を推定する母体成分推定部(29)と、この母体成分推定部(29)からの出力信号を残差信号(G)から再び除去する第2の差分演算部(30)とを有することを特徴とする。
 〔5〕上記〔1〕記載の胎動時にも有効なオンライン生体信号処理方法において、前記自己参照系作成部(19)は、参照信号を作るための前処理部(31)と、胎児心電図の確率分布により胎児心電図含有チャンネルを推定する胎児心電図含有チャンネル推定部(35)と、前記推定された胎児心電図含有チャンネルに対し特徴抽出により参照系を生成する参照信号作成部(38)とを有することを特徴とする。
 〔6〕上記〔5〕記載の胎動時にも有効なオンライン生体信号処理方法において、前記前処理部(31)は、胎児心電図の特徴強調のためのバンドパスフィルター(32)と、大きな雑音を取り除くための雑音信号処理部(33)と、胎児心電図成分のR波を正の方向に表示させるための目的信号正値表示部(34)とを有することを特徴とする。
 〔7〕上記〔5〕記載の胎動時にも有効なオンライン生体信号処理方法において、前記胎児心電図含有チャンネル推定部(35)は、各チャンネルの胎児心電図の確率分布を推定する確率分布推定部(36)と、推定された確率分布に基づき胎児心電図含有チャンネルを推定する胎児心電図チャンネルの推定部(37)とを有することを特徴とする。
 〔8〕上記〔5〕記載の胎動時にも有効なオンライン生体信号処理方法において、前記参照信号作成部(38)は、胎児心電図のR波の位置を特定する胎児心電図R波の位置推定部(目的信号特徴抽出部)(39)と、この胎児心電図R波の位置推定部(39)からの出力信号に基づき参照信号を生成する参照信号生成部(40)とを有することを特徴とする。
 〔9〕胎動時にも有効なオンライン生体信号処理装置において、妊娠中の母体に取り付けられた電極により入力される母体と胎児の心電図信号を含む生体電位信号から胎児の心電図信号をオンラインで抽出するための生体信号処理装置であって、母体心電図を非線形推定し、これを計測信号から完全に取り除く母体心電図除去部(11)と、胎動時や不整脈時や、超音波胎児心ドプラ信号などの他の参照できる計測信号がない場合に、計測信号自体から参照系を作る自己参照系作成部(19)と、この自己参照系作成部(19)からの出力信号を含む信号が入力され、胎児の心電図信号を出力する参照系独立成分分析部(12)とを備え、前記各部の一連の操作を繰り返し用いるようにしたことを特徴とする。
 〔10〕上記〔9〕記載の胎動時にも有効なオンライン生体信号処理装置において、前記母体心電図除去部(11)は、母体の非線形信号部分を除去するための非線形信号除去部(21)と、残りの線形部分を除去する多次元線形フィルタリング部(27)とからなることを特徴とする。
 〔11〕上記〔10〕記載の胎動時にも有効なオンライン生体信号処理装置において、前記非線形信号除去部(21)は、基線を安定化させる第1のバンドパスフィルター(22)と、特徴抽出のための第2のバンドパスフィルター(23)と、母体RR間隔算出部(24)と、信号の周期性に基づく母体心電図波形非線形モデル推定部(25)と、前記第1のバンドパスフィルター(22)の出力信号(E)から前記母体心電図波形非線形モデル推定部(25)で得られた母体心電図波形非線形モデル(F)を引き算する第1の差分演算部(26)とからなることを特徴とする。
 〔12〕上記〔11〕記載の胎動時にも有効なオンライン生体信号処理装置において、前記多次元線形フィルタリング部(27)は、前記第1の差分演算部(26)より出力された残差信号(G)の第1のチャンネルより計測された母体心電図信号成分の最大残差から他チャンネルの残差成分を推定する基底を作成する基底信号作成部(28)と、この作成された基底を用い他チャンネルの母体心電図信号残差成分を推定する母体成分推定部(29)と、この母体成分推定部(29)からの出力信号を前記残差信号(G)から再び除去する第2の差分演算部(30)とからなることを特徴とする。
 〔13〕上記〔9〕記載の胎動時にも有効なオンライン生体信号処理装置において、前記自己参照系作成部(19)は、参照信号を作るための前処理部(31)と、胎児心電図の確率分布により胎児心電図含有チャンネルを推定する胎児心電図含有チャンネル推定部(35)と、推定された胎児心電図含有チャンネルに対し特徴抽出により参照系を生成する参照信号作成部(38)とからなることを特徴とする。
 〔14〕上記〔13〕記載の胎動時にも有効なオンライン生体信号処理装置において、前記前処理部(31)は、胎児心電図の特徴強調のためのバンドパスフィルター(32)と、大きな雑音を取り除くための雑音信号処理部(33)と、胎児心電図成分のR波を正の方向に表示させるための目的信号正値表示部(34)とからなることを特徴とする。
 〔15〕上記〔13〕記載の胎動時にも有効なオンライン生体信号処理装置において、前記胎児心電図含有チャンネル推定部(35)は、各チャンネルの胎児心電図の確率分布を推定する確率分布推定部(36)と、推定された確率分布に基づき胎児心電図含有チャンネルを推定する胎児心電図チャンネルの推定部(37)とからなることを特徴とする。
