WO2009107602A1 - Motion device - Google Patents

Motion device Download PDF

Info

Publication number
WO2009107602A1
WO2009107602A1 PCT/JP2009/053262 JP2009053262W WO2009107602A1 WO 2009107602 A1 WO2009107602 A1 WO 2009107602A1 JP 2009053262 W JP2009053262 W JP 2009053262W WO 2009107602 A1 WO2009107602 A1 WO 2009107602A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical surface
convex spherical
casing member
exercise device
convex
Prior art date
Application number
PCT/JP2009/053262
Other languages
French (fr)
Japanese (ja)
Inventor
廣昭 望月
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to JP2010500689A priority Critical patent/JP5324559B2/en
Publication of WO2009107602A1 publication Critical patent/WO2009107602A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/001Bearings for parts moving only linearly adjustable for alignment or positioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/008Systems with a plurality of bearings, e.g. four carriages supporting a slide on two parallel rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/0642Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls
    • F16C29/0647Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls with load directions in X-arrangement

Definitions

  • the present invention relates to a motion apparatus that relatively moves a moving body along an extending track body such as a linear motion guide, a ball spline, a ball bush, or a ball screw.
  • motion devices such as linear guides, ball splines, ball bushes, or ball screws adapted to various applications are used to accurately feed and move workpieces and articles. .
  • a moment load acting in the rolling, pitching, or yawing direction may be generated depending on the content of the movement of the target member, weight balance, mounting surface error, and the like. That is, in the linear motion guide of Patent Document 1, moment loads around the XYZ coordinate axes centering on the slider are generated, but most of these loads roll on the loaded rolling element rolling path and in this path. The ball will be loaded. In such a configuration, a plurality of balls of the moving body are locally overloaded, and the circulation of these balls may be hindered, and the movement itself may not be performed smoothly. In addition, due to such uneven overload on the inner surface of the ball and the loaded rolling element rolling path, scaly flaking occurs in these members, and cracks and breaks occur in the end plate that forms an infinite circuit. Or the member may be damaged.
  • the present invention proposes the following means. That is, the present invention provides a motion comprising: an extending track body; a moving body that is relatively movable in the extending direction of the track body; and a plurality of rolling elements that are held by the moving body and used for the relative movement.
  • the moving body is an inner casing member provided with a convex spherical portion that bulges toward the opposite side to the track body side, and is disposed on the outer surface side of the inner casing member and the convex spherical portion.
  • a spherical bearing mechanism including the inner casing member and the outer casing member is formed.
  • the moving body is formed with the spherical bearing mechanism having the convex spherical portion of the inner casing member and the concave spherical portion of the outer casing member.
  • the exercise device According to the exercise device according to the present invention, all the moment loads in the rolling, pitching and yawing directions acting on the device are removed, the load on the rolling elements is made uniform, and the rigidity and durability are improved.
  • FIG. 1 is a partially transparent perspective view showing a schematic configuration of a linear guide as an exercise device according to a first embodiment of the present invention. It is sectional drawing which shows schematic structure of the linear motion guide as an exercise
  • FIG. 1 is a partially transparent perspective view showing a schematic configuration of a linear motion guide as an exercise device according to the first embodiment of the present invention.
  • FIG. 2 is an outline of the linear motion guide as an exercise device according to the first embodiment of the present invention. It is sectional drawing which shows a structure.
  • the linear motion guide 10 as the exercise device of the first embodiment has a rail-shaped track (track body) 1 extending in the horizontal direction.
  • a plurality of grooved rolling element rolling surfaces 1 a extending along the rail 1 are formed on the outer periphery.
  • a slider (moving body) 2 capable of relative movement in the extending direction of the rail 1 is provided above the rail 1 (upper side in FIG. 1).
  • the slider 2 has a substantially rectangular parallelepiped slider main body 3 and a substantially flat end plate 4 sandwiching the slider main body 3 from both sides in the extending direction of the track base 1 on which the slider main body 3 moves.
  • a substantially rectangular plate-like upper outer casing member 5 extending in the horizontal direction perpendicular to the extending direction of the rail 1 is disposed, and the side of the slider main body 3 (see FIG. 1 is provided with a substantially rectangular plate-shaped side outer casing member 6 extending in the vertical direction.
  • the upper outer casing member 5 and the lateral outer casing member 6 are integrally fixed by using a plurality of bolts 7 to form an outer casing member 8 having a substantially ⁇ shape in front view. Also, a plurality of through holes 9 penetrating in the vertical direction are formed in the vicinity of both ends of the upper outer casing member 5, and a target member that moves to the upper surface portion by a bolt or the like (not shown) using these through holes 9. It can be attached.
  • an opening is provided below the slider body 3 (lower side in FIG. 2) so as to cover the upper side of the rail platform 1 (upper side in FIG. 2).
  • a concave recess 3a formed along the direction is provided. Further, in the recess 3a, a grooved load rolling element rolling surface 11 is formed at a position facing the rolling element rolling surface 1a of the rail 1 respectively.
  • a space formed by the rolling element rolling surface 1a of the way 1 and the loaded rolling element rolling surface 11 disposed to face the rolling element rolling surface 1a is defined as a loaded rolling element rolling path 12.
  • the load rolling element rolling path 12 is filled with a plurality of balls (rolling elements) 13.
  • These load rolling element rolling paths 12 form a part of a plurality of infinite circulation paths (not shown) each having a substantially elliptical ring shape or circuit shape provided in the slider 2, and the balls 13 are formed in the paths of the infinite circulation paths. It is supposed to be free to circulate.
  • the way 1 and the slider 2 are fitted through these balls 13 so that they can move relative to each other. That is, the rail 1 and the slider 2 can be moved relative to each other by rolling and circulation of the ball 13.
  • the second convex spherical surface 18 is substantially the same as the center point P of the spherical surface of the first convex spherical surface 17, and from a part of the spherical surface having a radius D 2 larger than the radius D 1 of the first convex spherical surface 17. Is formed.
  • substantially the same center includes a state where the centers of oppositely arranged spherical surfaces, which will be described later, are slightly shifted from each other so that they can be relatively slid.
  • the first convex spherical surface 17 and the second convex spherical surface 18 are connected to each other by a surface 19 formed along the radial direction of these convex spherical surfaces.
  • Each of the side inner casing members 15 and 15 is formed with a third convex spherical surface (convex spherical surface) 20 formed of a part of a spherical surface that bulges or projects toward the side opposite to the way 1 side. .
  • the first concave spherical surface 22 is set to have substantially the same radius as the radius D1 of the first convex spherical surface 17, and the center of the spherical surface is substantially the same as the center point P.
  • a lubricating film (not shown) made of self-lubricating fluororesin, molybdenum disulfide, graphite or the like is formed on at least one surface where the spherical surface 17 and the first concave spherical surface 22 are in sliding contact with each other. Slide to move to.
  • the upper outer casing member 5 is disposed opposite to the second convex spherical surface 18 of the inner casing member 16 and surrounds the first concave spherical surface 22 in the horizontal direction so as to surround the ring-shaped second concave spherical surface (concave spherical surface).
  • the second concave spherical surface 23 has the center of the spherical surface substantially the same as the center point P, and is set to be substantially the same radius as the radius D2 of the second convex spherical surface 18.
  • the second concave spherical surface 23 is slidably disposed so as to be relatively slidable along the respective spherical surfaces. That is, the lubricating film is also formed on at least one of the surfaces where the second convex spherical surface 18 and the second concave spherical surface 23 are in sliding contact.
  • the first concave spherical surface 22 and the second concave spherical surface 23 are connected to each other by a surface 24 formed along the radial direction of these concave spherical surfaces. Further, the surface 19 of the inner casing member 16 and the surface 24 of the outer casing member 8 are arranged to be opposed to each other at a distance from each other, and the inner casing member 16 and the outer surface are separated by a gap provided between these surfaces 19 and 24.
  • the casing member 8 is relatively slidable and swingable.
  • the lateral outer casing members 6 and 6 are arranged so as to face the third convex spherical surfaces 20 of the lateral inner casing members 15 and 15, and are spherical surfaces that are recessed or fallen toward the side opposite to the way 1 side.
  • a third concave spherical surface (concave spherical surface) 25 is formed.
  • the center of the spherical surface of the third concave spherical surface 25 is also substantially the same as the center point P, and is set to substantially the same radius as the radius D3 of the third convex spherical surface 20.
  • the three concave spherical surfaces 25 are arranged in sliding contact with each other so as to be relatively slidable along the spherical surfaces. That is, the lubricating film is also formed on at least one of the surfaces where the third convex spherical surface 20 and the third concave spherical surface 25 are in sliding contact.
  • a central axis formed by extending a central position at an equal distance from the plurality of load rolling element rolling paths 12 along the way 1 is arranged so as to overlap the central point P of the spherical bearing mechanism. That is, the radius D4 of the distance from the center point P to the center of each loaded rolling element rolling path 12 is set to the same dimension.
  • a moment load about the XYZ coordinate axes is generated in the slider 2 portion of the linear motion guide 10. That is, a moment load is generated in the rolling direction P around the X axis around the slider 2 in FIG. 1, the pitching direction Q around the Y axis, or the yawing direction R around the Z axis.
  • the outer casing member 8 of the spherical bearing mechanism is applied to the moment load in any direction. However, it slides along the spherical surface of the inner casing member 16 so as to rotate about the center point P.
  • the slider 2 has a spherical bearing mechanism having the convex spherical portion 21 of the inner casing member 16 and the concave spherical portion 26 of the outer casing member 8. Therefore, when a moment load in the rolling, pitching or yawing direction is applied to the linear motion guide 10, the inner casing member 16 and the outer casing member 8 slide relative to each other to remove the moment load. The load on the apparatus due to the moment load is suppressed. Therefore, the linear motion guide 10 is prevented from being damaged, and the motion is stably and smoothly performed over a long period of time.
  • the centers of the plurality of convex spherical surfaces 17, 18, and 20 of the convex spherical portion 21 of the inner casing member 16 are set to substantially the same center point P, and the concave spherical portion 26 of the outer casing member 8 Since the plurality of concave spherical surfaces 22, 23, and 25 are opposed to each other at positions corresponding to the convex spherical surfaces 17, 18, and 20, and each center is set at the center point P, the inner casing member 16 is the outer casing member. 8 is swingable.
  • the thickness dimension of the portion where the convex spherical surface portion 21 and the concave spherical surface portion 26 are formed can be made thinner and flat and space-saving.
  • the thickness dimension indicates a dimension in a substantially vertical direction (vertical direction in FIG. 2) orthogonal to a substantially horizontal direction (horizontal direction in FIG. 2) in which the first convex spherical surface 17 and the second convex spherical surface 18 are arranged. ing. Therefore, the external dimensions of the slider 2, particularly the external shape in the height direction (the vertical direction in FIGS. 1 and 2) can be reduced, and the degree of freedom of installation is increased.
  • the load resistance setting for the radial load and the thrust load applied to the slider 2 can be variously adjusted.
  • the gap between the surface 19 of the inner casing member 16 and the surface 24 of the outer casing member 8 can be set variously, and the limit range of sliding movement between the inner casing member 16 and the outer casing member 8 can be set. it can.
  • the spherical center point P of the spherical bearing mechanism of the slider 2 is overlapped on a central axis set at the same distance from the plurality of load rolling element rolling paths 12, and the plurality of balls 13 are equally spaced from the central axis.
  • the load rolling element rolling path 12 is arranged so that when a moment load is applied to the linear motion guide 10, the load applied to the ball 13 and the load rolling element rolling path 12 is distributed substantially evenly. Dispersed to prevent local overload on each member. Accordingly, damage to members such as the ball 13, the rolling element rolling surface 1a, the loaded rolling element rolling surface 11, and the end plate 4 is prevented, and the strength of the linear guide 10 is increased and the durability is improved.
  • a third convex spherical surface (convex spherical surface) formed of a part of a spherical surface that bulges or protrudes toward the opposite side to the side of the track 31 at the substantially central portion in the vertical direction of each of the side inner casing members 35, 35. ) 37 is formed.
  • ring-shaped fourth convex spherical surfaces (convex spherical surfaces) 38 are respectively provided so as to surround the third convex spherical surface 37 in the vertical direction.
  • the fourth convex spherical surface 38 is substantially the same as the center point P of the spherical surface of the third convex spherical surface 37, and is part of a spherical surface having a radius D 34 larger than the radius D 33 of the third convex spherical surface 37. Is formed.
  • the third convex spherical surface 37 and the fourth convex spherical surface 38 are connected to each other by a surface 39 formed along the radial direction of these convex spherical surfaces.
  • a convex spherical surface portion 41 is formed by combining a plurality of convex spherical surfaces including the first convex spherical surface 17, the second convex spherical surface 18, the third convex spherical surface 37, and the fourth convex spherical surface 38.
  • the side casing members 56, 56 of the outer casing member 58 are respectively disposed opposite to the positions corresponding to the third convex spherical surface 37 of the inner casing member 36, and are recessed toward the side opposite to the way 31 side.
  • a third concave spherical surface (concave spherical surface) 47 formed of a part of the falling spherical surface is formed, and the third convex spherical surface 37 and the third concave spherical surface 47 can be relatively slid along the spherical surfaces. It is arranged in sliding contact.
  • the third concave spherical surface 47 is set to have substantially the same radius as the radius D33 of the third convex spherical surface 37, and the center is substantially the same as the center point P.
  • a lubricant film (not shown) having a self-lubricating property is formed on at least one surface with which the third concave spherical surface 47 is slidably contacted, and is slid smoothly with respect to each other.
  • the side outer casing members 56, 56 are arranged to face the fourth convex spherical surface 38 of the inner casing member 36, and surround the third concave spherical surface 47 in the vertical direction so that the ring-shaped fourth concave spherical surface ( (Concave spherical surface) 48 is provided.
  • the fourth concave spherical surface 48 has the center of the spherical surface substantially the same as the center point P, and is set to substantially the same radius as the radius D34 of the fourth convex spherical surface 38.
  • the fourth concave spherical surface 48 is disposed so as to be slidable so as to be relatively slidable along the respective spherical surfaces. That is, the lubricating film is also formed on at least one of the surfaces where the fourth convex spherical surface 38 and the fourth concave spherical surface 48 are in sliding contact.
  • the same effects as those of the linear motion guide 10 of the first embodiment are achieved, and the following effects are achieved. That is, the convex spherical surfaces 37, 38 of the side inner casing members 35, 35 and the concave spherical surfaces 47, 48 of the side outer casing members 56, 56 are arranged to face each other to form a composite spherical structure. Since the contact area is sufficiently secured, the moment load applied to the linear motion guide 30 can be more reliably removed, and the strength against the radial load and the thrust load can be further improved.
  • the thickness dimensions of the portions where the convex spherical surfaces 37 and 38 and the concave spherical surfaces 47 and 48 are formed can be made thinner and flat and space-saving.
  • the thickness dimension indicates a dimension in a substantially horizontal direction (left and right direction in FIG. 3) orthogonal to a substantially vertical direction (vertical direction in FIG. 3) in which the third convex spherical surface 37 and the fourth convex spherical surface 38 are arranged. ing. Therefore, the thickness of the side outer casing member 56 can be reduced and formed thinner, and the outer shape of the apparatus is reduced.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a ball screw as an exercise device according to a third embodiment of the present invention.
  • the same members as those of the linear motion guides 10 and 30 of the first and second embodiments described above are denoted by the same reference numerals and the description thereof is omitted.
  • the ball screw 60 as the exercise device of the third embodiment has a round bar-like or pipe-like raceway shaft (track body) 61 extending in the horizontal direction.
  • a grooved rolling element rolling surface 61 a formed in a spiral shape around the central axis of the track shaft 61.
  • a slider (moving body) 62 is provided that penetrates the track shaft 61 in the central axis direction and is relatively movable in the central axis direction.
  • the slider 62 includes a substantially rectangular parallelepiped slider main body 63, and the slider main body 63 is formed with a hole 63a through which the track shaft 61 is inserted and penetrates in the central axis direction. Moreover, in the position which opposes the rolling-element rolling surface 61a of the internal peripheral surface of the hole 63a, the grooved load rolling-element rolling surface formed in a spiral shape corresponding to this rolling-element rolling surface 61a is provided. 71 is provided.
  • a space formed by the rolling element rolling surface 61 a of the track shaft 61 and the loaded rolling element rolling surface 71 disposed to face the rolling element rolling surface 61 a is defined as a loaded rolling element rolling path 72.
  • the load rolling element rolling path 72 is filled with a plurality of balls (not shown).
  • the load rolling element rolling path 72 forms a part of an infinite circulation path (not shown) provided in the slider 62, and the ball can freely circulate in the path of the infinite circulation path.
  • the track shaft 61 and the slider 62 are fitted with each other via the balls so as to be able to move relative to each other. That is, the track shaft 61 and the slider 62 can be relatively moved along the axial direction and the circumferential direction around the axis by rolling and circulation of the ball.
  • the center axis of the track shaft 61 overlaps the center point P of the spherical bearing mechanism composed of the inner casing member 16 and the outer casing member 8. That is, the radius D74, which is the distance from the center point P to the center of the loaded rolling element rolling path 72 shown by the alternate long and short dash line in FIG. 4, is set to have the same dimension in all the radial directions around the center axis. ing.
  • the same effect as that of the linear guide 10 of the first embodiment is achieved, and the spherical center point P of the spherical bearing mechanism of the slider 62 is achieved.
  • the load rolling element rolling path 72 is set so as to overlap the central axis of the track shaft 61, and a plurality of balls are arranged in the load rolling element rolling path 72 at an equal distance from the central axis, so that a moment load is applied to the ball screw 60.
  • the load applied to the ball and the inner surface of the load rolling element rolling path 72 is distributed so as to be distributed substantially evenly, so that a local overload is not applied to the member. Therefore, damage to the member is prevented, the strength of the ball screw 60 is increased, and durability is improved.
  • FIG. 5 is sectional drawing which shows schematic structure of the linear motion guide as an exercise
  • the same members as those described in the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the linear motion guide 80 as the exercise device of the fourth embodiment has a slider (moving body) 82 disposed above the track base 1 (upper side in FIG. 5). .
  • the slider 82 is movable along the extending direction with respect to the rail 1.
  • the slider 82 includes an outer casing member 88 having a substantially C-shaped cross section orthogonal to the extending direction, and a slider main body 83 disposed inside the outer casing member 88 and having a substantially C-shaped cross section. Have. Further, an inner casing member 86 having a plurality of convex spherical surfaces is formed integrally with the slider main body 83 on the outer peripheral surface of the slider main body 83.
  • side inner casing members 15 are formed on portions of the outer peripheral surface of the slider main body 83 facing the outer side in the horizontal direction orthogonal to the extending direction, respectively.
  • the outer surface is a third convex spherical surface 20.
  • the distance between the tops of the third convex spherical surfaces 20 facing outward in the horizontal direction is greater than the distance between the inner wall surfaces facing inward of the horizontal direction at the lower end opening edge of the outer casing member 88. It is set slightly smaller.
  • an upper inner casing member 84 having a substantially disc shape is formed on a portion of the outer peripheral surface of the slider main body 83 facing upward in the vertical direction orthogonal to the extending direction.
  • the upper inner casing member 84 is formed so as to bulge or protrude from the upper surface of the slider body 83, and has a shape in which a part of a sphere is cut away.
  • the outer surface of the upper inner casing member 84 is a first convex spherical surface (convex spherical surface) 87.
  • the center of the first convex spherical surface 87 is set to the center point P substantially.
  • the radius D 81 of the first convex spherical surface 87 is set to a value smaller than the radius D 3 of the third convex spherical surface 20.
  • the inner casing member 86 includes the upper inner casing member 84 and the side inner casing member 15, and the inner casing member 86 has a convex spherical surface portion 91 including the first convex spherical surface 87 and the third convex spherical surface 20. Is formed.
  • the outer casing member 88 is formed with a plurality of screw holes penetrating the outer casing member 88 in a direction perpendicular to the extending direction. Specifically, the outer casing member 88 passes through the outer casing member 88 along a horizontal direction orthogonal to the extending direction, and a pair of screw holes 88A in which an inner peripheral surface is machined, A screw hole 88B that penetrates the outer casing member 88 along a vertical direction orthogonal to the extending direction and is internally threaded is formed.
  • the concave spherical portion 96 is fitted into the screw holes 88A and 88B of the outer casing member 88 by a screw action. That is, the screw holes 88A are formed in a columnar shape, and plugs 96A each having a male thread processed on its outer peripheral surface are fitted into each other by a screw action.
  • the plugs 96 ⁇ / b> B that have been threaded are fitted together by a screw action, and these plugs 96 ⁇ / b> A and 96 ⁇ / b> B serve as a concave spherical surface portion 96.
  • these plugs 96A and 96B can be attached to and detached from the screw holes 88A and 88B.
  • These plugs 96A have a third concave spherical surface (concave spherical surface) 98A facing the third convex spherical surface 20 side.
  • the third concave spherical surface 98A has the center point P substantially at the center thereof, and has a radius substantially the same as the radius D3 of the third convex spherical surface 20. Further, the third concave spherical surface 98A and the third convex spherical surface 20 are in contact with each other, and are relatively slidable along the spherical surface direction.
  • a recess 97A is formed on the surface facing the inner side in the horizontal direction of the plug 96A, and a sliding material 98 made of, for example, a fluororesin is accommodated in the recess 97A.
  • the surface of the sliding member 98 facing the third convex spherical surface 20 is the third concave spherical surface 98A.
  • the surface of the plug 96B facing the first convex spherical surface 87 is a first concave spherical surface (concave spherical surface) 99B.
  • the first concave spherical surface 99B has a center point P substantially set at the center thereof, and has a radius substantially the same as the radius D81 of the first convex spherical surface 87. Further, the first concave spherical surface 99B and the first convex spherical surface 87 are in contact with each other, and are relatively slidable along the spherical surface direction.
  • a concave portion 97B is formed on the surface of the plug 96B facing downward in the vertical direction, and a sliding material 99 made of, for example, a fluororesin is accommodated in the concave portion 97B.
  • the surface of the sliding member 99 that faces the first convex spherical surface 87 is the first concave spherical surface 99B.
  • a tool hole 97D for inserting a tip of a tool or the like and tightening or loosening the plug 96B with respect to the screw hole 88B is formed on the surface of the plug 96B facing upward in the vertical direction. That is, with the tool or the like inserted in the tool hole 97D, the first concave spherical surface 99B of the plug 96B is rotated with respect to the first convex spherical surface 87 of the upper inner casing member 84 by rotating the plug 96B around its axis. It is possible to advance and retreat.
  • the plugs 96 ⁇ / b> A and 96 ⁇ / b> B of the concave spherical surface portion 96 can advance and retreat toward the third convex spherical surface 20 and the first convex spherical surface 87 of the convex spherical surface portion 91, respectively.
  • a spherical bearing mechanism is formed which includes the convex spherical surface portion 91 of the inner casing member 86 and the concave spherical surface portion 96 of the outer casing member 88 and substantially has the center point P as the center.
  • the concave spherical portion 96 of the outer casing member 88 can be advanced and retracted toward the convex spherical portion 91 of the inner casing member 86.
  • the relative positions of the concave spherical portion 96 and the convex spherical portion 91 can be adjusted, and the spherical bearing mechanism can be operated with higher accuracy. Therefore, the moment load acting on the linear motion guide 80 can be reliably removed, and the motion of the linear motion guide 80 is stably performed.
  • the plugs 96A and 96B of the concave spherical surface portion 96 are fitted into the screw holes 88A and 88B of the outer casing member 88 by screwing, respectively, the above-mentioned concave spherical surface portion 96 is loosened or tightened. Can advance and retreat with respect to the convex spherical surface portion 91 easily and accurately.
  • the linear motion guide 80 ensures rigidity against a load.
  • the plugs 96A and 96B may be attached to the outer casing member 88 and fixed so that the plugs 96A and 96B do not advance and retract with respect to the outer casing member 88 in a state in which the above-described advance / retreat is adjusted. That is, for example, an adhesive or a pinning mechanism may be used to prevent the plugs 96A and 96B from rotating, and in this case, the plugs 96A and 96B may be restricted from moving forward and backward. In this case, the plugs 96A and 96B and the screw holes 88A may be restricted. , 88B, and the fitting state by the screw action is stable and no fluctuation occurs, so that the spherical bearing mechanism operates stably and accurately over a long period of time.
  • the outer casing member 88 has a substantially C-shaped cross section as described above, and is integrally formed so as to cover the outside of the slider body 83. Is sufficiently secured.
  • the outer casing member 88 is not formed by a plurality of members including the upper outer casing member 5 and the pair of side outer casing members 6 as in the above-described embodiment, but is formed by a single member. Therefore, the manufacturing is relatively easy and the mechanical strength is sufficiently secured.
  • the slider 102 includes an outer casing member 108 having a substantially C-shaped cross section orthogonal to the extending direction, and a slider main body 103 disposed inside the outer casing member 108 and having a substantially C-shaped cross section.
  • An inner casing member 106 having a plurality of convex spherical surfaces is formed integrally with the slider main body 103 on the outer peripheral surface of the slider main body 103.
  • a fifth convex spherical surface (convex spherical surface) 107 is formed on the outer surface of the lower inner casing member 104.
  • the center of the fifth convex spherical surface 107 is set to the center point P substantially.
  • the radius D101 of the fifth convex spherical surface 107 is set to a value smaller than the radius D3 of the third convex spherical surface 20.
  • first, third, and fifth convex spherical surfaces 87, 20, and 107 of the convex spherical surface portion 111 have a circumference around the center point P (in the example shown, around the center point P in the cross section orthogonal to the extending direction). Along each direction, they are spaced apart from each other. Specifically, the convex spherical surface portion 111 is disposed in the back direction along the vertical direction so as to sandwich the base 1 and the pair of third convex spherical surfaces 20 disposed in the back direction along the horizontal direction so as to sandwich the base 1. And a pair of the first convex spherical surface 87 and the fifth convex spherical surface 107.
  • the convex spherical surfaces are arranged in the back direction in the pair of the third convex spherical surfaces 20, and the convex spherical surfaces are arranged in the back direction in the pair consisting of the first convex spherical surface 87 and the fifth convex spherical surface 107.
  • the outer casing member 108 includes an upper outer casing member 115, a side outer casing member 116, and a lower outer casing member 117.
  • the upper outer casing member 115 has a substantially rectangular plate shape and is disposed above the slider body 103.
  • protrusions 115A extending along the extending direction are formed at both ends in the horizontal direction orthogonal to the extending direction.
  • the lateral outer casing member 116 has a substantially rectangular plate shape, and is suspended from both ends of the lower surface of the upper outer casing member 115, respectively. Specifically, the upper outer casing member 115 and the side of the upper outer casing member 116 are in a state where the upper end portion of the inner wall surface facing the inner side in the horizontal direction of the side outer casing member 116 is in contact with the outer wall surface facing the outer side in the horizontal direction.
  • the outer casing member 116 is connected by a bolt 116A.
  • the lower outer casing member 117 has a substantially rectangular plate shape, and is disposed at the lower end of the side outer casing member 116, respectively. Specifically, the lower outer casing member 117, the lateral outer casing member 116, and the lower outer casing member 117 are in contact with the lower end surface of the lateral outer casing member 116 at the horizontal outer end of the upper surface of the lower outer casing member 117. Are connected by a bolt 117A.
  • a third concave spherical surface (concave spherical surface) 113A is formed on each inner wall surface facing inward in the horizontal direction.
  • These third concave spherical surfaces 113A are arranged corresponding to the third convex spherical surfaces 20, respectively, have a center point P substantially set at the center thereof, and have substantially the same radius as the radius D3 of the third convex spherical surface 20. is doing.
  • the third concave spherical surface 113A and the third convex spherical surface 20 are in contact with each other and are relatively slidable along the spherical surface direction.
  • concave portions 116B are formed in portions corresponding to the lateral inner casing members 15, respectively.
  • a sliding material 113 made of, for example, is accommodated.
  • the surface of the sliding member 113 facing the third convex spherical surface 20 is the third concave spherical surface 113A.
  • a fifth concave spherical surface (concave spherical surface) 114A is formed at each inner end portion in the horizontal direction on the upper surface of the lower outer casing member 117.
  • These fifth concave spherical surfaces 114A are respectively arranged corresponding to the fifth convex spherical surfaces 107, have the center point P substantially set at the center thereof, and have a radius substantially the same as the radius D101 of the fifth convex spherical surface 107. is doing.
  • the fifth concave spherical surface 114A and the fifth convex spherical surface 107 are in contact with each other, and are relatively slidable along the spherical surface direction.
  • the linear motion guide 100 of the fifth embodiment two pairs of convex spherical surfaces are provided so as to sandwich the way 1 so as to sandwich the rail platform 1, and with respect to these convex spherical surfaces, A plurality of concave spherical surfaces having substantially the same center are arranged opposite to each other to constitute a spherical bearing mechanism. Therefore, the spherical bearing mechanism is configured to allow loads from a plurality of directions acting on the slider 102, and the rigidity of the linear guide 100 is enhanced. Specifically, the linear motion guide 100 has greatly enhanced rigidity against external forces from the left and right in the horizontal direction and from the top and bottom in the vertical direction.
  • the quantity or shape in which a load rolling-element rolling path is installed is not limited to this embodiment.
  • the load rolling element rolling path has been described as forming a part of an infinite circuit, but is not limited to this, for example, a part of a so-called finite type circuit that does not circulate a ball. It doesn't matter.
  • bowl as a rolling element, it is not limited to this, For example, rolling elements other than that, such as a substantially cylindrical roller and a roller, may be sufficient.
  • the track bases 1, 31 and the track shaft 61 are not limited to those that extend in a straight line, but may extend in a curved shape. .
  • a lubricating film or a sliding material is provided on at least one of the sliding surfaces of the spherical bearing mechanism, it may be configured to slide using a lubricant such as other grease. . Further, the lubricant film and the sliding material may not be provided.
  • the slider main body and the outer casing member when it is considered that the outer casing member rotates around the center point P with respect to the slider main body and the slider main body and the outer casing member come into contact with each other, the slider main body and the outer casing member A cushioning material such as rubber may be provided between them.
  • the convex spherical surface portion 111 includes a pair of third convex spherical surfaces 20 arranged backward along the horizontal direction, a first convex spherical surface 87 arranged backward along the vertical direction, and
  • the pair of the fifth convex spherical surfaces 107 is included, the present invention is not limited to this.
  • the pair of the third convex spherical surface 20 and the pair composed of the first convex spherical surface 87 and the fifth convex spherical surface 107 may not be arranged backwardly along the horizontal direction or the vertical direction.
  • the direction in which the convex spherical surfaces are arranged backward in the pair of third convex spherical surfaces 20 and the direction in which the convex spherical surfaces are arranged backward in the pair consisting of the first convex spherical surface 87 and the fifth convex spherical surface 107 are: Although set to be orthogonal, it is not limited to orthogonal.
  • Example 1 First, as Example 1, a pair of way tables 1 were prepared, and these way tables 1 were installed in parallel to each other on a horizontal base as shown in FIG. In addition, the pitch between the way 1 was set to 260 mm. Further, two sliders 2 (32, 82, 102) of the linear motion guides 10 (30, 80, 100) are disposed on each track base 1 with a gap in the extending direction. The pitch between the sliders arranged in the extending direction was set to 352 mm. Moreover, shim S1 was provided in the edge part in the bottom face of one way stand 1A among the pairs of way stand 1. FIG. The thickness of the shim S1 was set to 0.2 mm.
  • a rectangular plate-shaped table T is fixed to the upper surface of the outer casing member 8 (58, 88, 108) of the four sliders arranged in this way by using bolts or the like. It was comprised so that it might move along the said extension direction with respect to.
  • the stroke of the above-mentioned movement of the table T was set to 400 mm.
  • a table having a thickness of 90 mm and high rigidity was used as the table T.
  • Example 2 Further, as Example 2, a shim S2 was provided at the end of the side surface of one way 1A instead of the shim S1. Note that the thickness of the shim S2 was set to 0.1 mm. Other than that, it measured on the conditions similar to Example 1. FIG. The result is shown as a graph E2 in FIG.
  • Comparative Example 1 Further, as Comparative Example 1, a known linear guide having no spherical bearing mechanism was used. Other than that, it measured on the conditions similar to Example 1. FIG. A result is shown as graph C1 of Fig.8 (a).
  • Comparative Example 2 Further, as Comparative Example 2, measurement was performed under the same conditions as in Example 2 except that a known linear guide having no spherical bearing mechanism was used. A result is shown as graph C2 of FIG.8 (b).
  • the rolling resistance of the table T is stable as a whole, particularly when the table T reaches the vicinity of the shims S1 and S2. It was found that the rolling resistance of the was reliably suppressed. That is, it was confirmed that the moment load was reliably removed by the spherical bearing mechanism of the linear motion guide 10 (30, 80, 100). On the other hand, in Comparative Examples 1 and 2, it was found that the rolling resistance of the table T fluctuated greatly. In particular, the rolling resistance when the table T reached the vicinity of the shims S1 and S2 was significantly increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

