JPH0416296B2 - - Google Patents

Info

Publication number
JPH0416296B2
JPH0416296B2 JP61026941A JP2694186A JPH0416296B2 JP H0416296 B2 JPH0416296 B2 JP H0416296B2 JP 61026941 A JP61026941 A JP 61026941A JP 2694186 A JP2694186 A JP 2694186A JP H0416296 B2 JPH0416296 B2 JP H0416296B2
Authority
JP
Japan
Prior art keywords
bearing body
movable body
arcuate
convex surface
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61026941A
Other languages
Japanese (ja)
Other versions
JPS62188636A (en
Inventor
Hiroshi Teramachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61026941A priority Critical patent/JPS62188636A/en
Publication of JPS62188636A publication Critical patent/JPS62188636A/en
Publication of JPH0416296B2 publication Critical patent/JPH0416296B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/0642Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/0063Connecting non-slidable parts of machine tools to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/001Bearings for parts moving only linearly adjustable for alignment or positioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/002Elastic or yielding linear bearings or bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/008Systems with a plurality of bearings, e.g. four carriages supporting a slide on two parallel rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)
  • Support Of The Bearing (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は直線案内装置に関するもので、更に
詳細には、NCマシン等の工作機械におけるX・
Y・Z軸、自動工具交換装置、自動溶接機、射出
成形機、工業用ロボツト等各種一般産業機械のス
ライド部において多用される直線案内装置に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a linear guide device, and more specifically, to an X-axis guide device in a machine tool such as an NC machine.
This invention relates to a linear guide device that is frequently used in sliding parts of various general industrial machines such as Y/Z axes, automatic tool changers, automatic welding machines, injection molding machines, and industrial robots.

[従来の技術] 従来、この種直線案内装置として、軸方向に沿
つてボールの転走溝を有する案内軸と、上記転走
溝を転走するボールの無限軌道を形成する負荷ボ
ール溝と無負荷ボール溝とを有するべアリング本
体と、上記べアリング本体に取付けられ、上記ボ
ールを介して上記案内軸に沿つて直線往復運動を
行う可動体とで構成される直線案内装置が知られ
ている。
[Prior Art] Conventionally, as this type of linear guide device, a guide shaft having a ball rolling groove along the axial direction, a loaded ball groove forming an endless track for the balls rolling in the rolling groove, and no load ball groove are used. A linear guide device is known that includes a bearing body having a load ball groove, and a movable body that is attached to the bearing body and performs linear reciprocating motion along the guide shaft via the balls. .

[発明が解決しようとする問題点] しかしながら、従来のこの種の直線案内装置に
おいては、上記べアリング本体と可動体とが直接
取付けボルト等の取付け手段にて固定されている
ため、上記案内軸自体の狂い、案内軸を含む案内
軌道面の平面度の狂いやレベルの誤差等の精度誤
差により特にべアリング本体のボール部に無理な
荷重がかかり、そのため、上記可動体の直線運動
を円滑に行うことができないばかりか寿命が低下
するという不都合がある。また、可動体に取付け
られるテーブルに狂いが生ずる場合にも同様にべ
アリング本体に無理な内部荷重がかかるため、直
線運動精度の低下及び寿命の低下が生じるという
問題があつた。
[Problems to be Solved by the Invention] However, in this type of conventional linear guide device, the bearing main body and the movable body are directly fixed to each other by mounting means such as mounting bolts. Accuracy errors such as deviations in the bearing itself, deviations in the flatness of the guide raceway surface including the guide shaft, and errors in the level place an unreasonable load on the ball part of the bearing body, which prevents smooth linear movement of the movable body. Not only is this impossible, but it also has the disadvantage of shortening its lifespan. Further, if the table attached to the movable body becomes misaligned, an unreasonable internal load is similarly applied to the bearing body, resulting in a problem of decreased linear motion accuracy and shortened service life.

[問題点を解決するための手段] この発明は上記事情に鑑みなされたもので、上
記技術的課題を解決するために、上記べアリング
本体と可動体との間に変形吸収緩和用の隙間を形
成すると共に、この隙間によりべアリング本体と
可動体側の相対変位を可能にすることにより、案
内軸の精度誤差等を吸収して可動体の直線運動精
度を向上させるようにしたことを特徴とする直線
案内装置を提供しようとするものである。
[Means for Solving the Problems] This invention was made in view of the above circumstances, and in order to solve the above technical problems, a gap for deformation absorption and relaxation is provided between the bearing body and the movable body. In addition, this gap allows relative displacement between the bearing body and the movable body, thereby absorbing accuracy errors of the guide shaft and improving linear motion accuracy of the movable body. The present invention aims to provide a linear guide device.