 〔16〕上記〔13〕記載の胎動時にも有効なオンライン生体信号処理装置において、前記参照信号作成部(38)は、胎児心電図のR波の位置を特定する胎児心電図R波の位置推定部(目的信号特徴抽出部)(39)と、この胎児心電図R波の位置推定部(39)からの出力信号に基づき参照信号を生成する参照信号生成部(40)とからなることを特徴とする。
本発明の実施例を示すオンライン生体信号処理装置の概略構成図である。 本発明の実施例を示すオンライン生体信号処理装置の胎児心電図抽出部の構成図である。 本発明の実施例を示すオンライン生体信号処理装置の母体心電図除去部の構成図である。 本発明の実施例を示すオンライン生体信号処理装置の自己参照系作成部の構成図である。 従来法と本発明にかかる2段階推定法により母体心電図を除去した時の波形図を対比したものである。 本発明のオンライン生体信号処理装置で得られた波形を示す図である。 本発明にかかる計測・解析分離型のオンライン生体信号処理装置と、その画面上への出力波形を示す図面代用の写真である。 本発明にかかるオンライン生体信号処理装置の計測・解析一体型画面を示す図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。
 図1は本発明の実施例を示すオンライン生体信号処理装置の概略構成図である。
 図1に示すように、妊娠中の母体に取り付けられた電極により入力される母体と胎児の心電図信号を含む生体電位信号は、生体電位信号計測部1で計測される。計測された信号Aは、計測アンプ・AD変換器2を介して、決められた秒数ごとにコンピュータ内のレジスター3にデータブロック1~Nとして順次一時保存され、胎児心電図抽出部4に送られる。送られたデータから胎児心電図が抽出され、データ記録部5に記録された後、モニター画面6に出力される。
 図2は本発明の実施例を示すオンライン生体信号処理装置の胎児心電図抽出部の構成図である。
 この図において、11は母体心電図除去部、12は参照系独立成分分析部、13は参照信号系生成部であり、この参照信号系生成部13は、ドプラ計測信号Bが入力される信号処理部14、タイミング関数信号生成部15、チェック部16、フィードバック部17、参照信号生成処理部18とからなる。19は自己参照系作成部であり、母体心電図除去部11と参照信号系生成部13のチェック部16とからの出力信号が、参照系独立成分分析部12へ入力されるようになっている。
 そこで、胎児心電図抽出部4(図1参照)に入力されたレジスター3(図1参照)からの計測信号Aは、母体心電図除去部11に入り、母体心電図が除去されて、参照信号系生成部13と自己参照系作成部19から入力される参照信号Cまたは自己参照系信号Dをもとに参照系独立成分分析部12から胎児心電図を含む独立成分が抽出され、データ記録部5(図1参照)に送られる。特に、胎動などによりドプラ信号Bが計測できず、参照系が作れなくなった場合に、参照信号系生成部13のチェック部16でこの状態が判別され自己参照系作成部19が作動し、自己参照系を作成する。信号ノイズ比が良好である場合などは、胎児心電図抽出に最初から自己参照系を用いても問題はない。
 図3は本発明の実施例を示すオンライン生体信号処理装置の母体心電図除去部の構成図である。
 この図において、21は非線形信号除去部であり、この非線形信号除去部21は、第1のバンドパスフィルター22、第2のバンドパスフィルター23、この第2のバンドパスフィルター23からの出力信号が入力される母体RR間隔算出部24、この母体RR間隔算出部24からの出力信号が入力される母体心電図波形非線形モデル推定部25、第1のバンドパスフィルター22と母体心電図波形非線形モデル推定部25からの出力信号が入力される第1の差分演算部26とからなり、この第1の差分演算部26は残差信号Gを出力する。
 また、多次元線形フィルタリング部27は、第1の差分演算部26から出力された残差信号Gが入力される基底信号作成部28と、この基底信号作成部28からの出力信号が入力される母体成分推定部29と、上記した残差信号Gと母体成分推定部29からの出力信号とが入力される第2の差分演算部30からなり、この第2の差分演算部30は計測結果を出力する。
 母体心電図除去部11に送られた計測信号A(図2参照)は、非線形信号除去部21のバンドパスフィルター22,23に入力される。この非線形信号除去部21では第2のバンドパスフィルター23で特徴抽出された母体R波信号からR波の発生時刻を母体RR間隔算出部24で計算し、これをもとに母体心電図波形非線形モデル推定部25において母体心電図波形の非線形モデルFを求める。そして、第1のバンドパスフィルター22で得られた出力信号Eから非線形モデルFを引いて残差信号Gを得る。
 本発明では、第1のバンドパスフィルター22として1-100Hzのバンドパスフィルターを、第2のバンドパスフィルター23として30-100Hzのバンドパスフィルターを用いた。また、非線形モデルとして母体T波を含むN波形毎の重み付けされた心電図PQRST波形加算平均をR波毎に計算し、第1のバンドパスフィルター22で基線の動揺を除いた信号から残差信号Gを作成した。一般には非線形モデルFは、信号の特徴を考慮して適応情報処理を用いても求められる。
