WO2009107480A1 - Thin coaxial cable harness and connection structure for the same - Google Patents

Thin coaxial cable harness and connection structure for the same Download PDF

Info

Publication number
WO2009107480A1
WO2009107480A1 PCT/JP2009/052190 JP2009052190W WO2009107480A1 WO 2009107480 A1 WO2009107480 A1 WO 2009107480A1 JP 2009052190 W JP2009052190 W JP 2009052190W WO 2009107480 A1 WO2009107480 A1 WO 2009107480A1
Authority
WO
WIPO (PCT)
Prior art keywords
coaxial cable
cable harness
waterproof
thin coaxial
thin
Prior art date
Application number
PCT/JP2009/052190
Other languages
French (fr)
Japanese (ja)
Inventor
信之 山崎
信男 白井
健輝 石元
増田 泰人
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008049832A external-priority patent/JP4341718B2/en
Priority claimed from JP2008065479A external-priority patent/JP2009224101A/en
Priority claimed from JP2008268572A external-priority patent/JP2010097851A/en
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2009800004137A priority Critical patent/CN101681694B/en
Publication of WO2009107480A1 publication Critical patent/WO2009107480A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5205Sealing means between cable and housing, e.g. grommet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R35/00Flexible or turnable line connectors, i.e. the rotation angle being limited
    • H01R35/04Turnable line connectors with limited rotation angle with frictional contact members
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/59Fixed connections for flexible printed circuits, flat or ribbon cables or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/65912Specific features or arrangements of connection of shield to conductive members for shielded multiconductor cable
    • H01R13/65918Specific features or arrangements of connection of shield to conductive members for shielded multiconductor cable wherein each conductor is individually surrounded by shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R35/00Flexible or turnable line connectors, i.e. the rotation angle being limited
    • H01R35/02Flexible line connectors without frictional contact members
    • H01R35/025Flexible line connectors without frictional contact members having a flexible conductor wound around a rotation axis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • H04M1/0216Foldable in one direction, i.e. using a one degree of freedom hinge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/15Protecting or guiding telephone cords

