JPS62188636A - Linear guide device - Google Patents

Linear guide device

Info

Publication number
JPS62188636A
JPS62188636A JP61026941A JP2694186A JPS62188636A JP S62188636 A JPS62188636 A JP S62188636A JP 61026941 A JP61026941 A JP 61026941A JP 2694186 A JP2694186 A JP 2694186A JP S62188636 A JPS62188636 A JP S62188636A
Authority
JP
Japan
Prior art keywords
bearing body
movable body
guide device
linear guide
arcuate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61026941A
Other languages
Japanese (ja)
Other versions
JPH0416296B2 (en
Inventor
Hiroshi Teramachi
博 寺町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61026941A priority Critical patent/JPS62188636A/en
Publication of JPS62188636A publication Critical patent/JPS62188636A/en
Publication of JPH0416296B2 publication Critical patent/JPH0416296B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/0642Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/0063Connecting non-slidable parts of machine tools to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/001Bearings for parts moving only linearly adjustable for alignment or positioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/002Elastic or yielding linear bearings or bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/008Systems with a plurality of bearings, e.g. four carriages supporting a slide on two parallel rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned

Abstract

PURPOSE:To relieve an accuracy error of a guide shaft to be absorbed by the relative displacement between a bearing main unit and a movable unit, by connecting the bearing main unit with the movable unit through a mounting bolt penetrating through the movable unit and a space holding seat and connecting with the bearing main unit. CONSTITUTION:A space holding seat 10 is interposed between the upper surface of a bearing main unit 2 and the bottom surface of a movable unit 3 so that a clearance 8 for relieving the deformation to be absorbed is positively formed between the both units 2, 3. And the bearing main unit 2 is connected with the movable unit 3 in a condition that they hold the clearance 8 by connecting a mounting bolt 9, which penetrates through a through hole 3a drilled in the movable unit 3 and a through hole 11 drilled in the space holding seat 10, to be screwed to a threaded hole 23 provided in the upper part of the bearing main unit 2. As the result, a load of the bearing main unit 2 received from the outside due to an accuracy error of a guide shaft 1 can be absorbed and relieved by the relative displacement between the bearing main unit 2 and the movable unit 3 in accordance with elastic deformation of the mounting bolt.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明は直線案内装置に関するもので、更に詳細には
、NCマシン等の工作機械におけるX・Y−Z軸、自動
工具交換装置、自動溶接様、射出成形例、■業用ロボッ
ト笠各種一般産!Ijl械のスライド部において多用さ
れる直線案内装置に関する乙のである。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a linear guide device, and more specifically, it relates to a linear guide device, and more specifically, to an X-YZ axis in a machine tool such as an NC machine, an automatic tool changer, and an automatic welding , injection molding examples, ■Industrial robot hats, various general products! This article relates to a linear guide device that is often used in the slide section of IJI machines.

[従来の技術] 従来、この種直線案内装置として、軸方向に沿、ってボ
ールの転走溝を右づる案内軸と、上記転走溝を転走Jる
ボールの無限軌道を形成する負荷ボール溝と無負荷ボー
ル溝とを有するベアリング本体と、上記ベアリング本体
に取付けられ、上記ボールを介して上記案内軸に沿って
直線往復運動を(1う可動体とで構成される直v;A案
内装置が知られている。
[Prior Art] Conventionally, this type of linear guide device includes a guide shaft that moves the ball rolling groove to the right along the axial direction, and a load that forms an endless track for the ball that rolls in the rolling groove. A bearing body having a ball groove and a no-load ball groove, and a movable body that is attached to the bearing body and causes linear reciprocating motion along the guide shaft via the balls. Guidance devices are known.

[発明が解決しようとげる問題点] しかしながら、従来のこの種の直線案内装置においては
、上記ベアリング本体と可動体とが直接取付はボルト等
の取イ」け手段にて固定されているため、上記案内軸自
体の狂い、案内軸を含む案内軌jd面の平面度の狂いや
レベルの誤差等の精度誤差により特にベアリング本体の
ボール部に無J![!/E荷重がかかり、そのため、上
記可動体の直線運動を円滑に行うことができないばかり
か寿命が低下するという不都合がある。また、可動体に
取付けられるテーブルに狂いが生ずる場合にも同様にベ
アリング本体に無理な内部荷重がかかるため、直線運動
精度の低下及び寿命の低下が生じるという問題があった
[Problems to be Solved by the Invention] However, in this type of conventional linear guide device, the bearing body and the movable body are fixed by a removal means such as a bolt instead of being directly attached. Due to accuracy errors such as the deviation of the guide shaft itself, the deviation of the flatness of the guide track jd surface including the guide shaft, and the level error, there may be no J in the ball part of the bearing body! [! /E load is applied, which is disadvantageous in that not only the linear motion of the movable body cannot be performed smoothly but also the life span is shortened. Further, if the table attached to the movable body becomes misaligned, an unreasonable internal load is similarly applied to the bearing body, resulting in a problem of decreased linear motion accuracy and shortened service life.