 残りの母体心電図成分は、残差信号Gから、多次元線形フィルタリング部27の基底信号作成部28において基底として抽出される。母体成分推定部29では、この基底を用い他のチャンネルの母体心電図成分を線形に推定して母体心電図残差成分を各チャンネルから除去する(2段階推定法)。
 図4は本発明の実施例を示すオンライン生体信号処理装置の自己参照系作成部の構成図である。
 この図において、31は自己参照系作成部19(図2参照)の前処理部であり、この前処理部31ではバンドパスフィルター32により信号の基線の動揺を取り除き、雑音信号処理部33で突然の尖波のような大きな雑音を取り除く。また、目的信号正値表示部34で正の値で最大絶対値を取るように信号の符合を調節する。
 この自己参照系作成部19の前処理部31では、バンドパスフィルター32として30-60Hzのバターワーズフィルターを用いた。また、雑音信号処理部33では、分散の10倍以上の信号を尖波として取り除いた。
 35は胎児心電図含有チャンネル推定部であり、確率分布推定部36と胎児心電図チャンネルの推定部37からなる。ここでは、各チャンネルのキュムラントを算出し、最大値をとるチャンネルを胎児心電図含有チャンネルとした。
 38は参照信号作成部であり、胎児心電図R波の位置推定部39と参照信号生成部40とからなり、胎児R波の位置を推定し、参照信号を作成する。本発明では、胎児心電図含有推定チャンネルの標準偏差の2倍から10倍の範囲を胎児心電図の存在範囲と考え、この範囲にある信号を残し、他の場所をゼロとして参照信号を作成した。
 図5は従来法と本発明にかかる2段階推定法により母体心電図を除去した時の波形図を対比したものである。
 図5(a)は母体に取り付けられた電極により計測された母体と胎児の心電図信号を含む計測信号Aであり、矢印は母体心電図R波を示す。また、図5(b)は線形フィルターを用いた従来法による母体心電図の除去結果を示す。この場合、T波の成分を含む母体心電図成分(矢印部)が残っているのがわかる。図5(c)は本発明にかかる2段階推定法により母体心電図を除去した時の結果を示す。T波も含め母体成分が十分除去されていることが分かる。
 図6は本発明のオンライン生体信号処理装置で得られた波形を示す図である。
 図6(a)は計測信号Aを示す図であり、この計測信号Aより、母体心電図が除かれ、図6(b)に示すような信号が得られる。図6(c)は図6(b)の信号を基に自己参照系作成部で作成された自己参照系を示す。この自己参照系を用い最終的な結果として図6(d)に示すような胎児心電図が得られる。
 図7は本発明にかかる計測・解析分離型のオンライン生体信号処理装置と、その画面上への出力波形を示す図面代用の写真である。
 図7(a)は、本発明の計測・解析分離型の処理装置の全体図である。この図において、41は計測用コンピュータ(計測部)、42は解析用コンピュータ(解析部)を示している。かかる計測部41と解析部42は、無線LANでつながれている。計測部41と解析部42を離して配置しても同一フロアでは有効に働くように設計されている。図7(b)、(c)は、解析用コンピュータ42の画面を示している。図7(b)、(c)において、43は母体心電図信号、44は胎児心ドプラ信号、45は胎児心電図、46は雑音成分である。図7(b)で取れていた胎児心ドプラ信号44が、図7(c)で胎動のためほとんど取れなくなっても、胎児心電図45が順調に取れ続けられていることが確かめられる。なお、胎動に伴い胎児心電図の出現チャンネルを変える表示も可能である。
 図8は本発明にかかるオンライン生体信号処理装置の計測・解析一体型画面を示す。
 この図において、左側が計測データ51、右側が解析データ52である。この例では、胎動に伴いチャンネルが移動して、胎動を知らせるバージョンを表示している。
  なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
 本発明によれば、胎動時に外部入力の事前情報がない場合を想定し、母体心電図の優れた除去法とそれに基づく自己参照系作成方法を提供したことにより、胎動時でも母体腹壁から安定してオンラインで胎児心電図を計測することができる。
 本発明に係る胎動時にも有効なオンライン生体信号処理方法およびその胎児心電図計測装置は、胎児モニター、胎児不整脈の診断、胎児心疾患等の様々な胎児診断に適用できる。
 また、本発明によって製作されたアルゴリズムは、オンライン信号分離手段として広く用いることが出来る。

Claims (16)

  1.  妊娠中の母体に取り付けられた電極により入力される母体と胎児の心電図信号を含む生体電位信号から胎児の心電図信号をオンラインで抽出するための生体信号処理方法であって、
     母体心電図を非線形推定し、これを計測信号から完全に取り除く母体心電図除去部と、