すなわち、この発明は、軸方向に沿つてボール
の転走溝を有する案内軸と、上記転走溝を転走す
るボールの無限軌道を形成する負荷ボール溝と無
負荷ボール溝とを有するべアリング本体と、上記
べアリング本体に取付けられ、記ボールを介して
上記案内軸に沿つて直線往復運動を行う可動体側
とからなる直線案内装置において、上記べアリン
グ本体と可動体との間に〓間を形成する間隔保持
座を介在させると共に、この間隔保持座のべアリ
ング本体側及び又は可動体側の面に円弧状凸面を
形成し、かつ、べアリング本体及び又は可動体の
間隔保持座との当接面には上記円弧状凸面と摺接
する円弧状凹面を形成し、上記べアリング本体と
可動体との間を上記可動体及び間隔保持座を貫通
して上記べアリング本体にねじ結合する取付けボ
ルトで連結し、上記案内軸の取付誤差を上記取付
けボルトの弾性変形に伴う上記べアリング本体と
可動体との間の相対変位により吸収緩和し得るよ
うにしたことを特徴とする直線案内装置を提供し
ようとするものである。
That is, the present invention provides a bearing having a guide shaft having a ball rolling groove along the axial direction, and a loaded ball groove and an unloaded ball groove that form an endless track for the balls rolling in the rolling groove. In a linear guide device consisting of a main body and a movable body that is attached to the bearing body and performs linear reciprocating motion along the guide shaft via the ball, there is a space between the bearing body and the movable body. At the same time, an arcuate convex surface is formed on the bearing body side and/or the movable body side surface of the spacing seat, and the spacing seat forms a contact with the bearing body and/or the movable body. A mounting bolt having an arc-shaped concave surface in sliding contact with the arc-shaped convex surface on the contact surface, and threadedly connects the bearing body to the bearing body by passing through the movable body and the spacing seat between the bearing body and the movable body. Provided is a linear guide device, characterized in that the guide shaft is coupled to the guide shaft so that installation errors of the guide shaft can be absorbed and alleviated by relative displacement between the bearing body and the movable body due to elastic deformation of the mounting bolt. This is what I am trying to do.

この発明において、上記間隔保持座のべアリン
グ本体側及び又は可動体側の面に円弧状凸面が形
成されると共に、上記べアリング本体及び又は可
動体の間隔保持座との当接面には上記円弧状凸面
と摺接する円弧状凹面が形成され、この際、円弧
状凸面は球面状凸面あるいは円弧状凸条面にて形
成され、また、円弧状凹面もこれに対応して球面
状凹面、あるいは、円弧状凹条面にて形成され
る。また、べアリング本体側及び又は可動体側に
形成される円弧状凸面あるいは球面状凸面は直接
ベアリング本体、可動体に一体に形成してもよい
が、ワツシヤ等の別部材にて形成すれば加工上好
ましい。
In this invention, an arc-shaped convex surface is formed on a surface of the spacer that faces the bearing body and/or the movable body, and a circular convex surface is formed on the surface of the bearing body and/or the movable body that comes into contact with the spacer. An arcuate concave surface is formed in sliding contact with the arcuate convex surface, and in this case, the arcuate convex surface is formed by a spherical convex surface or an arcuate convex surface, and the arcuate concave surface is also correspondingly formed by a spherical concave surface or, It is formed by an arcuate grooved surface. Further, the arcuate convex surface or spherical convex surface formed on the bearing body side and/or the movable body side may be directly formed integrally with the bearing body and the movable body, but if formed with a separate member such as a washer, it will be easier to process. preferable.

[作用] 上記技術的手段は次のように作用する。[Effect] The above technical means works as follows.

べアリング本体と可動体との間に変形吸収緩和
用の隙間が形成されると共に、取付けボルトは弾
性変形を有するため、案内軸の精度誤差等によつ
てべアリング本体の内部に無理な荷重が生じた
時、上記ボルトの弾性変形に伴うべアリング本体
と可動体との相対変位(具体的には間隔保持座の
円弧状凸面とべアリング本体及び又は可動体の円
弧状凹面との摺接作用による変位)により、案内
軸の精度誤差等がべアリング本体と可動体間にて
吸収緩和される。
A gap is formed between the bearing body and the movable body to absorb and alleviate deformation, and since the mounting bolt has elastic deformation, it is possible to prevent excessive loads from being placed inside the bearing body due to accuracy errors in the guide shaft, etc. When this happens, the relative displacement between the bearing body and the movable body due to the elastic deformation of the bolt (specifically, due to the sliding action between the arcuate convex surface of the spacer and the arcuate concave surface of the bearing body and/or the movable body) (displacement), errors in accuracy of the guide shaft are absorbed and alleviated between the bearing body and the movable body.