[問題点を解決するための手段コ この発明は上記事情に鑑みなされたしので・、上記技術
的課題を解決Jるために、上記ベアリング本体と可動体
との間に変形吸収緩和用の隙間を形成すると共に、この
隙間によりベアリング本体と可動体間の相対変位を可能
にすることにより、案内軸の精度誤差等を吸収して可動
体の直線運動精度を向上させるようにしたことを特徴と
する直線案内装置を提供しようとするbのである。
[Means for Solving the Problems] This invention was made in view of the above circumstances.In order to solve the above technical problems, a gap for deformation absorption and relaxation is provided between the bearing body and the movable body. This gap allows for relative displacement between the bearing body and the movable body, thereby absorbing accuracy errors of the guide shaft and improving the linear motion accuracy of the movable body. The purpose of this paper is to provide a linear guide device that does the following.

すなわら、この発明は、軸方向に沿ってボールの転走溝
を右する案内軸と、上記転走溝を転走するボールの無限
軌道を形成する負荷ボール溝と無負荷ボール溝どを右す
るベアリング本体と、上記ベアリング本体に取イ4けら
れ、上記ボールを介して上記案内軸に沿って直線往復運
動を行う可動体とからなる直線案内装置において、上記
ベアリング本体と可動体との間に隙間を形成すべく間隔
保持座を介在すると共に、上記ベアリング本体と可動体
とを上記可動体及び間隔保持座を目通して上記ベアリン
グ本体にねじ結合する取付けボルトにて連結して、上記
案内軸の精度誤着を上記取f1けボルトの弾性変形に伴
う1記ベアリング本体と可動体間の相対変位にJ:り吸
収緩和し得るようにしだことを特徴とする直線案内装置
をも7供しようとするらのである。
In other words, the present invention provides a guide shaft that guides the rolling groove of the ball along the axial direction, and a loaded ball groove and a non-loaded ball groove that form an endless track for the ball rolling in the rolling groove. In a linear guide device consisting of a right bearing body and a movable body that is attached to the bearing body and performs linear reciprocating motion along the guide shaft via the balls, the bearing body and the movable body are A spacing seat is interposed to form a gap therebetween, and the bearing body and the movable body are connected by a mounting bolt screwed to the bearing body through the movable body and the spacing seat, and the guide The present invention also provides a linear guide device characterized in that misalignment of the shaft can be absorbed and alleviated by the relative displacement between the bearing body and the movable body caused by the elastic deformation of the mounting bolt. I'm trying to do it.

この弁明において、上記間隔保持座のベアリング本体側
及び又(ま可+J+体側の面に円弧状凸面が形成される
と共に、上記ベアリング本体及び又は可O」体の間隔保
持Pj5どの当接面には上記円弧状凸面と18沃づる円
弧状凹面が形成され、この際、円弧状凸面は球面状凸面
あるい(、L円弧状凸条面にて形成され、また、円弧状
凹面しこれに対応して球面状凹面、あるいは、円弧状凹
条面にて形成される。
In this defense, an arcuate convex surface is formed on the surface of the bearing body side and the (maka+J+ body side) of the spacing seat, and the abutment surface of the spacing Pj5 of the bearing body and/or the spacing body is An arcuate concave surface is formed which is 18 degrees parallel to the arcuate convex surface, and in this case, the arcuate convex surface is formed by a spherical convex surface or an L arcuate convex surface, and an arcuate concave surface corresponding to the convex surface is formed. It is formed with a spherical concave surface or an arcuate concave surface.

また、ベアリング本体側及び又は可動体側に形成される
円弧状凸面あるいは球面状凸面は直接ベアリング本体、
可動体に一体に形成してもよいが、ワッシャ等の別部材
にて形成ずれば加工上好ましい。
In addition, the arcuate convex surface or spherical convex surface formed on the bearing body side and/or the movable body side can be directly connected to the bearing body,
Although it may be formed integrally with the movable body, it is preferable for processing to form it as a separate member such as a washer.

[作用コ 上記技術的手段は次のように作用J゛る。[Action Co. The above technical means works as follows.

ベアリング本体と可動体との間に変形吸収緩和用の隙間
が形成されると共に、取(−J iJポル1〜&よ弾f
f変形を有するため、案内軸の1?+瓜誤差等によって
ベアリング本体の内部にた[ 1111な荷φが生じた
時、上記ボルトの弾性変形に汁〕ベアリング本体と可動
体との相対変位(Q体向には間隔保持座の円弧状凸面と
ベアリング本体及び又(よ可動体の円弧状凹面どの1習
接作用にJ、る変位)により、案内軸の精度誤差等がベ
アリング本体と可動体間にて吸収緩和される。
A gap for deformation absorption and relaxation is formed between the bearing body and the movable body, and the
1 of the guide shaft due to f deformation. + Relative displacement between the bearing body and the movable body (when a load φ of 1111 is generated, the elastic deformation of the bolt occurs) inside the bearing body due to misalignment, etc. Due to the tangential action of the convex surface, the bearing body, and the circular concave surface of the movable body, errors in accuracy of the guide shaft are absorbed and alleviated between the bearing body and the movable body.