     胎動時や不整脈時の時のように、超音波胎児心ドプラ信号などの他の参照できる計測信号がない場合に、前記計測信号自体から参照系を作る自己参照系作成部と、
     該自己参照系作成部からの参照系信号が入力され、胎児の心電図信号を出力する参照系独立成分分析部とを有し、
     前記各部の一連の操作を繰り返し用いることを特徴とする胎動時にも有効なオンライン生体信号処理方法。
  2.  請求項1記載の胎動時にも有効なオンライン生体信号処理方法において、前記母体心電図除去部は、母体の非線形信号部分を除去するための非線形信号除去部と、残りの線形部分を除去する多次元線形フィルタリング部とを有することを特徴とする胎動時にも有効なオンライン生体信号処理方法。
  3.  請求項2記載の胎動時にも有効なオンライン生体信号処理方法において、前記非線形信号除去部は、基線を安定化させる第1のバンドパスフィルターと、特徴抽出のための第2のバンドパスフィルターと、母体RR間隔算出部と、信号の周期性に基づく母体心電図波形非線形モデル推定部と、前記第1のバンドパスフィルターの出力信号から前記母体心電図波形非線形モデル推定部で得られた母体心電図波形非線形モデルを引き算する第1の差分演算部とを有することを特徴とする胎動時にも有効なオンライン生体信号処理方法。
  4.  請求項3記載の胎動時にも有効なオンライン生体信号処理方法において、前記多次元線形フィルタリング部は、前記第1の差分演算部より出力された残差信号の母体の心電図を大きく含む任意の1つのチャンネルより計測された母体心電図信号成分の最大残差から他チャンネルの残差成分を推定するための基底を作成する基底信号作成部と、該作成された基底を用い他チャンネルの母体心電図信号残差成分を推定する母体成分推定部と、該母体成分推定部からの出力信号を前記残差信号から再び除去する第2の差分演算部とを有することを特徴とする胎動時にも有効なオンライン生体信号処理方法。
  5.  請求項1記載の胎動時にも有効なオンライン生体信号処理方法において、前記自己参照系作成部は、参照信号を作るための前処理部と、胎児心電図の確率分布により胎児心電図含有チャンネルを推定する胎児心電図含有チャンネル推定部と、推定された胎児心電図含有チャンネルに対し特徴抽出により参照系を生成する参照信号作成部とを有することを特徴とする胎動時にも有効なオンライン生体信号処理方法。
  6.  請求項5記載の胎動時にも有効なオンライン生体信号処理方法において、前記前処理部は、胎児心電図の特徴強調のためのバンドパスフィルターと、大きな雑音を取り除くための雑音信号処理部と、胎児心電図成分のR波を正の方向に表示させるための目的信号正値表示部とを有することを特徴とする胎動時にも有効なオンライン生体信号処理方法。
  7.  請求項5記載の胎動時にも有効なオンライン生体信号処理方法において、前記胎児心電図含有チャンネル推定部は、各チャンネルの前記胎児心電図の確率分布を推定する確率分布推定部と、前記推定された確率分布に基づき前記胎児心電図含有チャンネルを推定する胎児心電図チャンネルの推定部とを有することを特徴とする胎動時にも有効なオンライン生体信号処理方法。
  8.  請求項5記載の胎動時にも有効なオンライン生体信号処理方法において、前記参照信号作成部は、胎児心電図のR波の位置を特定する胎児心電図R波の位置推定部と、該胎児心電図R波の位置推定部からの出力信号に基づき参照信号を生成する参照信号生成部とを有することを特徴とする胎動時にも有効なオンライン生体信号処理方法。
  9.  妊娠中の母体に取り付けられた電極により入力される母体と胎児の心電図信号を含む生体電位信号から胎児の心電図信号をオンラインで抽出するための生体信号処理装置であって、
     母体心電図を非線形推定し、これを計測信号から完全に取り除く母体心電図除去部と、
     胎動時や不整脈時の時のように、超音波胎児心ドプラ信号などの他の参照できる計測信号がない場合に、前記計測信号自体から参照系を作る自己参照系作成部と、
     該自己参照系作成部からの出力信号を含む信号が入力され、前記胎児の心電図信号を出力する参照系独立成分分析部とを備え、
     前記各部の一連の操作を繰り返し用いるようにしたことを特徴とする胎動時にも有効なオンライン生体信号処理装置。
  10.  請求項9記載の胎動時にも有効なオンライン生体信号処理装置において、前記母体心電図除去部は、母体の非線形信号部分を除去するための非線形信号除去部と、残りの線形部分を除去する多次元線形フィルタリング部とからなることを特徴とする胎動時にも有効なオンライン生体信号処理装置。
  11.  請求項10記載の胎動時にも有効なオンライン生体信号処理装置において、前記非線形信号除去部は、基線を安定化させる第1のバンドパスフィルターと、特徴抽出のための第2のバンドパスフィルターと、母体RR間隔算出部と、信号の周期性に基づく母体心電図波形非線形モデル推定部と、前記第1のバンドパスフィルターの出力信号から前記母体心電図波形非線形モデル推定部で得られた母体心電図波形非線形モデルを引き算する第1の差分演算部とからなることを特徴とする胎動時にも有効なオンライン生体信号処理装置。