A motion device (10) which is provided with an extending track body (1), a moving body (2) relatively movable in a direction in which the track body (1) extends, and a plurality of rolling bodies (13) held by the moving body (2) to be used for the relative movement. The motion device (10) is characterized in that the moving body (2) comprises an inner casing member (16) provided with a convex spherical part (21) swelling toward a side opposite to the side of the track body (1) and an outer casing member (8) disposed on the side of the outer surface of the inner casing member (16) and provided with a concave spherical part (26) concaved corresponding to the convex spherical part (21), and in that a spherical bearing mechanism provided with the inner casing member (16) and the outer casing member (8) is formed.

Description

運動装置Exercise equipment
 本発明は、直動ガイド、ボールスプライン、ボールブッシュ又はボールねじ等、延在する軌道体に沿って移動体を相対移動させる運動装置に関する。
 本願は、2008年2月28日に、日本に出願された特願2008-047628号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a motion apparatus that relatively moves a moving body along an extending track body such as a linear motion guide, a ball spline, a ball bush, or a ball screw.
This application claims priority based on Japanese Patent Application No. 2008-047628 filed in Japan on February 28, 2008, the contents of which are incorporated herein by reference.
 従来、工作機械や搬送装置等においては、ワークや品物を精度よく送り移動させるため、種々様々な用途に適応した直動ガイド、ボールスプライン、ボールブッシュ又はボールねじ等の運動装置が用いられている。 2. Description of the Related Art Conventionally, in machine tools, conveyors, and the like, motion devices such as linear guides, ball splines, ball bushes, or ball screws adapted to various applications are used to accurately feed and move workpieces and articles. .
 例えば特許文献1に開示される直動ガイドは、延在するレール状の軌道台(軌道体)と、該軌道台の延在方向に相対移動可能な略直方体状のスライダ(移動体)とを備えている。また、スライダの内部には複数のボール(転動体)が配設されており、これらボールを循環させるための無限循環路が形成されている。そして、これらボールがスライダと軌道台との間に介在して負荷転動体転動路を転走することによって、スライダと軌道台とが低摩擦・低騒音で滑らかに相対移動するようになっている。また、スライダの外面には、運動をさせる目的部材が取り付けられる。 For example, a linear motion guide disclosed in Patent Document 1 includes an extended rail-shaped track base (track body) and a substantially rectangular parallelepiped slider (movable body) that can be relatively moved in the extending direction of the track base. I have. Further, a plurality of balls (rolling elements) are disposed inside the slider, and an infinite circulation path for circulating these balls is formed. Then, these balls are interposed between the slider and the raceway and roll on the loaded rolling element rolling path, so that the slider and the raceway move relatively smoothly with low friction and low noise. Yes. A target member for movement is attached to the outer surface of the slider.
 また、運動させる目的部材が例えば比較的大きかったり平板状であったりする場合などには、運動を安定させ精度よく行うため、このような直動ガイドを2組用意し、軌道台を平行に配設するとともに、該目的部材を両スライダに一体に取り付けて配設することがある。
特開2007-285359号公報
In addition, when the target member to be moved is relatively large or flat, for example, two sets of such linear motion guides are prepared and the rails are arranged in parallel in order to stabilize and accurately perform the motion. In some cases, the target member is integrally attached to both sliders.
JP 2007-285359 A
 しかしながら、このような運動装置には、目的部材の運動の内容や重量バランスや取付面誤差等によって、ローリング、ピッチング又はヨーイング方向に作用するモーメント荷重が発生することがある。すなわち、特許文献1の直動ガイドにおいて、スライダを中心としたXYZ座標軸回りのモーメント荷重が発生することとなるのだが、これら荷重の大部分を負荷転動体転走路及びこの路内を転走するボールが負荷することとなる。このような構成では、移動体の複数のボールにおいて、局部的に過負荷がかかり、これらボールの循環が妨げられて、運動自体がスムースに行われなくなることがある。また、ボールや負荷転動体転走路の内面にかかるこのような不均等な過負荷に起因し、これら部材に鱗状のフレーキングが発生したり、無限循環路を形成するエンドプレートに亀裂や破断が生じたりして、部材が破損することがある。 However, in such an exercise device, a moment load acting in the rolling, pitching, or yawing direction may be generated depending on the content of the movement of the target member, weight balance, mounting surface error, and the like. That is, in the linear motion guide of Patent Document 1, moment loads around the XYZ coordinate axes centering on the slider are generated, but most of these loads roll on the loaded rolling element rolling path and in this path. The ball will be loaded. In such a configuration, a plurality of balls of the moving body are locally overloaded, and the circulation of these balls may be hindered, and the movement itself may not be performed smoothly. In addition, due to such uneven overload on the inner surface of the ball and the loaded rolling element rolling path, scaly flaking occurs in these members, and cracks and breaks occur in the end plate that forms an infinite circuit. Or the member may be damaged.
 また、前述のようにして直動ガイドを2組用い、軌道台を平行に配設した際には、両スライダの相対位置関係を精度よく決める必要がある。しかしながら、この精度が確保出来なかった場合には、運動装置に過大なモーメント荷重が発生することとなる。すなわち、両スライダと目的部材とを例えばねじ作用で嵌め合うことにより一体に取り付ける際に、両スライダの取付部分の高さや傾斜の僅かな誤差によって締め付け時に捩れが生じて、過大なモーメント荷重が発生し装置に負荷がかかることとなる。 Also, as described above, when two sets of linear motion guides are used and the rails are arranged in parallel, it is necessary to accurately determine the relative positional relationship between the sliders. However, if this accuracy cannot be ensured, an excessive moment load is generated in the exercise device. In other words, when both sliders and the target member are mounted together by, for example, screwing, the sliders are twisted due to slight errors in the height and inclination of the mounting parts, resulting in an excessive moment load. However, a load is applied to the apparatus.
 また近年、運動装置を組み込む各種装置の外形を省スペースに抑えるため、運動装置に対するさらなる小型化の要望がある。 In recent years, there has been a demand for further downsizing of the exercise device in order to reduce the outer shape of various devices incorporating the exercise device to save space.
 本発明は、このような課題を鑑みてなされたもので、装置に作用するローリング、ピッチング及びヨーイング方向のすべてのモーメント荷重を除去しボール(転動体)負荷の均一化により、剛性及び耐久性の高い運動装置を提供することを目的とする。 The present invention has been made in view of such problems, and removes all the moment loads in the rolling, pitching and yawing directions that act on the apparatus and makes the ball (rolling element) load uniform, thereby improving rigidity and durability. The object is to provide a high exercise device.
 前記目的を達成するために、本発明は以下の手段を提案している。
 すなわち本発明は、延在する軌道体と、前記軌道体の延在方向に相対移動可能な移動体と、前記移動体に保持され前記相対移動に用いられる複数の転動体と、を備えた運動装置であって、前記移動体は、前記軌道体側とは反対側に向け膨出する凸球面部を備えた内ケーシング部材と、前記内ケーシング部材の外面側に配設されるとともに前記凸球面部に対応して窪む凹球面部を備えた外ケーシング部材と、を有し、前記内ケーシング部材及び前記外ケーシング部材を備えた球面軸受機構が形成されていることを特徴とする。
In order to achieve the above object, the present invention proposes the following means.
That is, the present invention provides a motion comprising: an extending track body; a moving body that is relatively movable in the extending direction of the track body; and a plurality of rolling elements that are held by the moving body and used for the relative movement. The moving body is an inner casing member provided with a convex spherical portion that bulges toward the opposite side to the track body side, and is disposed on the outer surface side of the inner casing member and the convex spherical portion. And a spherical bearing mechanism including the inner casing member and the outer casing member is formed.
 本発明に係る運動装置によれば、移動体には、内ケーシング部材の凸球面部及び外ケーシング部材の凹球面部を有する球面軸受機構が形成されているので、運動装置にローリング、ピッチング又はヨーイング方向のモーメント荷重が加えられた際、これら内ケーシング部材と外ケーシング部材とが相対的にスライドして、モーメント荷重に起因する装置への負荷を除去するようになっている。従って、運動装置の破損が防止され運動が長期に亘り安定してスムースに行われる。 According to the exercise device according to the present invention, the moving body is formed with the spherical bearing mechanism having the convex spherical portion of the inner casing member and the concave spherical portion of the outer casing member. When a moment load in the direction is applied, the inner casing member and the outer casing member slide relative to each other to remove the load on the apparatus due to the moment load. Therefore, the exercise device is prevented from being damaged, and the exercise is performed stably and smoothly over a long period of time.
 また、運動装置を複数並べ、運動させる目的部材を複数の移動体に一体に固定して用いる場合には、これら移動体の固定部分の高さや傾斜の状態に多少の誤差があったとしても、固定時の締め付け応力等が加わった際、該応力等によって漸次内ケーシング部材と外ケーシング部材とが相対的にスライドし、互いの捩れを補正するようにして自動的に調心されるようになっている。よって従来のように、取付位置を調整し精度よく決めるために作業者に熟練を要したり、長時間を要する面倒な作業を行ったりする必要がなく、設置の作業性が飛躍的に向上する。また、このようにして比較的精度を要さずラフに設置できることによって、装置の取り付けの自由度が増し、種々様々な要望に対応することが可能となる。 In addition, when a plurality of exercise devices are arranged and a target member to be moved is integrally fixed to a plurality of moving bodies, even if there are some errors in the height and inclination state of the fixed portions of these moving bodies, When tightening stress or the like is applied during fixing, the inner casing member and outer casing member gradually slide relative to each other due to the stress, and are automatically aligned so as to correct each other's twist. ing. Therefore, unlike the conventional case, it is not necessary for the operator to be skilled in order to adjust the mounting position and determine the accuracy, and it is not necessary to perform troublesome work that requires a long time, and the workability of installation is dramatically improved. . In addition, since it can be installed roughly without requiring relatively high accuracy in this way, the degree of freedom of attachment of the device is increased, and it is possible to meet various demands.
 本発明に係る運動装置によれば、装置に作用するローリング、ピッチング及びヨーイング方向のすべてのモーメント荷重を除去して転動体への負荷を均一化し、剛性及び耐久性が向上する。 According to the exercise device according to the present invention, all the moment loads in the rolling, pitching and yawing directions acting on the device are removed, the load on the rolling elements is made uniform, and the rigidity and durability are improved.
本発明の第1の実施形態の運動装置としての直動ガイドの概略構成を示す部分透過斜視図である。1 is a partially transparent perspective view showing a schematic configuration of a linear guide as an exercise device according to a first embodiment of the present invention. 本発明の第1の実施形態の運動装置としての直動ガイドの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the linear motion guide as an exercise | movement apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の運動装置としての直動ガイドの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the linear guide as an exercise device of the 2nd Embodiment of this invention. 本発明の第3の実施形態の運動装置としてのボールねじの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the ball screw as an exercise | movement apparatus of the 3rd Embodiment of this invention. 本発明の第4の実施形態の運動装置としての直動ガイドの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the linear guide as an exercise | movement apparatus of the 4th Embodiment of this invention. 本発明の第5の実施形態の運動装置としての直動ガイドの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the linear guide as an exercise | movement apparatus of the 5th Embodiment of this invention. 直動ガイドの転がり抵抗試験を説明する図である。It is a figure explaining the rolling resistance test of a linear guide. 図7の転がり抵抗試験の結果を示すグラフである。It is a graph which shows the result of the rolling resistance test of FIG.
符号の説明Explanation of symbols
1,31…軌道台(軌道体)、 2,32,62,82,102…スライダ(移動体)、 8,58,88,108…外ケーシング部材、 10,30,80,100…直動ガイド(運動装置)、 12,72…負荷転動体転走路、 13…ボール(転動体)、 16,36,86,106…内ケーシング部材、 17,87…第1凸球面(凸球面)、 18…第2凸球面(凸球面)、 20,37…第3凸球面(凸球面)、 21,41,91,111…凸球面部、 22,99B,112A…第1凹球面(凹球面)、 23…第2凹球面(凹球面)、 25,47,98A,113A…第3凹球面(凹球面)、 26,46,96,118…凹球面部、 38…第4凸球面(凸球面)、 48…第4凹球面(凹球面)、 60…ボールねじ(運動装置)、 61…軌道軸(軌道体)、 96A,96B…プラグ(凹球面部)、 107…第5凸球面(凸球面)、 114A…第5凹球面(凹球面)、 P…中心点 DESCRIPTION OF SYMBOLS 1,31 ... Raceway (track body), 2, 32, 62, 82, 102 ... Slider (moving body), 8, 58, 88, 108 ... Outer casing member, 10, 30, 80, 100 ... Linear motion guide (Exercise device), 12, 72 ... loaded rolling element rolling path, 13 ... ball (rolling element), 16, 36, 86, 106 ... inner casing member, 17, 87 ... first convex spherical surface (convex spherical surface), 18 ... 2nd convex spherical surface (convex spherical surface), 20, 37 ... 3rd convex spherical surface (convex spherical surface), 21, 41, 91, 111 ... convex spherical surface portion, 22, 99B, 112A ... 1st concave spherical surface (concave spherical surface), 23 2nd concave spherical surface (concave spherical surface), 25, 47, 98A, 113A ... 3rd concave spherical surface (concave spherical surface), 26, 46, 96, 118 ... concave spherical surface portion, 38 ... 4th convex spherical surface (convex spherical surface), 48 ... 4th concave spherical surface (concave spherical surface), 60 ... ball (Exercise device), 61 ... Orbital axis (orbital body), 96A, 96B ... Plug (concave spherical surface), 107 ... Fifth convex spherical surface (convex spherical surface), 114A ... Fifth concave spherical surface (concave spherical surface), P ... Center point
 以下、図面を参照し、本発明の第1の実施形態の運動装置について説明する。
 図1は本発明の第1の実施形態の運動装置としての直動ガイドの概略構成を示す部分透過斜視図、図2は本発明の第1の実施形態の運動装置としての直動ガイドの概略構成を示す断面図である。
Hereinafter, an exercise device according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a partially transparent perspective view showing a schematic configuration of a linear motion guide as an exercise device according to the first embodiment of the present invention. FIG. 2 is an outline of the linear motion guide as an exercise device according to the first embodiment of the present invention. It is sectional drawing which shows a structure.
 図1に示すように、第1の実施形態の運動装置としての直動ガイド10は、水平方向に延在するレール状の軌道台(軌道体)1を有しており、この軌道台1の外周には、該軌道台1に沿って延びる凹溝状の複数の転動体転走面1aが形成されている。また、軌道台1の上方(図1における上方側)には、該軌道台1の延在方向に相対移動可能なスライダ(移動体)2が設けられている。 As shown in FIG. 1, the linear motion guide 10 as the exercise device of the first embodiment has a rail-shaped track (track body) 1 extending in the horizontal direction. A plurality of grooved rolling element rolling surfaces 1 a extending along the rail 1 are formed on the outer periphery. Further, a slider (moving body) 2 capable of relative movement in the extending direction of the rail 1 is provided above the rail 1 (upper side in FIG. 1).
 スライダ2は、略直方体状のスライダ本体3と、スライダ本体3の移動する軌道台1の延在方向の両側から該スライダ本体3を挟む略平板状のエンドプレート4と、を有している。また、スライダ本体3の上方には、軌道台1の延在方向に直交する水平方向に延びる略矩形板状の上方外ケーシング部材5が配設されており、またスライダ本体3の側方(図1における左右側)には、鉛直方向に延在する略矩形板状の側方外ケーシング部材6が配設されている。 The slider 2 has a substantially rectangular parallelepiped slider main body 3 and a substantially flat end plate 4 sandwiching the slider main body 3 from both sides in the extending direction of the track base 1 on which the slider main body 3 moves. Above the slider main body 3, a substantially rectangular plate-like upper outer casing member 5 extending in the horizontal direction perpendicular to the extending direction of the rail 1 is disposed, and the side of the slider main body 3 (see FIG. 1 is provided with a substantially rectangular plate-shaped side outer casing member 6 extending in the vertical direction.
 また、これら上方外ケーシング部材5及び側方外ケーシング部材6が複数のボルト7を用いて一体に固定されており、正面視略π字状の外ケーシング部材8とされている。また、上方外ケーシング部材5の両端近傍には、鉛直方向に貫通する複数の貫通孔9が形成されていて、これら貫通孔9を用い、図示しないボルト等によってその上面部分に運動させる目的部材が取り付けられるようになっている。 Further, the upper outer casing member 5 and the lateral outer casing member 6 are integrally fixed by using a plurality of bolts 7 to form an outer casing member 8 having a substantially π shape in front view. Also, a plurality of through holes 9 penetrating in the vertical direction are formed in the vicinity of both ends of the upper outer casing member 5, and a target member that moves to the upper surface portion by a bolt or the like (not shown) using these through holes 9. It can be attached.
 また、図2に示すように、スライダ本体3の下方(図2における下方側)には、軌道台1の上方(図2における上方側)を覆うようにして開口し該軌道台1の延在方向に沿って形成された凹状の凹部3aが設けられている。また、凹部3aには、軌道台1の転動体転走面1aに夫々対向する位置に凹溝状の負荷転動体転走面11が形成されている。 Further, as shown in FIG. 2, an opening is provided below the slider body 3 (lower side in FIG. 2) so as to cover the upper side of the rail platform 1 (upper side in FIG. 2). A concave recess 3a formed along the direction is provided. Further, in the recess 3a, a grooved load rolling element rolling surface 11 is formed at a position facing the rolling element rolling surface 1a of the rail 1 respectively.
 また、軌道台1の転動体転走面1aと、該転動体転走面1aに対向配置される負荷転動体転走面11とにより形成される空間が、負荷転動体転走路12とされており、この負荷転動体転走路12には、複数のボール(転動体)13が配設されて充満している。これら負荷転動体転走路12は、スライダ2内に設けられる図示しない略楕円環状若しくはサーキット状からなる複数の無限循環路の夫々の一部を形成しており、ボール13は無限循環路の路内を循環自在とされている。そして、これらボール13を介して軌道台1とスライダ2とが互いに相対移動可能に嵌め合わされている。すなわち、ボール13の転走及び循環によって、軌道台1とスライダ2とが相対移動可能とされている。 Further, a space formed by the rolling element rolling surface 1a of the way 1 and the loaded rolling element rolling surface 11 disposed to face the rolling element rolling surface 1a is defined as a loaded rolling element rolling path 12. The load rolling element rolling path 12 is filled with a plurality of balls (rolling elements) 13. These load rolling element rolling paths 12 form a part of a plurality of infinite circulation paths (not shown) each having a substantially elliptical ring shape or circuit shape provided in the slider 2, and the balls 13 are formed in the paths of the infinite circulation paths. It is supposed to be free to circulate. And the way 1 and the slider 2 are fitted through these balls 13 so that they can move relative to each other. That is, the rail 1 and the slider 2 can be moved relative to each other by rolling and circulation of the ball 13.
 また、スライダ本体3の上面部分には、略円盤状の上方内ケーシング部材14が配設されている。また、スライダ本体3の両側面部分(図2における左右側面部分)には、略円盤状の側方内ケーシング部材15が夫々配設されていて、これら上方内ケーシング部材14及び側方内ケーシング部材15からなる内ケーシング部材16が形成されている。また、内ケーシング部材16は、スライダ本体3に一体に形成されている。 Further, a substantially disc-shaped upper inner casing member 14 is disposed on the upper surface portion of the slider body 3. Further, a substantially disc-shaped side inner casing member 15 is disposed on both side surface portions (left and right side surface portions in FIG. 2) of the slider main body 3, and these upper inner casing member 14 and side inner casing member are arranged. An inner casing member 16 made of 15 is formed. Further, the inner casing member 16 is formed integrally with the slider body 3.