[実施例] 以下にこの発明の実施例を添附図面に基いて詳
細に説明する。
[Examples] Examples of the present invention will be described in detail below with reference to the accompanying drawings.

第1図はこの発明の直線案内装置の一例を示す
概略斜視図で、この発明の直線案内装置は、軸方
向に沿つて後述するボール4の転走溝12を有す
る案内軸1と、第6図に示すように、転走溝1a
を転走するボール4の無限軌道を形成する負荷ボ
ール溝22と無負荷ボール溝21とを有するべア
リング本体2と、このべアリング本体2に取付け
られ、ボール4を介して案内軸1に沿つて直線往
復運動を行う可動体3とで主要部が構成されてい
る。
FIG. 1 is a schematic perspective view showing an example of a linear guide device of the present invention. As shown in the figure, the rolling groove 1a
A bearing body 2 has a loaded ball groove 22 and an unloaded ball groove 21 that form an endless track for balls 4 rolling on the bearing body 2. The main part is composed of a movable body 3 that performs linear reciprocating motion.

上記べアリング本体2は、第2図ないし第4図
に示すように、下面に凹溝24を設けたほぼコ形
状に形成されて案内軸1の上部に摺動可能に嵌合
さるようになつており、更に、上記凹溝24の左
右内面には案内軸1の上部両側に形成されたボー
ル4の転走溝である負荷ボール転走溝1a,1a
にそれぞれ相対向して断面円弧状の2状の負荷ボ
ール溝22,22が形成され、また、各負荷ボー
ル溝22の裏面側には無負荷ボール溝21が案内
軸方向に沿つて穿設されている(第6図参照)。
そして、上記負荷ボール溝22には、多数のボー
ル4がそれぞれボール保持器5をによつて整列し
た状態で配設されている(第6図及び第7図参
照)。また、上記べアリング本体2の摺動方向の
両端面には、上記負荷ボール溝22と無負荷ボー
ル溝21との間でボール4を案内する案内溝6a
を有する一対の側蓋6が取付けられている。この
場合、上記側蓋6は硬質の合成樹脂等にて形成さ
れ、そして、べアリング本体2の前、後端面にボ
ルト6bによつて取付けられている。なお、符号
7は側蓋6に取付けられたグリースニツプルであ
る。
As shown in FIGS. 2 to 4, the bearing body 2 is formed into a substantially U-shape with a groove 24 provided on the lower surface, and is slidably fitted onto the upper part of the guide shaft 1. Further, on the left and right inner surfaces of the groove 24, load ball rolling grooves 1a, 1a, which are rolling grooves for the balls 4 formed on both sides of the upper part of the guide shaft 1, are provided.
Two load ball grooves 22, 22 each having an arcuate cross section are formed facing each other, and a non-load ball groove 21 is bored along the guide shaft direction on the back side of each load ball groove 22. (See Figure 6).
A large number of balls 4 are arranged in the load ball groove 22 in a state where they are aligned by respective ball holders 5 (see FIGS. 6 and 7). Furthermore, guide grooves 6a for guiding the balls 4 between the loaded ball groove 22 and the non-load ball groove 21 are provided on both end surfaces of the bearing body 2 in the sliding direction.
A pair of side lids 6 are attached. In this case, the side cover 6 is made of hard synthetic resin or the like, and is attached to the front and rear end surfaces of the bearing body 2 with bolts 6b. Note that the reference numeral 7 is a grease nipple attached to the side cover 6.