  12.  請求項11記載の胎動時にも有効なオンライン生体信号処理装置において、前記多次元線形フィルタリング部は、前記第1の差分演算部より出力された残差信号の母体の心電図を大きく含む任意の1つのチャンネルより計測された母体心電図信号成分の最大残差から他チャンネルの残差成分を推定するための基底を作成する基底信号作成部と、該作成された基底を用い他チャンネルの母体心電図信号残差成分を推定する母体成分推定部と、該母体成分推定部からの出力信号を前記残差信号から再び除去する第2の差分演算部とからなることを特徴とする胎動時にも有効なオンライン生体信号処理装置。
  13.  請求項9記載の胎動時にも有効なオンライン生体信号処理装置において、前記自己参照系作成部は、参照信号を作るための前処理部と、胎児心電図の確率分布により胎児心電図含有チャンネルを推定する胎児心電図含有チャンネル推定部と、推定された胎児心電図含有チャンネルに対し特徴抽出により参照系を生成する参照信号作成部とからなることを特徴とする胎動時にも有効なオンライン生体信号処理装置。
  14.  請求項13記載の胎動時にも有効なオンライン生体信号処理装置において、前記前処理部は、胎児心電図の特徴強調のためのバンドパスフィルターと、大きな雑音を取り除くための雑音信号処理部と、胎児心電図成分のR波を正の方向に表示させるための目的信号正値表示部とからなることを特徴とする胎動時にも有効なオンライン生体信号処理装置。
  15.  請求項13記載の胎動時にも有効なオンライン生体信号処理装置において、前記胎児心電図含有チャンネル推定部は、各チャンネルの胎児心電図の確率分布を推定する確率分布推定部と、推定された確率分布に基づき胎児心電図含有チャンネルを推定する胎児心電図チャンネルの推定部とからなることを特徴とする胎動時にも有効なオンライン生体信号処理装置。
  16.  請求項13記載の胎動時にも有効なオンライン生体信号処理装置において、前記参照信号作成部は、胎児心電図のR波の位置を特定する胎児心電図R波の位置推定部と、該胎児心電図R波の位置推定部からの出力信号に基づき参照信号を生成する参照信号生成部とからなることを特徴とする胎動時にも有効なオンライン生体信号処理装置。
PCT/JP2008/053739 2008-03-03 2008-03-03 胎動時にも有効なオンライン生体信号処理方法およびその装置 WO2009110051A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053739 WO2009110051A1 (ja) 2008-03-03 2008-03-03 胎動時にも有効なオンライン生体信号処理方法およびその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053739 WO2009110051A1 (ja) 2008-03-03 2008-03-03 胎動時にも有効なオンライン生体信号処理方法およびその装置

Publications (1)

Publication Number Publication Date
WO2009110051A1 true WO2009110051A1 (ja) 2009-09-11

Family

ID=41055630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053739 WO2009110051A1 (ja) 2008-03-03 2008-03-03 胎動時にも有効なオンライン生体信号処理方法およびその装置

Country Status (1)

Country Link
WO (1) WO2009110051A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033784A1 (ja) * 2009-09-18 2011-03-24 国立大学法人東北大学 信号抽出装置
CN102178522A (zh) * 2011-04-29 2011-09-14 华南理工大学 一种母亲及胎儿心电信号qrs波中r波的检测定位方法
CN103565433A (zh) * 2013-10-30 2014-02-12 深圳市理邦精密仪器股份有限公司 一种提高胎儿监护效率的方法和装置
WO2016142780A1 (en) 2015-03-10 2016-09-15 Nuvo Group Ltd. Systems, apparatus and methods for sensing fetal activity
WO2019216251A1 (ja) * 2018-05-10 2019-11-14 アトムメディカル株式会社 胎児心電信号処理方法及び胎児心電信号処理装置
JP2020131032A (ja) * 2019-02-21 2020-08-31 株式会社クラウドセンス 胎児心拍監視システム