Definitions

  • the present invention relates to a harness in which a plurality of thin coaxial cables are bundled and a connection structure thereof.
  • Japanese Patent Laid-Open No. 2006-344813 describes a precision small device in which a flexible wiring board in which a waterproofing member is insert-molded is used as a wiring material, and a through hole of a housing through which the wiring board is inserted is sealed with a waterproofing member. Yes.
  • the flexible wiring board has a drawback that it is difficult to reduce the bending radius, and the signal line is easily disconnected by repeated bending.
  • a harness in which coaxial cables are bundled can reduce the bending radius and is resistant to repeated bending.
  • the thin coaxial cable has excellent noise characteristics and can perform stable signal transmission.
  • the coaxial cable harness has an indefinite cross-sectional shape and a gap between the coaxial cables, so that it is difficult to waterproof the casing through the through hole.
  • the covered portions do not slide well between the sliding casings and are easily caught.
  • the present invention provides a small-diameter coaxial cable harness for connecting circuit boards in a casing that is movably connected while obtaining good waterproofness, and a connection structure thereof.
  • a small-diameter coaxial cable harness that connects two housings whose positional relationship can be changed, and a water-tight connection is made to a bundling portion in which a plurality of small-diameter coaxial cables are bundled and a bundling portion.
  • a harness is provided that includes a waterproof part that is attached and watertightly attached to the housing.
  • the bundling portion includes a waterproof tube that covers the periphery of the plurality of small-diameter coaxial cables between the waterproof portions and is watertightly attached to the waterproof portion.
  • the waterproof part is watertightly attached to the waterproof tube by caulking with metal or heat-shrinkable resin.
  • the waterproof part is watertightly attached to the waterproof tube by pressing the waterproof part into the waterproof tube.
  • the bundling portion includes a waterproof tape that is tightly wound around the plurality of small-diameter coaxial cables.
  • the waterproof part is provided with a support member that is watertightly attached to the bundling part inserted inward by caulking and supports a reaction force of elastic deformation when the waterproof part comes into close contact with the casing.
  • the waterproof tape is wound in a plurality of layers by changing the winding direction.
  • the binding portion is preferably passed through a cylindrical sleeve woven or knitted of synthetic fibers.
  • the sleeve is a braided monofilament hybrid fiber made of a molten liquid crystalline polymer and a flexible polymer.
  • the sleeve is a warp knitted synthetic fiber.
  • a connector is attached to at least one end of the coaxial cable harness.
  • the thin coaxial cable harness connection structure in which the thin coaxial cable harness of the present invention is wired between two housings and a waterproof part is attached to the introduction portion of the thin coaxial cable harness to the housing is provided.
  • the thin coaxial cable harness of the present invention water does not permeate from the bundled portion into the thin coaxial cable therein.
  • a water-tight waterproof portion is attached to the housing at the location where the harness is introduced, so that water enters the housing through the harness. There is nothing to do. Therefore, the casings can be connected to each other with the harness while ensuring the waterproofness of the casings.
  • FIG. 1 is a perspective view showing a foldable mobile phone terminal.
  • FIG. 2A and 2B are perspective views showing a slide-type mobile phone terminal, in which FIG. 2A shows an extended state and FIG. 2B shows an overlapped state.
  • FIG. 3 is a conceptual diagram of an embodiment of a thin coaxial cable harness according to the present invention.
  • FIG. 4 is a plan view showing the first embodiment of the thin coaxial cable harness and the connection structure using the same according to the present invention in a halved state.
  • FIG. 5 is a plan view showing the second embodiment of the thin coaxial cable harness according to the present invention and the connection structure using the same in a state of being halved.
  • FIG. 6 is a plan view showing a wound state of the waterproof tape in the thin coaxial cable harness of FIG.
  • FIG. 7 is a top view shown in the state which halved 3rd Embodiment of the thin coaxial cable harness which concerns on this invention, and the connection structure using the same.
  • FIG. 8 is an enlarged plan view showing a part of a sleeve in the thin coaxial cable harness of the third embodiment of FIG.
  • FIGS. 9A and 9B are conceptual views showing a state where the casings connected by the small-diameter coaxial cable harness of FIG. 5 are extended.
  • FIG. 9A is a plan view and
  • FIG. 9B is a side view.
  • FIG. 10A and 10B are conceptual diagrams showing a state in which the casings connected by the small-diameter coaxial cable harness of FIG. 5 are stacked, and FIG. 10A is a plan view and FIG. 10B is a side view.
  • FIGS. 11A and 11B are perspective views showing examples of housings connected by the thin coaxial cable harness of FIG.
  • FIG. 1 is a perspective view showing a foldable mobile phone terminal 3.
  • 2A and 2B are perspective views showing a slide-type mobile phone terminal 3A, in which FIG. 2A shows an extended state and FIG. 2B shows an overlapped state.
  • the thin coaxial cable harness of the present invention connects, for example, between the casing 1 and the casing 2 of the mobile phone terminal 3 or between the casing 1A and the casing 2A of the mobile phone terminal 3A.
  • the ends of the first casing 1 and the second casing 2 are connected to each other by a hinge 4 so as to be rotatable.
  • Each of the first housing 1 and the second housing 2 has cable insertion holes 5 and 6 on the end face on the connection side, and each end of the small-diameter coaxial cable harness 11 extends from the holes 5 and 6 to the first housing. It is introduced into the first or second housing 2.
  • the hinge 4 has the communication hole 4a, and the harness 11 is inserted in the communication hole 4a.
  • FIG. 3 is a conceptual diagram of a thin coaxial cable harness 11 according to an embodiment of the present invention.
  • the harness 11 has a plurality (20 to 60) of small-diameter coaxial cables 12, and the middle portions of the cables 12 are bundled. In the present specification, this bundled portion is referred to as a binding portion 10.
  • Each cable 12 has a center conductor, an inner insulator, an outer conductor, and a jacket from the center toward the outside.
  • a terminal treatment is performed, and the outer conductor, the inner insulator, and the center conductor are exposed to a predetermined length step by step, and the connector 13 is attached.
  • the connector 13 is connected to the wiring board in the first housing 1 and the second housing 2 of the mobile phone terminal 3.
  • the harness 11 may include a small-diameter insulated cable having no external conductor in addition to the plurality of small-diameter coaxial cable cables 12.
  • the cable 12 referred to in the present invention is a coaxial cable thinner than the AWG 40 according to the American Wire Gauge standard. It is desirable to use a fine coaxial cable thinner than the AWG44. Thereby, the harness 11 is easy to bend and can reduce resistance when the first housing 1 and the second housing 2 rotate or slide with respect to each other. In addition, the diameter of the bundling portion 10 can be reduced, and high-density wiring is possible in a limited wiring space.
  • the binding portion 10 of the harness 11 can be bent into a U shape having a width of 5 mm to 10 mm.
  • the U-shaped width is increased by increasing the number of cables 12, even if 60 cables 12 of the AWG 44 are bundled, the width can be within 12 mm.
  • FIG. 4 is a plan view of the thin coaxial cable harness 11 ⁇ / b> A according to the first embodiment of the present invention and a connection structure using the same in a halved state.
  • the harness 11 ⁇ / b> A has a binding portion 10 in which the thin coaxial cable 12 is passed through the waterproof tube 21.
  • a part of the tube 21 is inserted into a communication hole 4a formed in the hinge 4 of the mobile phone terminal.
  • the tube 21 is made of, for example, a soft resin such as fluororesin, polyolefin, or silicone rubber, or a porous body thereof. Waterproof portions 23 are provided at both ends of the tube 21.
  • the waterproof part 23 includes a seal cap 22 and an O-ring.
  • the seal cap 22 is formed from, for example, a hard resin such as ABS, and the cable 12 is inserted through an insertion hole 24 formed at the center thereof.
  • the seal cap 22 has a disk-like flange portion 25 extending outward in the radial direction, and an O-ring 26 made of silicone rubber or the like is attached to the outer peripheral portion of the flange portion 25.
  • the seal cap 22 has a cylindrical portion 27 extending from one surface side of the flange portion 25, and the cylindrical portion 27 is inserted into the tube 21.
  • a caulking member 28 is attached to the outside of the portion where the cylindrical portion 27 of the tube 21 is inserted.
  • the caulking member 28 is made of spring steel, for example.
  • the tube 21 is pressed against the cylindrical portion 27 of the seal cap 22 by the caulking member 28. Since the waterproof tube 21 has a cylindrical shape and small irregularities on the surface (can be several tens of ⁇ m or less), there is no gap between the connection portion of the tube 21 and the waterproof portion 23, and the two are connected in a watertight manner. be able to.
  • the connectors 13 at both end portions are inserted into the cable insertion holes 5 of the first housing 1 and the cable insertion holes 6 of the second housing 2 and are inserted into the respective housings. Further, an O-ring 26 that constitutes the waterproof portion 23 is fitted into the recesses 7 and 8 formed on the end surfaces of the respective casings. As a result, the O-ring 26 is brought into close contact with the inner peripheral surfaces 7a and 8a of the recesses 7 and 8 and the seal cap 22 to make watertight between the casings and the seal cap 22.
  • the surface opposite to the cylindrical portion 27 of the flange portion 25 of the seal cap 22 is adhered and fixed to each of the casings 1 and 2 with an adhesive 29.
  • an adhesive 29 As the adhesive 29, a resin or a double-sided adhesive tape can be used.
  • the adhesive 29 is desirably waterproof, and in this case, the waterproof property can be further improved in addition to the O-ring 26.
  • an ultraviolet curable resin is disposed between the seal cap 22 and each housing 2 and the water-tight bond is obtained in a short time by irradiating ultraviolet rays from the outside of the seal cap 22. It becomes possible.
  • the thin coaxial cable harness 11A In order to manufacture the thin coaxial cable harness 11A, first, the thin coaxial cable harness 11 (FIG. 3) with the connectors 13 connected to both ends is inserted through the tube 21. Thereafter, the seal cap 22 is inserted from both ends, and the seal cap 22 and the tube 21 are caulked and connected by the caulking member 28. Further, an O-ring 26 is attached to the outer periphery of the flange portion 25 of the seal cap 22 to constitute the waterproof portion 23. (Here, when it is difficult to insert the connector 13 into the tube 21 or the seal cap 22, a plurality of cables 12 before the connector is attached to the tube 21 or the seal cap 22 are inserted, and then the end of the cable 12 is inserted. The connector 13 may be attached to the
  • the harness 11 ⁇ / b> A to which the waterproof part 23 is attached is attached to the first housing 1 and the second housing 2 constituting the mobile phone terminal 3 as follows.
  • the connector 13 is inserted into the insertion hole 5 of the first casing 1 or the insertion hole 6 of the second casing 2 and is inserted into the casing.
  • the seal cap 22 fitted with the O-ring 26 is fitted into the recess 7 of the first housing 1 or the recess 8 of the second housing, and the seal cap 22 and each housing are connected in a watertight manner by the O-ring 26.
  • the harness 11A can be easily connected to the wiring boards in the first housing 1 and the second housing 2 by the connectors 13 at both ends.
  • the bundling portion 10 and the waterproof portion 23 have a waterproof structure, and the waterproof portion 23 is attached to the first housing 1 and the second housing 2 in a watertight manner, the first housing 1 and the second housing 2 During this period, water does not enter the first housing 1 or the second housing 2 through the harness, and the thin coaxial cable harness 11A of the first embodiment exhibits a waterproof function. Accordingly, the first casing 1 and the second casing 2 can be connected by the harness 11 ⁇ / b> A that can reduce the bending radius and that is advantageous for repeated bending while obtaining good waterproof properties. Moreover, since the cable 12 has good shielding properties and excellent noise characteristics, stable signal transmission can be performed.
  • the caulking member 28 is formed of a heat-shrinkable resin (for example, polyolefin) and the caulking member 28 is thermally contracted, the end portion of the tube 21 and the cylindrical portion 27 of the seal cap 22 are connected in a watertight manner. good. Further, the end portion of the tube 21 and the cylindrical portion 27 of the seal cap 22 may be connected in a watertight manner by being bound by a caulking member 28 made of a band.
  • a heat-shrinkable resin for example, polyolefin
  • the cylindrical portion 27 of the seal cap 22 may be press-fitted into the end portion of the tube 21, the tube 21 may be brought into close contact with the outer periphery of the seal cap 22, and the seal cap 22 and the tube 21 may be connected in a watertight manner.
  • the tube 21 is made of a material having a restoring force from the extending direction such as silicone rubber, the tube 21 can be made watertight with the seal cap 22 only by making the outer diameter of the cylindrical portion 27 larger than the inner diameter of the tube 21. Is effective.
  • the tube 21 itself is formed from a heat-shrinkable resin (for example, polyolefin), and the cylindrical portion 27 of the seal cap 22 is fitted to both ends of the tube 21, and then at least both ends of the tube 21 are heat-shrinked.
  • the end portion 21 and the cylindrical portion 27 of the seal cap 22 may be connected in a watertight manner.
  • the bundling portion 10 between the seal caps 22 is not waterproofed, and the inner peripheral side of the seal cap 22 is filled with an adhesive so that the seal cap 22 and the bundling portion 10 are integrated, and the seal cap 22 is inserted.
  • the gap between the cables 12 in the hole 24 may be filled with an adhesive so that water does not enter the housing from the portion where the harness 11A is introduced into the housing.
  • a humidity curable resin, a thermosetting resin, or an ultraviolet curable resin can be used as the adhesive.
  • FIG. 5 is a plan view of the thin coaxial cable harness 11B according to the second embodiment of the present invention and a connection structure using the same in a half state.
  • the binding portion 10 of the harness 11B is formed by watertightly winding a waterproof tape 35 around a plurality of small-diameter coaxial cables 12. A part of the binding unit 10 is inserted into a communication hole 4a formed in the hinge 4 of the mobile phone terminal.
  • the waterproof tape 35 is a tape that does not allow water to pass through, and is formed of, for example, a soft resin having water repellency such as PTFE (polytetrafluoroethylene).
  • the waterproof tape 35 may have an adhesive layer on the inner surface to be wound.
  • the waterproof tape 35 is wound around the plurality of cables 12 in a state of being partially overlapped spirally. Since the waterproof tape 35 itself is water-repellent, water does not enter the waterproof tape 35 without adhering the overlapping portions.
  • the width of the overlapping portion is preferably set to about 1/2 to 3/4 of the tape width.
  • FIG. 6 is a plan view showing a wound state of the waterproof tape in the thin coaxial cable harness 11B.
  • the harness 11B is bent excessively, a shearing force is generated in a direction perpendicular to the direction in which the tapes overlap, causing a gap between the waterproof tapes 35.
  • the waterproof tape 35 is wound in two layers (double) or more, it is preferable to reverse the spiral direction of winding between the inner layer 35a and the outer layer 35b.
  • the waterproof tape of the outer layer 35b fastens the waterproof tape of the inner layer 35a to cancel the shearing force generated in the waterproof tape of the inner layer 35a. Therefore, it is possible to reduce the bending radius of the harness 11B while maintaining waterproofness.
  • the waterproof tape 35 When the waterproof tape 35 is wound in two layers, the waterproof tape of the inner layer 35a does not float at the portion where the binding portion 10 is bent, and the waterproof property is further maintained. Even when the waterproof tape 35 is wound in three or more layers, the winding direction may be changed for each layer.
  • seal rings 30 made of a soft resin having elasticity (for example, silicone rubber) are attached to the outer periphery of both end portions of the bundling portion 10.
  • the bundling portion 10 formed by the waterproof tape 35 is inserted into the insertion hole 34 formed in the center thereof.
  • the inner diameter of the insertion hole 34 is smaller than the outer diameter of the binding part 10, and the binding part 10 is press-fitted into the insertion hole 34.
  • the seal ring 30 has a disk-like flange portion 31 extending outward in the radial direction.
  • a support ring 33 serving as a support member that supports a reaction force of the elastic deformation when the flange portion 31 is pressed from the radially outer side and elastically deformed.
  • the support ring 33 is made of a metal or hard resin having higher rigidity than the seal ring 30. Further, the support ring 33 may be built in the seal ring 30 or attached to the inner periphery of the seal ring 30 as a separate member.
  • caulking members 32 are mounted on both sides in the axial direction of the flange portion 31 on the outer periphery of the seal ring 30.
  • a member similar to the caulking member 28 described in the thin coaxial cable harness 11A of the first embodiment can be used as the caulking member 32.
  • the seal ring 30, the caulking member 32, and the support ring 33 constitute the waterproof part 23 of the harness 11B.
  • the connectors 13 at both ends of the harness 11B are inserted into the cable insertion holes 5 of the first casing 1 and the cable insertion holes 6 of the second casing 2, respectively, and are inserted into the respective casings. Furthermore, the seal ring 30 which comprises the waterproof part 23 is fitted in the recessed parts 7 and 8 formed in the end surface of each housing
  • the bundling portion 10 covered with the waterproof tape 35 has a waterproof structure, and the bundling portion 10 is attached to a seal ring 30 constituting the waterproof portion 23 in a watertight manner.
  • the thin coaxial cable harness 11B of the second embodiment also exhibits a waterproof function in the same manner as the thin coaxial cable harness 11A of the first embodiment.
  • the bending radius can be reduced while obtaining good waterproofness, and the first casing 1 and the second casing 2 can be easily connected by the harness 11B that is advantageous for repeated bending.
  • the cable 12 has good shielding properties and excellent noise characteristics, stable signal transmission can be performed.
  • the inner cable 12 is bundled by, for example, a braided sleeve in which monofilament fibers are knitted into a cylindrical shape, or bundled tape or yarn is wound in a spiral shape and bundled. If it does in this way, smoothing of winding of waterproofing tape 35 can be aimed at.
  • the cables 12 of the small-diameter coaxial cable harnesses 11A and 11B may be connected to the circuit board directly or via an FPC or the like without attaching the connector 13.
  • the end of the small-diameter coaxial cable harness is inserted into the housing through the insertion hole of the housing, as described above.
  • the thin coaxial cable harnesses 11 ⁇ / b> A and 11 ⁇ / b> B can also be applied to a structure without the hinge 4.
  • FIG. 7 is a plan view of a thin coaxial cable harness 11C according to a third embodiment of the present invention and a connection structure using the same in a half state.
  • the harness 11C is obtained by adding a sleeve 40 to the thin coaxial cable harness 11A of the first embodiment.
  • the waterproof tube 21 is passed through a cylindrical sleeve 40, and the waterproof tube 21 is covered with the sleeve 40 except for the vicinity of the waterproof portion 23 between the waterproof portions 23.
  • the positions of both ends of the sleeve 40 may be determined so that the sleeve 40 covers at least a portion where the waterproof tube 21 is displaced between the waterproof portions 23.
  • the sleeve 40 is a synthetic fiber (polymer fiber).
  • the sleeve 40 secures slipperiness between the cable harness and the surrounding members (such as a housing).
  • the sleeve 40 is formed of a woven fabric (braid)
  • a monofilament hybrid fiber made of a molten liquid crystalline polymer and a flexible polymer as the polymer fiber.
  • This monofilament hybrid fiber is composed of a core component made of a molten liquid crystalline polymer and a sheath component containing a bendable polymer.
  • the molten liquid crystalline polymer used for the core component is a polymer exhibiting molten liquid crystalline properties (melting anisotropy), that is, optical liquid crystallinity (anisotropic properties) in the molten phase, and includes aromatic diols, aromatic dicarboxylic acids, A molten liquid crystalline polyester composed of repeating structural units such as aromatic hydroxycarboxylic acid can be used.
  • the molten liquid crystallinity can be recognized by, for example, placing a sample on a hot stage, heating and heating in a nitrogen atmosphere, and observing the transmitted light of the sample.
  • the melting point (MP) of the molten liquid crystalline polyester is preferably 260 to 360 ° C, more preferably 270 to 350 ° C.
  • the melting point here is the peak temperature of the main endothermic peak observed with a differential scanning calorific value (DSC: for example, TA3000 manufactured by Mettler) (JIS K 7121).
  • the molten liquid crystalline polyester may be added with polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyetheresterketone, fluororesin thermoplastic polymer. It may also contain various additives such as inorganic substances such as titanium oxide, kaolin, silica and barium oxide, carbon black, colorants such as dyes and pigments, antioxidants, ultraviolet absorbers and light stabilizers.
  • inorganic substances such as titanium oxide, kaolin, silica and barium oxide, carbon black, colorants such as dyes and pigments, antioxidants, ultraviolet absorbers and light stabilizers.
  • the flexible thermoplastic polymer (flexible polymer) used for the sheath component is not particularly limited, and examples thereof include polyolefin, polyamide, polyester, polyarylate, polycarbonate, polyphenylene sulfide, polyester ether ketone, and fluororesin. Particularly preferred are polyphenylene sulfide (PPS), polyethylene naphthalate and semiaromatic polyesteramide.
  • the flexible polymer here is a polymer having no aromatic ring on the main chain and a polymer having an aromatic ring on the main chain and having 4 or more atoms on the main chain between the aromatic rings. Say.
  • the sheath component is preferably composed of not only a flexible thermoplastic polymer but also a blend of a flexible thermoplastic polymer and a molten liquid crystalline polyester.
  • the flexible thermoplastic polymer is a sea component and the molten liquid crystalline polyester is an island. It is preferable to have a sea-island structure as a component.
  • the sea-island structure means a state in which tens to hundreds of islands exist in the sea component serving as a matrix in the fiber cross section.
  • the number of islands can be adjusted by changing the mixing ratio of the sea component and the island component, the melt viscosity, and the like. It is obtained by chip blending the sea component and the island component, or mixing the melt of both components with a static mixer or the like.
  • the island component ratio in the sheath component is preferably 0.25 to 0.5 in terms of strength and fibril resistance in the cross-sectional area ratio (island component / sea component + island component) of the manufactured sheath type composite fiber. .
  • the island component ratio is obtained from a micrograph of the fiber cross section, but can also be obtained from the volume ratio of the discharge amount of the core component and the sheath component at the time of production.
  • the diameter of the island is preferably about 0.1 to 2 ⁇ m.
  • the same molten liquid crystalline polyester as that of the core component can be used, and these may be the same or different.
  • the molten liquid crystalline polyester of the sheath component is preferably a polymer having a melting point (MP) of the flexible thermoplastic polymer of the sheath component of + 80 ° C. or lower and MP ⁇ 10 ° C. or higher.
  • the sheath component may contain other polymers and various additives.
  • the monofilament hybrid fiber constituting the sleeve 40 includes an eccentric core-sheath type in addition to the core-sheath type composite fiber.
  • the core component ratio in the composite fiber is 0.25 to 0.80, preferably 0.4 to 0.7.
  • the sheath component when the sheath component is composed of a flexible thermoplastic polymer and a melted liquid crystalline polyester, the sheath component also contributes to the strength improvement. Therefore, even when the core component ratio is lowered, the strength is excellent at 15 g / d or more. A composite fiber can be obtained. If the core component ratio is too large, the core is likely to be exposed, and if it is too small, the strength may be insufficient.
  • the core component ratio here refers to the cross-sectional area ratio (core component / (core component + sheath component)) of the composite fiber.
  • the cross-sectional area ratio is determined from a micrograph of the fiber cross section.
  • the fiber diameter variation rate of the obtained fiber is preferably ⁇ 3.5 to + 3.5%, more preferably ⁇ 3.0 to + 3.0%, and the degree of conjugation (number of guide wears) is 1200 times or more. preferable.
  • FIG. 8 is an enlarged plan view showing a part of a sleeve in the small-diameter coaxial cable harness according to the third embodiment.
  • the sleeve 40 is formed by braiding such a monofilament hybrid fiber.
  • 16 units of bundles 40a (portions surrounded by circles in FIG. 9) in which monofilament fibers are arranged in parallel are prepared and woven into a tubular shape using 16 carriers.
  • the sleeve 40 is composed of approximately 100 to 200 monofilament fibers.
  • One monofilament fiber has a diameter of 0.02 mm to 0.10 mm, and the sleeve 40 has a thickness (tubular thickness) of 0.05 mm to 0.20 mm.
  • the thickness of the sleeve 40 is about 0.1 mm.
  • the diameter of the cross section in the state which made the sleeve 40 cylindrical is 3.2 mm or less.
  • the sleeve 40 is formed of a knitted fabric, a warp knitted fiber is preferable, and a polyester (for example, PET) is preferable as a polymer fiber used in that case.
  • the sleeve 40 knitted with polymer fibers is more stretchable than the woven one, and the work of passing the harness 11C through the sleeve 40 is easy.
  • a sleeve that is warp knitted from 40 ⁇ m to 70 ⁇ m in thickness and pulled in the length direction to extend from 5% to 15% can be used.
  • the sleeve has a knitting density of 55 to 75 loops per inch in the circumferential direction and 25 to 35 loops per inch in the length direction, for example.
  • FIG. 9 is a conceptual diagram showing the casing connected by the thin coaxial cable harness 11C in an extended state, (A) is a plan view, and (B) is a side view.
  • 10A and 10B are conceptual diagrams showing a state in which the casings connected by the small-diameter coaxial cable harness 11C are overlapped, where FIG. 10A is a plan view and FIG. 10B is a side view.
  • the harness 11 ⁇ / b> C configured in this way is connected to two boards 41 and 42 that are arranged one above the other and move horizontally in the front-rear direction (the left-right direction in FIGS. 9 and 10).
  • the substrate 41 is incorporated in the first housing 1A (FIG. 7)
  • the substrate 42 is incorporated in the second housing 2A (FIG. 7).
  • Both terminals of the harness 11C are attached to the connector 13 and terminated to facilitate connection to the boards 41 and 42.
  • the harness 11C is curved in the width direction of the substrate (in the direction of the double-headed arrow W in FIG. 9A) so that the space between the waterproof portions 23 is U-shaped (or J-shaped). It is connected to both substrates 41 and 42.
  • the harness 11 ⁇ / b> C can be wired between the boards 41 and 42 in a U-shape in the plan view direction of the boards 41 and 42.
  • the horizontal movement distance of the substrates 41 and 42 is, for example, about 30 mm to 60 mm.
  • the FPC is bent between the substrates 41 and 42 in a direction perpendicular to the planar direction of the substrates. It is necessary to increase the gap 42.
  • the gap between the two boards 41 and 42 is sufficient as long as the thickness of the harness 11C, and does not need to be large as in the case of using the FPC, and the apparatus can be thinned.
  • FIGS. 11A and 11B are perspective views showing examples of the casings 1A and 1B connected by the thin coaxial cable harness 11C.
  • the housings 1A and 2A are preferably provided with a housing portion 9 for housing the harness 11C with a predetermined width.
  • a rectangular recess 9 a can be provided as the accommodating portion 9.
  • the U-shaped deformation of the harness 11C accompanying the relative sliding of the two casings 1A and 2A is caused to occur in the housing portion 9, thereby preventing the coaxial cable 12 from being caught between the casings 1A and 2A. can do.
  • casing 1A, 2A can slide smoothly.
  • the housing 9 surrounded by walls can be formed by providing protrusions 9b on the housings 1A and 2A in a rectangular shape, for example.
  • the harness 11C By using the thin coaxial cable 12 thinner than the AWG 44, the harness 11C can be easily bent, and the resistance when the casings 1A and 2A slide can be reduced. Moreover, the thickness of the harness 11C can be reduced, and the device can be made thinner. Since the harness 11C can be sandwiched between the casings 1A and 2A and crushed to be flattened, the thickness of the accommodating portion 9 may be slightly smaller (about 0.2 mm) than the thickness of the harness 11C. As described above, the harness 11C may include a small-diameter insulated cable having no external conductor, but it is preferable to use a cable having an outer diameter smaller than 0.30 mm.
  • 40 AWG 44 thick cables 12 are passed through a silicone waterproof tube 21 (inner diameter 2.4 mm, outer diameter 2.8 mm), and a monofilament hybrid fiber made of a molten liquid crystalline polymer and a flexible polymer is braided.
  • the central conductor of the cable 12 is not broken even if it is housed and the one end side of the harness is fixed and the other end side is moved in the length direction of the groove and bending and sliding are repeated 200,000 times.
  • the sleeve 40 and the waterproof tube 21 are pushed and flattened.
  • the harness is always in contact with the lower surface and the upper surface (upper housing) of the groove and rubbed by sliding of the harness, and the rubbed portion is covered with the sleeve 40 at that time.
  • the frictional force between the waterproof tube 21 made of silicone and the upper and lower surfaces of the groove is large and cannot be slid well.
  • the harness subjected to the sliding test is connected with a waterproof structure between two housings as shown in FIG. 7 and submerged in a water tank having a depth of 1 m for 30 minutes, the waterproof tube 21 does not break, Does not happen.
  • the thin coaxial cable harness 11C of the third embodiment is inserted into the sleeve 40 together with the waterproof tube 21 before attaching the seal cap.
  • the waterproof tape 35 and the sleeve 40 are inserted through the sleeve 40 before the seal cap is attached.
  • the ends of the sleeve 40 are integrated with each other by heat-sealing, and fixed to a predetermined position of the waterproof tube 21 with an adhesive tape or the like.
  • the waterproof tube is passed through a cylindrical sleeve woven or knitted with polymer fibers.
  • the bending radius can be reduced while obtaining good waterproofness, and the sliding resistance is reduced.
  • a sleeve made of a polymer fiber has excellent wear resistance, strength, and elastic modulus, has a good bendability of the harness, and the surface of the fiber becomes rough and fluffy due to repeated friction caused by sliding with the housing (so-called No fibrillation) and no tearing. Therefore, a good sliding state of the harness can be maintained for a long time.
  • the small-diameter coaxial cable harness of the present invention is suitable for connecting circuit boards in a casing that is slidably or pivotably connected to each other in precision small devices such as mobile phone terminals, small video cameras, and notebook computers. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Communication Cables (AREA)
  • Insertion, Bundling And Securing Of Wires For Electric Apparatuses (AREA)
  • Insulated Conductors (AREA)