一方、上記べアリング本体2の上面と可動体3
の下面との間には両者間に変形吸収緩和用の隙間
8を積極的に形成すべく間隔保持座10が介在さ
れており、この間隔保持座10に穿設された貫通
孔11及び上記可動体3に穿設された貫通孔3a
を貫通する取付けボルト9をべアリング本体2の
上部に設けられたねじ孔23にねじ結合すること
によつて、べアリング本体2と可動体3とが隙間
8を保持した状態で連結されている。この場合、
上記間隔保持座10は、円盤状基部12と、この
円盤状基部12の下面に突設される球面状凸面1
3と、円盤状基部12と球面状凸面13の中央部
を貫通する貫通孔11とで構成されており(第5
図参照)、べアリング本体2の間隔保持座10の
当接面には上記球面状凸面13と摺接する球面状
凹面14が形成され、球面状凸面13と球面状凹
面14とが摺接した状態で取付けボルト9により
べアリング本体2と可動体3とが連結されてい
る。なおこの場合、上記隙間8の寸法は取付けボ
ルト9の有する弾性変形の許容範囲内において設
定される。したがつて、例えば上記案内軸1の精
度誤差等によつてべアリング本体2が外部から荷
重を受けると、その荷重によつて取付けボルト9
が弾性変形すると共に、べアリング本体2と可動
体3との間の相対変位により、上記外部からの荷
重を吸収緩和することができ、案内軸方向及びこ
の軸方向に対して直交する方向等いかなる方向の
精度誤差を吸収緩和することができ、べアリング
本体2及び可動体3の直線運動精度の向上を図る
ことができる。
On the other hand, the upper surface of the bearing body 2 and the movable body 3
A spacing seat 10 is interposed between the bottom surface of the spacer and the lower surface of the spacer to actively form a gap 8 for deformation absorption and relaxation between the two. Through hole 3a bored in body 3
The bearing body 2 and the movable body 3 are connected with the gap 8 maintained by screwing a mounting bolt 9 that passes through the bearing body 2 into a screw hole 23 provided in the upper part of the bearing body 2. . in this case,
The spacer 10 includes a disc-shaped base 12 and a spherical convex surface 1 protruding from the lower surface of the disc-shaped base 12.
3, and a through hole 11 penetrating the central part of the disc-shaped base 12 and the spherical convex surface 13 (the fifth
), a spherical concave surface 14 is formed on the abutment surface of the spacing seat 10 of the bearing body 2, and the spherical concave surface 14 is in sliding contact with the spherical convex surface 13, and the spherical convex surface 13 and the spherical concave surface 14 are in sliding contact. The bearing body 2 and the movable body 3 are connected by a mounting bolt 9. In this case, the dimensions of the gap 8 are set within the allowable range of elastic deformation of the mounting bolt 9. Therefore, when the bearing body 2 receives an external load due to an accuracy error in the guide shaft 1, for example, the mounting bolt 9
is elastically deformed, and due to the relative displacement between the bearing body 2 and the movable body 3, the above-mentioned external load can be absorbed and relaxed. Directional precision errors can be absorbed and alleviated, and the linear motion precision of the bearing body 2 and the movable body 3 can be improved.

なお、上記案内軸1は適宜間隔をおいて穿設さ
れた取付け孔(図示せず)を貫通する固定ボルト
30をもつてベツド等の固定基部31に固定され
ている。
The guide shaft 1 is fixed to a fixed base 31 such as a bed with fixing bolts 30 passing through mounting holes (not shown) drilled at appropriate intervals.

第8図ないし第11図はこの発明の第二実施例
を示すもので、案内軸方向と直交する方向の精度
誤差等を吸収緩和するようにした場合である。す
なわち、矩形状基部15の下面に円弧状凸条面1
6を形成したいわゆるかまぼこ状の間隔保持座1
0を案内軸1と平行にした状態にして上記べアリ
ング本体2と可動体3との間に介在させて取付け
ボルト9にて連結した場合である。この場合、上
記べアリング本体2の上面に間隔保持座10の円
弧状凸条面16と摺接する円弧状凹条面17が形
成されている。したがつて、間隔保持座10と円
弧状凹条面17との摺接作用によつて案内軸方向
と直交する方向の精度誤差を吸収緩和することが
できる。なおこの場合、第11図に示すように、
上記負荷ボール溝22の端端側に比較的大きくク
ラウニング25を形成することによつて案内軸方
向の精度誤差を吸収緩和することができる。
8 to 11 show a second embodiment of the present invention, in which accuracy errors, etc. in a direction perpendicular to the guide shaft direction are absorbed and alleviated. That is, the arcuate convex stripe 1 is formed on the lower surface of the rectangular base 15.
The so-called semicylindrical spacing seat 1 formed with 6
This is a case in which the bearing body 2 and the movable body 3 are interposed between the bearing body 2 and the movable body 3 with the bearing body 2 parallel to the guide shaft 1, and connected by a mounting bolt 9. In this case, an arcuate concave surface 17 is formed on the upper surface of the bearing body 2, and is in sliding contact with the arcuate convex surface 16 of the spacer 10. Therefore, the sliding action between the spacer 10 and the arcuate grooved surface 17 can absorb and alleviate accuracy errors in the direction orthogonal to the guide shaft direction. In this case, as shown in Figure 11,
By forming a relatively large crowning 25 on the end side of the load ball groove 22, accuracy errors in the direction of the guide shaft can be absorbed and alleviated.