 また、上方内ケーシング部材14の略中央部分には、軌道台1側とは反対側に向け膨出又は突出する球面の一部からなる第1凸球面(凸球面)17が形成されている。また、第1凸球面17の回りを水平方向に囲むようにして、リング状の第2凸球面(凸球面)18が設けられている。第2凸球面18は、第1凸球面17の球面の中心点Pと実質的にその中心を同じくしており、第1凸球面17の半径D1よりも大きい半径D2を有する球面の一部から形成されている。ここで「実質的に中心を同じく」するとは、後述する対向配置された球面同士が、相対的にスライド可能な程度に互いの中心を極僅かにずらした状態を含んでいる。 Further, a first convex spherical surface (convex spherical surface) 17 formed of a part of a spherical surface that bulges or protrudes toward the side opposite to the way 1 side is formed at a substantially central portion of the upper inner casing member 14. A ring-shaped second convex spherical surface (convex spherical surface) 18 is provided so as to surround the first convex spherical surface 17 in the horizontal direction. The second convex spherical surface 18 is substantially the same as the center point P of the spherical surface of the first convex spherical surface 17, and from a part of the spherical surface having a radius D 2 larger than the radius D 1 of the first convex spherical surface 17. Is formed. Here, “substantially the same center” includes a state where the centers of oppositely arranged spherical surfaces, which will be described later, are slightly shifted from each other so that they can be relatively slid.
 また、第1凸球面17と第2凸球面18とは、これら凸球面の半径方向に沿って形成される面19によって互いに接続されている。
 また、側方内ケーシング部材15,15には、軌道台1側とは反対側に向け膨出又は突出する球面の一部からなる夫々の第3凸球面(凸球面)20が形成されている。第3凸球面20の球面の中心も、実質的に中心点Pと同じく設定されており、また該第3凸球面20の半径D3は、半径D1、D2とは異なる値に設定されている。そして、これら第1凸球面17、第2凸球面18及び第3凸球面20を備えた複数の凸球面を複合してなる凸球面部21が形成されている。
The first convex spherical surface 17 and the second convex spherical surface 18 are connected to each other by a surface 19 formed along the radial direction of these convex spherical surfaces.
Each of the side inner casing members 15 and 15 is formed with a third convex spherical surface (convex spherical surface) 20 formed of a part of a spherical surface that bulges or projects toward the side opposite to the way 1 side. . The center of the spherical surface of the third convex spherical surface 20 is set substantially the same as the center point P, and the radius D3 of the third convex spherical surface 20 is set to a value different from the radii D1 and D2. A convex spherical surface portion 21 formed by combining a plurality of convex spherical surfaces including the first convex spherical surface 17, the second convex spherical surface 18, and the third convex spherical surface 20 is formed.
 また、外ケーシング部材8の上方外ケーシング部材5には、内ケーシング部材16の第1凸球面17に対応する位置に対向配置され、軌道台1側とは反対側に向け窪む又は落ち込む球面の一部からなる第1凹球面(凹球面)22が形成されており、第1凸球面17と第1凹球面22とが、互いの球面に沿って相対的にスライド移動可能に摺接して配置されている。 In addition, the upper outer casing member 5 of the outer casing member 8 is opposed to a position corresponding to the first convex spherical surface 17 of the inner casing member 16 and has a spherical surface that is recessed or falls toward the side opposite to the way 1 side. A first concave spherical surface (concave spherical surface) 22 is formed, and the first convex spherical surface 17 and the first concave spherical surface 22 are slidably disposed so as to be relatively slidable along each spherical surface. Has been.
 すなわち、第1凹球面22は、第1凸球面17の半径D1と略同一半径に設定されているとともに、その球面の中心を中心点Pと実質的に同じくしており、またこれら第1凸球面17及び第1凹球面22が摺接する少なくともいずれか一方の面には、自己潤滑性を有するフッ素樹脂、二硫化モリブデン又はグラファイト等からなる潤滑膜(不図示)が形成されていて、互いにスムースにスライド移動するようになっている。 That is, the first concave spherical surface 22 is set to have substantially the same radius as the radius D1 of the first convex spherical surface 17, and the center of the spherical surface is substantially the same as the center point P. A lubricating film (not shown) made of self-lubricating fluororesin, molybdenum disulfide, graphite or the like is formed on at least one surface where the spherical surface 17 and the first concave spherical surface 22 are in sliding contact with each other. Slide to move to.
 また、上方外ケーシング部材5には、内ケーシング部材16の第2凸球面18に対向配置され、第1凹球面22の回りを水平方向に囲むようにして、リング状の第2凹球面(凹球面)23が設けられている。第2凹球面23は、その球面の中心を実質的に中心点Pと同じくしており、また第2凸球面18の半径D2と略同一半径に設定されていて、これら第2凸球面18と第2凹球面23とが互いの球面に沿って相対的にスライド移動可能に摺接して配置されている。すなわち、これら第2凸球面18及び第2凹球面23が摺接する少なくともいずれか一方の面にも、前記潤滑膜が形成されている。 Further, the upper outer casing member 5 is disposed opposite to the second convex spherical surface 18 of the inner casing member 16 and surrounds the first concave spherical surface 22 in the horizontal direction so as to surround the ring-shaped second concave spherical surface (concave spherical surface). 23 is provided. The second concave spherical surface 23 has the center of the spherical surface substantially the same as the center point P, and is set to be substantially the same radius as the radius D2 of the second convex spherical surface 18. The second concave spherical surface 23 is slidably disposed so as to be relatively slidable along the respective spherical surfaces. That is, the lubricating film is also formed on at least one of the surfaces where the second convex spherical surface 18 and the second concave spherical surface 23 are in sliding contact.
 また、第1凹球面22と第2凹球面23とは、これら凹球面の半径方向に沿って形成される面24によって互いに接続されている。
 また、内ケーシング部材16の面19と、外ケーシング部材8の面24とは、互いに離間して対向配置されており、これら面19,24の間に設けられる間隙により、内ケーシング部材16と外ケーシング部材8とが相対的にスライドし揺動可能とされている。
The first concave spherical surface 22 and the second concave spherical surface 23 are connected to each other by a surface 24 formed along the radial direction of these concave spherical surfaces.
Further, the surface 19 of the inner casing member 16 and the surface 24 of the outer casing member 8 are arranged to be opposed to each other at a distance from each other, and the inner casing member 16 and the outer surface are separated by a gap provided between these surfaces 19 and 24. The casing member 8 is relatively slidable and swingable.
 また、側方外ケーシング部材6,6には、側方内ケーシング部材15,15の夫々の第3凸球面20に対向配置され、軌道台1側とは反対側に向け窪む又は落ち込む球面の一部からなる第3凹球面(凹球面)25が夫々形成されている。第3凹球面25の球面の中心も、実質的に中心点Pと同じくされており、また第3凸球面20の半径D3と略同一半径に設定されていて、これら第3凸球面20と第3凹球面25とが、互いの球面に沿って相対的にスライド移動可能に摺接して配置されている。すなわち、これら第3凸球面20及び第3凹球面25が摺接する少なくともいずれか一方の面にも、前記潤滑膜が形成されている。 Further, the lateral outer casing members 6 and 6 are arranged so as to face the third convex spherical surfaces 20 of the lateral inner casing members 15 and 15, and are spherical surfaces that are recessed or fallen toward the side opposite to the way 1 side. A third concave spherical surface (concave spherical surface) 25 is formed. The center of the spherical surface of the third concave spherical surface 25 is also substantially the same as the center point P, and is set to substantially the same radius as the radius D3 of the third convex spherical surface 20. The three concave spherical surfaces 25 are arranged in sliding contact with each other so as to be relatively slidable along the spherical surfaces. That is, the lubricating film is also formed on at least one of the surfaces where the third convex spherical surface 20 and the third concave spherical surface 25 are in sliding contact.
 そして、これら第1凹球面22、第2凹球面23及び第3凹球面25を備えた複数の凹球面を複合してなる凹球面部26が形成されている。
 またこのようにして、内ケーシング部材16の凸球面部21と外ケーシング部材8の凹球面部26とを備え中心点Pを実質的に中心とした球面軸受機構が形成されている。
A concave spherical surface portion 26 is formed by combining a plurality of concave spherical surfaces including the first concave spherical surface 22, the second concave spherical surface 23, and the third concave spherical surface 25.
Further, in this way, a spherical bearing mechanism that includes the convex spherical surface portion 21 of the inner casing member 16 and the concave spherical surface portion 26 of the outer casing member 8 and that substantially has the center point P as the center is formed.
 また、複数の負荷転動体転走路12から均等距離にある中央位置を軌道台1に沿って延ばし形成される中心軸が、球面軸受機構の中心点Pに重なって配置されている。すなわち、中心点Pから各々の負荷転動体転走路12の中心までの距離の半径D4は、すべて同一寸法に設定されている。 Further, a central axis formed by extending a central position at an equal distance from the plurality of load rolling element rolling paths 12 along the way 1 is arranged so as to overlap the central point P of the spherical bearing mechanism. That is, the radius D4 of the distance from the center point P to the center of each loaded rolling element rolling path 12 is set to the same dimension.
 次いで、第1の実施形態の直動ガイド10の動作について説明する。
 スライダ2の上方外ケーシング部材5の上面部分に、運動させる目的部材を取り付けたり、該直動ガイド10を運動させて目的部材を移動させたりすると、目的部材の重量バランスの偏りや運動の内容・種類によって、直動ガイド10には、そのスライダ2の部分にXYZ座標軸回りのモーメント荷重が発生する。すなわち、図1におけるスライダ2を中心としたX軸回りのローリング方向P、Y軸回りのピッチング方向Q又はZ軸回りのヨーイング方向Rのモーメント荷重が発生する。
Next, the operation of the linear motion guide 10 of the first embodiment will be described.
When a target member to be moved is attached to the upper surface portion of the upper outer casing member 5 of the slider 2 or the target member is moved by moving the linear guide 10, the weight balance of the target member and the content of the motion Depending on the type, a moment load about the XYZ coordinate axes is generated in the slider 2 portion of the linear motion guide 10. That is, a moment load is generated in the rolling direction P around the X axis around the slider 2 in FIG. 1, the pitching direction Q around the Y axis, or the yawing direction R around the Z axis.
 このようにして直動ガイド10のスライダ2にローリング方向P、ピッチング方向Q又はヨーイング方向Rのモーメント荷重が発生した場合、いずれの方向のモーメント荷重に対しても、球面軸受機構の外ケーシング部材8が、中心点Pを中心として回転するようにして内ケーシング部材16の球面に沿ってスライド移動するようになっている。 When a moment load in the rolling direction P, the pitching direction Q or the yawing direction R is generated on the slider 2 of the linear guide 10 in this way, the outer casing member 8 of the spherical bearing mechanism is applied to the moment load in any direction. However, it slides along the spherical surface of the inner casing member 16 so as to rotate about the center point P.
 以上説明したように、第1の実施形態の直動ガイド10によれば、スライダ2には、内ケーシング部材16の凸球面部21及び外ケーシング部材8の凹球面部26を有する球面軸受機構が形成されているので、直動ガイド10にローリング、ピッチング又はヨーイング方向のモーメント荷重が加えられた際、これら内ケーシング部材16と外ケーシング部材8とが相対的にスライドしてモーメント荷重を除去するとともに該モーメント荷重に起因する装置への負荷を抑制するようになっている。従って、直動ガイド10の破損が防止され運動が長期に亘り安定してスムースに行われる。 As described above, according to the linear motion guide 10 of the first embodiment, the slider 2 has a spherical bearing mechanism having the convex spherical portion 21 of the inner casing member 16 and the concave spherical portion 26 of the outer casing member 8. Therefore, when a moment load in the rolling, pitching or yawing direction is applied to the linear motion guide 10, the inner casing member 16 and the outer casing member 8 slide relative to each other to remove the moment load. The load on the apparatus due to the moment load is suppressed. Therefore, the linear motion guide 10 is prevented from being damaged, and the motion is stably and smoothly performed over a long period of time.
 また、直動ガイド10を複数並べ、運動させる目的部材を複数のスライダ2に一体に固定して用いる場合には、これらスライダ2の、目的部材を固定する部分の高さや傾斜の状態に多少の誤差(取付面誤差)があったとしても、固定のための締め付け応力等が加わった際に該応力によって内ケーシング部材16と外ケーシング部材8とが次第に相対的にスライドし、互いの捩れを補正するようにして自動的に調心されるようになっている。 Further, when a plurality of linear motion guides 10 are arranged and used with the target member to be moved integrally fixed to the plurality of sliders 2, the height of the portion of the slider 2 to which the target member is fixed and the state of inclination are somewhat different. Even if there is an error (mounting surface error), when a tightening stress or the like is applied for fixing, the inner casing member 16 and the outer casing member 8 gradually slide relative to each other to correct each other's twist. It will be automatically aligned as you do.
 よって従来のように、これら直動ガイド10の相対的な取付位置を精度よく決めるために作業者に熟練を要したり、長時間を要する面倒な作業を行ったりする必要がなく、設置の作業性が飛躍的に向上する。また、このようにして比較的精度を要さずラフに設置できることによって装置の取り付けの自由度が増し、種々様々な要望に対応することができる。 Therefore, unlike the prior art, there is no need for the operator to be skilled in order to determine the relative mounting position of the linear motion guide 10 with high accuracy, and it is not necessary to perform a troublesome work that requires a long time. Sexually improves. In addition, since the apparatus can be installed roughly without requiring relatively high accuracy in this way, the degree of freedom in mounting the apparatus is increased, and various demands can be met.
 また、内ケーシング部材16の凸球面部21の複数の凸球面17,18,20の各中心が実質的に同じ中心点Pに設定されており、かつ、外ケーシング部材8の凹球面部26の複数の凹球面22,23,25がこれら凸球面17,18,20に夫々対応する位置に対向配置されるとともに各中心が中心点Pに設定されているので、内ケーシング部材16が外ケーシング部材8に対して揺動可能である。 The centers of the plurality of convex spherical surfaces 17, 18, and 20 of the convex spherical portion 21 of the inner casing member 16 are set to substantially the same center point P, and the concave spherical portion 26 of the outer casing member 8 Since the plurality of concave spherical surfaces 22, 23, and 25 are opposed to each other at positions corresponding to the convex spherical surfaces 17, 18, and 20, and each center is set at the center point P, the inner casing member 16 is the outer casing member. 8 is swingable.
 また、このように球面を複合して用いる構成によれば、これら凸球面部21及び凹球面部26の形成される部位の厚み寸法をより薄く平たく省スペースに抑えることができる。なお、前記厚み寸法とは、第1凸球面17と第2凸球面18とが並べられる略水平方向(図2における左右方向)に直交する略鉛直方向(図2における上下方向)の寸法を示している。よって、スライダ2の外形寸法、特に高さ方向(図1、図2における上下方向)の外形を縮小でき、設置の自由度が増す。 In addition, according to the configuration in which the spherical surfaces are used in combination as described above, the thickness dimension of the portion where the convex spherical surface portion 21 and the concave spherical surface portion 26 are formed can be made thinner and flat and space-saving. The thickness dimension indicates a dimension in a substantially vertical direction (vertical direction in FIG. 2) orthogonal to a substantially horizontal direction (horizontal direction in FIG. 2) in which the first convex spherical surface 17 and the second convex spherical surface 18 are arranged. ing. Therefore, the external dimensions of the slider 2, particularly the external shape in the height direction (the vertical direction in FIGS. 1 and 2) can be reduced, and the degree of freedom of installation is increased.
 また、凸球面部21と凹球面部26とを構成する複数の球面の設定を種々様々に行うことによって、スライダ2にかかるラジアル荷重及びスラスト荷重に対する耐荷重設定も種々に調整可能である。さらに、内ケーシング部材16の面19と外ケーシング部材8の面24との離間する間隙を種々に設定し、これら内ケーシング部材16と外ケーシング部材8とのスライド移動の限度範囲を設定することができる。 Further, by variously setting a plurality of spherical surfaces constituting the convex spherical surface portion 21 and the concave spherical surface portion 26, the load resistance setting for the radial load and the thrust load applied to the slider 2 can be variously adjusted. Further, the gap between the surface 19 of the inner casing member 16 and the surface 24 of the outer casing member 8 can be set variously, and the limit range of sliding movement between the inner casing member 16 and the outer casing member 8 can be set. it can.
 また、スライダ2の球面軸受機構の球面の中心点Pが、複数の負荷転動体転走路12から同一距離に設定される中心軸上に重なっていて、複数のボール13が該中心軸から均等距離の負荷転動体転走路12に夫々配置されているので、この直動ガイド10にモーメント荷重が加わった際に、ボール13や負荷転動体転走路12にかかる負荷が略均等に振り分けられるようにして分散され、各部材に局部的な過負荷がかかるのを防止している。従って、ボール13、転動体転走面1a、負荷転動体転走面11及びエンドプレート4等の部材の破損が防止されて、直動ガイド10の強度が高められ耐久性が向上している。 Further, the spherical center point P of the spherical bearing mechanism of the slider 2 is overlapped on a central axis set at the same distance from the plurality of load rolling element rolling paths 12, and the plurality of balls 13 are equally spaced from the central axis. The load rolling element rolling path 12 is arranged so that when a moment load is applied to the linear motion guide 10, the load applied to the ball 13 and the load rolling element rolling path 12 is distributed substantially evenly. Dispersed to prevent local overload on each member. Accordingly, damage to members such as the ball 13, the rolling element rolling surface 1a, the loaded rolling element rolling surface 11, and the end plate 4 is prevented, and the strength of the linear guide 10 is increased and the durability is improved.
 また、直動ガイド10に、図2における半径D1,D2,D3方向の荷重や軌道台1の延在方向のスラスト荷重がかかった際にも、凸球面部21と凹球面部26との摺接する面積が充分に確保されているので、強度が確保されている。 Further, even when a load in the directions of the radii D1, D2, and D3 in FIG. 2 and a thrust load in the extending direction of the rail 1 are applied to the linear motion guide 10, the sliding between the convex spherical surface portion 21 and the concave spherical surface portion 26 occurs. Since the contact area is sufficiently secured, the strength is secured.
 次に、本発明の第2の実施形態の運動装置について説明する。
 図3は本発明の第2の実施形態の運動装置としての直動ガイドの概略構成を示す断面図である。
 尚、前述の第1の実施形態の直動ガイド10と同一部材については同一符号を付すなどしてその説明を省略する。
Next, an exercise device according to a second embodiment of the present invention will be described.
FIG. 3 is a cross-sectional view showing a schematic configuration of a linear guide as an exercise device according to a second embodiment of the present invention.
Note that the same members as those of the linear motion guide 10 of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図3に示すように、第2の実施形態の運動装置としての直動ガイド30は、軌道台(軌道体)31の延在方向に直交する水平方向の幅が、前述の直動ガイド10よりも狭く設定されている。また、軌道台31の幅に対応するようにして、スライダ32のスライダ本体33の凹部33aも幅狭に形成されている。そして、軌道台31の外周とスライダ本体33の凹部33aとの間には複数の負荷転動体転走路12が設けられ、各々の負荷転動体転走路12を有する無限循環路(不図示)がスライダ本体33内に夫々形成されていて、これら無限循環路の路内には複数のボール13が配されて充満している。 As shown in FIG. 3, the linear motion guide 30 as the exercise device of the second embodiment has a horizontal width that is perpendicular to the extending direction of the raceway (track body) 31 than the linear motion guide 10 described above. Is set too narrow. Further, the concave portion 33 a of the slider main body 33 of the slider 32 is also formed narrow so as to correspond to the width of the track 31. A plurality of load rolling element rolling paths 12 are provided between the outer periphery of the rail 31 and the recess 33a of the slider body 33, and an infinite circulation path (not shown) having each of the load rolling element rolling paths 12 is a slider. Each of these balls is formed in the main body 33, and a plurality of balls 13 are arranged and filled in these infinite circulation paths.