Abstract

Disclosed are a thin coaxial cable harness which is waterproof and connects circuit boards movably coupled inside a case with one another, and a connection structure for the same. The thin coaxial cable harness includes a bundled part that bundles a plurality of thin coaxial cables, and waterproof parts that are installed at two locations of the bundled part in a watertight manner and installed in the case in a watertight manner. The bundled part may include a waterproof tube or waterproof tape. In either case, it is desirable that the bundled part pass through a cylindrical sleeve made of woven or knitted synthetic fiber. The connection structure of the thin coaxial cable harness is characterized by having a thin coaxial cable harness stipulated in one of claims 1 to 13 wired between the two cases, and having waterproof parts installed on the thin coaxial cable at areas where it enters the case.

Description

細径同軸ケーブルハーネスおよびその接続構造Thin coaxial cable harness and its connection structure
 本発明は、細径の同軸ケーブルを複数本束ねたハーネスおよびその接続構造に関する。 The present invention relates to a harness in which a plurality of thin coaxial cables are bundled and a connection structure thereof.
 携帯電話端末、小型ビデオカメラ、ノートパソコンなどの精密小型機器では、互いにスライド可能あるいは回動可能に連結された筐体内の回路基板を配線材料によって接続している。特開2006-344813号公報は、配線材料として防水用部材をインサート成形したフレキシブル配線基板を用い、配線基板が挿通される筐体の通し孔を防水用部材によって密閉した精密小型機器を記載している。 In precision small devices such as mobile phone terminals, small video cameras, and notebook computers, circuit boards in a casing that are slidably or pivotably connected to each other are connected by a wiring material. Japanese Patent Laid-Open No. 2006-344813 describes a precision small device in which a flexible wiring board in which a waterproofing member is insert-molded is used as a wiring material, and a through hole of a housing through which the wiring board is inserted is sealed with a waterproofing member. Yes.
 ところで、フレキシブル配線基板は、屈曲半径を小さくすることが難しく、繰り返しの屈曲により信号線の断線が容易に発生するという欠点を持つ。一方、同軸ケーブルを束ねたハーネスは、屈曲半径を小さくすることができ、しかも繰り返しの屈曲にも強い。また、細径同軸ケーブルはノイズ特性に優れ安定した信号伝送を行うことが出来る。しかし、同軸ケーブルハーネスは、断面の外形が不定形で、同軸ケーブル同士の隙間もあることから、筐体の通し孔での防水が困難である。また、束ねた同軸ケーブルを防水のために覆うと、覆った部分が摺動する筐体間でうまく滑らず、引っかかりやすくなる。 By the way, the flexible wiring board has a drawback that it is difficult to reduce the bending radius, and the signal line is easily disconnected by repeated bending. On the other hand, a harness in which coaxial cables are bundled can reduce the bending radius and is resistant to repeated bending. In addition, the thin coaxial cable has excellent noise characteristics and can perform stable signal transmission. However, the coaxial cable harness has an indefinite cross-sectional shape and a gap between the coaxial cables, so that it is difficult to waterproof the casing through the through hole. Moreover, when the bundled coaxial cables are covered for waterproofing, the covered portions do not slide well between the sliding casings and are easily caught.
特開2006-344813号公報JP 2006-344813 A
 本発明は、良好な防水性を得つつ移動可能に連結された筐体内の回路基盤同士を接続する細径同軸ケーブルハーネスおよびその接続構造を提供する。 The present invention provides a small-diameter coaxial cable harness for connecting circuit boards in a casing that is movably connected while obtaining good waterproofness, and a connection structure thereof.
課題を解決するため、位置関係が変化し得る二つの筐体間を接続する細径同軸ケーブルハーネスであって、複数の細径同軸ケーブルを束ねた結束部と、結束部の二箇所に水密に取り付けられ、筐体に水密に取り付けられる防水部とを含むハーネスが提供される。 In order to solve the problem, a small-diameter coaxial cable harness that connects two housings whose positional relationship can be changed, and a water-tight connection is made to a bundling portion in which a plurality of small-diameter coaxial cables are bundled and a bundling portion. A harness is provided that includes a waterproof part that is attached and watertightly attached to the housing.
 発明の第一の態様では、結束部は、防水部の間で複数の細径同軸ケーブルの周囲を覆い防水部と水密に取り付けられている防水チューブを含む。この場合、防水部は、金属または熱収縮性樹脂によるかしめによって防水チューブに水密に取り付けられていることが好ましい。また、防水部は、防水部が防水チューブに圧入されることによって防水チューブに水密に取り付けられていることが好ましい。 In the first aspect of the invention, the bundling portion includes a waterproof tube that covers the periphery of the plurality of small-diameter coaxial cables between the waterproof portions and is watertightly attached to the waterproof portion. In this case, it is preferable that the waterproof part is watertightly attached to the waterproof tube by caulking with metal or heat-shrinkable resin. Moreover, it is preferable that the waterproof part is watertightly attached to the waterproof tube by pressing the waterproof part into the waterproof tube.
 発明の第二の態様では、結束部は、複数の細径同軸ケーブルの周囲に水密に巻き付けられている防水テープを含む。この場合、防水部は、かしめられることにより内側に挿通された結束部に水密に取り付けられ、筐体に密着した際の弾性変形の反力を支える支持部材を備えていることが好ましい。また、防水テープが、巻き方向を変えて複数層に巻かれていることが好ましい。 In the second aspect of the invention, the bundling portion includes a waterproof tape that is tightly wound around the plurality of small-diameter coaxial cables. In this case, it is preferable that the waterproof part is provided with a support member that is watertightly attached to the bundling part inserted inward by caulking and supports a reaction force of elastic deformation when the waterproof part comes into close contact with the casing. Moreover, it is preferable that the waterproof tape is wound in a plurality of layers by changing the winding direction.
 発明の第一の態様、第二の態様いずれにおいても、結束部は、合成繊維を織ったまたは編んだ筒状のスリーブ内に通されていることが好ましい。この場合、スリーブが溶融液晶性ポリマーと屈曲性ポリマーからなるモノフィラメントハイブリッド繊維を編組したものであるのが好適である。また、スリーブが合成繊維を経編みしたものであるのが好適である。また、当該同軸ケーブルハーネスの少なくとも一端に、コネクタが取り付けられていることが好適である。 In both the first aspect and the second aspect of the invention, the binding portion is preferably passed through a cylindrical sleeve woven or knitted of synthetic fibers. In this case, it is preferable that the sleeve is a braided monofilament hybrid fiber made of a molten liquid crystalline polymer and a flexible polymer. Further, it is preferable that the sleeve is a warp knitted synthetic fiber. Moreover, it is preferable that a connector is attached to at least one end of the coaxial cable harness.
 加えて、二つの筐体間に本発明の細径同軸ケーブルハーネスが配線され、細径同軸ケーブルハーネスにおける筐体への導入箇所に防水部が取り付けられている細径同軸ケーブルハーネスの接続構造が提供される。 In addition, the thin coaxial cable harness connection structure in which the thin coaxial cable harness of the present invention is wired between two housings and a waterproof part is attached to the introduction portion of the thin coaxial cable harness to the housing is provided. Provided.
 本発明の細径同軸ケーブルハーネスによれば、結束部からその中の細径同軸ケーブルに水が浸み込むことがない。そして、そのハーネスを筐体に取り付けたときには、筐体への導入箇所に、結束部に対して水密な防水部を筐体に水密に装着することにより、ハーネスを伝って水が筐体内に浸入することがない。したがって、筐体の防水性を確保しつつ、ハーネスによって筐体同士を接続することができる。 According to the thin coaxial cable harness of the present invention, water does not permeate from the bundled portion into the thin coaxial cable therein. When the harness is attached to the housing, a water-tight waterproof portion is attached to the housing at the location where the harness is introduced, so that water enters the housing through the harness. There is nothing to do. Therefore, the casings can be connected to each other with the harness while ensuring the waterproofness of the casings.
図1は、折りたたみ式の携帯電話端末を示す斜視図である。FIG. 1 is a perspective view showing a foldable mobile phone terminal.
図2は、スライド式の携帯電話端末を示す斜視図であり、(A)は伸長させた状態、(B)は重ねた状態を示す。2A and 2B are perspective views showing a slide-type mobile phone terminal, in which FIG. 2A shows an extended state and FIG. 2B shows an overlapped state.
図3は、本発明に係る細径同軸ケーブルハーネスの実施形態の概念図である。FIG. 3 is a conceptual diagram of an embodiment of a thin coaxial cable harness according to the present invention.
図4は、本発明に係る細径同軸ケーブルハーネスとそれを用いた接続構造の第1実施形態を半割にした状態で示す平面図である。FIG. 4 is a plan view showing the first embodiment of the thin coaxial cable harness and the connection structure using the same according to the present invention in a halved state.
図5は、本発明に係る細径同軸ケーブルハーネスとそれを用いた接続構造の第2実施形態を半割にした状態で示す平面図である。FIG. 5 is a plan view showing the second embodiment of the thin coaxial cable harness according to the present invention and the connection structure using the same in a state of being halved.
図6は、図5の細径同軸ケーブルハーネスにおける防水テープの巻き付け状態を示す平面図である。FIG. 6 is a plan view showing a wound state of the waterproof tape in the thin coaxial cable harness of FIG.
図7は、本発明に係る細径同軸ケーブルハーネスとそれを用いた接続構造の第3実施形態を半割にした状態で示す平面図である。FIG. 7: is a top view shown in the state which halved 3rd Embodiment of the thin coaxial cable harness which concerns on this invention, and the connection structure using the same.
図8は、図7の第3実施形態の細径同軸ケーブルハーネスにおけるスリーブの一部示す拡大平面図である。FIG. 8 is an enlarged plan view showing a part of a sleeve in the thin coaxial cable harness of the third embodiment of FIG.
図9は、図5の細径同軸ケーブルハーネスで接続された筐体を伸長させた状態において示す概念図であり、(A)は平面図、(B)は側面図である。FIGS. 9A and 9B are conceptual views showing a state where the casings connected by the small-diameter coaxial cable harness of FIG. 5 are extended. FIG. 9A is a plan view and FIG. 9B is a side view.
図10は、図5の細径同軸ケーブルハーネスで接続された筐体を重ねた状態において示す概念図であり、(A)は平面図、(B)は側面図である。10A and 10B are conceptual diagrams showing a state in which the casings connected by the small-diameter coaxial cable harness of FIG. 5 are stacked, and FIG. 10A is a plan view and FIG. 10B is a side view.
図11(A)、(B)は、図5の細径同軸ケーブルハーネスで接続された筐体の例を示す斜視図である。FIGS. 11A and 11B are perspective views showing examples of housings connected by the thin coaxial cable harness of FIG.
 本発明の実施形態が、以下において、図面を参照して説明される。図面は、説明を目的とし、発明の範囲を限定しようとするものではない。図面において、説明の重複を避けるため、同じ符号は同一部分を示す。図面中の寸法の比率は、必ずしも正確ではない。 Embodiments of the present invention will be described below with reference to the drawings. The drawings are for illustrative purposes and are not intended to limit the scope of the invention. In the drawings, the same reference numerals denote the same parts in order to avoid duplication of explanation. The ratio of dimensions in the drawings is not necessarily accurate.
図1は、折りたたみ式の携帯電話端末3を示す斜視図である。図2は、スライド式の携帯電話端末3Aを示す斜視図であり、(A)は伸長させた状態、(B)は重ねた状態を示す。本発明の細径同軸ケーブルハーネスは、たとえば、携帯電話端末3の筐体1、筐体2間、あるいは、携帯電話端末3Aの筐体1A、筐体2A間を接続する。 FIG. 1 is a perspective view showing a foldable mobile phone terminal 3. 2A and 2B are perspective views showing a slide-type mobile phone terminal 3A, in which FIG. 2A shows an extended state and FIG. 2B shows an overlapped state. The thin coaxial cable harness of the present invention connects, for example, between the casing 1 and the casing 2 of the mobile phone terminal 3 or between the casing 1A and the casing 2A of the mobile phone terminal 3A.
 携帯電話端末3では、第1筐体1および第2筐体2の端部同士が、ヒンジ4によって回動可能に連結されている。第1筐体1および第2筐体2各々は、連結側の端面に、ケーブル挿通孔5,6を有し、孔5,6から、細径同軸ケーブルハーネス11の各端が第1筐体1または第2筐体2内に導入されている。また、ヒンジ4は、連通孔4aを有し、連通孔4a内にハーネス11が挿通されている。 In the mobile phone terminal 3, the ends of the first casing 1 and the second casing 2 are connected to each other by a hinge 4 so as to be rotatable. Each of the first housing 1 and the second housing 2 has cable insertion holes 5 and 6 on the end face on the connection side, and each end of the small-diameter coaxial cable harness 11 extends from the holes 5 and 6 to the first housing. It is introduced into the first or second housing 2. Moreover, the hinge 4 has the communication hole 4a, and the harness 11 is inserted in the communication hole 4a.
 図3は、本発明の実施形態である細径同軸ケーブルハーネス11の概念図である。ハーネス11は、複数本(20~60本)の細径同軸ケーブル12有し、ケーブル12の中間部分は束ねられている。本明細書では、この束ねられた部分を結束部10と呼ぶ。ケーブル12各々は、中心から外側に向かって、中心導体、内部絶縁体、外部導体、外被を有する。ケーブル12各々の端部では、端末処理が施されて、外部導体、内部絶縁体、中心導体が段階的に所定長さに露出され、コネクタ13が取り付けられている。コネクタ13は、携帯電話端末3の第1筐体1および第2筐体2内の配線基板へ接続される。なお、ハーネス11には、複数本の細径同軸ケーブルケーブル12の他に、外部導体のない細径絶縁ケーブルが含まれていても良い。 FIG. 3 is a conceptual diagram of a thin coaxial cable harness 11 according to an embodiment of the present invention. The harness 11 has a plurality (20 to 60) of small-diameter coaxial cables 12, and the middle portions of the cables 12 are bundled. In the present specification, this bundled portion is referred to as a binding portion 10. Each cable 12 has a center conductor, an inner insulator, an outer conductor, and a jacket from the center toward the outside. At the end of each cable 12, a terminal treatment is performed, and the outer conductor, the inner insulator, and the center conductor are exposed to a predetermined length step by step, and the connector 13 is attached. The connector 13 is connected to the wiring board in the first housing 1 and the second housing 2 of the mobile phone terminal 3. The harness 11 may include a small-diameter insulated cable having no external conductor in addition to the plurality of small-diameter coaxial cable cables 12.
 本発明でいうケーブル12は、American Wire Gaugeの規格によるAWG40よりも細い同軸ケーブルである。AWG44よりも細い極細同軸ケーブルを用いるのが望ましい。これにより、ハーネス11は、曲がり易く、第1筐体1と第2筐体2とが互いに回動またはスライドするときの抵抗を小さくすることができる。また、結束部10の径を細くすることができ、限られた配線スペースでの高密度配線を可能とする。 The cable 12 referred to in the present invention is a coaxial cable thinner than the AWG 40 according to the American Wire Gauge standard. It is desirable to use a fine coaxial cable thinner than the AWG44. Thereby, the harness 11 is easy to bend and can reduce resistance when the first housing 1 and the second housing 2 rotate or slide with respect to each other. In addition, the diameter of the bundling portion 10 can be reduced, and high-density wiring is possible in a limited wiring space.