第12図ないし第14図はこの発明の第三実施
例を示すもので、案内軸方向の精度誤差を吸収緩
和するようにした場合である。すなわち、上記第
二実施例と同様にかまぼこ状に形成された間隔保
持座10を案内軸1と直交する状態にして上記べ
アリング本体2と可動体3との間に介在させて取
付けボルト9により連結した場合である。この場
合、上記べアリング本体2の上面に間隔保持座1
0の円弧状凸条面16と摺接する円弧状凹条面1
7が形成されている。したがつて、間隔保持座1
0の円弧状凸条面16と円弧状凹条面17との摺
接作用によつて案内軸方向の精度誤差を吸収緩和
することができる。なおこの場合、案内軸方向と
直交する方向の精度誤差、案内軸1とべアリング
本体2との間に介在されるボール4が4列のアン
ギユラコンタクト外接となり、自由度を有する自
動調整構造となるため、案内軸1に対する直交方
向の精度誤差は吸収緩和される(第14図参照)。
12 to 14 show a third embodiment of the present invention, in which accuracy errors in the direction of the guide shaft are absorbed and alleviated. That is, similar to the second embodiment, the spacer 10 formed in a semicylindrical shape is interposed between the bearing body 2 and the movable body 3 in a state perpendicular to the guide shaft 1, and the mounting bolt 9 is inserted. This is the case when they are connected. In this case, a spacing seat 1 is placed on the upper surface of the bearing body 2.
Arc-shaped grooved surface 1 slidingly in contact with arc-shaped convex surface 16 of 0
7 is formed. Therefore, the spacing seat 1
The sliding action between the arcuate convex surface 16 and the arcuate concave surface 17 can absorb and alleviate accuracy errors in the guide shaft direction. In this case, due to accuracy errors in the direction orthogonal to the guide shaft direction, the balls 4 interposed between the guide shaft 1 and the bearing body 2 are circumscribed by four rows of angular contacts, resulting in an automatic adjustment structure with a degree of freedom. Therefore, accuracy errors in the direction orthogonal to the guide shaft 1 are absorbed and alleviated (see FIG. 14).

上記第二及び第三実施例においてその他の部分
は上記第一実施例と同じであるので、同一部分に
は同一符号を付してその説明は省略する。
The other parts in the second and third embodiments are the same as those in the first embodiment, so the same parts are given the same reference numerals and the explanation thereof will be omitted.

上記各実施例ではいずれも間隔保持座10に設
けられた球面状凸面13又は円弧状凸条面16と
摺接する球面状凹14又は円弧状凹条面17をべ
アリング本体2の上面に形成した場合について説
明したが、必ずしもべアリング本体2にのみ球面
状凹面14又は円弧状凹条面17を形成したもの
に限らず、間隔保持座10の球面状凸面13又は
円弧状凸条面16を上向きにし、上記可動体3の
下面に球面状凹面14又は円弧状凹条面17を形
成したもの(第15図参照)、あるいは、間隔保
持座10の上下面に球面状凸面13又は円弧状凸
条面16を形成し、べアリング本体2の上面及び
可動体3の下面の両方にそれぞれ球面状凸面13
又は円弧状凸条面16と摺接する球面状凹面14
又は円弧状凹条面17を形成したものであつても
よい。このように上下面に摺接部を設けることに
より、より一層精度誤差の吸収緩和を円滑に行う
ことができる。
In each of the above-mentioned embodiments, a spherical recess 14 or an arcuate grooved surface 17 that comes into sliding contact with the spherical convex surface 13 or the arcuate convex surface 16 provided on the spacer 10 is formed on the upper surface of the bearing body 2. Although the case has been described, it is not limited to the case in which the spherical concave surface 14 or the arcuate concave surface 17 is formed only on the bearing body 2, and the spherical convex surface 13 or the arcuate convex surface 16 of the spacing seat 10 is directed upward. A spherical concave surface 14 or an arcuate concave surface 17 is formed on the lower surface of the movable body 3 (see FIG. 15), or a spherical convex surface 13 or an arcuate convex surface 17 is formed on the upper and lower surfaces of the spacer 10. A spherical convex surface 13 is formed on both the upper surface of the bearing body 2 and the lower surface of the movable body 3, respectively.
Or a spherical concave surface 14 in sliding contact with the arcuate convex surface 16
Alternatively, it may be formed with an arcuate grooved surface 17. By providing sliding contact portions on the upper and lower surfaces in this manner, accuracy errors can be absorbed and alleviated even more smoothly.

また、上記実施例はべアリング本体2の上面及
び又は可動体3の下面に球面状凹面14又は円弧
状凹条面17を形成した場合について説明した
が、必ずしもこの構造にする必要はなく、球面状
凹面14又は円弧状凹条面17を形成したワツシ
ヤ19をべアリング本体2の上面及び又は可動体
3の下面に配設してもよく、このようにワツシヤ
19を使用することにより、べアリング本体2自
体あるいは可動体3自体に何等加工を施すことな
く簡単に直線案内装置を組立てることができる
(第16図及び第17図参照)。
Furthermore, although the above embodiments have been described in which the spherical concave surface 14 or the arcuate concave surface 17 is formed on the upper surface of the bearing body 2 and/or the lower surface of the movable body 3, it is not always necessary to use this structure. A washer 19 having a concave surface 14 or a concave arc surface 17 may be disposed on the upper surface of the bearing body 2 and/or the lower surface of the movable body 3. By using the washer 19 in this way, the bearing The linear guide device can be easily assembled without performing any processing on the main body 2 itself or the movable body 3 itself (see FIGS. 16 and 17).

[発明の効果] 以上に説明したように、この発明の直線案内装
置によれば、べアリング本体と可動体との間に間
隔保持座を介在させて〓間を形成し、また、この
間隔保持座のべアリング本体側及び又は可動体側
の面に円弧状凸面を形成すると共にべアリング本
体及び又は可動体の間隔保持座との当接面に円弧
状凹面を形成してこれら円弧状凸面と円弧状凹面
とを摺接させ、更に、これらべアリング本体と可
動体との間を可動体及び間隔保持座を貫通してべ
アリング本体にねじ結合する取付けボルトで連結
したので、以下のような効果が得られる。
[Effects of the Invention] As explained above, according to the linear guide device of the present invention, a gap is formed between the bearing body and the movable body by interposing the spacing seat, and the spacing is maintained between the bearing body and the movable body. An arcuate convex surface is formed on the surface of the seat facing the bearing body and/or the movable body, and an arcuate concave surface is formed on the contact surface of the bearing body and/or the spacer of the movable body, so that the arcuate convex surface and the circular convex surface are formed. The bearing body and the movable body are connected by a mounting bolt that passes through the movable body and the spacing seat and is screwed to the bearing body, resulting in the following effects. is obtained.

(1) 間隔保持座によるべアリング本体と可動体と
の間の〓間と、間隔保持座の円弧状凸面とべア
リング本体及び又は可動体の円弧状凹面との摺
接とにより、取付けボルトが弾性変形可能にな
り、これによつて案内軸にその軸方向の精度誤
差、すなわち軸方向の真直度や取付高さの精度
誤差や、この軸方向に対して直交する方向の精
度誤差、すなわち水平度の精度誤差(ねじれ
度)が吸収され、緩和されるので、可動体の直
線運動の精度が著しく向上する。
(1) Due to the gap between the bearing body and the movable body due to the spacing seat, and the sliding contact between the arcuate convex surface of the spacing seat and the arcuate concave surface of the bearing body and/or the movable body, the mounting bolt becomes elastic. This allows the guide shaft to have precision errors in its axial direction, such as axial straightness and mounting height, and precision errors in the direction orthogonal to this axis, that is, horizontality. Since the accuracy error (torsion degree) is absorbed and alleviated, the accuracy of the linear motion of the movable body is significantly improved.

(2) 上記誤差の吸収緩和により装置の組立て時あ
るいは使用時に生じる無理な内部荷重を防止す
ることができるため、可動体の直線運動を高精
度にしかも円滑に行うことができ、寿命の増大
が図れる。
(2) By absorbing and mitigating the above-mentioned errors, it is possible to prevent unreasonable internal loads that occur during device assembly or use, so the linear movement of the movable body can be performed with high precision and smoothly, increasing the service life. I can figure it out.

(3) べアリング本体と可動体との間に間隔保持座
を介在し、これらを取付けボルトにて連結する
のみでよいため、取付け作業が簡単な上、取付
けに当たつて高精度が要求されない。
(3) Since a spacing seat is interposed between the bearing body and the movable body, and it is only necessary to connect them with mounting bolts, the installation work is simple and high precision is not required for installation. .

(4) 構成部材が少なく、低廉に製作できる。(4) There are few components and it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第一実施例のを示す概略斜
視図、第2図は第一実施例におけるべアリング本
体を示す平面図、第3図は第一実施例のべアリン
グ本体の要部断面図、第4図は第3図の−断
面図図、第5図は第一実施例における間隔保持座
の斜視図、第6図は第4図の−線に沿う断面
図、第7図は第6図の矢視図、第8図は第二実
施例におけるべアリング本体の平面図、第9図は
第8図の−断面図、第10図は第二実施例に
おける間隔保持座の斜視図、第11図は第二実施
例におけるべアリング本体の断面図、第12図は
第三実施例におけるべアリング本体を示す平面
図、第13図は第三実施例における要部断面図、
第14図は第11図の−断面図、第15
図ないし第17図はこの発明の第四実施例ないし
第六実施例を示す要部断面図である。 符号説明 1……案内軸、1a……転走溝、2
……べアリング本体、3……可動体、4……ボー
ル、8……隙間、9……取付けボルト、11……
貫通孔、13……球面状凸面、14……球面状凹
面、16……円弧状凸条面、17……円弧状凹条
面、19……ワツシヤ、21……無負荷ボール
溝、22……負荷ボール溝。
Fig. 1 is a schematic perspective view showing a first embodiment of the present invention, Fig. 2 is a plan view showing a bearing main body in the first embodiment, and Fig. 3 is a main part of the bearing main body in the first embodiment. 4 is a cross-sectional view of FIG. 3, FIG. 5 is a perspective view of the spacing seat in the first embodiment, FIG. 6 is a sectional view taken along line - of FIG. 4, and FIG. is a view taken in the direction of the arrow in FIG. 6, FIG. 8 is a plan view of the bearing body in the second embodiment, FIG. 9 is a cross-sectional view taken from FIG. 8, and FIG. A perspective view, FIG. 11 is a sectional view of the bearing body in the second embodiment, FIG. 12 is a plan view showing the bearing body in the third embodiment, and FIG. 13 is a sectional view of main parts in the third embodiment.
Figure 14 is a cross-sectional view of Figure 11, and Figure 15 is a cross-sectional view of Figure 11.
17 are sectional views of main parts showing fourth to sixth embodiments of the present invention. Description of symbols 1... Guide shaft, 1a... Rolling groove, 2
...Bearing body, 3...Movable body, 4...Ball, 8...Gap, 9...Mounting bolt, 11...
Through hole, 13... Spherical convex surface, 14... Spherical concave surface, 16... Arc-shaped convex surface, 17... Arc-shaped grooved surface, 19... Washer, 21... No-load ball groove, 22... ...Load ball groove.

Claims (1)

【特許請求の範囲】 1 軸方向に沿つてボールの転走溝を有する案内
軸と、上記転走溝を転走するボールの無限軌道を
形成する負荷ボール溝と無負荷ボール溝とを有す
るべアリング本体と、上記べアリング本体に取付
けられ、上記ボールを介して上記案内軸に沿つて
直線往復運動を行う可動体とからなる直線案内装
置において、上記べアリング本体と可動体との間
に〓間を形成する間隔保持座を介在させると共
に、この間隔保持座のべアリング本体側及び又は
可動体側の面に円弧状凸面を形成し、かつ、べア
リング本体及び又は可動体の間隔保持座との当接
面には上記円弧状凸面と摺接する円弧状凹面を形
成し、上記べアリング本体と可動体との間を上記
可動体及び間隔保持座を貫通して上記べアリング
本体にねじ結合する取付けボルトで連結し、上記
案内軸の取付誤差を上記取付けボルトの弾性変形
に伴う上記べアリング本体と可動体との間の相対
変位により吸収緩和し得るようにしたことを特徴
とする直線案内装置。 2 円弧状凸面を球面状凸面にて形成すると共
に、円弧状凹面を球面状凹面にて形成したことを
特徴とする特許請求の範囲第1項記載の直線案内
装置。 3 円弧状凸面を円弧状凸条面にて形成すると共
に、円弧状凹面を円弧状凹条面にて形成したこと
を特徴とする特許請求の範囲第1項記載の直線案
内装置。 4 べアリング本体側及び又は可動体側の円弧状
凹面をワツシヤにて形成したことを特徴とする特
許請求の範囲第1項ないし第3項のいずれかに記
載の直線案内装置。
[Scope of Claims] 1. A guide shaft having a ball rolling groove along the axial direction, and a loaded ball groove and a non-load ball groove forming an endless track for the balls rolling in the rolling groove. In a linear guide device consisting of a bearing body and a movable body that is attached to the bearing body and performs linear reciprocating motion along the guide shaft via the balls, there is a gap between the bearing body and the movable body. In addition to interposing a spacing seat that forms a gap between the bearing body and/or the movable body, an arcuate convex surface is formed on the bearing body side and/or the movable body side surface of the spacing seat, and the distance between the bearing body and/or the movable body. The abutment surface is provided with an arcuate concave surface that slides in contact with the arcuate convex surface, and the bearing body and the movable body are mounted by passing through the movable body and the spacing seat and screwed to the bearing body. A linear guide device, characterized in that the linear guide device is connected by a bolt so that mounting errors of the guide shaft can be absorbed and alleviated by relative displacement between the bearing body and the movable body due to elastic deformation of the mounting bolt. 2. The linear guide device according to claim 1, wherein the arc-shaped convex surface is formed by a spherical convex surface, and the arc-shaped concave surface is formed by a spherical concave surface. 3. The linear guide device according to claim 1, characterized in that the arcuate convex surface is formed by an arcuate convex stripe, and the arcuate concave surface is formed by an arcuate concave stripe. 4. The linear guide device according to any one of claims 1 to 3, wherein the arcuate concave surface on the bearing body side and/or on the movable body side is formed of a washer.
JP61026941A 1986-02-12 1986-02-12 Linear guide device Granted JPS62188636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61026941A JPS62188636A (en) 1986-02-12 1986-02-12 Linear guide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61026941A JPS62188636A (en) 1986-02-12 1986-02-12 Linear guide device

Publications (2)

Publication Number Publication Date
JPS62188636A JPS62188636A (en) 1987-08-18
JPH0416296B2 true JPH0416296B2 (en) 1992-03-23

Family

ID=12207175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61026941A Granted JPS62188636A (en) 1986-02-12 1986-02-12 Linear guide device

Country Status (1)

Country Link
JP (1) JPS62188636A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063211B2 (en) * 1989-03-01 1994-01-12 テイエチケー株式会社 Linear sliding bearing and method of assembling linear sliding bearing
JPH0462414U (en) * 1990-09-29 1992-05-28
JP2569133Y2 (en) * 1991-09-06 1998-04-22 株式会社アマダメトレックス Linear bearing device
JP3093858B2 (en) * 1992-02-05 2000-10-03 テイエチケー株式会社 Table equipment
JPH0610947A (en) * 1992-06-23 1994-01-21 Takeshi Kuroda Sliding support device
JP3898150B2 (en) 2002-10-17 2007-03-28 古河機械金属株式会社 Lifting device for TV camera
ITBO20020751A1 (en) * 2002-11-29 2004-05-30 Biesse Spa PANEL CUTTING MACHINE
JP2008202639A (en) * 2007-02-16 2008-09-04 Hosei Brake Ind Ltd Shoe hold-down device
JP2008202646A (en) * 2007-02-17 2008-09-04 Hosei Brake Ind Ltd Shoe hold-down device
JP5324559B2 (en) * 2008-02-28 2013-10-23 Thk株式会社 Exercise equipment
JP5208621B2 (en) * 2008-08-26 2013-06-12 Thk株式会社 Exercise guidance device
DE102011076327A1 (en) * 2011-05-24 2012-11-29 Aktiebolaget Skf Profile rail car with a compensation component
DE102012012530A1 (en) * 2012-06-26 2014-01-02 Konecranes Plc Linear guide of at least two profiles
JP2018037175A (en) 2016-08-30 2018-03-08 株式会社日立ハイテクノロジーズ Stage device and charged particle beam device
TWI661135B (en) * 2018-01-03 2019-06-01 直得科技股份有限公司 Structure of micro sliding base and linear slide rail

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025628A (en) * 1983-07-20 1985-02-08 Hiroshi Teramachi Table assembly for straight sliding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128336U (en) * 1983-02-14 1984-08-29 豊田工機株式会社 Guidance device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025628A (en) * 1983-07-20 1985-02-08 Hiroshi Teramachi Table assembly for straight sliding

Also Published As

Publication number Publication date
JPS62188636A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
JPH0416296B2 (en)
US4475776A (en) Linear slide bearing
KR950003067B1 (en) Rectilinear sliding bearing and assembling method thereof
KR870000418B1 (en) Bearing and table for linear sliding motion
JP3547209B2 (en) Linear motion rolling guide unit
KR890000319B1 (en) Straight sliding roller bearing
JPS6238562B2 (en)
US5249867A (en) Linear motion guide unit assembly having a misalignment absorbing mechanism
JPS6211208B2 (en)
KR960000988B1 (en) Bearing and a table for liner-sliding motion
JPS6211211B2 (en)
US6309107B1 (en) Linear motion guide unit
JP4071975B2 (en) Linear motion guidance unit
JPH0232488B2 (en)
JPH05141416A (en) Linear motion rolling guide unit
KR870000389B1 (en) Linear slide bearing and linear slide table unit
JPH0135209B2 (en)
JP3126874U (en) Linear guide device with error absorbing mechanism
JPS6224652B2 (en)
JP3203115B2 (en) Linear motion rolling guide unit
JPH0155937B2 (en)
JPS6224651B2 (en)
JP3731905B2 (en) Moving body mounting plate for linear sliding guide device
JPS6121611Y2 (en)
JP3572621B2 (en) Rolling guide unit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term