 また、スライダ本体33の上面部分には、略円盤状の上方内ケーシング部材14が配設されている。また、スライダ本体33の両側面部分には、略円盤状の側方内ケーシング部材35が夫々配設されていて、これら上方内ケーシング部材14及び側方内ケーシング部材35からなる内ケーシング部材36が形成されている。また、内ケーシング部材36は、スライダ本体33に一体に形成されている。 Further, a substantially disk-shaped upper inner casing member 14 is disposed on the upper surface portion of the slider main body 33. Further, a substantially disc-shaped side inner casing member 35 is disposed on each side surface portion of the slider body 33, and an inner casing member 36 composed of the upper inner casing member 14 and the side inner casing member 35 is provided. Is formed. Further, the inner casing member 36 is formed integrally with the slider body 33.
 また、側方内ケーシング部材35,35の夫々の鉛直方向の略中央部分には、軌道台31側とは反対側に向け膨出又は突出する球面の一部からなる第3凸球面(凸球面)37が形成されている。また、第3凸球面37の回りを鉛直方向に囲むようにして、リング状の第4凸球面(凸球面)38が夫々設けられている。第4凸球面38は、第3凸球面37の球面の中心点Pと実質的にその中心を同じくしており、第3凸球面37の半径D33よりも大きい半径D34を有する球面の一部から形成されている。また、第3凸球面37と第4凸球面38とは、これら凸球面の半径方向に沿って形成される面39によって互いに接続されている。
 そして、第1凸球面17、第2凸球面18、第3凸球面37及び第4凸球面38を備えた複数の凸球面を複合してなる凸球面部41が形成されている。
Further, a third convex spherical surface (convex spherical surface) formed of a part of a spherical surface that bulges or protrudes toward the opposite side to the side of the track 31 at the substantially central portion in the vertical direction of each of the side inner casing members 35, 35. ) 37 is formed. Further, ring-shaped fourth convex spherical surfaces (convex spherical surfaces) 38 are respectively provided so as to surround the third convex spherical surface 37 in the vertical direction. The fourth convex spherical surface 38 is substantially the same as the center point P of the spherical surface of the third convex spherical surface 37, and is part of a spherical surface having a radius D 34 larger than the radius D 33 of the third convex spherical surface 37. Is formed. The third convex spherical surface 37 and the fourth convex spherical surface 38 are connected to each other by a surface 39 formed along the radial direction of these convex spherical surfaces.
A convex spherical surface portion 41 is formed by combining a plurality of convex spherical surfaces including the first convex spherical surface 17, the second convex spherical surface 18, the third convex spherical surface 37, and the fourth convex spherical surface 38.
 また、外ケーシング部材58の側方外ケーシング部材56,56には、内ケーシング部材36の第3凸球面37に対応する位置に夫々対向配置され、軌道台31側とは反対側に向け窪む又は落ち込む球面の一部からなる第3凹球面(凹球面)47が形成されており、これら第3凸球面37と第3凹球面47とが互いの球面に沿って相対的にスライド移動可能に摺接して配置されている。 Further, the side casing members 56, 56 of the outer casing member 58 are respectively disposed opposite to the positions corresponding to the third convex spherical surface 37 of the inner casing member 36, and are recessed toward the side opposite to the way 31 side. Alternatively, a third concave spherical surface (concave spherical surface) 47 formed of a part of the falling spherical surface is formed, and the third convex spherical surface 37 and the third concave spherical surface 47 can be relatively slid along the spherical surfaces. It is arranged in sliding contact.
 すなわち、第3凹球面47は、第3凸球面37の半径D33と略同一半径に設定されているとともに、中心を中心点Pと実質的に同じくしており、またこれら第3凸球面37及び第3凹球面47が摺接する少なくともいずれか一方の面には、自己潤滑性を有する潤滑膜(不図示)が形成されていて、互いにスムースにスライド移動するようになっている。 That is, the third concave spherical surface 47 is set to have substantially the same radius as the radius D33 of the third convex spherical surface 37, and the center is substantially the same as the center point P. A lubricant film (not shown) having a self-lubricating property is formed on at least one surface with which the third concave spherical surface 47 is slidably contacted, and is slid smoothly with respect to each other.
 また、側方外ケーシング部材56,56には、内ケーシング部材36の第4凸球面38に対向配置され、第3凹球面47の回りを鉛直方向に囲むようにして、リング状の第4凹球面(凹球面)48が設けられている。第4凹球面48は、その球面の中心を実質的に中心点Pと同じくしており、また第4凸球面38の半径D34と略同一半径に設定されていて、これら第4凸球面38と第4凹球面48とが、互いの球面に沿って相対的にスライド移動可能に摺接して配置されている。すなわち、これら第4凸球面38及び第4凹球面48が摺接する少なくともいずれか一方の面にも、前記潤滑膜が形成されている。 Further, the side outer casing members 56, 56 are arranged to face the fourth convex spherical surface 38 of the inner casing member 36, and surround the third concave spherical surface 47 in the vertical direction so that the ring-shaped fourth concave spherical surface ( (Concave spherical surface) 48 is provided. The fourth concave spherical surface 48 has the center of the spherical surface substantially the same as the center point P, and is set to substantially the same radius as the radius D34 of the fourth convex spherical surface 38. The fourth concave spherical surface 48 is disposed so as to be slidable so as to be relatively slidable along the respective spherical surfaces. That is, the lubricating film is also formed on at least one of the surfaces where the fourth convex spherical surface 38 and the fourth concave spherical surface 48 are in sliding contact.
 また、第3凹球面47と第4凹球面48とは、これら凹球面の半径方向に沿って形成される面49によって互いに接続されている。
 また、内ケーシング部材36の面39と、外ケーシング部材58の面49とは、互いに離間して対向配置されており、これら面39,49の間に設けられる間隙により、内ケーシング部材36と外ケーシング部材58とが相対的にスライドし揺動可能とされている。
The third concave spherical surface 47 and the fourth concave spherical surface 48 are connected to each other by a surface 49 formed along the radial direction of these concave spherical surfaces.
Further, the surface 39 of the inner casing member 36 and the surface 49 of the outer casing member 58 are disposed to face each other while being spaced apart from each other. The casing member 58 is relatively slidable and swingable.
 そして、第1凹球面22、第2凹球面23、第3凹球面47及び第4凹球面48を備えた複数の凹球面を複合してなる凹球面部46が形成されている。
 またこのようにして、内ケーシング部材36の凸球面部41と外ケーシング部材58の凹球面部46とを備え中心点Pを実質的に中心とした球面軸受機構が形成されている。
A concave spherical portion 46 formed by combining a plurality of concave spherical surfaces including the first concave spherical surface 22, the second concave spherical surface 23, the third concave spherical surface 47, and the fourth concave spherical surface 48 is formed.
Further, in this way, a spherical bearing mechanism that includes the convex spherical surface portion 41 of the inner casing member 36 and the concave spherical surface portion 46 of the outer casing member 58 and that substantially has the center point P as the center is formed.
 以上説明したように、第2の実施形態の直動ガイド30によれば、第1の実施形態の直動ガイド10と同様の効果を有するとともに、下記のような効果を奏功する。すなわち、側方内ケーシング部材35,35の凸球面37,38と側方外ケーシング部材56,56の凹球面47,48とが夫々対向配置されていて複合的な球面構造とされており、摺接する面積が充分に確保されているので、この直動ガイド30に加わるモーメント荷重をより確実に除去可能であるとともに、ラジアル荷重及びスラスト荷重に対する強度もより向上することができる。 As described above, according to the linear motion guide 30 of the second embodiment, the same effects as those of the linear motion guide 10 of the first embodiment are achieved, and the following effects are achieved. That is, the convex spherical surfaces 37, 38 of the side inner casing members 35, 35 and the concave spherical surfaces 47, 48 of the side outer casing members 56, 56 are arranged to face each other to form a composite spherical structure. Since the contact area is sufficiently secured, the moment load applied to the linear motion guide 30 can be more reliably removed, and the strength against the radial load and the thrust load can be further improved.
 また、このように球面を複合して用いる構成によれば、これら凸球面37,38及び凹球面47,48の形成される部位の厚み寸法をより薄く平たく省スペースに抑えることができる。なお、前記厚み寸法とは、第3凸球面37と第4凸球面38とが並べられる略鉛直方向(図3における上下方向)に直交する略水平方向(図3における左右方向)の寸法を示している。よって、側方外ケーシング部材56の厚みを縮小しより薄く形成することができ、装置の外形が縮小される。 In addition, according to the configuration in which the spherical surfaces are used in combination as described above, the thickness dimensions of the portions where the convex spherical surfaces 37 and 38 and the concave spherical surfaces 47 and 48 are formed can be made thinner and flat and space-saving. The thickness dimension indicates a dimension in a substantially horizontal direction (left and right direction in FIG. 3) orthogonal to a substantially vertical direction (vertical direction in FIG. 3) in which the third convex spherical surface 37 and the fourth convex spherical surface 38 are arranged. ing. Therefore, the thickness of the side outer casing member 56 can be reduced and formed thinner, and the outer shape of the apparatus is reduced.
 次に、本発明の第3実施形態の運動装置について説明する。
 図4は本発明の第3の実施形態の運動装置としてのボールねじの概略構成を示す断面図である。
 尚、前述の第1、第2の実施形態の直動ガイド10,30と同一部材については同一符号を付すなどしてその説明を省略する。
Next, an exercise device according to a third embodiment of the present invention will be described.
FIG. 4 is a cross-sectional view showing a schematic configuration of a ball screw as an exercise device according to a third embodiment of the present invention.
The same members as those of the linear motion guides 10 and 30 of the first and second embodiments described above are denoted by the same reference numerals and the description thereof is omitted.
 図4に示すように、第3の実施形態の運動装置としてのボールねじ60は、水平方向に延在する丸棒状又はパイプ状の軌道軸(軌道体)61を有しており、この軌道軸61の外周には、該軌道軸61の中心軸を中心に螺旋状に形成される凹溝状の転動体転走面61aが設けられている。また、軌道軸61に中心軸方向に貫通されて該中心軸方向に相対移動可能なスライダ(移動体)62が設けられている。 As shown in FIG. 4, the ball screw 60 as the exercise device of the third embodiment has a round bar-like or pipe-like raceway shaft (track body) 61 extending in the horizontal direction. On the outer periphery of 61, there is provided a grooved rolling element rolling surface 61 a formed in a spiral shape around the central axis of the track shaft 61. In addition, a slider (moving body) 62 is provided that penetrates the track shaft 61 in the central axis direction and is relatively movable in the central axis direction.
 スライダ62は、略直方体状のスライダ本体63を備え、該スライダ本体63には軌道軸61を挿入して前記中心軸方向に貫通する孔部63aが形成されている。また、孔部63aの内周面の転動体転走面61aに対向する位置には、該転動体転走面61aに対応して螺旋状に形成される凹溝状の負荷転動体転走面71が設けられている。 The slider 62 includes a substantially rectangular parallelepiped slider main body 63, and the slider main body 63 is formed with a hole 63a through which the track shaft 61 is inserted and penetrates in the central axis direction. Moreover, in the position which opposes the rolling-element rolling surface 61a of the internal peripheral surface of the hole 63a, the grooved load rolling-element rolling surface formed in a spiral shape corresponding to this rolling-element rolling surface 61a is provided. 71 is provided.
 また、軌道軸61の転動体転走面61aと、該転動体転走面61aに対向配置される負荷転動体転走面71とにより形成される空間が、負荷転動体転走路72とされており、この負荷転動体転走路72には、複数のボール(不図示)が配されて充満している。また負荷転動体転走路72は、スライダ62内に設けられる図示しない無限循環路の一部を形成しており、ボールは無限循環路の路内を循環自在とされている。そして、これらボールを介して軌道軸61とスライダ62とがねじ作用で嵌め合わされるようにして、互いに相対移動可能とされている。すなわち、ボールの転走及び循環によって軌道軸61とスライダ62とが、軸方向及び軸周りの周方向に沿って、相対移動可能とされている。 In addition, a space formed by the rolling element rolling surface 61 a of the track shaft 61 and the loaded rolling element rolling surface 71 disposed to face the rolling element rolling surface 61 a is defined as a loaded rolling element rolling path 72. The load rolling element rolling path 72 is filled with a plurality of balls (not shown). The load rolling element rolling path 72 forms a part of an infinite circulation path (not shown) provided in the slider 62, and the ball can freely circulate in the path of the infinite circulation path. The track shaft 61 and the slider 62 are fitted with each other via the balls so as to be able to move relative to each other. That is, the track shaft 61 and the slider 62 can be relatively moved along the axial direction and the circumferential direction around the axis by rolling and circulation of the ball.
 また、軌道軸61の中心軸は、内ケーシング部材16と外ケーシング部材8とからなる球面軸受機構の中心点Pに重なっている。すなわち、中心点Pから図4に一点鎖線で示す負荷転動体転走路72の中心までの距離である半径D74は、中心軸を中心とした径方向全ての向きにおいて同一寸法となるように設定されている。 Further, the center axis of the track shaft 61 overlaps the center point P of the spherical bearing mechanism composed of the inner casing member 16 and the outer casing member 8. That is, the radius D74, which is the distance from the center point P to the center of the loaded rolling element rolling path 72 shown by the alternate long and short dash line in FIG. 4, is set to have the same dimension in all the radial directions around the center axis. ing.
 以上説明したように、第3の実施形態のボールねじ60によれば、第1の実施形態の直動ガイド10と同様の効果を奏功するとともに、スライダ62の球面軸受機構の球面の中心点Pが軌道軸61の中心軸上に重なるように設定されており、複数のボールが該中心軸から均等距離の負荷転動体転走路72に配置されているので、このボールねじ60にモーメント荷重が加わった際に、ボールや負荷転動体転走路72の内面にかかる負荷が略均等に振り分けられるようにして分散され、部材に局部的な過負荷がかかることが防止されている。従って、部材の破損が防止され、ボールねじ60の強度が高められて耐久性が向上している。 As described above, according to the ball screw 60 of the third embodiment, the same effect as that of the linear guide 10 of the first embodiment is achieved, and the spherical center point P of the spherical bearing mechanism of the slider 62 is achieved. Are set so as to overlap the central axis of the track shaft 61, and a plurality of balls are arranged in the load rolling element rolling path 72 at an equal distance from the central axis, so that a moment load is applied to the ball screw 60. In this case, the load applied to the ball and the inner surface of the load rolling element rolling path 72 is distributed so as to be distributed substantially evenly, so that a local overload is not applied to the member. Therefore, damage to the member is prevented, the strength of the ball screw 60 is increased, and durability is improved.
 次に、本発明の第4の実施形態の運動装置について説明する。
 図5は本発明の第4の実施形態の運動装置としての直動ガイドの概略構成を示す断面図である。
 尚、前述の第1~第3の実施形態において説明したものと同一部材については同一符号を付し、その説明を省略する。
Next, an exercise device according to a fourth embodiment of the present invention will be described.
FIG. 5: is sectional drawing which shows schematic structure of the linear motion guide as an exercise | movement apparatus of the 4th Embodiment of this invention.
The same members as those described in the first to third embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図5に示すように、第4の実施形態の運動装置としての直動ガイド80は、軌道台1の上方(図5における上方側)に配置されたスライダ(移動体)82を有している。また、スライダ82は、軌道台1に対して前記延在方向に沿って移動可能とされている。 As shown in FIG. 5, the linear motion guide 80 as the exercise device of the fourth embodiment has a slider (moving body) 82 disposed above the track base 1 (upper side in FIG. 5). . The slider 82 is movable along the extending direction with respect to the rail 1.
 スライダ82は、前記延在方向に直交する断面が略C字状をなす外ケーシング部材88と、この外ケーシング部材88の内側に配され、前記断面が略C字状をなすスライダ本体83とを有している。また、スライダ本体83の外周面には、複数の凸球面を備えた内ケーシング部材86が該スライダ本体83に一体に形成されている。 The slider 82 includes an outer casing member 88 having a substantially C-shaped cross section orthogonal to the extending direction, and a slider main body 83 disposed inside the outer casing member 88 and having a substantially C-shaped cross section. Have. Further, an inner casing member 86 having a plurality of convex spherical surfaces is formed integrally with the slider main body 83 on the outer peripheral surface of the slider main body 83.
 詳しくは、スライダ本体83の外周面において、前記延在方向に直交する水平方向の外側を向く部分には、側方内ケーシング部材15が夫々形成されており、これらの側方内ケーシング部材15の外面が第3凸球面20とされている。尚、これらの第3凸球面20の水平方向の外側を向く頂部同士の間の距離は、外ケーシング部材88の下端開口縁部において、水平方向の内側を向く内壁面同士の間の距離よりも僅かに小さく設定されている。 Specifically, side inner casing members 15 are formed on portions of the outer peripheral surface of the slider main body 83 facing the outer side in the horizontal direction orthogonal to the extending direction, respectively. The outer surface is a third convex spherical surface 20. The distance between the tops of the third convex spherical surfaces 20 facing outward in the horizontal direction is greater than the distance between the inner wall surfaces facing inward of the horizontal direction at the lower end opening edge of the outer casing member 88. It is set slightly smaller.
 また、スライダ本体83の外周面において、前記延在方向に直交する鉛直方向の上方を向く部分には、略円盤状をなす上方内ケーシング部材84が形成されている。上方内ケーシング部材84は、スライダ本体83の上面から膨出又は突出するように形成されており、球体の一部を切り欠いたような形状とされている。また、上方内ケーシング部材84の外面が、第1凸球面(凸球面)87とされている。第1凸球面87は、実質的にその中心を中心点Pに設定している。また、図示の例では、第1凸球面87の半径D81は、第3凸球面20の半径D3よりも小さい値に設定されている。 Further, an upper inner casing member 84 having a substantially disc shape is formed on a portion of the outer peripheral surface of the slider main body 83 facing upward in the vertical direction orthogonal to the extending direction. The upper inner casing member 84 is formed so as to bulge or protrude from the upper surface of the slider body 83, and has a shape in which a part of a sphere is cut away. The outer surface of the upper inner casing member 84 is a first convex spherical surface (convex spherical surface) 87. The center of the first convex spherical surface 87 is set to the center point P substantially. In the illustrated example, the radius D 81 of the first convex spherical surface 87 is set to a value smaller than the radius D 3 of the third convex spherical surface 20.
 このように、内ケーシング部材86は、上方内ケーシング部材84及び側方内ケーシング部材15からなり、内ケーシング部材86には、第1凸球面87及び第3凸球面20を備えた凸球面部91が形成されている。 As described above, the inner casing member 86 includes the upper inner casing member 84 and the side inner casing member 15, and the inner casing member 86 has a convex spherical surface portion 91 including the first convex spherical surface 87 and the third convex spherical surface 20. Is formed.