[実施例1 以下にこの発明の実施例を添附図面に1.tいて訂細に
説明する。
[Example 1] Examples of the present invention are shown below in the accompanying drawings. I will explain it in detail later.

第1図はこの発明の直線案内装置の一例を示1概略斜視
図で、この発明の直線案内装置は、軸方向に沿って後述
するボール4の転走溝12を有する案内@1と、第6図
に示づように、転走溝1aを転走づるボール1の無限軌
道を形成する負荷ボール満22と無負荷ボール溝21と
を右づるベアリング本体2と、このベアリング本体2に
取(Jけられ、ボール4を介して案内軸1に沿って直線
往復運動を行う可動1木3とで主要部が構成され−でい
る。
FIG. 1 is a schematic perspective view showing an example of the linear guide device of the present invention. As shown in Fig. 6, the loaded ball groove 22 and the unloaded ball groove 21 forming the endless track of the ball 1 rolling in the rolling groove 1a are attached to the right-handed bearing body 2 and the bearing body 2 ( The main part is composed of a movable tree 3 which is reciprocated in a straight line along a guide shaft 1 via a ball 4.

F記ベアリング本体2は、第2図ないし第4図に示すよ
うに、下面にI’、4g424を設けたほぼコ形状に形
成されて案内軸1の上部に摺動可能に魔合さるようにな
っており、更に、上記凹溝24の左右内面には案内軸1
の上部両側に形成されたボール4の転走溝であるngJ
ボール転走溝1a、 1aにそれぞれ相対向して断面円
弧状の2状の負荷ボール満22゜22が形成され、また
、各負荷ボール溝22の衷面倒には無負荷ボール満21
が案内軸方向に沿って穿設されている(第6図参照)。
As shown in FIGS. 2 to 4, the bearing body 2 marked F is formed into a substantially U-shape with I' and 4g424 provided on the lower surface so that it can be slidably fitted onto the upper part of the guide shaft 1. Furthermore, a guide shaft 1 is provided on the left and right inner surfaces of the groove 24.
ngJ, which is the rolling groove for the ball 4 formed on both sides of the upper part of the
Two loaded balls 22° 22 each having an arcuate cross section are formed facing each other in the ball rolling grooves 1a, 1a, and a non-load ball 21 is formed on the side surface of each loaded ball groove 22.
is bored along the guide shaft direction (see Fig. 6).

そして、上記負荷ボール溝22には、多数のボール4が
それぞれボール保持器5をによって整列した状態で配設
されている(第6図及び第7図参照)。また、上記ベア
リング本体2の摺動力向の両端面には、上記負荷ボール
溝22と無負荷ボール溝21との聞でボール4を案内す
る案内溝6aを右する一対の側W6が取f4りられてい
る。この場合、上記側谷6は硬質の合成樹脂等にて形成
され、そして、ベアリング本体2の前、後端面にボルト
6bによって取付けられている。なお、符号7は側蓋6
に取付けられたグリースニップルである。
A large number of balls 4 are arranged in the load ball groove 22 with their respective ball holders 5 aligned (see FIGS. 6 and 7). Further, on both end faces of the bearing body 2 in the sliding direction, a pair of sides W6 are provided on the right side of a guide groove 6a that guides the ball 4 between the loaded ball groove 22 and the unloaded ball groove 21. It is being In this case, the side valleys 6 are made of hard synthetic resin or the like, and are attached to the front and rear end surfaces of the bearing body 2 with bolts 6b. In addition, the code 7 is the side cover 6.
This is a grease nipple attached to the

一方、上記ベアリング本体2の上面と可動fA 3の下
面との間には両各間に変形吸収緩和用の隙間8を積極的
に形成すべく間隔保持座10が介在されており、この間
隔保持座10に穿設されたQ通孔11及び上記可動体3
に穿設された貫通孔3aを貫通りる取付はポルl−9を
ベアリング本体2の上部に設けられたねじ孔23にねじ
結合づることによって、ベアリング本体2と可動体3と
が隙間8を保持した状態で連結されている。この場合、
上記間隔保持座10は、円盤状基部12と、この円盤状
基部12の下面に突設される球面状凸面13と、円盤状
基部12と球面状凸面13の中央部を貫通ずる日通孔1
1とで構成されており(第5図参照)、ベアリング本体
2の間隔保持座10の当接面には上記球面状凸面13と
摺接する球面状凹面14が形成され、球面状凸面13と
球面状凹面14とが摺接した状態で取付はボルト9によ
りベアリング本体2と可動体3とが連結されている。な
おこの場合、上記隙間8の1法は取付はボルト9の有す
る弾性変形の許容範囲内において設定される。したがっ
て、例えば上記案内軸1の精I良誤差等によってベアリ
ング本体2が外部から荷C[を受【)ると、その荷車に
よって取付けボルト9が弾性変形すると共に、ベアリン
グ本体2と可動体3との間の相対変位にJ:す、上記外
部からの荷車を吸収緩和づることができ、案内軸方向及
びこの@方向に対して直交する方向等いかなる方向の精
度誤差を吸収緩和することができ、ベアリング本体2及
び可動(A3の直線運動精度の向上を図ることができる
On the other hand, a spacing seat 10 is interposed between the upper surface of the bearing body 2 and the lower surface of the movable fA 3 in order to actively form a gap 8 between the two for absorbing and relaxing deformation, and this spacing is maintained. Q through hole 11 bored in seat 10 and the movable body 3
For installation through the through hole 3a drilled in the bearing body 2, by screwing the pole l-9 into the screw hole 23 provided in the upper part of the bearing body 2, the bearing body 2 and the movable body 3 are connected with the gap 8. It is connected in a retained state. in this case,
The spacer 10 includes a disc-shaped base 12, a spherical convex surface 13 protruding from the lower surface of the disc-shaped base 12, and a day hole 1 passing through the center of the disc-shaped base 12 and the spherical convex surface 13.
1 (see Fig. 5), a spherical concave surface 14 is formed on the abutment surface of the spacing seat 10 of the bearing body 2 and is in sliding contact with the spherical convex surface 13, and the spherical convex surface 13 and the spherical surface The bearing body 2 and the movable body 3 are connected by bolts 9 in a state in which the bearing body 2 and the movable body 3 are in sliding contact with the shaped concave surface 14. In this case, the above-mentioned gap 8 is installed within the allowable range of elastic deformation of the bolt 9. Therefore, for example, when the bearing body 2 receives a load C from the outside due to an error in precision of the guide shaft 1, the mounting bolt 9 is elastically deformed by the cart, and the bearing body 2 and the movable body 3 are The relative displacement between It is possible to improve the linear motion accuracy of the bearing body 2 and the movable member (A3).

なお、上記案内軸1は適宜間隔をJjいて穿設された取
付は孔(図示せず)を貫通4る固定ボルト30をもって
ベッド等の固定基部31に固定されている。
The guide shaft 1 is fixed to a fixed base 31 of a bed or the like using fixing bolts 30 that pass through holes (not shown), which are drilled at appropriate intervals.

第8図ないし第11図はこの発明の第二実施例を示す乙
ので、案内軸方向と直交する方向の精度誤差等を吸収緩
和するようにした場合である。寸なわら、矩形状基部1
5の下面に円弧状凸条面16を形成したいわゆるかまぼ
こ状の1!IVA保持座10を案内軸1と平行にした状
態にして上記ベアリング本体2と可動体3との間に介在
さUて取(−1LJボルト9にて連結した場合である。
8 to 11 show a second embodiment of the present invention, in which accuracy errors in a direction orthogonal to the guide shaft direction are absorbed and alleviated. Small, rectangular base 1
5 has a so-called semicylindrical shape with an arcuate convex surface 16 formed on the lower surface! This is a case in which the IVA holding seat 10 is placed parallel to the guide shaft 1 and is interposed between the bearing body 2 and the movable body 3 and connected by a U lever (-1LJ bolt 9).

この場合、上記ベアリング本体2の上面に間隔保持座1
0の円弧状凸条面16と摺接する円弧状四条面17が形
成されている。
In this case, the spacer 1 is placed on the upper surface of the bearing body 2.
A four-striped arc surface 17 is formed that slides into contact with the arc-shaped convex surface 16 of 0.

したがって、間隔保1!1座10ど円弧状凹条面17ど
のIS接作用によって案内軸1)向と直交りる方向の精
111を誤差を吸収π相することができる。なJjこの
場合、第11図に示すJ:うに、上記G1荷ボール溝2
2の端部側に比較的大きくクラウニング25を形成Jる
ことによって案内軸Jj向の精1宴誤ηを吸収緩和する
ことがでさる。
Therefore, by the IS contact action of the spacer 1!1 seat 10 and the arcuate concave surface 17, the precision 111 in the direction orthogonal to the guide shaft 1) can be shifted to the π phase to absorb errors. Jj In this case, J as shown in FIG.
By forming a relatively large crowning 25 on the end side of the guide shaft 2, it is possible to absorb and alleviate the error η in the direction of the guide axis Jj.

第12図ないし第14図はこの発明の第三実施例を示す
しので、案内軸方向の端境誤差を吸収緩和JるJ、うに
したJA合である。りなわ1つ、上記第二実施例と同様
にかまぼこ状に形成された間隔保持座10を案内軸1と
直交づる状態にして上記ベアリング本体2と可動体3と
の間に介在させて取付はボルト9により連結した場合で
ある。この場合、上記ベアリング本体2の上面に間隔保
持座10の円弧状凸条面16と摺接する円弧状凹条面1
7が形成されている。したがって、間隔保持座10の円
弧状凸条面16と円弧状凹条面17との贋接作用によっ
て案内軸方向の精度誤差を吸収緩和することができる。
12 to 14 show a third embodiment of the present invention, which is a JA case in which edge errors in the direction of the guide shaft are absorbed and alleviated. As in the second embodiment, the distance retaining seat 10, which is formed in a semicylindrical shape, is placed perpendicularly to the guide shaft 1 and interposed between the bearing main body 2 and the movable body 3. This is the case where they are connected by bolts 9. In this case, an arcuate grooved surface 1 slidingly contacts the arcuate convex surface 16 of the spacer 10 on the upper surface of the bearing main body 2.
7 is formed. Therefore, the accuracy error in the direction of the guide shaft can be absorbed and alleviated by the contact action between the arcuate convex stripe surface 16 and the arcuate concave stripe surface 17 of the spacer 10.

なおこの場合、案内軸方向と直交する方向の精度誤差は
、案内’Ml 1どベアリング本体2との間に介在され
るボール4が4列のアンギュラコンタクト外接となり、
自由度を右する自a1調整構造となるため、案内軸1に
対する直交方向の粘度誤差は吸収緩和される(第14図
参照)。
In this case, the accuracy error in the direction perpendicular to the guide axis direction is that the balls 4 interposed between the guide 'M1 and the bearing body 2 are circumscribed by four rows of angular contacts,
Since the self-a1 adjustment structure has a right degree of freedom, the viscosity error in the direction perpendicular to the guide shaft 1 is absorbed and alleviated (see FIG. 14).

、L記第二及び第三実/Illにおいてその他の部分は
上記第一実施例と同じであるので、同一部分には同一符
号を付してその説明は省略7る。
, L, the other parts in the second and third embodiments/Ill are the same as in the first embodiment, so the same parts are given the same reference numerals and their explanation will be omitted.

上記各実施例ではいずれも間隔保持座10に設けられた
球面状凸面13又は円弧状凸条面16とI8接する球面
状四面14又は円弧状四条面17をベアリング本体2の
上面に形成した場合について説明したが、必ずしもベア
リング本体2にのみ球面状凹面14又は円弧状凹条面1
7を形成したものに限ら、ず、間隔保持座10の球面状
凸面13又は円弧状凸条面16を上向きにし、上記可動
体3の下面に球面状凹面14又は円弧状凹条面17を形
成したもの(第15図参照)、あるいは、間隔保持座1
0の上下面に球面状凸面13又は円弧状凸条面16を形
成し、ベアリング本体2の上面及び可りJ体3の下面の
両方にそれぞれ球面状凸面13又は円弧状凸条面16と
ぽ接する球面状凹面14又は円弧状四条面17を形成し
たらのであってもよい。このように上下面に)習接部を
設りることにより、より一層精度誤差の吸収緩和を円滑
に行うことができる。
In each of the above embodiments, four spherical surfaces 14 or four arcuate surfaces 17 that are in contact with the spherical convex surface 13 or arcuate convex surface 16 provided on the spacing seat 10 at I8 are formed on the upper surface of the bearing body 2. As explained above, the spherical concave surface 14 or the arcuate concave surface 1 is not necessarily provided only on the bearing body 2.
7, the spherical convex surface 13 or the arcuate convex stripe surface 16 of the spacer 10 faces upward, and the spherical concave surface 14 or the arcuate concave stripe surface 17 is formed on the lower surface of the movable body 3. (see Figure 15), or spacer 1
A spherical convex surface 13 or an arcuate convex surface 16 is formed on the upper and lower surfaces of the bearing body 2, and a spherical convex surface 13 or an arcuate convex surface 16 is formed on both the upper surface of the bearing body 2 and the lower surface of the flexible J body 3, respectively. It is also possible to form a concave spherical surface 14 or a four-striped arc surface 17 in contact with each other. By providing the contact portions on the upper and lower surfaces in this way, accuracy errors can be absorbed and alleviated even more smoothly.

また、上記実施例はベアリング本体2の上面及び又は可
動体3の下面に球面状凹面14又は円弧状凹条面17を
形成した場合について説明したが、必ずししこの構造に
する必盟はなく、球面状凹面14又は円弧状四条面17
を形成したワッシャ19をベアリング本体2の上面及び
又は可動体3の下面に配設してもよく、このようにワッ
シャ19を使用することににす、ベアリング本体2自体
あるいは可動体3自体に何等加工を施ずことなく簡単に
直線案内装置を組立てることができる(第16図及び第
17図参照)。
Further, in the above embodiment, the case where the spherical concave surface 14 or the arcuate concave surface 17 is formed on the upper surface of the bearing body 2 and/or the lower surface of the movable body 3 has been described, but this structure is not necessarily required. , spherical concave surface 14 or arcuate four-striped surface 17
A washer 19 having a shape formed thereon may be disposed on the upper surface of the bearing body 2 and/or on the lower surface of the movable body 3. If the washer 19 is used in this way, there is no need to attach anything to the bearing body 2 or the movable body 3 itself. The linear guide device can be easily assembled without any machining (see FIGS. 16 and 17).

し発明の効果] 以上に説明したにうに、この発明の直線案内装置によれ
ば、ベアリング本体と可動体との間に隙間を形成Jべく
間隔保持座を介在さUると共に、上記ベアリング本体と
可動体とを弾性を右づる取付リボルトにて連結してなる
ため、以下のような効果が1「Iられる。
[Effects of the Invention] As described above, according to the linear guide device of the present invention, a spacer is interposed between the bearing body and the movable body to form a gap between the bearing body and the movable body. Since it is connected to the movable body using an elastic mounting bolt, the following effects can be achieved.