 ケーブル12がAWG46の太さである場合には、ハーネス11の結束部10を幅5mmから10mmのU字状に屈曲させることができる。ケーブル12の本数の増加によりU字の幅も大きくなるが、AWG44のケーブル12を60本束ねたとしても、その幅は12mm以内にできる。 When the cable 12 has the thickness of the AWG 46, the binding portion 10 of the harness 11 can be bent into a U shape having a width of 5 mm to 10 mm. Although the U-shaped width is increased by increasing the number of cables 12, even if 60 cables 12 of the AWG 44 are bundled, the width can be within 12 mm.
(第一実施形態)
 図4は、本発明の第1実施形態である細径同軸ケーブルハーネス11Aとそれを用いた接続構造の半割にした状態における平面図である。ハーネス11Aは、細径同軸ケーブル12を防水チューブ21に通した結束部10を有している。チューブ21の一部分が、携帯電話端末のヒンジ4に形成された連通孔4aに挿通されている。チューブ21は、例えば、フッ素樹脂、ポリオレフィン、または、シリコーンゴム等の軟質の樹脂、あるいは、これらの多孔体から形成されている。チューブ21の両端には、防水部23が設けられている。
(First embodiment)
FIG. 4 is a plan view of the thin coaxial cable harness 11 </ b> A according to the first embodiment of the present invention and a connection structure using the same in a halved state. The harness 11 </ b> A has a binding portion 10 in which the thin coaxial cable 12 is passed through the waterproof tube 21. A part of the tube 21 is inserted into a communication hole 4a formed in the hinge 4 of the mobile phone terminal. The tube 21 is made of, for example, a soft resin such as fluororesin, polyolefin, or silicone rubber, or a porous body thereof. Waterproof portions 23 are provided at both ends of the tube 21.
 防水部23は、シールキャップ22とOリングとからなる。シールキャップ22は、例えば、ABSなどの硬質樹脂から成形されたもので、その中心に形成された挿通孔24に、ケーブル12が挿通されている。シールキャップ22は、径方向外方へ延出する円板状のフランジ部25を有しており、フランジ部25の外周部に、シリコーンゴムなどで構成されるOリング26が装着されている。 The waterproof part 23 includes a seal cap 22 and an O-ring. The seal cap 22 is formed from, for example, a hard resin such as ABS, and the cable 12 is inserted through an insertion hole 24 formed at the center thereof. The seal cap 22 has a disk-like flange portion 25 extending outward in the radial direction, and an O-ring 26 made of silicone rubber or the like is attached to the outer peripheral portion of the flange portion 25.
 また、シールキャップ22は、フランジ部25の一方の面側から延出する円筒部27を有しており、円筒部27が、チューブ21に挿入されている。チューブ21の円筒部27が挿入されている部分の外側には、かしめ部材28が装着されている。かしめ部材28は、例えば、バネ鋼から形成されている。かしめ部材28によってチューブ21がシールキャップ22の円筒部27に圧接されている。防水チューブ21は筒状であり、かつ表面の凹凸も小さい(数十μm以下とすることができる)ので、チューブ21と防水部23との接続箇所に隙間ができず、両者を水密に接続することができる。 Further, the seal cap 22 has a cylindrical portion 27 extending from one surface side of the flange portion 25, and the cylindrical portion 27 is inserted into the tube 21. A caulking member 28 is attached to the outside of the portion where the cylindrical portion 27 of the tube 21 is inserted. The caulking member 28 is made of spring steel, for example. The tube 21 is pressed against the cylindrical portion 27 of the seal cap 22 by the caulking member 28. Since the waterproof tube 21 has a cylindrical shape and small irregularities on the surface (can be several tens of μm or less), there is no gap between the connection portion of the tube 21 and the waterproof portion 23, and the two are connected in a watertight manner. be able to.
 上記構造のハーネス11Aは、両端部のコネクタ13各々が、第1筐体1のケーブル挿通孔5および第2筐体2のケーブル挿通孔6に挿通されて各筐体内に入れられる。さらに、各筐体の端面に形成された凹部7、8内に防水部23を構成するOリング26が嵌合される。これによりOリング26が凹部7、8の内周面7a、8aとシールキャップ22とに密着して各筐体とシールキャップ22との間を水密にする。 In the harness 11A having the above structure, the connectors 13 at both end portions are inserted into the cable insertion holes 5 of the first housing 1 and the cable insertion holes 6 of the second housing 2 and are inserted into the respective housings. Further, an O-ring 26 that constitutes the waterproof portion 23 is fitted into the recesses 7 and 8 formed on the end surfaces of the respective casings. As a result, the O-ring 26 is brought into close contact with the inner peripheral surfaces 7a and 8a of the recesses 7 and 8 and the seal cap 22 to make watertight between the casings and the seal cap 22.
 シールキャップ22のフランジ部25の円筒部27とは反対側の面は、接着材29によって各筐体1、2各々に接着されて固着される。接着材29として、樹脂や両面接着テープを使用することができる。接着材29は防水性を有することが望ましく、この場合は、Oリング26に加えてさらに防水性を向上させることができる。例えば、シールキャップ22が透明である場合、紫外線硬化性樹脂をシールキャップ22と各筐体2の間に配し、シールキャップ22の外側から紫外線を照射することで短時間に水密な結合を得ることが可能となる。 The surface opposite to the cylindrical portion 27 of the flange portion 25 of the seal cap 22 is adhered and fixed to each of the casings 1 and 2 with an adhesive 29. As the adhesive 29, a resin or a double-sided adhesive tape can be used. The adhesive 29 is desirably waterproof, and in this case, the waterproof property can be further improved in addition to the O-ring 26. For example, when the seal cap 22 is transparent, an ultraviolet curable resin is disposed between the seal cap 22 and each housing 2 and the water-tight bond is obtained in a short time by irradiating ultraviolet rays from the outside of the seal cap 22. It becomes possible.
 細径同軸ケーブルハーネス11Aを製造するには、まず、両端にコネクタ13が接続された細径同軸ケーブルハーネス11(図3)をチューブ21に挿通させる。その後、両端からシールキャップ22を挿通させ、シールキャップ22とチューブ21とをかしめ部材28でかしめて接続させる。また、シールキャップ22のフランジ部25の外周にOリング26を装着して防水部23を構成する。(ここで、チューブ21またはシールキャップ22にコネクタ13を挿通させることが難しい場合は、チューブ21またはシールキャップ22にコネクタを取り付ける前の複数本のケーブル12を挿通し、その後にケーブル12の端部にコネクタ13を取り付けてもよい。) In order to manufacture the thin coaxial cable harness 11A, first, the thin coaxial cable harness 11 (FIG. 3) with the connectors 13 connected to both ends is inserted through the tube 21. Thereafter, the seal cap 22 is inserted from both ends, and the seal cap 22 and the tube 21 are caulked and connected by the caulking member 28. Further, an O-ring 26 is attached to the outer periphery of the flange portion 25 of the seal cap 22 to constitute the waterproof portion 23. (Here, when it is difficult to insert the connector 13 into the tube 21 or the seal cap 22, a plurality of cables 12 before the connector is attached to the tube 21 or the seal cap 22 are inserted, and then the end of the cable 12 is inserted. The connector 13 may be attached to the
 防水部23が取り付けられたハーネス11Aは、携帯電話端末3を構成する第1筐体1及び第2筐体2に次のように装着する。コネクタ13を第1筐体1の挿通孔5または第2筐体2の挿通孔6に挿通し、筐体の中に入れる。Oリング26を装着したシールキャップ22を第1筐体1の凹部7または第2筐体の凹部8に嵌合させ、シールキャップ22と各筐体とをOリング26により水密に接続する。ハーネス11Aは、両端のコネクタ13によって第1筐体1および第2筐体2内の配線基板などに容易に接続することができる。 The harness 11 </ b> A to which the waterproof part 23 is attached is attached to the first housing 1 and the second housing 2 constituting the mobile phone terminal 3 as follows. The connector 13 is inserted into the insertion hole 5 of the first casing 1 or the insertion hole 6 of the second casing 2 and is inserted into the casing. The seal cap 22 fitted with the O-ring 26 is fitted into the recess 7 of the first housing 1 or the recess 8 of the second housing, and the seal cap 22 and each housing are connected in a watertight manner by the O-ring 26. The harness 11A can be easily connected to the wiring boards in the first housing 1 and the second housing 2 by the connectors 13 at both ends.
 結束部10および防水部23が防水構造となっていて、防水部23が第1筐体1および第2筐体2に水密に装着されるので、第1筐体1と第2筐体2との間にハーネスを伝って第1筐体1または第2筐体2に水が浸入することがなく、第一実施形態の細径同軸ケーブルハーネス11Aは防水機能を発揮する。これにより、良好な防水性を得つつ、屈曲半径を小さくすることができ、繰り返し屈曲にも有利なハーネス11Aによって第1筐体1および第2筐体2を接続することができる。また、ケーブル12はシールド性が良好でありノイズ特性に優れているため、安定した信号伝送を行うことができる。 Since the bundling portion 10 and the waterproof portion 23 have a waterproof structure, and the waterproof portion 23 is attached to the first housing 1 and the second housing 2 in a watertight manner, the first housing 1 and the second housing 2 During this period, water does not enter the first housing 1 or the second housing 2 through the harness, and the thin coaxial cable harness 11A of the first embodiment exhibits a waterproof function. Accordingly, the first casing 1 and the second casing 2 can be connected by the harness 11 </ b> A that can reduce the bending radius and that is advantageous for repeated bending while obtaining good waterproof properties. Moreover, since the cable 12 has good shielding properties and excellent noise characteristics, stable signal transmission can be performed.
 なお、かしめ部材28を熱収縮性の樹脂(例えばポリオレフィンなど)から形成し、かしめ部材28を熱収縮させることによってチューブ21の端部とシールキャップ22の円筒部27とを水密に接続しても良い。また、バンドからなるかしめ部材28によって縛ることにより、チューブ21の端部とシールキャップ22の円筒部27とを水密に接続しても良い。 Even if the caulking member 28 is formed of a heat-shrinkable resin (for example, polyolefin) and the caulking member 28 is thermally contracted, the end portion of the tube 21 and the cylindrical portion 27 of the seal cap 22 are connected in a watertight manner. good. Further, the end portion of the tube 21 and the cylindrical portion 27 of the seal cap 22 may be connected in a watertight manner by being bound by a caulking member 28 made of a band.
 あるいは、シールキャップ22の円筒部27をチューブ21の端部に圧入し、チューブ21をシールキャップ22の外周に密着させてシールキャップ22とチューブ21とを水密に接続しても良い。チューブ21がシリコーンゴムのような伸長方向からの復元力を持つ材料である場合、円筒部27の外径をチューブ21の内径より大きくするだけで、チューブ21の復元力によってシールキャップ22との水密をとることができて効果的である。また、チューブ21自体を熱収縮性の樹脂(例えばポリオレフィンなど)から形成し、チューブ21の両端にシールキャップ22の円筒部27を嵌合させた後に、少なくともチューブ21の両端を熱収縮させ、チューブ21の端部とシールキャップ22の円筒部27とを水密に接続しても良い。 Alternatively, the cylindrical portion 27 of the seal cap 22 may be press-fitted into the end portion of the tube 21, the tube 21 may be brought into close contact with the outer periphery of the seal cap 22, and the seal cap 22 and the tube 21 may be connected in a watertight manner. When the tube 21 is made of a material having a restoring force from the extending direction such as silicone rubber, the tube 21 can be made watertight with the seal cap 22 only by making the outer diameter of the cylindrical portion 27 larger than the inner diameter of the tube 21. Is effective. Further, the tube 21 itself is formed from a heat-shrinkable resin (for example, polyolefin), and the cylindrical portion 27 of the seal cap 22 is fitted to both ends of the tube 21, and then at least both ends of the tube 21 are heat-shrinked. The end portion 21 and the cylindrical portion 27 of the seal cap 22 may be connected in a watertight manner.
 また、シールキャップ22間の結束部10に防水処理を施さず、シールキャップ22の内周側に接着剤を充填し、シールキャップ22と結束部10とを一体化させるとともに、シールキャップ22の挿通孔24内におけるケーブル12同士の隙間を接着剤によって埋めてハーネス11Aが筐体内に導入される部分から筐体内に水が浸入しない構造としても良い。接着剤には、湿度硬化性の樹脂、熱硬化性の樹脂、紫外線硬化性の樹脂を使用することができる。 Further, the bundling portion 10 between the seal caps 22 is not waterproofed, and the inner peripheral side of the seal cap 22 is filled with an adhesive so that the seal cap 22 and the bundling portion 10 are integrated, and the seal cap 22 is inserted. The gap between the cables 12 in the hole 24 may be filled with an adhesive so that water does not enter the housing from the portion where the harness 11A is introduced into the housing. As the adhesive, a humidity curable resin, a thermosetting resin, or an ultraviolet curable resin can be used.
(第二実施形態)
 図5は、本発明の第2実施形態である細径同軸ケーブルハーネス11Bとそれを用いた接続構造の半割にした状態における平面図である。ハーネス11Bの結束部10は、複数本の細径同軸ケーブル12の周囲に防水テープ35が水密に巻き付けられることで形成されている。結束部10の一部分が、携帯電話端末のヒンジ4に形成された連通孔4aに挿通されている。防水テープ35は、水を通さないテープであり、例えば、PTFE(ポリテトラフルオロエチレン)等の撥水性を有する軟質の樹脂から形成されている。防水テープ35には、巻き付ける内側の面に接着剤層があっても良い。
(Second embodiment)
FIG. 5 is a plan view of the thin coaxial cable harness 11B according to the second embodiment of the present invention and a connection structure using the same in a half state. The binding portion 10 of the harness 11B is formed by watertightly winding a waterproof tape 35 around a plurality of small-diameter coaxial cables 12. A part of the binding unit 10 is inserted into a communication hole 4a formed in the hinge 4 of the mobile phone terminal. The waterproof tape 35 is a tape that does not allow water to pass through, and is formed of, for example, a soft resin having water repellency such as PTFE (polytetrafluoroethylene). The waterproof tape 35 may have an adhesive layer on the inner surface to be wound.
 防水テープ35は、複数本のケーブル12の周囲に螺旋状に部分的に重なった状態で巻き付けられている。防水テープ35自体が撥水性であるので、重なり部分を接着せずとも防水テープ35の内側に水が浸入することはない。防水テープ35を一層(一重)に巻く場合には、重なる部分の幅をテープ幅の1/2~3/4程度にすると良い。 The waterproof tape 35 is wound around the plurality of cables 12 in a state of being partially overlapped spirally. Since the waterproof tape 35 itself is water-repellent, water does not enter the waterproof tape 35 without adhering the overlapping portions. When the waterproof tape 35 is wound in one layer (single layer), the width of the overlapping portion is preferably set to about 1/2 to 3/4 of the tape width.
図6は、細径同軸ケーブルハーネス11Bにおける防水テープの巻き付け状態を示す平面図である。ハーネス11Bが過度に屈曲した状態ではテープの重なる方向に対して垂直方向に剪断力が発生し、防水テープ35間に隙間を作る原因となる。防水テープ35を二層(二重)以上に巻く場合には内層35aと外層35bで巻き付けの螺旋方向を逆にするのが良い。これにより、外層35bの防水テープが内層35aの防水テープを締め付けて内層35aの防水テープに発生する剪断力を相殺する。そのため防水性を保ったままハーネス11Bの屈曲半径を小さくすることが可能となる。防水テープ35を二層巻きにすると、結束部10が曲がる部分では、内層35aの防水テープが浮くことがなく防水性がさらに保たれる。防水テープ35を三層以上に巻く場合でも、層ごとに巻き方向を変えると良い。 FIG. 6 is a plan view showing a wound state of the waterproof tape in the thin coaxial cable harness 11B. When the harness 11B is bent excessively, a shearing force is generated in a direction perpendicular to the direction in which the tapes overlap, causing a gap between the waterproof tapes 35. When the waterproof tape 35 is wound in two layers (double) or more, it is preferable to reverse the spiral direction of winding between the inner layer 35a and the outer layer 35b. Thereby, the waterproof tape of the outer layer 35b fastens the waterproof tape of the inner layer 35a to cancel the shearing force generated in the waterproof tape of the inner layer 35a. Therefore, it is possible to reduce the bending radius of the harness 11B while maintaining waterproofness. When the waterproof tape 35 is wound in two layers, the waterproof tape of the inner layer 35a does not float at the portion where the binding portion 10 is bent, and the waterproof property is further maintained. Even when the waterproof tape 35 is wound in three or more layers, the winding direction may be changed for each layer.