 また、外ケーシング部材88には、前記延在方向に直交する向きに該外ケーシング部材88を貫通する複数のネジ孔が形成されている。詳しくは、外ケーシング部材88には、前記延在方向に直交する水平方向に沿って該外ケーシング部材88を貫通し、その内周面に雌ネジ加工が施されたネジ孔88Aの対と、前記延在方向に直交する鉛直方向に沿って該外ケーシング部材88を貫通し、その内周面に雌ネジ加工が施されたネジ孔88Bとが形成されている。 The outer casing member 88 is formed with a plurality of screw holes penetrating the outer casing member 88 in a direction perpendicular to the extending direction. Specifically, the outer casing member 88 passes through the outer casing member 88 along a horizontal direction orthogonal to the extending direction, and a pair of screw holes 88A in which an inner peripheral surface is machined, A screw hole 88B that penetrates the outer casing member 88 along a vertical direction orthogonal to the extending direction and is internally threaded is formed.
 また、ネジ孔88Aにおいて、スライド本体83側に開口する部分は、側方内ケーシング部材15の第3凸球面20に対応して夫々配置されている。また、ネジ孔88Bにおいて、スライド本体83側に開口する部分は、上方内ケーシング部材84の第1凸球面87に対応して配置されている。 Further, in the screw hole 88 </ b> A, portions that open to the slide body 83 side are respectively arranged corresponding to the third convex spherical surface 20 of the side inner casing member 15. In addition, a portion of the screw hole 88 </ b> B that opens toward the slide main body 83 is disposed corresponding to the first convex spherical surface 87 of the upper inner casing member 84.
 また、外ケーシング部材88のネジ孔88A,88Bには、凹球面部96がねじ作用で嵌め合わされている。すなわち、ネジ孔88Aには、円柱状をなし、その外周面に雄ネジ加工が施されたプラグ96Aがねじ作用により夫々嵌め合わされ、ネジ孔88Bには、円柱状をなし、その外周面に雄ネジ加工が施されたプラグ96Bがねじ作用により嵌め合わされて、これらのプラグ96A,96Bが、凹球面部96とされている。また、これらのプラグ96A,96Bは、ネジ孔88A,88Bに着脱可能とされている。 Also, the concave spherical portion 96 is fitted into the screw holes 88A and 88B of the outer casing member 88 by a screw action. That is, the screw holes 88A are formed in a columnar shape, and plugs 96A each having a male thread processed on its outer peripheral surface are fitted into each other by a screw action. The plugs 96 </ b> B that have been threaded are fitted together by a screw action, and these plugs 96 </ b> A and 96 </ b> B serve as a concave spherical surface portion 96. Moreover, these plugs 96A and 96B can be attached to and detached from the screw holes 88A and 88B.
 これらのプラグ96Aは、その第3凸球面20側を向く面が夫々第3凹球面(凹球面)98Aとされている。第3凹球面98Aは、中心点Pを実質的にその中心に設定し、第3凸球面20の半径D3と略同一の半径を有している。また、第3凹球面98Aと第3凸球面20とは当接しており、球面方向に沿って相対的に摺動可能とされている。 These plugs 96A have a third concave spherical surface (concave spherical surface) 98A facing the third convex spherical surface 20 side. The third concave spherical surface 98A has the center point P substantially at the center thereof, and has a radius substantially the same as the radius D3 of the third convex spherical surface 20. Further, the third concave spherical surface 98A and the third convex spherical surface 20 are in contact with each other, and are relatively slidable along the spherical surface direction.
 詳しくは、プラグ96Aにおいて水平方向の内側を向く面には凹部97Aが形成されており、凹部97Aには、例えば、フッ素樹脂等からなる摺動材98が夫々収容されている。そして、この摺動材98の第3凸球面20側を向く面が、前記第3凹球面98Aとされている。 Specifically, a recess 97A is formed on the surface facing the inner side in the horizontal direction of the plug 96A, and a sliding material 98 made of, for example, a fluororesin is accommodated in the recess 97A. The surface of the sliding member 98 facing the third convex spherical surface 20 is the third concave spherical surface 98A.
 また、プラグ96Aにおいて水平方向の外側を向く面には、工具等の先端を挿入し該プラグ96Aをネジ孔88Aに対して締めこんだり緩めたりするための工具穴97Cが夫々形成されている。すなわち、工具穴97Cに工具等を差し入れた状態で、プラグ96Aをその軸周りに回転させることで、該プラグ96Aの第3凹球面98Aが、側方内ケーシング部材15の第3凸球面20に対して進退可能とされている。 Further, tool holes 97C for inserting a tip of a tool or the like and tightening or loosening the plug 96A with respect to the screw hole 88A are formed on the surface of the plug 96A facing the outside in the horizontal direction. That is, with the tool or the like inserted in the tool hole 97C, the plug 96A is rotated about its axis, so that the third concave spherical surface 98A of the plug 96A is changed to the third convex spherical surface 20 of the side inner casing member 15. On the other hand, it is possible to advance and retreat.
 また、プラグ96Bは、その第1凸球面87側を向く面が第1凹球面(凹球面)99Bとされている。第1凹球面99Bは、中心点Pを実質的にその中心に設定し、第1凸球面87の半径D81と略同一の半径を有している。また、第1凹球面99Bと第1凸球面87とは当接しており、球面方向に沿って相対的に摺動可能とされている。 The surface of the plug 96B facing the first convex spherical surface 87 is a first concave spherical surface (concave spherical surface) 99B. The first concave spherical surface 99B has a center point P substantially set at the center thereof, and has a radius substantially the same as the radius D81 of the first convex spherical surface 87. Further, the first concave spherical surface 99B and the first convex spherical surface 87 are in contact with each other, and are relatively slidable along the spherical surface direction.
 詳しくは、プラグ96Bにおいて鉛直方向の下方を向く面には凹部97Bが形成されており、凹部97Bには、例えば、フッ素樹脂等からなる摺動材99が収容されている。そして、この摺動材99の第1凸球面87側を向く面が、前記第1凹球面99Bとされている。 Specifically, a concave portion 97B is formed on the surface of the plug 96B facing downward in the vertical direction, and a sliding material 99 made of, for example, a fluororesin is accommodated in the concave portion 97B. The surface of the sliding member 99 that faces the first convex spherical surface 87 is the first concave spherical surface 99B.
 また、プラグ96Bにおいて鉛直方向の上方を向く面には、工具等の先端を挿入し該プラグ96Bをネジ孔88Bに対して締めこんだり緩めたりするための工具穴97Dが形成されている。すなわち、工具穴97Dに工具等を差し入れた状態で、プラグ96Bをその軸周りに回転させることで、該プラグ96Bの第1凹球面99Bが、上方内ケーシング部材84の第1凸球面87に対して進退可能とされている。 Further, a tool hole 97D for inserting a tip of a tool or the like and tightening or loosening the plug 96B with respect to the screw hole 88B is formed on the surface of the plug 96B facing upward in the vertical direction. That is, with the tool or the like inserted in the tool hole 97D, the first concave spherical surface 99B of the plug 96B is rotated with respect to the first convex spherical surface 87 of the upper inner casing member 84 by rotating the plug 96B around its axis. It is possible to advance and retreat.
 このように、凹球面部96のプラグ96A,96Bが、凸球面部91の第3凸球面20、第1凸球面87に向けて、夫々進退可能とされている。
 また、内ケーシング部材86の凸球面部91と外ケーシング部材88の凹球面部96とを備え中心点Pを実質的に中心とした球面軸受機構が形成されている。
As described above, the plugs 96 </ b> A and 96 </ b> B of the concave spherical surface portion 96 can advance and retreat toward the third convex spherical surface 20 and the first convex spherical surface 87 of the convex spherical surface portion 91, respectively.
In addition, a spherical bearing mechanism is formed which includes the convex spherical surface portion 91 of the inner casing member 86 and the concave spherical surface portion 96 of the outer casing member 88 and substantially has the center point P as the center.
 以上説明したように、第4の実施形態の直動ガイド80によれば、外ケーシング部材88の凹球面部96が、内ケーシング部材86の凸球面部91に向けて進退可能とされているので、凹球面部96と凸球面部91の相対位置を調整でき、球面軸受機構をより精度よく作動させることができる。従って、直動ガイド80に作用するモーメント荷重を確実に除去することができ、該直動ガイド80の運動が安定して行われる。 As described above, according to the linear motion guide 80 of the fourth embodiment, the concave spherical portion 96 of the outer casing member 88 can be advanced and retracted toward the convex spherical portion 91 of the inner casing member 86. The relative positions of the concave spherical portion 96 and the convex spherical portion 91 can be adjusted, and the spherical bearing mechanism can be operated with higher accuracy. Therefore, the moment load acting on the linear motion guide 80 can be reliably removed, and the motion of the linear motion guide 80 is stably performed.
 また、凹球面部96のプラグ96A,96Bが、外ケーシング部材88のネジ孔88A,88Bに夫々ねじ作用で嵌め合わされているので、ねじを緩めたり締めたりすることで、前述した凹球面部96の凸球面部91に対する進退が簡便に精度よく行える。 Further, since the plugs 96A and 96B of the concave spherical surface portion 96 are fitted into the screw holes 88A and 88B of the outer casing member 88 by screwing, respectively, the above-mentioned concave spherical surface portion 96 is loosened or tightened. Can advance and retreat with respect to the convex spherical surface portion 91 easily and accurately.
 また、特に、側方内ケーシング部材15に対してプラグ96Aを水平方向の内側へ向けて締めこむことができるので、この直動ガイド80は、荷重に対する剛性が確保されている。 In particular, since the plug 96A can be tightened toward the inner side in the horizontal direction with respect to the side inner casing member 15, the linear motion guide 80 ensures rigidity against a load.
 また、プラグ96A,96Bが、ネジ孔88A,88Bに着脱可能とされているので、スライダ82の組み立てが比較的容易に行える。すなわち、組み立ての際、まず、プラグ96A,96Bを取り外した状態の外ケーシング部材88を用意し、該外ケーシング部材88を上方からスライダ本体83に被せた後、プラグ96A,96Bをネジ孔88A,88Bにねじ込めばよい。尚、プラグ96Bは、外ケーシング部材88に装着したまま組み立てても構わない。このように、プラグ96A,96Bを外ケーシング部材88に装着することで、前記球面軸受機構が簡便に精度よく形成できる。 Further, since the plugs 96A and 96B are detachable from the screw holes 88A and 88B, the slider 82 can be assembled relatively easily. That is, at the time of assembly, first, an outer casing member 88 with the plugs 96A and 96B removed is prepared, and the outer casing member 88 is put on the slider body 83 from above, and then the plugs 96A and 96B are screwed into the screw holes 88A, It can be screwed into 88B. Note that the plug 96B may be assembled while being attached to the outer casing member 88. In this way, by attaching the plugs 96A and 96B to the outer casing member 88, the spherical bearing mechanism can be easily and accurately formed.
 尚、プラグ96A,96Bを外ケーシング部材88に取り付け、前述の進退を調整した状態で、これらのプラグ96A,96Bが外ケーシング部材88に対して進退しないように固定することとしてもよい。すなわち、例えば、プラグ96A,96Bの回り止めとして、接着剤やピン止め機構等を用い、プラグ96A,96Bの前述の進退を規制することとしてもよく、この場合、プラグ96A,96Bとネジ孔88A,88Bとのねじ作用による嵌合の状態が安定し変動がなくなることから、前記球面軸受機構が長期に亘り安定して精度よく作動する。 The plugs 96A and 96B may be attached to the outer casing member 88 and fixed so that the plugs 96A and 96B do not advance and retract with respect to the outer casing member 88 in a state in which the above-described advance / retreat is adjusted. That is, for example, an adhesive or a pinning mechanism may be used to prevent the plugs 96A and 96B from rotating, and in this case, the plugs 96A and 96B may be restricted from moving forward and backward. In this case, the plugs 96A and 96B and the screw holes 88A may be restricted. , 88B, and the fitting state by the screw action is stable and no fluctuation occurs, so that the spherical bearing mechanism operates stably and accurately over a long period of time.
 また、本実施形態では、外ケーシング部材88が、前述のように断面略C字状をなし、スライダ本体83の外側を覆うように、一体に形成されていることから、外ケーシング部材88の剛性が充分に確保されている。詳しくは、この外ケーシング部材88は、前述の実施形態のように、上方外ケーシング部材5及び一対の側方外ケーシング部材6を含む複数部材で形成されているのではなく、単一部材で形成されているので、製造が比較的容易であるとともに、機械的強度が充分に確保されている。 In the present embodiment, the outer casing member 88 has a substantially C-shaped cross section as described above, and is integrally formed so as to cover the outside of the slider body 83. Is sufficiently secured. Specifically, the outer casing member 88 is not formed by a plurality of members including the upper outer casing member 5 and the pair of side outer casing members 6 as in the above-described embodiment, but is formed by a single member. Therefore, the manufacturing is relatively easy and the mechanical strength is sufficiently secured.
 次に、本発明の第5の実施形態の運動装置について説明する。
 図6は本発明の第5の実施形態の運動装置としての直動ガイドの概略構成を示す断面図である。
 尚、前述の第1~第4の実施形態において説明したものと同一部材については同一符号を付し、その説明を省略する。
Next, an exercise device according to a fifth embodiment of the present invention will be described.
FIG. 6 is a sectional view showing a schematic configuration of a linear guide as an exercise device according to a fifth embodiment of the present invention.
The same members as those described in the first to fourth embodiments are denoted by the same reference numerals, and the description thereof is omitted.
 図6に示すように、第5の実施形態の運動装置としての直動ガイド100は、軌道台1の上方(図6における上方側)に配置されたスライダ(移動体)102を有している。また、スライダ102は、軌道台1に対して前記延在方向に沿って移動可能とされている。 As shown in FIG. 6, the linear motion guide 100 as the exercise device of the fifth embodiment has a slider (moving body) 102 disposed above the track base 1 (upper side in FIG. 6). . Further, the slider 102 is movable along the extending direction with respect to the rail platform 1.
 スライダ102は、前記延在方向に直交する断面が略C字状をなす外ケーシング部材108と、この外ケーシング部材108の内側に配され、前記断面が略C字状をなすスライダ本体103とを有している。また、スライダ本体103の外周面には、複数の凸球面を備えた内ケーシング部材106が該スライダ本体103に一体に形成されている。 The slider 102 includes an outer casing member 108 having a substantially C-shaped cross section orthogonal to the extending direction, and a slider main body 103 disposed inside the outer casing member 108 and having a substantially C-shaped cross section. Have. An inner casing member 106 having a plurality of convex spherical surfaces is formed integrally with the slider main body 103 on the outer peripheral surface of the slider main body 103.
 詳しくは、スライダ本体103の外周面において、前記延在方向に直交する水平方向の外側を向く部分には、側方内ケーシング部材15が夫々形成されており、これらの側方内ケーシング部材15の外面が第3凸球面20とされている。 Specifically, side inner casing members 15 are respectively formed on the outer peripheral surface of the slider main body 103 at portions facing the outer side in the horizontal direction perpendicular to the extending direction. The outer surface is a third convex spherical surface 20.
 また、スライダ本体103の外周面において、前記延在方向に直交する鉛直方向の上方を向く部分には、略円盤状をなす上方内ケーシング部材84が形成され、この上方内ケーシング部材84の外面が、第1凸球面87とされている。 Further, an upper inner casing member 84 having a substantially disc shape is formed on a portion of the outer peripheral surface of the slider main body 103 facing upward in the vertical direction orthogonal to the extending direction, and the outer surface of the upper inner casing member 84 is The first convex spherical surface 87 is used.
 また、スライダ本体103の外周面において、前記延在方向に直交する鉛直方向の下方を向く部分、詳しくは、図6に示すスライダ本体103の下端開口縁部には、半円盤状をなす下方内ケーシング部材104が夫々形成されている。これらの下方内ケーシング部材104は、前記下端開口縁部から下方へ向けて膨出又は突出するように夫々形成されている。 Further, on the outer peripheral surface of the slider main body 103, the portion facing downward in the vertical direction perpendicular to the extending direction, specifically, the lower end opening edge of the slider main body 103 shown in FIG. Casing members 104 are respectively formed. These lower inner casing members 104 are each formed so as to bulge or protrude downward from the lower end opening edge.
 また、これらの下方内ケーシング部材104の外面には、第5凸球面(凸球面)107が形成されている。第5凸球面107は、実質的にその中心を中心点Pに設定している。また、図示の例では、第5凸球面107の半径D101は、第3凸球面20の半径D3よりも小さい値に設定されている。 Further, a fifth convex spherical surface (convex spherical surface) 107 is formed on the outer surface of the lower inner casing member 104. The center of the fifth convex spherical surface 107 is set to the center point P substantially. In the illustrated example, the radius D101 of the fifth convex spherical surface 107 is set to a value smaller than the radius D3 of the third convex spherical surface 20.
 このように、内ケーシング部材106は、上方内ケーシング部材84、側方内ケーシング部材15及び下方内ケーシング部材104からなり、内ケーシング部材106には、第1凸球面87、第3凸球面20及び第5凸球面107を備えた凸球面部111が形成されている。 As described above, the inner casing member 106 includes the upper inner casing member 84, the side inner casing member 15, and the lower inner casing member 104. The inner casing member 106 includes the first convex spherical surface 87, the third convex spherical surface 20, and the like. A convex spherical portion 111 having a fifth convex spherical surface 107 is formed.
 また、凸球面部111の第1、第3、第5凸球面87、20、107は、中心点P周り(図示の例では、前記延在方向に直交する断面における中心点P周り)の周方向に沿って、互いに間隔を開けて配置されている。詳しくは、凸球面部111は、軌道台1を挟むように水平方向に沿って背向配置された第3凸球面20の対と、軌道台1を挟むように鉛直方向に沿って背向配置された第1凸球面87及び第5凸球面107からなる対と、を有している。すなわち、図示の例では、第3凸球面20の対において凸球面同士が背向配置される方向と、第1凸球面87及び第5凸球面107からなる対において凸球面同士が背向配置される方向とが、直交するように設定されている。 Further, the first, third, and fifth convex spherical surfaces 87, 20, and 107 of the convex spherical surface portion 111 have a circumference around the center point P (in the example shown, around the center point P in the cross section orthogonal to the extending direction). Along each direction, they are spaced apart from each other. Specifically, the convex spherical surface portion 111 is disposed in the back direction along the vertical direction so as to sandwich the base 1 and the pair of third convex spherical surfaces 20 disposed in the back direction along the horizontal direction so as to sandwich the base 1. And a pair of the first convex spherical surface 87 and the fifth convex spherical surface 107. That is, in the illustrated example, the convex spherical surfaces are arranged in the back direction in the pair of the third convex spherical surfaces 20, and the convex spherical surfaces are arranged in the back direction in the pair consisting of the first convex spherical surface 87 and the fifth convex spherical surface 107. Are set to be orthogonal to each other.
 また、外ケーシング部材108は、上方外ケーシング部材115、側方外ケーシング部材116及び下方外ケーシング部材117からなる。
 上方外ケーシング部材115は、略矩形板状をなし、スライダ本体103の上方に配置されている。また、上方外ケーシング部材115の下面において、前記延在方向に直交する水平方向の両端部には、前記延在方向に沿って延びる突条115Aが夫々形成されている。
The outer casing member 108 includes an upper outer casing member 115, a side outer casing member 116, and a lower outer casing member 117.
The upper outer casing member 115 has a substantially rectangular plate shape and is disposed above the slider body 103. In addition, on the lower surface of the upper outer casing member 115, protrusions 115A extending along the extending direction are formed at both ends in the horizontal direction orthogonal to the extending direction.
 また、側方外ケーシング部材116は、略矩形板状をなし、上方外ケーシング部材115の下面における両端部に夫々垂設されている。詳しくは、側方外ケーシング部材116の水平方向の内側を向く内壁面における上端部が、突条115Aにおいて水平方向の外側を向く外壁面に当接された状態で、上方外ケーシング部材115と側方外ケーシング部材116とがボルト116Aにより連結されている。 Further, the lateral outer casing member 116 has a substantially rectangular plate shape, and is suspended from both ends of the lower surface of the upper outer casing member 115, respectively. Specifically, the upper outer casing member 115 and the side of the upper outer casing member 116 are in a state where the upper end portion of the inner wall surface facing the inner side in the horizontal direction of the side outer casing member 116 is in contact with the outer wall surface facing the outer side in the horizontal direction. The outer casing member 116 is connected by a bolt 116A.
 また、下方外ケーシング部材117は、略矩形板状をなし、側方外ケーシング部材116の下端部に夫々配設されている。詳しくは、下方外ケーシング部材117の上面における水平方向の外側の端部が、側方外ケーシング部材116の下端面に当接された状態で、下方外ケーシング部材117と側方外ケーシング部材116とがボルト117Aにより連結されている。 Further, the lower outer casing member 117 has a substantially rectangular plate shape, and is disposed at the lower end of the side outer casing member 116, respectively. Specifically, the lower outer casing member 117, the lateral outer casing member 116, and the lower outer casing member 117 are in contact with the lower end surface of the lateral outer casing member 116 at the horizontal outer end of the upper surface of the lower outer casing member 117. Are connected by a bolt 117A.
 また、上方外ケーシング部材115の上面には、前記目的部材を取り付けるためのネジ穴115Bが複数形成されている。また、上方外ケーシング部材115の下面には、第1凹球面(凹球面)112Aが形成されている。第1凹球面112Aは、第1凸球面87に対応して配置され、中心点Pを実質的にその中心に設定し、第1凸球面87の半径D81と略同一の半径を有している。また、第1凹球面112Aと第1凸球面87とは当接しており、球面方向に沿って相対的に摺動可能とされている。 Further, a plurality of screw holes 115B for attaching the target member are formed on the upper surface of the upper outer casing member 115. A first concave spherical surface (concave spherical surface) 112 </ b> A is formed on the lower surface of the upper outer casing member 115. 112 A of 1st concave spherical surfaces are arrange | positioned corresponding to the 1st convex spherical surface 87, set the center point P substantially as the center, and have the radius substantially the same as the radius D81 of the 1st convex spherical surface 87. . Further, the first concave spherical surface 112A and the first convex spherical surface 87 are in contact with each other and are relatively slidable along the spherical surface direction.
 詳しくは、上方外ケーシング部材115の下面において、上方内ケーシング部材84に対応する部分には、凹部115Cが形成されており、凹部115Cには、例えば、フッ素樹脂等からなる摺動材112が収容されている。そして、この摺動材112の第1凸球面87側を向く面が、前記第1凹球面112Aとされている。 Specifically, a recess 115C is formed in a portion corresponding to the upper inner casing member 84 on the lower surface of the upper outer casing member 115, and a sliding material 112 made of, for example, a fluororesin is accommodated in the recess 115C. Has been. The surface of the sliding member 112 facing the first convex spherical surface 87 is the first concave spherical surface 112A.
 また、側方外ケーシング部材116において、水平方向の内側を向く内壁面には、第3凹球面(凹球面)113Aが夫々形成されている。これらの第3凹球面113Aは、第3凸球面20に対応して夫々配置され、中心点Pを実質的にその中心に設定し、第3凸球面20の半径D3と略同一の半径を有している。また、第3凹球面113Aと第3凸球面20とは当接しており、球面方向に沿って相対的に摺動可能とされている。 In the lateral outer casing member 116, a third concave spherical surface (concave spherical surface) 113A is formed on each inner wall surface facing inward in the horizontal direction. These third concave spherical surfaces 113A are arranged corresponding to the third convex spherical surfaces 20, respectively, have a center point P substantially set at the center thereof, and have substantially the same radius as the radius D3 of the third convex spherical surface 20. is doing. Further, the third concave spherical surface 113A and the third convex spherical surface 20 are in contact with each other and are relatively slidable along the spherical surface direction.
 詳しくは、これらの側方外ケーシング部材116の前記内壁面において、側方内ケーシング部材15に対応する部分には、凹部116Bが夫々形成されており、これらの凹部116Bには、例えば、フッ素樹脂等からなる摺動材113が夫々収容されている。そして、この摺動材113の第3凸球面20側を向く面が、前記第3凹球面113Aとされている。 Specifically, in the inner wall surfaces of these lateral outer casing members 116, concave portions 116B are formed in portions corresponding to the lateral inner casing members 15, respectively. A sliding material 113 made of, for example, is accommodated. The surface of the sliding member 113 facing the third convex spherical surface 20 is the third concave spherical surface 113A.
 また、下方外ケーシング部材117の上面における水平方向の内側の端部には、第5凹球面(凹球面)114Aが夫々形成されている。これらの第5凹球面114Aは、第5凸球面107に対応して夫々配置され、中心点Pを実質的にその中心に設定し、第5凸球面107の半径D101と略同一の半径を有している。また、第5凹球面114Aと第5凸球面107とは当接しており、球面方向に沿って相対的に摺動可能とされている。 Further, a fifth concave spherical surface (concave spherical surface) 114A is formed at each inner end portion in the horizontal direction on the upper surface of the lower outer casing member 117. These fifth concave spherical surfaces 114A are respectively arranged corresponding to the fifth convex spherical surfaces 107, have the center point P substantially set at the center thereof, and have a radius substantially the same as the radius D101 of the fifth convex spherical surface 107. is doing. Further, the fifth concave spherical surface 114A and the fifth convex spherical surface 107 are in contact with each other, and are relatively slidable along the spherical surface direction.
 詳しくは、これらの下方外ケーシング部材117の上面において、下方内ケーシング部材104に対応する部分、すなわち前記内側の端部には、凹部117Bが夫々形成されており、凹部117Bには、例えば、フッ素樹脂等からなる摺動材114が夫々収容されている。そして、この摺動材114の第5凸球面107側を向く面が、前記第5凹球面114Aとされている。 Specifically, on the upper surface of the lower outer casing member 117, a concave portion 117B is formed in a portion corresponding to the lower inner casing member 104, that is, the inner end portion, and the concave portion 117B includes, for example, fluorine. A sliding material 114 made of resin or the like is accommodated. The surface of the sliding member 114 facing the fifth convex spherical surface 107 is the fifth concave spherical surface 114A.
 このように、外ケーシング部材108には、第1凹球面112A、第3凹球面113A及び第5凹球面114Aを備えた凹球面部118が形成されている。また、凹球面部118の第1、第3、第5凹球面112A,113A,114Aが、第1、第3、第5凸球面87,20,107に夫々対向配置されている。 As described above, the outer casing member 108 is formed with the concave spherical surface portion 118 including the first concave spherical surface 112A, the third concave spherical surface 113A, and the fifth concave spherical surface 114A. In addition, the first, third, and fifth concave spherical surfaces 112A, 113A, and 114A of the concave spherical surface portion 118 are disposed to face the first, third, and fifth convex spherical surfaces 87, 20, and 107, respectively.
 以上説明したように、第5の実施形態の直動ガイド100によれば、軌道台1を挟むように背向配置された凸球面の対が2組設けられ、これらの凸球面に対して、実質的に中心を同じくする複数の凹球面が夫々対向配置されて、球面軸受機構を構成している。従って、この球面軸受機構は、スライダ102に作用する複数方向からの荷重を許容するように構成されており、直動ガイド100の剛性が高められている。詳しくは、この直動ガイド100は、水平方向の左右から、及び、鉛直方向の上下からの外力に対する剛性が大幅に高められている。 As described above, according to the linear motion guide 100 of the fifth embodiment, two pairs of convex spherical surfaces are provided so as to sandwich the way 1 so as to sandwich the rail platform 1, and with respect to these convex spherical surfaces, A plurality of concave spherical surfaces having substantially the same center are arranged opposite to each other to constitute a spherical bearing mechanism. Therefore, the spherical bearing mechanism is configured to allow loads from a plurality of directions acting on the slider 102, and the rigidity of the linear guide 100 is enhanced. Specifically, the linear motion guide 100 has greatly enhanced rigidity against external forces from the left and right in the horizontal direction and from the top and bottom in the vertical direction.
 特に、この直動ガイド100では、スライダ102に作用する外力のうち、前記鉛直方向の下方から上方へ向けた外力、つまりスライダ102に作用する荷重のうち鉛直方向の下方から上方へ向く言うなれば逆ラジアル荷重に対して、機械的強度が大幅に高められている。 In particular, in this linear motion guide 100, out of the external force acting on the slider 102, the external force directed from the lower side in the vertical direction to the upper side, that is, the load acting on the slider 102 is directed from the lower side in the vertical direction to the upper side. The mechanical strength is greatly increased against the reverse radial load.
 尚、本発明は前述した第1~第5の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、第1~第5の実施形態では、運動装置として直動ガイド又はボールねじを用いて説明したが、これに限定されるものではなく、スライダが軌道台の延在方向に相対的に平行移動するボールスプラインやボールブッシュにも本発明を適用することができる。また、それ以外の種々の運動装置に用いることとしても構わない。
The present invention is not limited to the first to fifth embodiments described above, and various modifications can be made without departing from the spirit of the present invention.
For example, in the first to fifth embodiments, the linear motion guide or the ball screw has been described as the exercise device, but the present invention is not limited to this, and the slider is relatively parallel to the extending direction of the raceway. The present invention can also be applied to a moving ball spline or ball bush. Further, it may be used for various other exercise devices.
 また、負荷転動体転走路の設置される数量又は形状は、本実施形態に限定されるものではない。
 また、負荷転動体転走路は、無限循環路の一部を形成していることとして説明したが、これに限られるものではなく、例えばボールの循環しない所謂有限形式の循環路の一部であっても構わない。
 また、転動体としてボールを用いて説明したが、これに限定されるものではなく、例えば略円柱状のローラ、コロ等それ以外の転動体であってもよい。
Moreover, the quantity or shape in which a load rolling-element rolling path is installed is not limited to this embodiment.
Further, the load rolling element rolling path has been described as forming a part of an infinite circuit, but is not limited to this, for example, a part of a so-called finite type circuit that does not circulate a ball. It doesn't matter.
Moreover, although demonstrated using the ball | bowl as a rolling element, it is not limited to this, For example, rolling elements other than that, such as a substantially cylindrical roller and a roller, may be sufficient.
 また、軌道台1,31や軌道軸61は直線状に延在して配設されるものに限定されるものではなく、曲線状に延在して配設されるものであっても構わない。 Further, the track bases 1, 31 and the track shaft 61 are not limited to those that extend in a straight line, but may extend in a curved shape. .
 また、本実施形態では、凸球面部の複数の凸球面と凹球面部の複数の凹球面とを対向配置して複合的な球面軸受構造を形成していることとして説明したが、これに限らず、例えば凸球面と凹球面との組合せが一対のみであっても構わない。また或いは、2対以上の組合せであっても、本実施形態で説明した構成に限定されるものではなく、例えば組合せの対が5対以上に設定されていても構わない。 Further, in the present embodiment, it has been described that a plurality of convex spherical surfaces of the convex spherical surface portion and a plurality of concave spherical surfaces of the concave spherical surface portion are arranged to face each other to form a composite spherical bearing structure. For example, the combination of the convex spherical surface and the concave spherical surface may be only one pair. Alternatively, the combination of two or more pairs is not limited to the configuration described in the present embodiment, and for example, five or more pairs may be set.
 また、球面軸受機構の摺接する面同士の少なくとも一方に潤滑膜又は摺動材が設けられることとして説明したが、それ以外のグリース等の潤滑剤を用いて摺動させる構成であっても構わない。また、潤滑膜や摺動材が設けられていなくとも構わない。 In addition, although it has been described that a lubricating film or a sliding material is provided on at least one of the sliding surfaces of the spherical bearing mechanism, it may be configured to slide using a lubricant such as other grease. . Further, the lubricant film and the sliding material may not be provided.
 また、スライダにおいて、外ケーシング部材がスライダ本体に対して中心点P周りに回転し、スライダ本体と外ケーシング部材とが互いに接触することが考えられる場合は、これらのスライダ本体と外ケーシング部材との間に、ゴム等の緩衝材を設けることとしても構わない。 Further, in the slider, when it is considered that the outer casing member rotates around the center point P with respect to the slider main body and the slider main body and the outer casing member come into contact with each other, the slider main body and the outer casing member A cushioning material such as rubber may be provided between them.
 また、第4の実施形態では、プラグ96A,96Bが、外ケーシング部材88にねじ作用で嵌め合わされていることにより、凹球面部96が凸球面部91に向けて進退可能とされていることとしたが、これに限定されるものではない。すなわち、ねじ作用による嵌合以外の手法を用いて、プラグ96A,96Bが外ケーシング部材88に嵌め入れられ、凹球面部96が凸球面部91に向けて進退するように構成されていても構わない。 In the fourth embodiment, the plugs 96 </ b> A and 96 </ b> B are screwed into the outer casing member 88 so that the concave spherical portion 96 can advance and retract toward the convex spherical portion 91. However, the present invention is not limited to this. That is, the plugs 96 </ b> A and 96 </ b> B may be fitted into the outer casing member 88 using a method other than the fitting by screw action, and the concave spherical portion 96 may be advanced and retracted toward the convex spherical portion 91. Absent.
 また、第5の実施形態では、凸球面部111は、水平方向に沿って背向配置された第3凸球面20の対と、鉛直方向に沿って背向配置された第1凸球面87及び第5凸球面107からなる対と、を有することとしたが、これに限定されるものではない。すなわち、第3凸球面20の対と、第1凸球面87及び第5凸球面107からなる対とは、水平方向や鉛直方向に沿って夫々背向配置されていなくとも構わない。
 また、第3凸球面20の対において凸球面同士が背向配置される方向と、第1凸球面87及び第5凸球面107からなる対において凸球面同士が背向配置される方向とが、直交するように設定されていることとしたが、直交に限定されるものではない。
Further, in the fifth embodiment, the convex spherical surface portion 111 includes a pair of third convex spherical surfaces 20 arranged backward along the horizontal direction, a first convex spherical surface 87 arranged backward along the vertical direction, and Although the pair of the fifth convex spherical surfaces 107 is included, the present invention is not limited to this. In other words, the pair of the third convex spherical surface 20 and the pair composed of the first convex spherical surface 87 and the fifth convex spherical surface 107 may not be arranged backwardly along the horizontal direction or the vertical direction.
Further, the direction in which the convex spherical surfaces are arranged backward in the pair of third convex spherical surfaces 20 and the direction in which the convex spherical surfaces are arranged backward in the pair consisting of the first convex spherical surface 87 and the fifth convex spherical surface 107 are: Although set to be orthogonal, it is not limited to orthogonal.
 その他、本発明の主旨を逸脱しない範囲で、前述の実施形態において説明した種々の構成要素を互いに置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせても構わない。 In addition, various constituent elements described in the above embodiments can be appropriately replaced with each other without departing from the gist of the present invention, and the above-described modified examples may be appropriately combined.
 以下、本発明を実施例により具体的に説明する。ただし本発明はこの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to this embodiment.
 [実施例1]
 まず、実施例1として、軌道台1を一対用意し、図7(a)に示すように、これらの軌道台1を、水平な基台上に互いに平行に設置した。尚、軌道台1間のピッチは、260mmに設定した。また、夫々の軌道台1に、直動ガイド10(30,80,100)のスライダ2(32,82,102)を、前記延在方向に間隔を開けて2つ配設した。尚、前記延在方向に並ぶスライダ間のピッチは、352mmに設定した。また、軌道台1の対のうち、一方の軌道台1Aの底面における端部に、シムS1を設けた。尚、シムS1の厚さは0.2mmに設定した。
[Example 1]
First, as Example 1, a pair of way tables 1 were prepared, and these way tables 1 were installed in parallel to each other on a horizontal base as shown in FIG. In addition, the pitch between the way 1 was set to 260 mm. Further, two sliders 2 (32, 82, 102) of the linear motion guides 10 (30, 80, 100) are disposed on each track base 1 with a gap in the extending direction. The pitch between the sliders arranged in the extending direction was set to 352 mm. Moreover, shim S1 was provided in the edge part in the bottom face of one way stand 1A among the pairs of way stand 1. FIG. The thickness of the shim S1 was set to 0.2 mm.
 また、このように配置された4つのスライダの外ケーシング部材8(58,88,108)の上面に、矩形板状のテーブルTをボルト等を用いて固定し、このテーブルTが、軌道台1に対して前記延在方向に沿って移動するように構成した。また、テーブルTの前述の移動のストロークは、400mmに設定した。尚、テーブルTには、厚さが90mmに形成された剛性の高いものを用いた。 Further, a rectangular plate-shaped table T is fixed to the upper surface of the outer casing member 8 (58, 88, 108) of the four sliders arranged in this way by using bolts or the like. It was comprised so that it might move along the said extension direction with respect to. The stroke of the above-mentioned movement of the table T was set to 400 mm. As the table T, a table having a thickness of 90 mm and high rigidity was used.
 次いで、図7(a)に示す位置に配置されたテーブルTを、前記延在方向に沿ってシムS1側へ向けて10mm/Sで押し、ロードセルを用いて、その転がり抵抗を測定した。結果を、図8(a)のグラフE1として示す。 Next, the table T arranged at the position shown in FIG. 7A was pushed at 10 mm / S toward the shim S1 side along the extending direction, and the rolling resistance was measured using a load cell. The result is shown as a graph E1 in FIG.
 [実施例2]
 また、実施例2として、前記シムS1の代わりに、一方の軌道台1Aの側面における端部に、シムS2を設けた。尚、シムS2の厚さは、0.1mmに設定した。それ以外は、実施例1と同様の条件で測定を行った。結果を、図8(b)のグラフE2として示す。
[Example 2]
Further, as Example 2, a shim S2 was provided at the end of the side surface of one way 1A instead of the shim S1. Note that the thickness of the shim S2 was set to 0.1 mm. Other than that, it measured on the conditions similar to Example 1. FIG. The result is shown as a graph E2 in FIG.
 [比較例1]
 また、比較例1として、球面軸受機構を有していない公知の直動ガイドを用いた。それ以外は、実施例1と同様の条件で測定を行った。結果を、図8(a)のグラフC1として示す。
[Comparative Example 1]
Further, as Comparative Example 1, a known linear guide having no spherical bearing mechanism was used. Other than that, it measured on the conditions similar to Example 1. FIG. A result is shown as graph C1 of Fig.8 (a).
 [比較例2]
 また、比較例2として、球面軸受機構を有していない公知の直動ガイドを用いた以外は、実施例2と同様の条件で測定を行った。結果を、図8(b)のグラフC2として示す。
[Comparative Example 2]
Further, as Comparative Example 2, measurement was performed under the same conditions as in Example 2 except that a known linear guide having no spherical bearing mechanism was used. A result is shown as graph C2 of FIG.8 (b).
 図8(a)、(b)に示されるように、実施例1,2においては、テーブルTの転がり抵抗が全体に安定しており、特に、テーブルTがシムS1,S2付近に達した際の転がり抵抗が確実に抑制されていることがわかった。すなわち、直動ガイド10(30,80,100)の球面軸受機構によりモーメント荷重が確実に除去されていることが確認された。
 一方、比較例1,2においては、テーブルTの転がり抵抗が大きく変動し、特に、テーブルTがシムS1,S2付近に達した際の転がり抵抗が顕著に増大していることがわかった。
As shown in FIGS. 8A and 8B, in Examples 1 and 2, the rolling resistance of the table T is stable as a whole, particularly when the table T reaches the vicinity of the shims S1 and S2. It was found that the rolling resistance of the was reliably suppressed. That is, it was confirmed that the moment load was reliably removed by the spherical bearing mechanism of the linear motion guide 10 (30, 80, 100).
On the other hand, in Comparative Examples 1 and 2, it was found that the rolling resistance of the table T fluctuated greatly. In particular, the rolling resistance when the table T reached the vicinity of the shims S1 and S2 was significantly increased.

Claims (11)

  1.  延在する軌道体と、前記軌道体の延在方向に相対移動可能な移動体と、前記移動体に保持され前記相対移動に用いられる複数の転動体と、を備えた運動装置であって、
     前記移動体は、前記軌道体側とは反対側に向け膨出する凸球面部を備えた内ケーシング部材と、
     前記内ケーシング部材の外面側に配設されるとともに前記凸球面部に対応して窪む凹球面部を備えた外ケーシング部材と、を有し、
     前記内ケーシング部材及び前記外ケーシング部材を備えた球面軸受機構が形成されていることを特徴とする運動装置。
    An exercise device comprising: an extending track body; a moving body that is relatively movable in the extending direction of the track body; and a plurality of rolling elements that are held by the moving body and used for the relative movement,
    The movable body includes an inner casing member having a convex spherical surface portion that bulges toward the side opposite to the track body side;
    An outer casing member that is disposed on the outer surface side of the inner casing member and has a concave spherical portion that is recessed corresponding to the convex spherical portion;
    An exercise device comprising a spherical bearing mechanism including the inner casing member and the outer casing member.
  2.  請求項1に記載の運動装置であって、
     前記内ケーシング部材の前記凸球面部は、実質的に中心を同じくするとともに半径の異なる複数の凸球面を備え、
     前記外ケーシング部材の前記凹球面部は、前記凸球面に夫々対向配置され、実質的に中心を同じくするとともに半径の異なる複数の凹球面を備えることを特徴とする運動装置。
    The exercise device according to claim 1,
    The convex spherical portion of the inner casing member includes a plurality of convex spherical surfaces having substantially the same center and different radii,
    The apparatus according to claim 1, wherein the concave spherical surface portion of the outer casing member includes a plurality of concave spherical surfaces that are opposed to the convex spherical surface and have substantially the same center and different radii.
  3.  請求項2に記載の運動装置であって、
     前記複数の凸球面が、第1凸球面と、前記第1凸球面を囲み該第1凸球面より大径の第2凸球面と、を含み、
     前記複数の凹球面が、前記第1凸球面に対向配置される第1凹球面と、前記第2凸球面に対向配置される第2凹球面と、を含むことを特徴とする運動装置。
    The exercise device according to claim 2,
    The plurality of convex spherical surfaces include a first convex spherical surface, and a second convex spherical surface surrounding the first convex spherical surface and having a larger diameter than the first convex spherical surface;
    The exercise device, wherein the plurality of concave spherical surfaces include a first concave spherical surface disposed opposite to the first convex spherical surface and a second concave spherical surface disposed opposite to the second convex spherical surface.
  4.  請求項1~3のいずれか1項に記載の運動装置であって、
     前記凹球面部が、前記凸球面部に向けて進退可能とされていることを特徴とする運動装置。
    The exercise device according to any one of claims 1 to 3,
    The exercise device characterized in that the concave spherical surface portion can be advanced and retracted toward the convex spherical surface portion.
  5.  請求項4に記載の運動装置であって、
     前記凹球面部が、前記外ケーシング部材にねじ作用で嵌め合わされていることを特徴とする運動装置。
    The exercise device according to claim 4,
    The exercise device characterized in that the concave spherical surface portion is fitted to the outer casing member by a screw action.
  6.  請求項1~5のいずれか1項に記載の運動装置であって、
     前記凸球面部が、実質的に中心を同じくするとともにこの中心周りに互いに間隔を開けて配置された複数の凸球面を備え、
     前記軌道体を挟むように背向配置された前記凸球面の対が複数形成され、
     前記凹球面部は、実質的に中心を同じくするとともに前記凸球面に夫々対向配置された複数の凹球面を備えることを特徴とする運動装置。
    The exercise device according to any one of claims 1 to 5,
    The convex spherical portion includes a plurality of convex spherical surfaces that are substantially the same in center and are spaced from each other around the center;
    A plurality of pairs of the convex spherical surfaces that are arranged in the back so as to sandwich the track body are formed,
    The exercise device according to claim 1, wherein the concave spherical portion includes a plurality of concave spherical surfaces that are substantially the same in center and are respectively disposed opposite to the convex spherical surface.
  7.  請求項6に記載の運動装置であって、
     一の前記凸球面の対の凸球面同士が互いに背向配置される方向が、他の前記凸球面の対の前記方向に対して、直交するように設定されていることを特徴とする運動装置。
    The exercise device according to claim 6,
    An exercise apparatus characterized in that a direction in which the convex spherical surfaces of one convex spherical pair are arranged to face each other is orthogonal to the direction of the other convex spherical pair .
  8.  請求項1~7のいずれか1項に記載の運動装置であって、
     前記転動体を前記軌道体と前記移動体との間で転走させる負荷転動体転走路が、前記軌道体の延在方向に沿って複数設けられており、
     これら複数の負荷転動体転走路から同一距離の中心軸上に、前記球面軸受機構の球面の中心が配置されていることを特徴とする運動装置。
    The exercise device according to any one of claims 1 to 7,
    A plurality of load rolling element rolling paths for rolling the rolling elements between the track body and the moving body are provided along the extending direction of the track body,
    An exercise device characterized in that the center of the spherical surface of the spherical bearing mechanism is disposed on a central axis at the same distance from the plurality of load rolling element rolling paths.
  9.  請求項1~7のいずれか1項に記載の運動装置であって、
     前記転動体を前記軌道体と前記移動体との間で転走させる負荷転動体転走路が、前記軌道体の中心軸を中心とした螺旋状に設けられており、
     前記中心軸上に、前記球面軸受機構の球面の中心が配置されていることを特徴とする運動装置。
    The exercise device according to any one of claims 1 to 7,
    A loaded rolling element rolling path that causes the rolling element to roll between the track body and the moving body is provided in a spiral shape centering on a central axis of the track body,
    An exercise device characterized in that a spherical center of the spherical bearing mechanism is disposed on the central axis.
  10.  前記移動体が前記軌道体の延在方向に相対的に平行移動する直動ガイド、ボールスプライン又はボールブッシュのいずれかであることを特徴とする請求項1~8のいずれか1項に記載の運動装置。 9. The linear motion guide, ball spline, or ball bush that moves relative to the extending direction of the track body, the moving body is any one of claims 1 to 8. Exercise equipment.
  11.  前記移動体が前記軌道体にねじ作用で嵌め合わされて前記軌道体の延在方向に相対的に回転移動するボールねじであることを特徴とする請求項1~7、9のいずれか1項に記載の運動装置。 10. The ball screw according to claim 1, wherein the moving body is a ball screw that is fitted to the track body by a screw action and relatively rotates in the extending direction of the track body. The exercise device described.
PCT/JP2009/053262 2008-02-28 2009-02-24 Motion device WO2009107602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010500689A JP5324559B2 (en) 2008-02-28 2009-02-24 Exercise equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008047628 2008-02-28
JP2008-047628 2008-02-28

Publications (1)

Publication Number Publication Date
WO2009107602A1 true WO2009107602A1 (en) 2009-09-03

Family

ID=41015996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053262 WO2009107602A1 (en) 2008-02-28 2009-02-24 Motion device

Country Status (3)

Country Link
JP (1) JP5324559B2 (en)
TW (1) TWI438351B (en)
WO (1) WO2009107602A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052058A (en) * 2008-08-26 2010-03-11 Thk Co Ltd Motion guide device
NL2011522A (en) * 2012-10-01 2014-04-02 Festo Ag & Co Kg LINEAR GUIDANCE DEVICE.
DE202014101969U1 (en) * 2014-04-25 2014-05-21 Mfp Gesellschaft Für Engineering Mbh Linear guidance system with tolerance compensation
EP3578838A1 (en) * 2018-06-07 2019-12-11 Fives Cinetic Linear guidance device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321058B2 (en) * 1973-06-18 1978-06-30
JPS62180113A (en) * 1986-02-05 1987-08-07 Nippon Thompson Co Ltd Pre-load aligning device of bearing for linear motion
JPS62188636A (en) * 1986-02-12 1987-08-18 Hiroshi Teramachi Linear guide device
JPH11201162A (en) * 1998-01-14 1999-07-27 Nippon Seiko Kk Circulating type rolling guide device
JP2003042152A (en) * 2001-07-25 2003-02-13 Nsk Ltd Ball screw with aligning structure and bearing unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321058B2 (en) * 1973-06-18 1978-06-30
JPS62180113A (en) * 1986-02-05 1987-08-07 Nippon Thompson Co Ltd Pre-load aligning device of bearing for linear motion
JPS62188636A (en) * 1986-02-12 1987-08-18 Hiroshi Teramachi Linear guide device
JPH11201162A (en) * 1998-01-14 1999-07-27 Nippon Seiko Kk Circulating type rolling guide device
JP2003042152A (en) * 2001-07-25 2003-02-13 Nsk Ltd Ball screw with aligning structure and bearing unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052058A (en) * 2008-08-26 2010-03-11 Thk Co Ltd Motion guide device
NL2011522A (en) * 2012-10-01 2014-04-02 Festo Ag & Co Kg LINEAR GUIDANCE DEVICE.
DE202014101969U1 (en) * 2014-04-25 2014-05-21 Mfp Gesellschaft Für Engineering Mbh Linear guidance system with tolerance compensation
DE102014116178A1 (en) 2014-04-25 2015-10-29 Mfp Gesellschaft Für Engineering Mbh Linear guidance system with tolerance compensation
EP3578838A1 (en) * 2018-06-07 2019-12-11 Fives Cinetic Linear guidance device
FR3082132A1 (en) * 2018-06-07 2019-12-13 Fives Cinetic LINEAR GUIDANCE DEVICE

Also Published As

Publication number Publication date
TW201002955A (en) 2010-01-16
JPWO2009107602A1 (en) 2011-06-30
TWI438351B (en) 2014-05-21
JP5324559B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
KR102266670B1 (en) Vibration-proof structure for rotating body
TW201405023A (en) Single-axis actuator
US10302131B2 (en) Tapered roller bearing
JP5324559B2 (en) Exercise equipment
JPH0581766B2 (en)
KR20080084893A (en) Ball bearing for spindle pivot section of machine tool, and spindle pivot device of machine tool, using the same
TWI651477B (en) Motion guiding device
KR101539003B1 (en) Roller hemming device
US10914364B2 (en) Relative translation assembly
CN203453408U (en) Self-locking elevating adjusting device with precision
CN109160460B (en) Marine crankshaft V-shaped detection and adjustment device
JPWO2009011282A1 (en) Motion guide device and screw device
JPWO2005038301A1 (en) Roller screw
JP4784166B2 (en) Linear motion device
JP5061568B2 (en) Ball screw device
JP4973776B2 (en) Linear motion device
JP2005061433A (en) Multi-point contacting ball bearing
JP2003227516A (en) Bearing unit
CN210769821U (en) Combined bearing and assembling die thereof
US20230150043A1 (en) Actively preloaded drive-guideway system
JP5961925B2 (en) Ball screw device and manufacturing method thereof
RU2297563C2 (en) Electric drive on the base of a gear with long thread rolls
Thomas et al. Selecting and Applying Rolling Element Linear Bearings and Guides
CN210255163U (en) Benchmark positioning mechanism for numerical control machining
US20240183400A1 (en) Multi-row bearing and bearing unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010500689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09713739

Country of ref document: EP

Kind code of ref document: A1