WO2022267037A1 (zh) * 2021-06-25 2022-12-29 毛士鹏 可同时监测母体与胎儿心律的监护装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081447A2 (en) * 2005-01-27 2006-08-03 The Board Of Trustees Of The University Of Illinois Blind adaptive filter extraction of fetal electrocardiogram signal estimate
JP2006204759A (ja) * 2005-01-31 2006-08-10 Tohoku Univ 心電図信号処理方法および心電図信号処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081447A2 (en) * 2005-01-27 2006-08-03 The Board Of Trustees Of The University Of Illinois Blind adaptive filter extraction of fetal electrocardiogram signal estimate
JP2006204759A (ja) * 2005-01-31 2006-08-10 Tohoku Univ 心電図信号処理方法および心電図信号処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOYUKI NETABAYASHI ET AL.: "Shindenzu no Sanshokei Shingo Bunri ni Okeru Sansho Shingo no Saitekika", IEICE TECHNICAL REPORT(ME AND BIOCYBERNETICS), vol. 107, no. 351, 2007, pages 1 - 4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033784A1 (ja) * 2009-09-18 2011-03-24 国立大学法人東北大学 信号抽出装置
US8808192B2 (en) 2009-09-18 2014-08-19 Tohoku University Signal extracting apparatus
JP5769309B2 (ja) * 2009-09-18 2015-08-26 国立大学法人東北大学 1計測信号からの独立成分分析による信号抽出装置、その信号抽出プログラム及びその信号抽出方法
CN102178522A (zh) * 2011-04-29 2011-09-14 华南理工大学 一种母亲及胎儿心电信号qrs波中r波的检测定位方法
CN103565433A (zh) * 2013-10-30 2014-02-12 深圳市理邦精密仪器股份有限公司 一种提高胎儿监护效率的方法和装置
WO2016142780A1 (en) 2015-03-10 2016-09-15 Nuvo Group Ltd. Systems, apparatus and methods for sensing fetal activity
EP3267884A4 (en) * 2015-03-10 2019-04-24 Nuvo Group Ltd. SYSTEMS, DEVICE AND METHOD FOR MEASURING FATTENAL ACTIVITY
WO2019216251A1 (ja) * 2018-05-10 2019-11-14 アトムメディカル株式会社 胎児心電信号処理方法及び胎児心電信号処理装置
JP2019195461A (ja) * 2018-05-10 2019-11-14 アトムメディカル株式会社 胎児心電信号処理方法及び胎児心電信号処理装置
JP2020131032A (ja) * 2019-02-21 2020-08-31 株式会社クラウドセンス 胎児心拍監視システム
JP7418740B2 (ja) 2019-02-21 2024-01-22 株式会社クラウドセンス 胎児心拍監視システム
WO2022267037A1 (zh) * 2021-06-25 2022-12-29 毛士鹏 可同时监测母体与胎儿心律的监护装置

Similar Documents

Publication Publication Date Title
Andreotti et al. Robust fetal ECG extraction and detection from abdominal leads
US9125577B2 (en) Extraction of fetal cardiac signals
Roonizi et al. A signal decomposition model-based Bayesian framework for ECG components separation
US20100056938A1 (en) Method and system for signal separation during multivariate physiological monitoring