 図5に示すように、結束部10の両端部分の外周には、弾性を有する軟質樹脂(例えば、シリコーンゴム)からなるシールリング30が装着されている。シールリング30は、その中心に形成された挿通孔34に、防水テープ35により形成された結束部10が挿通されている。挿通孔34の内径は結束部10の外径よりも小さくし、挿通孔34に結束部10が圧入されている。 As shown in FIG. 5, seal rings 30 made of a soft resin having elasticity (for example, silicone rubber) are attached to the outer periphery of both end portions of the bundling portion 10. In the seal ring 30, the bundling portion 10 formed by the waterproof tape 35 is inserted into the insertion hole 34 formed in the center thereof. The inner diameter of the insertion hole 34 is smaller than the outer diameter of the binding part 10, and the binding part 10 is press-fitted into the insertion hole 34.
 シールリング30は、径方向外方へ延出する円板状のフランジ部31を有している。フランジ部31の内径側には、フランジ部31が径方向外側から押圧されて弾性変形した際に、その弾性変形の反力を支える支持部材となる支持リング33が設けられている。支持リング33は、シールリング30より高い剛性を有する金属や硬質樹脂により形成されている。また、支持リング33はシールリング30に内蔵されたものでも、シールリング30の内周に別部材として取り付けられるものでも良い。 The seal ring 30 has a disk-like flange portion 31 extending outward in the radial direction. Provided on the inner diameter side of the flange portion 31 is a support ring 33 serving as a support member that supports a reaction force of the elastic deformation when the flange portion 31 is pressed from the radially outer side and elastically deformed. The support ring 33 is made of a metal or hard resin having higher rigidity than the seal ring 30. Further, the support ring 33 may be built in the seal ring 30 or attached to the inner periphery of the seal ring 30 as a separate member.
 また、シールリング30の外周におけるフランジ部31の軸方向両側には、かしめ部材32が装着されている。かしめ部材32として、第1実施形態の細径同軸ケーブルハーネス11Aのところで説明したかしめ部材28と同様のものを使用することができる。これらシールリング30、かしめ部材32、支持リング33が、ハーネス11Bの防水部23を構成している。 Further, caulking members 32 are mounted on both sides in the axial direction of the flange portion 31 on the outer periphery of the seal ring 30. As the caulking member 32, a member similar to the caulking member 28 described in the thin coaxial cable harness 11A of the first embodiment can be used. The seal ring 30, the caulking member 32, and the support ring 33 constitute the waterproof part 23 of the harness 11B.
 ハーネス11Bは、その両端部のコネクタ13各々が、第1筐体1のケーブル挿通孔5および第2筐体2のケーブル挿通孔6に挿通されて各筐体内に入れられる。さらに、各々の筐体の端面に形成された凹部7、8内に、防水部23を構成するシールリング30が嵌合され筐体内への水の浸入を防ぐ。 In the harness 11B, the connectors 13 at both ends of the harness 11B are inserted into the cable insertion holes 5 of the first casing 1 and the cable insertion holes 6 of the second casing 2, respectively, and are inserted into the respective casings. Furthermore, the seal ring 30 which comprises the waterproof part 23 is fitted in the recessed parts 7 and 8 formed in the end surface of each housing | casing, and the permeation of the water into a housing | casing is prevented.
 防水テープ35により覆われた結束部10は防水構造であり、結束部10が防水部23を構成するシールリング30に水密に取り付けられる。第二実施形態の細径同軸ケーブルハーネス11Bも、第1実施形態の細径同軸ケーブルハーネス11Aと同様に防水機能を発揮する。これにより、良好な防水性を得つつ、屈曲半径を小さくすることができ、繰り返し屈曲にも有利なハーネス11Bによって第1筐体1および第2筐体2を容易に接続することができる。また、ケーブル12はシールド性が良好でありノイズ特性に優れているため、安定した信号伝送を行うことができる。 The bundling portion 10 covered with the waterproof tape 35 has a waterproof structure, and the bundling portion 10 is attached to a seal ring 30 constituting the waterproof portion 23 in a watertight manner. The thin coaxial cable harness 11B of the second embodiment also exhibits a waterproof function in the same manner as the thin coaxial cable harness 11A of the first embodiment. As a result, the bending radius can be reduced while obtaining good waterproofness, and the first casing 1 and the second casing 2 can be easily connected by the harness 11B that is advantageous for repeated bending. Moreover, since the cable 12 has good shielding properties and excellent noise characteristics, stable signal transmission can be performed.
 ハーネス11Bの製造過程において、防水テープ35を施す前に、内側のケーブル12を、例えば、モノフィラメント繊維を筒状に編み込んだ編組スリーブによって束ねたり、バンドルテープや糸を螺旋状に巻き付けて束ねたりしても良く、このようにすると、防水テープ35の巻き付けの円滑化を図ることができる。 In the manufacturing process of the harness 11B, before applying the waterproof tape 35, the inner cable 12 is bundled by, for example, a braided sleeve in which monofilament fibers are knitted into a cylindrical shape, or bundled tape or yarn is wound in a spiral shape and bundled. If it does in this way, smoothing of winding of waterproofing tape 35 can be aimed at.
 なお、第一実施形態、第二実施形態では、コネクタ13を装着せずに、細径同軸ケーブルハーネス11A、11Bのケーブル12を回路基板へ直接またはFPC等を介して接続してもよい。細径同軸ケーブルハーネスの端部を筐体の挿通孔から筐体に入れることは上述の説明と同様である。また、細径同軸ケーブルハーネス11A、11Bは、ヒンジ4が無い構造にも適用可能である。 In the first embodiment and the second embodiment, the cables 12 of the small-diameter coaxial cable harnesses 11A and 11B may be connected to the circuit board directly or via an FPC or the like without attaching the connector 13. The end of the small-diameter coaxial cable harness is inserted into the housing through the insertion hole of the housing, as described above. The thin coaxial cable harnesses 11 </ b> A and 11 </ b> B can also be applied to a structure without the hinge 4.
(第三実施形態)
 図7は、本発明の第3実施形態である細径同軸ケーブルハーネス11Cとそれを用いた接続構造の半割にした状態における平面図である。ハーネス11Cは第一実施形態の細径同軸ケーブルハーネス11Aにスリーブ40を付加したものである。防水チューブ21は筒状のスリーブ40内に通されており、防水部23の間では、防水チューブ21は防水部23の近傍を除いてスリーブ40により覆われている。(防水部23の間であって少なくとも防水チューブ21が変位する箇所をスリーブ40が覆うように、スリーブ40の両端の位置が決められているとよい。)スリーブ40は、合成繊維(ポリマー繊維)を織るか編むことによって筒状に形成したものである。スリーブ40の両端は、防水チューブ21に対して接着テープ43によりテープ留めされている。本発明にかかるスリーブは、ケーブルハーネスとその周囲の部材(筐体など)との滑り性を確保するものである。
(Third embodiment)
FIG. 7 is a plan view of a thin coaxial cable harness 11C according to a third embodiment of the present invention and a connection structure using the same in a half state. The harness 11C is obtained by adding a sleeve 40 to the thin coaxial cable harness 11A of the first embodiment. The waterproof tube 21 is passed through a cylindrical sleeve 40, and the waterproof tube 21 is covered with the sleeve 40 except for the vicinity of the waterproof portion 23 between the waterproof portions 23. (The positions of both ends of the sleeve 40 may be determined so that the sleeve 40 covers at least a portion where the waterproof tube 21 is displaced between the waterproof portions 23.) The sleeve 40 is a synthetic fiber (polymer fiber). It is formed into a cylindrical shape by weaving or knitting. Both ends of the sleeve 40 are taped to the waterproof tube 21 with an adhesive tape 43. The sleeve according to the present invention secures slipperiness between the cable harness and the surrounding members (such as a housing).
 スリーブ40を織物(編組)で形成する場合、ポリマー繊維として、溶融液晶性ポリマーと屈曲性ポリマーからなるモノフィラメントハイブリッド繊維を用いることが好ましい。このモノフィラメントハイブリッド繊維は、溶融液晶性ポリマーからなる芯成分と、屈曲性ポリマーを含む鞘成分により構成されている。 When the sleeve 40 is formed of a woven fabric (braid), it is preferable to use a monofilament hybrid fiber made of a molten liquid crystalline polymer and a flexible polymer as the polymer fiber. This monofilament hybrid fiber is composed of a core component made of a molten liquid crystalline polymer and a sheath component containing a bendable polymer.
 芯成分に使用される溶融液晶性ポリマーは、溶融液晶性(溶融異方性)、すなわち溶融相において光学的液晶性(異方性)を示すポリマーであり、芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸等の反復構成単位からなる溶融液晶性ポリエステルを使用できる。溶融液晶性は、例えば試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。好ましい溶融液晶性ポリエステルの融点(MP)は、260~360℃、より好ましくは270~350℃である。ここでいう融点とは、示差走査熱量(DSC:例えばmettler社製、TA3000)で観察される主吸熱ピークのピーク温度である(JIS K7121)。 The molten liquid crystalline polymer used for the core component is a polymer exhibiting molten liquid crystalline properties (melting anisotropy), that is, optical liquid crystallinity (anisotropic properties) in the molten phase, and includes aromatic diols, aromatic dicarboxylic acids, A molten liquid crystalline polyester composed of repeating structural units such as aromatic hydroxycarboxylic acid can be used. The molten liquid crystallinity can be recognized by, for example, placing a sample on a hot stage, heating and heating in a nitrogen atmosphere, and observing the transmitted light of the sample. The melting point (MP) of the molten liquid crystalline polyester is preferably 260 to 360 ° C, more preferably 270 to 350 ° C. The melting point here is the peak temperature of the main endothermic peak observed with a differential scanning calorific value (DSC: for example, TA3000 manufactured by Mettler) (JIS K 7121).
 溶融液晶性ポリエステルには、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエステルケトン、フッ素樹脂熱可塑性ポリマーを添加しても良い。また酸化チタン、カオリン、シリカ、酸化バリウム等の無機物、カーボンブラック、染料や顔料等の着色剤、酸化防止剤、紫外線吸収剤、光安定剤等の各種添加剤を含んでいても良い。 The molten liquid crystalline polyester may be added with polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyetheresterketone, fluororesin thermoplastic polymer. It may also contain various additives such as inorganic substances such as titanium oxide, kaolin, silica and barium oxide, carbon black, colorants such as dyes and pigments, antioxidants, ultraviolet absorbers and light stabilizers.
 鞘成分に使用される屈曲性熱可塑性ポリマー(屈曲性ポリマー)は特に限定されないが、ポリオレフィン、ポリアミド、ポリエステル、ポリアリレート、ポリカーボネート、ポリフェニレンサルファイド、ポリエステルエーテルケトン、フッ素樹脂等が挙げられる。特に好ましくは、ポリフェニレンサルファイド(PPS)、ポリエチレンナフタレートおよび半芳香族ポリエステルアミドである。なお、ここでいう屈曲性ポリマーとは、主鎖上に芳香環を有さないポリマーおよび主鎖上に芳香環を有し、かつ芳香環間の主鎖上に原子が4個以上存在するポリマーをいう。 The flexible thermoplastic polymer (flexible polymer) used for the sheath component is not particularly limited, and examples thereof include polyolefin, polyamide, polyester, polyarylate, polycarbonate, polyphenylene sulfide, polyester ether ketone, and fluororesin. Particularly preferred are polyphenylene sulfide (PPS), polyethylene naphthalate and semiaromatic polyesteramide. The flexible polymer here is a polymer having no aromatic ring on the main chain and a polymer having an aromatic ring on the main chain and having 4 or more atoms on the main chain between the aromatic rings. Say.
 また、鞘成分を、屈曲性熱可塑性ポリマーのみでなく、屈曲性熱可塑性ポリマーと溶融液晶性ポリエステルのブレンドで構成するのが好ましく、特に屈曲性熱可塑性ポリマーを海成分、溶融液晶性ポリエステルを島成分とする海島構造とするのが好ましい。鞘成分を溶融液晶性ポリエステルと屈曲性高分子からなるブレンド(特に海島構造)で構成することにより、鞘成分の強度を高めると同時に鞘成分と芯成分との接着性を顕著に高めることができる。 The sheath component is preferably composed of not only a flexible thermoplastic polymer but also a blend of a flexible thermoplastic polymer and a molten liquid crystalline polyester. In particular, the flexible thermoplastic polymer is a sea component and the molten liquid crystalline polyester is an island. It is preferable to have a sea-island structure as a component. By configuring the sheath component with a blend of melted liquid crystalline polyester and a flexible polymer (especially a sea-island structure), the strength of the sheath component can be increased and at the same time the adhesion between the sheath component and the core component can be significantly increased. .
 ここでいう海島構造とは、繊維横断面において、マトリックスとなる海成分の中に数十から数百の島が存在している状態を意味する。海成分および島成分の混合比、溶融粘度等を変えることにより島数を調整することができる。海成分と島成分をチップブレンドする、または両成分の溶融物をスタチックミキサー等で混合することにより得られる。鞘成分中の島成分比は、製造された鞘型複合繊維の横断面積比(島成分/海成分+島成分)において、強度および耐フィブリル性の点で0.25~0.5とするのが好ましい。島成分比は、繊維横断面の顕微鏡写真から求められるが、製造時の芯成分と鞘成分の吐出量の体積比により求めることもできる。島の直径は0.1~2μm程度とするのが好ましい。 Here, the sea-island structure means a state in which tens to hundreds of islands exist in the sea component serving as a matrix in the fiber cross section. The number of islands can be adjusted by changing the mixing ratio of the sea component and the island component, the melt viscosity, and the like. It is obtained by chip blending the sea component and the island component, or mixing the melt of both components with a static mixer or the like. The island component ratio in the sheath component is preferably 0.25 to 0.5 in terms of strength and fibril resistance in the cross-sectional area ratio (island component / sea component + island component) of the manufactured sheath type composite fiber. . The island component ratio is obtained from a micrograph of the fiber cross section, but can also be obtained from the volume ratio of the discharge amount of the core component and the sheath component at the time of production. The diameter of the island is preferably about 0.1 to 2 μm.
 鞘成分の溶融液晶性ポリエステルは、芯成分と同様の溶融液晶性ポリエステルを用いることができ、これらは同種であっても異種であっても良い。鞘成分の溶融液晶性ポリエステルは、好ましくは、鞘成分の屈曲性熱可塑性ポリマーの融点(MP)+80℃以下、MP-10℃以上のポリマーが好ましい。また、鞘成分には、他のポリマーや各種添加剤を含んでいても良い。 As the molten liquid crystalline polyester of the sheath component, the same molten liquid crystalline polyester as that of the core component can be used, and these may be the same or different. The molten liquid crystalline polyester of the sheath component is preferably a polymer having a melting point (MP) of the flexible thermoplastic polymer of the sheath component of + 80 ° C. or lower and MP−10 ° C. or higher. The sheath component may contain other polymers and various additives.
 スリーブ40を構成するモノフィラメントハイブリッド繊維は、芯鞘型複合繊維の他、偏心芯鞘型を含むものである。複合繊維における芯成分比は0.25~0.80、好ましくは、0.4~0.7とする。特に、鞘成分を屈曲性熱可塑性ポリマーと溶融液晶性ポリエステルで構成した場合には、鞘成分も強度向上に寄与するため、芯成分比率を低くした場合においても、強度15g/d以上の優れた複合繊維を得ることができる。芯成分比が大きくなりすぎると芯が露出しやすく、小さすぎると強度の点で不十分となる場合がある。なお、ここでいう芯成分比とは、複合繊維の断面積比(芯成分/(芯成分+鞘成分))を示す。断面積比は、繊維横断面の顕微鏡写真から求められる。得られる繊維の線径変動率は-3.5~+3.5%、さらに-3.0~+3.0%であるのが好ましく、抱合度(ガイド摩耗回数)は1200回以上とするのが好ましい。 The monofilament hybrid fiber constituting the sleeve 40 includes an eccentric core-sheath type in addition to the core-sheath type composite fiber. The core component ratio in the composite fiber is 0.25 to 0.80, preferably 0.4 to 0.7. In particular, when the sheath component is composed of a flexible thermoplastic polymer and a melted liquid crystalline polyester, the sheath component also contributes to the strength improvement. Therefore, even when the core component ratio is lowered, the strength is excellent at 15 g / d or more. A composite fiber can be obtained. If the core component ratio is too large, the core is likely to be exposed, and if it is too small, the strength may be insufficient. The core component ratio here refers to the cross-sectional area ratio (core component / (core component + sheath component)) of the composite fiber. The cross-sectional area ratio is determined from a micrograph of the fiber cross section. The fiber diameter variation rate of the obtained fiber is preferably −3.5 to + 3.5%, more preferably −3.0 to + 3.0%, and the degree of conjugation (number of guide wears) is 1200 times or more. preferable.
 図8は、第3実施形態の細径同軸ケーブルハーネスにおけるスリーブの一部を示す拡大平面図である。スリーブ40は、このようなモノフィラメントハイブリッド繊維が編組されて形成されている。例えば、編組の形態は、モノフィラメント繊維を並列にした束40a(図9中、丸印で囲った箇所)を16単位用意して、16のキャリアを用いて筒状に織り込む。一つの束40aを6本から13本として16のキャリアで編組すると、スリーブ40はおよそ100本から200本のモノフィラメント繊維により構成される。例えば、一つの束40aを9本とした場合、モノフィラメント繊維の数は9×16=144本である。また、1本のモノフィラメント繊維の直径は0.02mmから0.10mmであり、スリーブ40の厚さ(筒形状の肉厚)は、0.05mmから0.20mmである。繊維の直径が0.045mmである場合には、スリーブ40の厚さは0.1mm程度である。また、スリーブ40を円筒状とした状態の断面の直径は、3.2mm以下である。繊維を織り込むときに、断面が楕円のダミーコアを使用したり、断面が円のダミーコアを複数本並べて使用したりして、その周囲に繊維を織り込むと、断面が楕円の編組スリーブが製造される。 FIG. 8 is an enlarged plan view showing a part of a sleeve in the small-diameter coaxial cable harness according to the third embodiment. The sleeve 40 is formed by braiding such a monofilament hybrid fiber. For example, as a braided form, 16 units of bundles 40a (portions surrounded by circles in FIG. 9) in which monofilament fibers are arranged in parallel are prepared and woven into a tubular shape using 16 carriers. When one bundle 40a is braided by 16 carriers from 6 to 13, the sleeve 40 is composed of approximately 100 to 200 monofilament fibers. For example, when one bundle 40a is nine, the number of monofilament fibers is 9 × 16 = 144. One monofilament fiber has a diameter of 0.02 mm to 0.10 mm, and the sleeve 40 has a thickness (tubular thickness) of 0.05 mm to 0.20 mm. When the diameter of the fiber is 0.045 mm, the thickness of the sleeve 40 is about 0.1 mm. Moreover, the diameter of the cross section in the state which made the sleeve 40 cylindrical is 3.2 mm or less. When weaving fibers, using a dummy core with an elliptical cross section or using a plurality of dummy cores with a circular cross section side by side and weaving the fibers around it, a braided sleeve with an elliptical cross section is manufactured.
 一方、スリーブ40を編み物で形成する場合、繊維を経編みしたものが好ましく、その場合に用いるポリマー繊維として、ポリエステル(例えばPET)が好ましい。ポリマー繊維を経編みしたスリーブ40は、織ったものより伸縮性が優れており、ハーネス11Cをスリーブ40に通す作業が容易である。例えば、太さが40μmから70μmのポリエステル糸を経編みして、長さ方向に引っ張って、5%から15%伸びるスリーブを使用することができる。なお、このスリーブの編み密度は、例えば、円周方向に1インチあたり55から75ループ、長さ方向に1インチあたり25から35ループである。 On the other hand, when the sleeve 40 is formed of a knitted fabric, a warp knitted fiber is preferable, and a polyester (for example, PET) is preferable as a polymer fiber used in that case. The sleeve 40 knitted with polymer fibers is more stretchable than the woven one, and the work of passing the harness 11C through the sleeve 40 is easy. For example, a sleeve that is warp knitted from 40 μm to 70 μm in thickness and pulled in the length direction to extend from 5% to 15% can be used. The sleeve has a knitting density of 55 to 75 loops per inch in the circumferential direction and 25 to 35 loops per inch in the length direction, for example.
 図9は、細径同軸ケーブルハーネス11Cで接続された筐体を伸長させた状態において示す概念図であり、(A)は平面図、(B)は側面図である。図10は、細径同軸ケーブルハーネス11Cで接続された筐体を重ねた状態において示す概念図であり、(A)は平面図、(B)は側面図である。このように構成されたハーネス11Cは、上下に重ねて配置され前後(図9,図10の左右方向)に水平移動する二つの基板41,42に接続されている。基板41は第1筐体1A(図7)内に組み込まれ、基板42は第2筐体2A(図7)内に組み込まれている。 FIG. 9 is a conceptual diagram showing the casing connected by the thin coaxial cable harness 11C in an extended state, (A) is a plan view, and (B) is a side view. 10A and 10B are conceptual diagrams showing a state in which the casings connected by the small-diameter coaxial cable harness 11C are overlapped, where FIG. 10A is a plan view and FIG. 10B is a side view. The harness 11 </ b> C configured in this way is connected to two boards 41 and 42 that are arranged one above the other and move horizontally in the front-rear direction (the left-right direction in FIGS. 9 and 10). The substrate 41 is incorporated in the first housing 1A (FIG. 7), and the substrate 42 is incorporated in the second housing 2A (FIG. 7).
 ハーネス11Cの両方の端末は、コネクタ13を取り付けて成端処理することで、基板41,42との接続を容易としている。そして、ハーネス11Cは、防水部23同士の間がU字状(またはJ字状)になるように基板の幅方向(図9(A)の両矢印Wの方向)に湾曲された状態で、両基板41,42に接続されている。これにより、ハーネス11Cを基板41,42の平面視方向におけるU字状形状として両基板41,42間に配線することができる。基板41,42の水平移動距離は、例えば30mmから60mm程度である。図9と図10の状態を繰り返すと、ハーネス11Cはスライドして屈曲箇所が移動しながらU字状とJ字状の状態を繰り返す。これが繰り返し屈曲である。 Both terminals of the harness 11C are attached to the connector 13 and terminated to facilitate connection to the boards 41 and 42. Then, the harness 11C is curved in the width direction of the substrate (in the direction of the double-headed arrow W in FIG. 9A) so that the space between the waterproof portions 23 is U-shaped (or J-shaped). It is connected to both substrates 41 and 42. Thereby, the harness 11 </ b> C can be wired between the boards 41 and 42 in a U-shape in the plan view direction of the boards 41 and 42. The horizontal movement distance of the substrates 41 and 42 is, for example, about 30 mm to 60 mm. When the states of FIGS. 9 and 10 are repeated, the harness 11C slides and repeats the U-shaped and J-shaped states while the bent portion moves. This is repeated bending.
 従来のFPC(フレキシブルプリント基板)を用いた場合は、FPCは両基板41,42の間で、基板の平面方向と直交する方向で曲げられるので、その曲げ径を確保するために両基板41,42の隙間を大きくする必要がある。本発明では、両基板41,42の隙間は、ハーネス11Cの厚さ程度で十分であり、FPCを使用する場合のように大きくとる必要がなく、機器の薄型化を図ることができる。 When a conventional FPC (flexible printed circuit board) is used, the FPC is bent between the substrates 41 and 42 in a direction perpendicular to the planar direction of the substrates. It is necessary to increase the gap 42. In the present invention, the gap between the two boards 41 and 42 is sufficient as long as the thickness of the harness 11C, and does not need to be large as in the case of using the FPC, and the apparatus can be thinned.
 図11(A)、(B)は、細径同軸ケーブルハーネス11Cで接続された筐体1A、1Bの例を示す斜視図である。筐体1A,2Aには、ハーネス11Cを所定の幅で収容する収容部9を設けるのが望ましい。例えば、図11(A)に示すように、収容部9として矩形状の凹部9aを設けることができる。これにより、両筐体1A,2Aの相対的なスライドに伴うハーネス11CのU字状の変形を、収容部9内で行わせるので、同軸ケーブル12が筐体1A,2A間で引っ掛かるのを防止することができる。また、両筐体1A,2Aが円滑にスライドすることができる。あるいは、図11(B)に示すように、筐体1A,2A上に突起9bを例えば矩形状に設けて壁に囲まれた収容部9を形成することもできる。 FIGS. 11A and 11B are perspective views showing examples of the casings 1A and 1B connected by the thin coaxial cable harness 11C. The housings 1A and 2A are preferably provided with a housing portion 9 for housing the harness 11C with a predetermined width. For example, as shown in FIG. 11A, a rectangular recess 9 a can be provided as the accommodating portion 9. As a result, the U-shaped deformation of the harness 11C accompanying the relative sliding of the two casings 1A and 2A is caused to occur in the housing portion 9, thereby preventing the coaxial cable 12 from being caught between the casings 1A and 2A. can do. Moreover, both housing | casing 1A, 2A can slide smoothly. Alternatively, as shown in FIG. 11B, the housing 9 surrounded by walls can be formed by providing protrusions 9b on the housings 1A and 2A in a rectangular shape, for example.
 AWG44よりも細い細径同軸ケーブル12を用いることで、ハーネス11Cは曲がり易く、筐体1A,2Aがスライドするときの抵抗を小さくすることができる。また、ハーネス11Cの厚さを薄く形成することができ、機器の薄型化を図ることができる。ハーネス11Cを筐体1A,2Aで挟んで押しつぶして扁平化することもできるので、収容部9の厚さはハーネス11Cの厚さよりも少し(0.2mm程度)小さくてもよい。前述のように、ハーネス11Cには、外部導体のない細径絶縁ケーブルが含まれていてもよいが、その細径絶縁ケーブルは外径が0.30mmより細いケーブルを用いるのが好ましい。 By using the thin coaxial cable 12 thinner than the AWG 44, the harness 11C can be easily bent, and the resistance when the casings 1A and 2A slide can be reduced. Moreover, the thickness of the harness 11C can be reduced, and the device can be made thinner. Since the harness 11C can be sandwiched between the casings 1A and 2A and crushed to be flattened, the thickness of the accommodating portion 9 may be slightly smaller (about 0.2 mm) than the thickness of the harness 11C. As described above, the harness 11C may include a small-diameter insulated cable having no external conductor, but it is preferable to use a cable having an outer diameter smaller than 0.30 mm.
 例えば、AWG44の太さのケーブル12を40本、シリコーンの防水チューブ21(内径2.4mm、外径2.8mm)に通して、さらに溶融液晶性ポリマーと屈曲性ポリマーからなるモノフィラメントハイブリッド繊維を編組したスリーブ40に通したもの(径が2.8mm+0.2×2=3.2mm)を、幅(図9(A)のW方向の長さ)20mm、深さ3mmの溝にU字状に収容し、ハーネスの一端側を固定して他端側を溝の長さ方向に動かして20万回の曲げおよび摺動を繰り返しても、ケーブル12の中心導体が破断することがない。溝の深さがスリーブ40の外径よりも小さいので、スリーブ40および防水チューブ21は押されて扁平化する。ハーネスは溝の下面と上面(上の筐体)と常に接触してハーネスの摺動により擦れるが、そのとき擦れる部分はスリーブ40により覆われている。スリーブで覆わなかった場合、シリコーンの防水チューブ21と溝の上下面との摩擦力が大きく、うまく摺動させることができない。 For example, 40 AWG 44 thick cables 12 are passed through a silicone waterproof tube 21 (inner diameter 2.4 mm, outer diameter 2.8 mm), and a monofilament hybrid fiber made of a molten liquid crystalline polymer and a flexible polymer is braided. The one passed through the sleeve 40 (diameter: 2.8 mm + 0.2 × 2 = 3.2 mm) is U-shaped in a groove having a width (length in the W direction in FIG. 9A) of 20 mm and a depth of 3 mm. The central conductor of the cable 12 is not broken even if it is housed and the one end side of the harness is fixed and the other end side is moved in the length direction of the groove and bending and sliding are repeated 200,000 times. Since the depth of the groove is smaller than the outer diameter of the sleeve 40, the sleeve 40 and the waterproof tube 21 are pushed and flattened. The harness is always in contact with the lower surface and the upper surface (upper housing) of the groove and rubbed by sliding of the harness, and the rubbed portion is covered with the sleeve 40 at that time. When not covered with the sleeve, the frictional force between the waterproof tube 21 made of silicone and the upper and lower surfaces of the groove is large and cannot be slid well.
 さらに、この摺動試験を実施したハーネスを図7に示すように2つの筐体間に防水構造で接続し、水深1mの水槽に30分間沈めても、防水チューブ21の破れが生じず、浸水が起こらない。 Furthermore, even if the harness subjected to the sliding test is connected with a waterproof structure between two housings as shown in FIG. 7 and submerged in a water tank having a depth of 1 m for 30 minutes, the waterproof tube 21 does not break, Does not happen.
 第三実施形態の細径同軸ケーブルハーネス11Cは、第一実施形態の細径同軸ケーブルハーネス11Aを製造する際、シールキャップを取り付ける前に防水チューブ21ごとスリーブ40に挿通させる。または、第二実施形態の細径同軸ケーブルハーネス11Bを製造する際、シールキャップを取り付ける前に防水テープ35ごとスリーブ40に挿通させる。スリーブ40の端末は、繊維がばらけることを防ぐために、各繊維同士を熱融着で一体化し、接着テープ等で防水チューブ21の所定の位置に固定する。 When manufacturing the thin coaxial cable harness 11A of the first embodiment, the thin coaxial cable harness 11C of the third embodiment is inserted into the sleeve 40 together with the waterproof tube 21 before attaching the seal cap. Alternatively, when manufacturing the thin coaxial cable harness 11B of the second embodiment, the waterproof tape 35 and the sleeve 40 are inserted through the sleeve 40 before the seal cap is attached. In order to prevent the fibers from being scattered, the ends of the sleeve 40 are integrated with each other by heat-sealing, and fixed to a predetermined position of the waterproof tube 21 with an adhesive tape or the like.
 第三実施形態のケーブルハーネスでは、防水チューブはポリマー繊維を織ったまたは編んだ筒状のスリーブに通されている。これにより、良好な防水性を得つつ、屈曲半径を小さくすることができ、摺動抵抗が小さくなる。ポリマー繊維でできたスリーブは、耐摩耗性、強度、および弾性率が優れており、ハーネスの曲げ性が良好で、なおかつ筐体との摺動による繰り返し摩擦によって繊維の表面が荒れて毛羽立つ(いわゆるフィブリル化)ことなく、破れることもない。したがって、ハーネスの良好な摺動状態を長期に亘って維持することができる。 In the cable harness of the third embodiment, the waterproof tube is passed through a cylindrical sleeve woven or knitted with polymer fibers. As a result, the bending radius can be reduced while obtaining good waterproofness, and the sliding resistance is reduced. A sleeve made of a polymer fiber has excellent wear resistance, strength, and elastic modulus, has a good bendability of the harness, and the surface of the fiber becomes rough and fluffy due to repeated friction caused by sliding with the housing (so-called No fibrillation) and no tearing. Therefore, a good sliding state of the harness can be maintained for a long time.
 本発明の細径同軸ケーブルハーネスは、携帯電話端末、小型ビデオカメラ、ノートパソコンなどの精密小型機器において、互いにスライド可能あるいは回動可能に連結された筐体内の回路基板を接続するのに好適である。 The small-diameter coaxial cable harness of the present invention is suitable for connecting circuit boards in a casing that is slidably or pivotably connected to each other in precision small devices such as mobile phone terminals, small video cameras, and notebook computers. is there.

Claims (15)

  1.  位置関係が変化し得る二つの筐体間を接続する細径同軸ケーブルハーネスであって、
     複数の細径同軸ケーブルを束ねた結束部と、
     前記結束部の二箇所に水密に取り付けられ、前記筐体に水密に取り付けられる防水部と
    を含むことを特徴とする細径同軸ケーブルハーネス。
    A thin coaxial cable harness that connects two housings whose positional relationship can change,
    A bundling unit that bundles a plurality of small-diameter coaxial cables;
    A small-diameter coaxial cable harness comprising: a waterproof portion attached to two places of the binding portion in a watertight manner and attached to the housing in a watertight manner.
  2.  請求項1に記載の細径同軸ケーブルハーネスにおいて、
     前記結束部は、前記防水部の間で前記複数の細径同軸ケーブルの周囲を覆い前記防水部と水密に取り付けられている防水チューブを含むことを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 1,
    The bundling portion includes a waterproof tube that covers the periphery of the plurality of small-diameter coaxial cables between the waterproof portions and is waterproofly attached to the waterproof portion.
  3.  請求項2に記載の細径同軸ケーブルハーネスにおいて、
     前記防水部は、金属または熱収縮性樹脂によるかしめによって前記防水チューブに水密に取り付けられていることを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 2,
    The small-diameter coaxial cable harness, wherein the waterproof part is watertightly attached to the waterproof tube by caulking with a metal or heat-shrinkable resin.
  4.  請求項2に記載の細径同軸ケーブルハーネスにおいて、
     前記防水部は、前記防水部が前記防水チューブに圧入されることによって前記防水チューブに水密に取り付けられていることを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 2,
    The small-diameter coaxial cable harness, wherein the waterproof part is watertightly attached to the waterproof tube by pressing the waterproof part into the waterproof tube.
  5.  請求項2に記載の細径同軸ケーブルハーネスにおいて、
     前記結束部は、合成繊維を織ったまたは編んだ筒状のスリーブ内に通されていることを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 2,
    The small-diameter coaxial cable harness is characterized in that the binding portion is passed through a cylindrical sleeve woven or knitted of synthetic fibers.
  6.  請求項5に記載の細径同軸ケーブルハーネスにおいて、
     前記スリーブが溶融液晶性ポリマーと屈曲性ポリマーからなるモノフィラメントハイブリッド繊維を編組したものであることを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 5,
    A thin coaxial cable harness, wherein the sleeve is a braided monofilament hybrid fiber made of a molten liquid crystalline polymer and a flexible polymer.
  7.  請求項5に記載の細径同軸ケーブルハーネスにおいて、
     前記スリーブが合成繊維を経編みしたものであることを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 5,
    A thin coaxial cable harness, wherein the sleeve is a warp knitted synthetic fiber.
  8.  請求項1に記載の細径同軸ケーブルハーネスにおいて、
     前記結束部は、前記複数の細径同軸ケーブルの周囲に水密に巻き付けられている防水テープを含むことを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 1,
    The small-diameter coaxial cable harness, wherein the binding portion includes a waterproof tape wound around the plurality of small-diameter coaxial cables in a watertight manner.
  9.  請求項8に記載の細径同軸ケーブルハーネスにおいて、
     前記防水部は、かしめられることにより内側に挿通された前記結束部に水密に取り付けられ、前記筐体に密着した際の弾性変形の反力を支える支持部材を備えていることを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 8,
    The waterproof part is provided with a support member that is watertightly attached to the bundling part inserted inside by caulking and supports a reaction force of elastic deformation when closely attached to the housing. Diameter coaxial cable harness.
  10.  請求項8に記載の細径同軸ケーブルハーネスにおいて、
     前記防水テープが、巻き方向を変えて複数層に巻かれていることを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 8,
    A thin coaxial cable harness, wherein the waterproof tape is wound in a plurality of layers with different winding directions.
  11.  請求項8に記載の細径同軸ケーブルハーネスにおいて、
     前記結束部は、合成繊維を織ったまたは編んだ筒状のスリーブ内に通されていることを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 8,
    The small-diameter coaxial cable harness is characterized in that the binding portion is passed through a cylindrical sleeve woven or knitted of synthetic fibers.
  12.  請求項8に記載の細径同軸ケーブルハーネスにおいて、
     前記スリーブが溶融液晶性ポリマーと屈曲性ポリマーからなるモノフィラメントハイブリッド繊維を編組したものであることを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 8,
    A thin coaxial cable harness, wherein the sleeve is a braided monofilament hybrid fiber made of a molten liquid crystalline polymer and a flexible polymer.
  13.  請求項8に記載の細径同軸ケーブルハーネスにおいて、
     前記スリーブが合成繊維を経編みしたものであることを特徴とする細径同軸ケーブルハーネス。
    In the thin coaxial cable harness according to claim 8,
    A thin coaxial cable harness, wherein the sleeve is a warp knitted synthetic fiber.
  14.  請求項1から13の何れか一項に記載の細径同軸ケーブルハーネスであって、
     当該同軸ケーブルハーネスの少なくとも一端に、コネクタが取り付けられていることを特徴とする細径同軸ケーブルハーネス。
    The thin coaxial cable harness according to any one of claims 1 to 13,
    A small-diameter coaxial cable harness, wherein a connector is attached to at least one end of the coaxial cable harness.
  15.  二つの筐体間に請求項1から13の何れか一項に記載の細径同軸ケーブルハーネスが配線され、
     前記細径同軸ケーブルハーネスにおける前記筐体への導入箇所に前記防水部が取り付けられていることを特徴とする細径同軸ケーブルハーネスの接続構造。
    The thin coaxial cable harness according to any one of claims 1 to 13 is wired between two housings,
    The connection structure for a thin coaxial cable harness, wherein the waterproof portion is attached to a location where the thin coaxial cable harness is introduced into the housing.
PCT/JP2009/052190 2008-02-29 2009-02-10 Thin coaxial cable harness and connection structure for the same WO2009107480A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009800004137A CN101681694B (en) 2008-02-29 2009-02-10 Thin coaxial cable harness and connection structure for the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-049832 2008-02-29
JP2008049832A JP4341718B2 (en) 2008-02-29 2008-02-29 Thin coaxial cable harness and thin coaxial cable connection structure
JP2008-065479 2008-03-14
JP2008065479A JP2009224101A (en) 2008-03-14 2008-03-14 Thin coaxial cable harness
JP2008268572A JP2010097851A (en) 2008-10-17 2008-10-17 Small-diameter coaxial cable harness, and its connection structure
JP2008-268572 2008-10-17

Publications (1)

Publication Number Publication Date
WO2009107480A1 true WO2009107480A1 (en) 2009-09-03

Family

ID=41015881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052190 WO2009107480A1 (en) 2008-02-29 2009-02-10 Thin coaxial cable harness and connection structure for the same

Country Status (4)

Country Link
KR (1) KR101096929B1 (en)
CN (1) CN101681694B (en)
TW (1) TWI398064B (en)
WO (1) WO2009107480A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124014A (en) * 2010-12-08 2012-06-28 Sumitomo Electric Ind Ltd Small-diameter cable harness
US20130174418A1 (en) * 2010-09-02 2013-07-11 Fujikura Ltd. Method of manufacturing cable assembly
JP2016015823A (en) * 2014-07-02 2016-01-28 日立金属株式会社 Attachment structure of electric cable and electric cable with fixture
JP2016019306A (en) * 2014-07-04 2016-02-01 日立金属株式会社 Mounting structure of electric cable

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201137898A (en) * 2010-04-30 2011-11-01 Adv Flexible Circuits Co Ltd Cable bundling structure capable of relatively sliding to engage with cable
TWI430530B (en) 2010-08-02 2014-03-11 A cable - like flexible circuit cable with a waterproof section
TWI537991B (en) * 2010-08-26 2016-06-11 A flexible cable with a waterproof structure
CN102412010B (en) * 2010-09-21 2015-06-10 易鼎股份有限公司 A waterproof structure of bunchy flexible flat cable
CN102568668A (en) * 2010-12-10 2012-07-11 住友电气工业株式会社 Small-diameter coaxial wiring harness with substrate
CN102754169A (en) * 2011-02-03 2012-10-24 住友电气工业株式会社 Narrow diameter coaxial cable harness and method of manufacturing same
KR101251980B1 (en) * 2011-04-20 2013-04-08 엘에스전선 주식회사 Complex coaxial cable having united plural coaxial cable
JP5969405B2 (en) * 2013-01-30 2016-08-17 日立オートモティブシステムズ株式会社 Automotive electronic module
WO2015119404A1 (en) * 2014-02-04 2015-08-13 Samsung Electronics Co., Ltd. Washing machine
KR102305833B1 (en) * 2014-02-04 2021-09-30 삼성전자주식회사 Washing machine
WO2019127291A1 (en) * 2017-12-28 2019-07-04 海能达通信股份有限公司 Mobile recording terminal camera assembly and law enforcement recording device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245016A (en) * 1994-03-07 1995-09-19 Sumitomo Wiring Syst Ltd Wire harness
JP2003031967A (en) * 2001-07-17 2003-01-31 Oki Joho Systems:Kk Sealing structure of waterproof-type electronic equipment
JP2004514244A (en) * 2000-10-30 2004-05-13 ミリケン・アンド・カンパニー Cable assembly and method
JP2004214927A (en) * 2002-12-27 2004-07-29 Casio Comput Co Ltd Portable electronic device
JP2005325849A (en) * 2004-05-12 2005-11-24 Casio Comput Co Ltd Hinge structure
JP2006221880A (en) * 2005-02-08 2006-08-24 Auto Network Gijutsu Kenkyusho:Kk Suction tool for water cut-off treatment, and water cut-off treatment method of vehicle-mounted electric wire using the same
JP2008263285A (en) * 2007-04-10 2008-10-30 Casio Hitachi Mobile Communications Co Ltd Electronic equipment and assembling method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462523A (en) * 1993-05-18 1995-10-31 Target Therapeutics, Inc. Drug delivery system
JP4162674B2 (en) 2005-06-09 2008-10-08 株式会社カシオ日立モバイルコミュニケーションズ Flexible wiring board and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245016A (en) * 1994-03-07 1995-09-19 Sumitomo Wiring Syst Ltd Wire harness
JP2004514244A (en) * 2000-10-30 2004-05-13 ミリケン・アンド・カンパニー Cable assembly and method
JP2003031967A (en) * 2001-07-17 2003-01-31 Oki Joho Systems:Kk Sealing structure of waterproof-type electronic equipment
JP2004214927A (en) * 2002-12-27 2004-07-29 Casio Comput Co Ltd Portable electronic device
JP2005325849A (en) * 2004-05-12 2005-11-24 Casio Comput Co Ltd Hinge structure
JP2006221880A (en) * 2005-02-08 2006-08-24 Auto Network Gijutsu Kenkyusho:Kk Suction tool for water cut-off treatment, and water cut-off treatment method of vehicle-mounted electric wire using the same
JP2008263285A (en) * 2007-04-10 2008-10-30 Casio Hitachi Mobile Communications Co Ltd Electronic equipment and assembling method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130174418A1 (en) * 2010-09-02 2013-07-11 Fujikura Ltd. Method of manufacturing cable assembly
JP2012124014A (en) * 2010-12-08 2012-06-28 Sumitomo Electric Ind Ltd Small-diameter cable harness
JP2016015823A (en) * 2014-07-02 2016-01-28 日立金属株式会社 Attachment structure of electric cable and electric cable with fixture
JP2016019306A (en) * 2014-07-04 2016-02-01 日立金属株式会社 Mounting structure of electric cable

Also Published As

Publication number Publication date
CN101681694A (en) 2010-03-24
TWI398064B (en) 2013-06-01
CN101681694B (en) 2011-09-28
KR101096929B1 (en) 2011-12-22
TW200941874A (en) 2009-10-01
KR20100007960A (en) 2010-01-22

Similar Documents

Publication Publication Date Title
WO2009107480A1 (en) Thin coaxial cable harness and connection structure for the same
JP2010097851A (en) Small-diameter coaxial cable harness, and its connection structure
KR101001804B1 (en) Coaxial cable connection structure, coaxial cable harness used therefor, and portable terminal device
US9046671B2 (en) Composite optical fiber cable and composite optical fiber cable assembly providing protection by flexure
JP2010092621A (en) Small-diameter coaxial cable harness, and method of manufacturing the same
JP4341718B2 (en) Thin coaxial cable harness and thin coaxial cable connection structure
KR101061636B1 (en) Fine coaxial cable harness and manufacturing method thereof
JP2008218389A (en) Electronic equipment
JP2014519137A (en) Thin cable harness and manufacturing method thereof
WO2010095334A1 (en) Coaxial wire distributed element, method for producing the same, and electornic device
JP5408021B2 (en) Thin coaxial cable harness and manufacturing method thereof
JP2010092620A (en) Small-diameter coaxial cable harness, and method of manufacturing the same
JP5320775B2 (en) Thin coaxial cable harness
WO2012105075A1 (en) Narrow diameter coaxial cable harness and method of manufacturing same
WO2010101138A1 (en) Cable assembly
JP2009141627A (en) Wiring structure for slide type electronic device, and slide type electronic device
JP2009176615A (en) Bushing for cord, connector for cord, cord with bushing, and device with cord
JP2012048829A (en) Composite cable
JP5663960B2 (en) Thin coaxial cable harness
JP2009224101A (en) Thin coaxial cable harness
JP2011060466A (en) Thin coaxial wire harness and thin coaxial wire harness with substrates
JP5170033B2 (en) Thin coaxial cable harness with substrate
TWI412197B (en) A harness for coaxial cable with small diameter and a connective structure and a method for manufacturing the same
CN113508236A (en) Wiring member with exterior member and method for manufacturing wiring member with exterior member
TWI430718B (en) Small diameter coaxial cable harness and small diameter coaxial cable harness with substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000413.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20097025341

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09715906

Country of ref document: EP

Kind code of ref document: A1