1)間隔保1.Il座によりベアリング本体と可動体と
の間に変形吸収縁組用の隙間が形成され、かつ、取(=
Jリボル1〜が弾性を石りるため案内軸の精度誤差(軸
方向及び又は軸方向に対して交差する方向の精I11′
誤差)を吸収緩和して、可動体の直線運動vJ度を向上
さヒることができる。
1) Spacing 1. The Il seat forms a gap for deformation absorption between the bearing body and the movable body, and
Since the J revolvers 1~ have less elasticity, the accuracy error of the guide shaft (the accuracy in the axial direction and/or in the direction crossing the axial direction)
By absorbing and alleviating errors (errors), it is possible to improve the linear motion vJ of the movable body.

2)上記誤差の吸収緩和により装置の組立て時あるいは
使用時に生じる無理な内部荷重を防止することができる
ため、可動体の直線運動を高精度にしかも円滑に行うこ
とができ、スT命の増大が図れる。
2) By absorbing and mitigating the errors mentioned above, it is possible to prevent unreasonable internal loads that occur when assembling or using the device, so the linear motion of the movable body can be performed with high precision and smoothly, increasing the life span. can be achieved.

3)ベアリング本体と可動体との間に間隔保持座を介在
し、これらを取イ4けボルトにて連結するのみでJ、い
ため、取イ1け作業が簡単な上、取(dりに当たって高
精度が要求されない。
3) By interposing a spacing seat between the bearing body and the movable body and connecting them with 4 bolts, the removal work is simple, and the removal work is easy. High precision is not required.

4)構成部材が少なく、低床に製作できる。4) It has fewer components and can be manufactured with a low floor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第一実施例のを示す概略斜視図、第
2図は第一実施例にJハノるベアリング本体を示す平面
図、第3図は第一実施例のべj7リング本体の要部断面
図、第4図は第3図のIV −IV断断面同図第5図は
第一実施例にJlノる間隔保1.′i座の斜視図、第6
Fig. 1 is a schematic perspective view showing the first embodiment of the present invention, Fig. 2 is a plan view showing the bearing body of the first embodiment, and Fig. 3 is the J7 ring main body of the first embodiment. FIG. 4 is a cross-sectional view of the main part of FIG. 3, and FIG. 5 is a cross-sectional view of the main part of FIG. Perspective view of 'i', No. 6
figure

【、上第4図のV[−Vl線に沿う断面図、第7図は
第6図の■矢祝図、第8図は第二実施例にお1づるベア
リング本体の平面図、第9図は第8図のIX −IX断
面図、第10図は第二実施例にd3りる間隔保1、r座
の斜視図、第11図は第二実施例にJハノるベアリング
本体の断面図、第12図は第三実施例におけるベアリン
グ本体を示す平面図、第13図は第三実施例における要
部断面図、第14図は第11図のXIV−XIV断面図
、第15図ないし第17図はこの発明の第四実施例ない
し第六実施例を示1要部断面図である。 符号説明 (1)・・・案内軸 (1a)・・・転走溝 (2)・・・ベアリング本体 (3)・・・可動体 (/I)・・・ボール (8)・・・隙間 (9)・・・取付けボルト (11)・・・負通孔 (13)・・・球面状凸面 (14)・・・球面状凹面 (1G)・・・円弧状凸条面 (17)・・・円弧状凸条面 (19)・・・ワッシャ (21)・・・無負荷ボール満 (22)・・・負荷ボール満 特  許  出  願  人    寺    町  
   待伏  理  人  弁理士   成  瀬  
勝  夫 (他2名)第2図 22:1荷、T、−V五 第5図 第7図 第8図 第16図       19:’77ワ。 1】 第17図 a
[, A sectional view taken along the line V[-Vl in Fig. 4 above, Fig. 7 a cross-sectional view taken along the line V[-Vl in Fig. 6, The figure is a sectional view taken along line IX-IX in Fig. 8, Fig. 10 is a perspective view of the spacing 1 and r seat in the second embodiment, and Fig. 11 is a cross-section of the bearing body in the second embodiment. 12 is a plan view showing the bearing main body in the third embodiment, FIG. 13 is a sectional view of main parts in the third embodiment, FIG. 14 is a sectional view taken along line XIV-XIV in FIG. 11, and FIGS. FIG. 17 is a sectional view of a main part of the fourth to sixth embodiments of the present invention. Description of symbols (1)... Guide shaft (1a)... Rolling groove (2)... Bearing body (3)... Movable body (/I)... Ball (8)... Gap (9)... Mounting bolt (11)... Negative through hole (13)... Spherical convex surface (14)... Spherical concave surface (1G)... Arc-shaped convex surface (17)... ...Circular convex surface (19) ...Washer (21) ...No load ball (22) ...Load ball full patent application person Teramachi
Patent Attorney Naruse
Katsuo (and 2 others) Figure 2 22: 1 cargo, T, -V 5 Figure 5 Figure 7 Figure 8 Figure 16 19: '77 Wa. 1] Figure 17a

Claims (5)

【特許請求の範囲】[Claims] (1)軸方向に沿ってボールの転走溝を有する案内軸と
、上記転走溝を転走するボールの無限軌道を形成する負
荷ボール溝と無負荷ボール溝とを有するベアリング本体
と、上記ベアリング本体に取付けられ、上記ボールを介
して上記案内軸に沿って直線往復運動を行う可動体とか
らなる直線案内装置において、上記ベアリング本体と可
動体との間に隙間を形成すべく間隔保持座を介在すると
共に、上記ベアリング本体と可動体とを上記可動体及び
間隔保持座を貫通して上記ベアリング本体にねじ結合す
る取付けボルトにて連結して、上記案内軸の精度誤差を
上記取付けボルトの弾性変形に伴う上記ベアリング本体
と可動体間の相対変位により吸収緩和し得るようにした
ことを特徴とする直線案内装置。
(1) A bearing body having a guide shaft having a rolling groove for balls along the axial direction, a loaded ball groove and a non-loaded ball groove forming an endless track for balls rolling in the rolling groove, and the above-mentioned bearing body. In a linear guide device comprising a movable body attached to a bearing body and performing linear reciprocating motion along the guide shaft via the balls, a spacing seat is provided to form a gap between the bearing body and the movable body. At the same time, the bearing body and the movable body are connected by a mounting bolt that passes through the movable body and the spacer and is screwed to the bearing body, so that the accuracy error of the guide shaft is reduced by the mounting bolt. A linear guide device characterized in that the linear guide device is capable of absorbing and relaxing the relative displacement between the bearing main body and the movable body due to elastic deformation.
(2)間隔保持座のベアリング本体側及び又は可動体側
の面に円弧状凸面を形成すると共に、上記ベアリング本
体及び又は可動体の間隔保持座との当接面には上記円弧
状凸面と摺接する円弧状凹面を形成したことを特徴とす
る特許請求の範囲第1項記載の直線案内装置。
(2) An arcuate convex surface is formed on the bearing body side and/or movable body side surface of the spacing seat, and the abutting surface of the bearing body and/or the movable body with the spacing seat is in sliding contact with the arcuate convex surface. The linear guide device according to claim 1, characterized in that an arcuate concave surface is formed.
(3)円弧状凸面を球面状凸面にて形成すると共に、円
弧状凹面を球面状凹面にて形成したことを特徴する特許
請求の範囲第2項記載の直線案内装置。
(3) The linear guide device according to claim 2, wherein the arc-shaped convex surface is formed by a spherical convex surface, and the arc-shaped concave surface is formed by a spherical concave surface.
(4)円弧状凸面を円弧状凸条面にて形成すると共に、
円弧状凹面を円弧状凹条面にて形成したことを特徴とす
る特許請求の範囲第2項記載の直線案内装置。
(4) Forming the arc-shaped convex surface with the arc-shaped convex stripes,
The linear guide device according to claim 2, wherein the arcuate concave surface is formed by an arcuate grooved surface.
(5)ベアリング本体側及び又は可動体側の円弧状凹面
をワッシャにて形成したことを特徴とする特許請求の範
囲第2項ないし第4項のいずれかに記載の直線案内装置
(5) The linear guide device according to any one of claims 2 to 4, wherein the arcuate concave surface on the bearing body side and/or on the movable body side is formed by a washer.
JP61026941A 1986-02-12 1986-02-12 Linear guide device Granted JPS62188636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61026941A JPS62188636A (en) 1986-02-12 1986-02-12 Linear guide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61026941A JPS62188636A (en) 1986-02-12 1986-02-12 Linear guide device

Publications (2)

Publication Number Publication Date
JPS62188636A true JPS62188636A (en) 1987-08-18
JPH0416296B2 JPH0416296B2 (en) 1992-03-23

Family

ID=12207175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61026941A Granted JPS62188636A (en) 1986-02-12 1986-02-12 Linear guide device

Country Status (1)

Country Link
JP (1) JPS62188636A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229914A (en) * 1989-03-01 1990-09-12 T Echi K Kk Bearing for linear sliding and its mounting method
JPH0462414U (en) * 1990-09-29 1992-05-28
JPH0524246U (en) * 1991-09-06 1993-03-30 株式会社アマダメトレツクス Linear bearing device
JPH05220638A (en) * 1992-02-05 1993-08-31 T H K Kk Linear motion guide device and table device employing it
JPH0610947A (en) * 1992-06-23 1994-01-21 Takeshi Kuroda Sliding support device
ES2245199A1 (en) * 2002-11-29 2005-12-16 Biesse S.P.A. Cutting machine for panels used in making furniture has carriage on two fixed girders along which it can move
US7364124B2 (en) 2002-10-17 2008-04-29 Furukawa Co., Ltd. Elevator device for television camera
JP2008202639A (en) * 2007-02-16 2008-09-04 Hosei Brake Ind Ltd Shoe hold-down device
JP2008202646A (en) * 2007-02-17 2008-09-04 Hosei Brake Ind Ltd Shoe hold-down device
WO2009107602A1 (en) * 2008-02-28 2009-09-03 Thk株式会社 Motion device
JP2010052058A (en) * 2008-08-26 2010-03-11 Thk Co Ltd Motion guide device
DE102011076327A1 (en) * 2011-05-24 2012-11-29 Aktiebolaget Skf Profile rail car with a compensation component
DE102012012530A1 (en) * 2012-06-26 2014-01-02 Konecranes Plc Linear guide of at least two profiles
WO2018042897A1 (en) * 2016-08-30 2018-03-08 株式会社日立ハイテクノロジーズ Stage device and charged particle beam device
KR102096704B1 (en) * 2018-01-03 2020-04-03 치프텍 프레시젼 씨오 엘티디 Miniature slider structure and linear slide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128336U (en) * 1983-02-14 1984-08-29 豊田工機株式会社 Guidance device
JPS6025628A (en) * 1983-07-20 1985-02-08 Hiroshi Teramachi Table assembly for straight sliding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128336U (en) * 1983-02-14 1984-08-29 豊田工機株式会社 Guidance device
JPS6025628A (en) * 1983-07-20 1985-02-08 Hiroshi Teramachi Table assembly for straight sliding

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229914A (en) * 1989-03-01 1990-09-12 T Echi K Kk Bearing for linear sliding and its mounting method
JPH0462414U (en) * 1990-09-29 1992-05-28
JPH0524246U (en) * 1991-09-06 1993-03-30 株式会社アマダメトレツクス Linear bearing device
JPH05220638A (en) * 1992-02-05 1993-08-31 T H K Kk Linear motion guide device and table device employing it
JPH0610947A (en) * 1992-06-23 1994-01-21 Takeshi Kuroda Sliding support device
US7364124B2 (en) 2002-10-17 2008-04-29 Furukawa Co., Ltd. Elevator device for television camera
ES2245199A1 (en) * 2002-11-29 2005-12-16 Biesse S.P.A. Cutting machine for panels used in making furniture has carriage on two fixed girders along which it can move
JP2008202639A (en) * 2007-02-16 2008-09-04 Hosei Brake Ind Ltd Shoe hold-down device
JP2008202646A (en) * 2007-02-17 2008-09-04 Hosei Brake Ind Ltd Shoe hold-down device
WO2009107602A1 (en) * 2008-02-28 2009-09-03 Thk株式会社 Motion device
JP5324559B2 (en) * 2008-02-28 2013-10-23 Thk株式会社 Exercise equipment
JP2010052058A (en) * 2008-08-26 2010-03-11 Thk Co Ltd Motion guide device
DE102011076327A1 (en) * 2011-05-24 2012-11-29 Aktiebolaget Skf Profile rail car with a compensation component
DE102012012530A1 (en) * 2012-06-26 2014-01-02 Konecranes Plc Linear guide of at least two profiles
US9790989B2 (en) 2012-06-26 2017-10-17 Konecranes Plc Linear guide comprising at least two profile-members
WO2018042897A1 (en) * 2016-08-30 2018-03-08 株式会社日立ハイテクノロジーズ Stage device and charged particle beam device
US10770259B2 (en) 2016-08-30 2020-09-08 Hitachi High-Tech Corporation Stage device and charged particle beam device
KR102096704B1 (en) * 2018-01-03 2020-04-03 치프텍 프레시젼 씨오 엘티디 Miniature slider structure and linear slide

Also Published As

Publication number Publication date
JPH0416296B2 (en) 1992-03-23

Similar Documents

Publication Publication Date Title
JPS62188636A (en) Linear guide device
US4475776A (en) Linear slide bearing
KR950003067B1 (en) Rectilinear sliding bearing and assembling method thereof
US5249867A (en) Linear motion guide unit assembly having a misalignment absorbing mechanism
US4844624A (en) Bearing for both linear and curvilinear motions
JP3547209B2 (en) Linear motion rolling guide unit
JPS6238562B2 (en)
KR890000319B1 (en) Straight sliding roller bearing
JPS6211208B2 (en)
KR960000988B1 (en) Bearing and a table for liner-sliding motion
US5385406A (en) Linear motion rolling guide unit
JPS6211211B2 (en)
JP2866974B2 (en) Linear motion rolling guide unit
US5244283A (en) Double rail linear motion guide assembly
GB2141795A (en) Linear slide roller bearing unit
JPS62200016A (en) Rectilinear motion ball bearing with built-in ball screw
JP2003247543A (en) Linear movement guide unit
EP1063438A1 (en) Linear motion guide unit
US5362156A (en) Linear motion guide unit with rolling elements
KR870000389B1 (en) Linear slide bearing and linear slide table unit
CN216407649U (en) Linear sliding table module
JPH0135209B2 (en)
JP3572621B2 (en) Rolling guide unit
JP3731905B2 (en) Moving body mounting plate for linear sliding guide device
JPH0587136A (en) Four-direction equivalent load guide and reciprocating table mechanism

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term