WO2009110051A1 (ja) 胎動時にも有効なオンライン生体信号処理方法およびその装置
WO2001091627A2 (en) System and device for multi-scale analysis and representation of electrocardiographic data
WO2003055395A1 (en) Analysis of acoustic medical signals
Li et al. A new signal decomposition to estimate breathing rate and heart rate from photoplethysmography signal
Barnova et al. A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction
Hadjem et al. An ECG T-wave anomalies detection using a lightweight classification model for wireless body sensors
Krupa et al. Joint time-frequency analysis and non-linear estimation for fetal ECG extraction
Su et al. Recovery of the fetal electrocardiogram for morphological analysis from two trans-abdominal channels via optimal shrinkage
Mohammed Kaleem et al. A survey on FECG extraction using neural network and adaptive filter
US7831300B2 (en) Extrapolating ICA knowledge from one epoch to another for improved fetal ECG separation
Fotiadou et al. Deep convolutional encoder-decoder framework for fetal ECG signal denoising
Gu et al. An improved method with high anti-interference ability for R peak detection in wearable devices
Siecinski et al. Influence of empirical mode decomposition on heart rate variability indices obtained from smartphone seismocardiograms
Luengo et al. Sparse ECG representation with a multi-scale dictionary derived from real-world signals
Anisha et al. Survey on fetal ECG extraction
WO2017165661A1 (en) Signal processing for precise identification and separation of artifact and a signal of interest in a longitudinal signal
Peláez et al. Automatic identification of characteristic points related to pathologies in electrocardiograms to design expert systems
Khoór et al. Heart rate analysis and telemedicine: New concepts & maths
Gupta et al. Principal component and independent component calculation of ECG signal in different posture
Mazidi et al. Detection of heart attack using cross wavelet transformation and support vector machine
Deogire Multi lead fetal QRS detection with principal component analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08721159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP