WO2009106665A1 - Agentes de etiquetado doble basados en vinilsulfona - Google Patents

Agentes de etiquetado doble basados en vinilsulfona Download PDF

Info

Publication number
WO2009106665A1
WO2009106665A1 PCT/ES2009/070035 ES2009070035W WO2009106665A1 WO 2009106665 A1 WO2009106665 A1 WO 2009106665A1 ES 2009070035 W ES2009070035 W ES 2009070035W WO 2009106665 A1 WO2009106665 A1 WO 2009106665A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
compound according
derivatives
mmol
Prior art date
Application number
PCT/ES2009/070035
Other languages
English (en)
French (fr)
Inventor
Francisco SANTOYO GONZÁLEZ
Fernando HERNÁNDEZ MATEO
Francisco Javier LÓPEZ JARAMILLO
Julia Morales Sanfrutos
Rafael SALTO GONZÁLEZ
Dolores GIRÓN GONZÁLEZ
Original Assignee
Universidad De Granada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada filed Critical Universidad De Granada
Priority to US12/920,042 priority Critical patent/US20110065164A1/en
Publication of WO2009106665A1 publication Critical patent/WO2009106665A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0003Invertebrate antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/06Hydroxy derivatives of triarylmethanes in which at least one OH group is bound to an aryl nucleus and their ethers or esters
    • C09B11/08Phthaleins; Phenolphthaleins; Fluorescein
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/10Amino derivatives of triarylmethanes
    • C09B11/24Phthaleins containing amino groups ; Phthalanes; Fluoranes; Phthalides; Rhodamine dyes; Phthaleins having heterocyclic aryl rings; Lactone or lactame forms of triarylmethane dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B62/00Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves
    • C09B62/44Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group not directly attached to a heterocyclic ring
    • C09B62/503Reactive dyes, i.e. dyes which form covalent bonds with the substrates or which polymerise with themselves with the reactive group not directly attached to a heterocyclic ring the reactive group being an esterified or non-esterified hydroxyalkyl sulfonyl or mercaptoalkyl sulfonyl group, a quaternised or non-quaternised aminoalkyl sulfonyl group, a heterylmercapto alkyl sulfonyl group, a vinyl sulfonyl or a substituted vinyl sulfonyl group, or a thiophene-dioxide group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/543Mucosal route intranasal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55544Bacterial toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55577Saponins; Quil A; QS21; ISCOMS

Definitions

  • the present invention relates to a compound of general formula (I) comprising two label molecules and a vinyl sulfone group, whose function is to carry out the covalent binding to the molecules susceptible to labeling.
  • the present invention also relates to its methods of obtaining and its uses. More particularly, it refers to the use of these compounds simultaneously containing biotin and fluorophores, for the labeling of biomolecules and their biotechnological applications.
  • Biomolecule labeling is a basic tool in the field of genomics and proteomics for the detection, purification and study of interactions between biomolecules.
  • fluorophores and biotin labeling stand out due to their special importance due to their biotechnological applications and commercial impact.
  • Fluorescent labeling is a key element for the detection and analysis of biomolecules (Patton, WF Electrophoresis (2000), vol. 21, pp. 1123-1144) and is the engine of an industry of billions of euros.
  • the advantages of fluorescent labeling, compared to conventional methods such as Coomassie blue, silver, colloidal gold or radioactivity are the following: -Fast detection and high sensitivity: each fluorescent label can originate in the order of 10 7 -10 8 photons per second.
  • -Versatility Different labels originate different "colors", being possible to perform a "polychromatic" labeling as used, for example, in DNA sequencing (Smith, L., et al., N ature (1986), vol. 321 , pp. 674-679).
  • FRET Fluorescence Resonance Energy Transfer, also called Forster Resonance Energy Transfer
  • FRET Fluorescence Resonance Energy Transfer
  • Biotin labeling also has great biotechnological importance (Wilchek, M .; Bayer, EA, Anal. Biochem. (1988), vol. 171, pp. 1-32).
  • Biotin is a molecule that acts as a prosthetic group of certain carboxylases related to the metabolism of carbon dioxide.
  • biotechnological interest lies in the high specificity and affinity that avidin, streptavidin and other related proteins have for this biomolecule (dissociation constant of the order of 10 ⁇ 15 M "1 ), making the interaction have the strength of a Covalent bonding without being so, thus, biotinylation transforms hardly detectable molecules into probes that can be detected or captured with labeled or immobilized avidin / streptavidin.
  • This principle is common to locate antigens in tissues, cells and for detect biomolecules in immunoassays and in DNA hybridization tests.
  • biotin-avidin interaction it is necessary that the biotin-avidin interaction be reversible, for which both avidin can be modified (by nitrosation of the tyrosines of the active center (Morag, E ., et al., Biochem. J. (1996), vol. 316, pp. 193-199) how to use biotin derivatives (destiobiotin and iminobiotin)
  • biotin derivatives destiobiotin and iminobiotin
  • DNP-X-biocytin-X biotin labeled with DNP
  • HRP horseradish peroxidase
  • a fundamental aspect regarding the use of any labeling is the union to the biomolecule and the stability of said union. From a chemical point of view there are four groups present in the biomolecules that can act as targets for the anchoring of labeling reagents conveniently derivatized through the formation of a covalent bond, such as amines, thiols, alcohols and carboxylic acids, which are detailed below:
  • Amines They are the most common target of covalent modification reagents and the main one in proteins. In most of these biomolecules the amino end is free and in addition practically all of them have lysine, a residue in whose side chain there is an easily modifiable ⁇ -amino group since it is mostly located on the surface of the proteins. These groups react with acylating reagents and the reactivity is dependent on the acylating reagent, the type of amine, basicity and reaction pH. Aliphatic amines, such as that of the lysine side chain, are moderately basic and react with the majority of acylating reagents at pH greater than 8.
  • succinimidyl esters There are three derivatizations of labeling reagents that react with the amines of biomolecules: - Succinimidil esters. They react with amines to cause amides. It is the most frequent derivatization given the stability of the amide bond that is generated. They react well with aliphatic amines and have low reactivity with aromatic amines, alcohols, phenols (tyrosine) and imidazoles (histidine). In the presence of thiols (cysteine) they can form thiosters but in proteins the acyl group can be transferred to a neighboring amine.
  • succinimidyl esters One of the main drawbacks of succinimidyl esters is their solubility, which in some cases can be very low.
  • aldehydes and arylating agents Aldehydes that react with amines to form Schiff bases.
  • OPA o-phthalaldehyde
  • NDA naphthalenedicarboxaldehyde
  • HTO-TAG 3-acrylquinylenecarbaxaldehyde
  • arylating agents such as 4-nitro-2,1,3-benzoxadiazole (NBD) chloride or fluoride (Watanable, Y., Imai, K., J. Chromatoqr. (1982), vol. 239, pp. 723- 732)
  • Thiols They are more selective targets than the amino group, as they are rare in biomolecules and to be reactive they have to be free (no form disulfide bridge).
  • the hydrogen sulfide group can be introduced into the macromolecule to be marked via chemical modification, reduction of disulfide bridges or inteine route (Tan, LP, Yao, SQ, Protein and Pept. Lett. (2005), vol. 12, pp. 769-751 ) (in the case of proteins), or by directed mutagenesis to introduce cysteine.
  • the thiol groups react at physiological pH (pH 6.5-8) with alkylating reagents (such as iodoacetamides and maleimides) or arylating agents (such as 7-chloro or 7-fluor-4-nitro-2,1,3-benzoxadiazole ( NBD)), to cause stable thioethers. They also react with many of the acylating reactants of amines, including isothiocyanates and succinimidyl esters. Also symmetrical disulfides such as didansyl-L-cysteine or 5,5'-dithiobis- (2-nitrobenzoic acid) (DTNB) (DaIy, TJ., Et al., Biochemistry (1986), vol. 25, pp. 5468-5474) react with the thiols to give non-symmetrical disulfide type bonds.
  • alkylating reagents such as iodoacetamides and maleimides
  • arylating agents such as 7-
  • Alcohols The hydroxyl function is present in the side chains of tyrosine, serine and threonine, in sterols and carbohydrates, but its reactivity in aqueous solutions is extremely low, especially in proteins due to the presence of more active nucleophiles such as amines and thiols. .
  • One function that reacts specifically with neighborhood diols is boronic acid and forms cyclic complexes (Gallop, P. M., et al., Science (1982), vol. 217, pp. 166-169).
  • a standard procedure to increase the reactivity, especially in the case of carbohydrates is the oxidation with periodate to cause the aldehyde function.
  • the main functionalizations of the labeling reagents that react with the aldehyde function of the biomolecules are: amine, hydrazides, semicarbazide, carbohydrazide and O-alkylhydroxylamines.
  • Carboxylic acids They are abundant in macromolecules but little reactive, so it is customary to derivatize them in such a way that amines are introduced that react with the functionalizations described above.
  • ⁇ , ⁇ -unsaturated sulfones are recognized as very useful synthetic intermediates due mainly to their ability to participate in addition reactions 1, 4 (Michael acceptors). Additionally, vinyl sulfones are easy to prepare, through a wide variety of synthetic processes, and to manipulate (Simphinks, NS, Tetrahedron (1990), vol. 282, pp. 6951-6984).
  • a new compound of general formula (I) comprising two label molecules of different nature, in addition to a vinyl sulfone group, and which allows biomolecule labeling to be carried out in a highly efficient and simple manner.
  • These compounds constitute an alternative to the derivatizations used in proteomics and genomics to introduce a biomolecule labeling reagent.
  • a first aspect of the present invention refers to the compounds of general formula (I) (from now on compounds of the invention):
  • R is a radical, substituted or unsubstituted, selected from the group comprising a (C1-C10) alkyl, a dialkylaryl ((Ci-Cio) Ar (Ci-Cio)) or a group (CH 2 CH 2 O) n CH 2 CH 2 ; where n takes values from 2 to 20;
  • Z is a radical, substituted or unsubstituted, selected from the group comprising a (C1-C10) alkyl, a dialkylaryl ((Ci-Cio) Ar (d-Cio)) or a group (CH 2 CH 2 O) n CH 2 CH 2 ; where n takes values from 2 to 20, preferably n takes values from 2 to 10, more preferably n is 2, 3, 4 or 5 and even more preferably n is 2.
  • Z is a (C1-C5) alkyl group; and more preferably it is a methyl (-CH 2 -) or an alkyl (-CH 2 CH 2 -).
  • m takes values from 1 to 20 and represents an aliphatic chain (linear or branched, substituted or unsubstituted).
  • m takes values from 1 to 10, more preferably from 1 to 5 and even more preferably m is 1.
  • Y cac a f Ur ur independently represents a tag molecule. Each molecule is of a different nature.
  • R is a group (CH 2 CH 2 O) n CH 2 CH 2 .
  • n can take a value between 2 to 10, more preferably n is 2, 3, 4 or 5 and even more preferably n is 2.
  • alkyl is meant in the present invention aliphatic chains, linear or branched, having 1 to 10 carbon atoms, more preferably having 1 to 5 carbon atoms, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, tert-butyl, sec-butyl, n-pentyl, etc.
  • dialkylaryl in the present invention is meant an aryl group that is substituted with two alkyl groups having 1 to 10 carbon atoms, more preferably having 1 to 5 carbon atoms.
  • the alkyl groups may be the same or different, preferably they are the same.
  • aryl is understood in the present invention to an aromatic carbocyclic chain, having 6 to 12 carbon atoms, can be single or multiple ring, separated and / or condensed. Typical aryl groups contain 1 to 3 separate or condensed rings and from 6 to about 18 ring carbon atoms, such as phenyl, naphthyl, indenyl, phenanthryl or anthracil radicals.
  • tag molecule refers in this description to any biorecognizable substance, dye, fluorophore or any other group detectable by spectrophotometric, fluorometric, optical microscopy, fluorescence or confocal, antibody and / or NMR techniques, and which easily allows detection of another molecule that alone is difficult to detect and / or quantify.
  • this tag molecule is biotin or a fluorophore selected from among fluorescent markers that contain or are likely to be derivatized for the introduction of a carboxylic acid group, a sulfonic acid group or an azido group, henceforth the tag molecules, with carboxylic acid or sulfonic acid groups, also according to the figures:
  • these fluorophores are fluorescein, dansyl, rhodamine or any of its derivatives.
  • Derivatives of the tag molecules can be acid or sulfonyl halides, and more preferably acid or sulfonyl chlorides.
  • a second aspect of the present invention refers to a method of obtaining the compounds of the invention of general formula (IV), that is, when Y is the -SO 2 R group, and comprising:
  • the acid derived from a tag molecule or any of its activated derivatives can first react with the compound of general formula (II) to form an amide or sulfonamic type bond and then the azide derived from another tag molecule; or first the azide derived from a tag molecule can react with the compound of general formula (II) and subsequently the acid from another tag molecule or any of the activated derivatives of this function, being obtained in the same way, and in both cases, the compound of general formula (IV) that corresponds to the compound of general formula (I) of the invention when Y is the group - SO 2 R.
  • the derivative acid chloride or the sulfonyl chloride derived from the label molecules can be used.
  • a third aspect of the present invention refers to a method of obtaining the compounds of the invention of general formula (V), that is, when Y does not exist, and which comprises:
  • a preferred embodiment of the present invention comprises functionalized vinyl sulfones of general formula (II) where R is the group (CH 2 CH 2 O) n CH 2 CH 2 , n is described above; n can take a value between 2 to 10, more preferably n is 2, 3, 4 or 5 and even more preferably n is 2 ..
  • These functionalized vinyl sulfones can be obtained by reacting divinylsulfone (DVS) with ethylene glycol (when n is 2) or polyethylene glycol derivatives (when n is greater than 2) and subsequent reaction of one of the vinyl sulfone groups with ⁇ -alkylalkylamino through a Michael type addition reaction, as shown below:
  • the compound of formula (III) is 2 - ⁇ [2- (prop-2-in-1-ylamino) etill] sulfonyl ⁇ ethanol that can be obtained by reaction of (2-ethenylsulfonyl) ethanol and propargilamine, according to the following scheme:
  • the compounds of formulas (II) and (III) are trifunctional compounds with groups that have an orthogonal reactivity with each other, a circumstance that allows their reactivity to be modulated.
  • the vinyl sulfones of general formula (II) and (III) allow the incorporation of any label molecule containing functional groups with a reactivity complementary to the groups present therein and that leave a vinyl sulfone group unchanged which is used for subsequent ligation to biomolecules.
  • the vinisulfones of formulas (II) of the preferred embodiment of the present invention are carriers of the amino and alkynyl functions, they can be used, but not limited to, derivatives of tag molecules containing: a) the acid chloride function or sulfonyl chloride and b) the azido function, respectively.
  • the vinisulfones of formulas (III) of the preferred embodiment of the present invention are carriers of the amino, hydroxyl and alkynyl functions can be used, but not limited to, derivatives of tag molecules containing: a) the chloride function of sulfonyl and b) the azido function.
  • the label molecules used are biotin and the fluorophores selected from fluorescein, dansyl or rhodamine, or any of its derivatives.
  • An even more preferred embodiment of the present invention comprises the following acid chlorides and the sulfonyl chloride of these tag molecules:
  • the obtaining of the compounds of the invention, double labeling agents is carried out by reaction of the above derivatives of label molecules (acid chlorides, sulfonyl chlorides and azido derivatives) with vinyl sulfones of general formula (II) or with 2 - ⁇ [ ⁇ -alkylalkylamino) ethyl] sulfonyl ⁇ ethanol of formula (III) through: a) N-acylation reactions with acid chlorides of the labels; or N-sulfonation reactions with sulfonyl chlorides and b) 1,3-dipolar cycloaddition reactions with azido derived from the tag molecules.
  • labeling agent is understood to mean those compounds capable of binding to a molecule and also allowing visualization, detection and / or quantification by spectroscopy (absorption, fluorescence, NMR and others), enzymatic reaction (peroxidase, phosphatase alkaline and others) or spectrometry (masses and others) of the molecule subject to the marking.
  • Double labeling agents containing vinyl sulfones can be linked to any biomolecule containing complementary functional groups (amino groups and thiol groups) present therein naturally or artificially through an addition reaction Michael type.
  • the compounds are compatible with the biological nature of the biomolecules and the tidal reaction does not require any activation strategy.
  • the selected biomolecules are proteins.
  • the selected proteins are bovine serum albumin (BSA), human serum albumin (HSA), lysozyme, horseradish peroxidase, artichoke peroxidase, GFP (Green fluorescent protein) or Concanavalin A.
  • the labeling of proteins is carried out in a solution thereof in a buffer that does not contain free amines such as, but not limited to, phosphate or HEPES, of moderate ionic strength (50-200 mM ) and basic pH (7.5-8.7) and reaction with an excess of the labeling reagents of general formula (I) for a sufficient time (typically for a few hours at room temperature or overnight at all Ia 4 0 C) eliminating the excess reagent by dialysis. Labeling is carried out using the following scheme:
  • R 2 can be NH or S
  • Y, Z and m are defined above;
  • R 2 can be NH or S;
  • Y, Z and m are defined above;
  • R 2 can be NH or S;
  • Y, Z and m are defined above;
  • R 2 can be NH or S;
  • Y, Z and m are defined above;
  • R 2 can be NH or S;
  • Y, Z and m are defined above;
  • R 2 can be NH or S;
  • FIG 1 Shows the fluorescence of SDS-PAGE gel of BSA after reaction with the double labeling agent 25 depending on the reaction conditions. Streets 2, 3, 4 and 5 at room temperature marking and stoichiometry labeling reagent: 5: 1, 10: 1, 25: 1, and 50: 1 protein, respectively. Streets 6, 7, 8 and 9 tide at 37 0 C and stoichiometry 5: 1, 10: 1, 25: 1, and 50: 1, respectively. 10th Street BSA control (unmarked).
  • FIG 2 Shows the emission spectrum of the double labeling agent 29 (A), of the control HSA (B) and of the labeled HSA (C) after excitation at 280 nm.
  • FIG 3 Shows the fluorescence of SDS-PAGE gel after reaction with the double labeling agent 25 with the HRP (FIG. 3A) and with the artichoke peroxidase (FIG. 3B). From left to right, the stoichiometry reagent stoichiometry: peroxidase is 1: 5, 1: 10, 1: 20, 1: 30, 1: 40 and 1: 50.
  • FIG 4 Shows the fluorescence of SDS-PAGE gel after reaction of HRP with the double labeling agent 25 (streets on the left) and 27 (streets on the right).
  • EXAMPLE 1 Synthesis of vinyl sulfones containing propargyl groups and secondary amines. Compounds of general formula (II).
  • EXAMPLE 5 Synthesis of double labeling agents based on vinyl sulfones containing biotin and fluorophores.
  • Protein labeling is performed according to the following general protocol: a solution of protein in a buffer that does not contain free amines, such as phosphate or HEPES, of moderate ionic strength (50-200 mM) and basic pH (7.5-8.7) is reacted with 5 moles of reagent reagent per mole of protein for a sufficient time (usually during overnight at room temperature). Excess reagent is removed by dialysis.
  • free amines such as phosphate or HEPES
  • the BSA has a molecular weight of 66.4 kDa and 4.8 of isoelectric point, it is water soluble and stable in solution, which is a good model to study the optimal conditions of tide.
  • the influence of temperature (room temperature and 37 ° C) and stoichiometry (reagent tide: protein 5: 1, 10: 1, 25: 1 and 50: 1) in the tide reaction were studied.
  • Example 6.2 Labeling of human albumin (HSA) with the double labeling agent 29.
  • Serum albumin is the most abundant protein in the circulatory system, responsible for 80% of the oncotic pressure of the blood and the main transporter of fatty acids, poorly water-soluble hormones or drugs that are otherwise insoluble in the serum.
  • the tidal reaction was carried out for 12 hours and stirring at 4 0 C in 0.1 M carbonate buffer pH 9 and with an HSA stoichiometry: 1: 20 tidal reagent. Excess double labeling agent was blocked with ethanolamine and removed by dialysis against PBS buffer.
  • the tidal reaction was revealed by FRET.
  • the experiment was performed on a Shimadzu RF-5301 PC fluorimeter with a 1 ml_ quartz cuvette and 1 cm of light path. The concentration of the samples was 0.1 mg / ml (in PBS). It was excited at 280 nm which is the excitation wavelength of the tryptophan present in the HSA, and the emission spectrum from 300 to 550 nm was collected.
  • the results show that the labeled protein has a typical emission spectrum at 500-550 nm as a result of the excitation of the dansyl by the transmission of the fluorescence energy emitted by the tryptophan excited at 280 nm of the protein itself (FIG 2). Neither the unlabeled protein nor the double labeling agent 29 have this maximum fluorescence when they are excited at 280 nm, which demonstrates the existence of FRET in the labeled protein.
  • Egg lysozyme has a molecular weight of 14.3 kDa, an isoelectric point of the order of 11 and is soluble in water. Its isoelectric point and low molecular weight Ia make a good model to complement the studies carried out with BSA. The influence of temperature was studied
  • Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide with the help of a substrate that loses two hydrogen atoms. They are widely used in clinical biochemistry. In addition, since they are glycoproteins, they are a good model to evaluate the ability of the reagent to react with proteins protected by a "cover" of carbohydrates. Horseradish peroxidases were selected spicy and artichoke because the first is the reference peroxidase in biotechnological applications and the second because it has a high resistance to the action of proteases, probably as a result of a higher density of carbohydrates.
  • the HRP 2mg / mL in 10OmM HEPES, pH 8.5, was reacted with the 25 and 27 reagent reagents using two different stoichiometries (protein: 1: 25 and 1: 50 tide reagent) and 37 0 C (1day).
  • the effect of the binding of double labeling reagents on the activity and on the ability to interact with avidin was analyzed.
  • the specific activity of peroxyadasa marked is of the order of 65% of the unmarked, value that is in the range of Io described by the supplier (SIGMA) for peroxidase solutions in pH 8 buffer after 10 days, which is the time that has elapsed since the beginning of the Tide up until the study of the activity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

Agentes de etiquetado doble basados en vinilsulfona Agentes de etiquetado que comprenden un compuesto con dos moléculas etiqueta y un grupo vinilsulfona. Además, se refiere a los compuestos, el procedimiento de obtención de los mismos y sus usos en el marcaje de biomoléculas, y más concretamente de proteínas.

Description

AGENTES DE ETIQUETADO DOBLE BASADOS EN VINILSULFONA
La presente invención se refiere a un compuesto de fórmula general (I) que comprende dos moléculas etiquetas y un grupo vinilsulfona, cuya función es llevar a cabo Ia unión covalente a las moléculas susceptibles de etiquetado. La presente invención también se refiere a sus procedimientos de obtención y a sus usos. Más particularmente, se refiere al uso de estos compuestos conteniendo simultáneamente biotina y fluoróforos, para el etiquetado de biomoléculas y a sus aplicaciones biotecnológicas.
Figure imgf000002_0001
(I)
ESTADO DE LA TÉCNICA ANTERIOR
El etiquetado de biomoléculas es una herramienta básica en el campo de Ia genómica y Ia proteómica para Ia detección, purificación y estudio de interacciones entre biomoléculas.
De entre Ia gama de etiquetados de biomoléculas que son plausibles, destacan por su especial importancia los etiquetados con fluoróforos y con biotina debido a sus aplicaciones biotecnológicas y su impacto comercial.
El etiquetado fluorescente es un elemento clave para Ia detección y análisis de biomoléculas (Patton, W.F. Electrophoresis (2000), vol. 21 , pp. 1123- 1144) y es el motor de una industria de miles de millones de euros. Las ventajas del etiquetado fluorescente, frente a métodos convencionales como son el azul Coomassie, Ia plata, el oro coloidal o Ia radioactividad son las siguientes: -Detección rápida y de sensibilidad elevada: cada etiqueta fluorescente puede originar del orden de 107-108 fotones por segundo. -Versatilidad: Distintos etiquetados originan distintos "colores", siendo posible realizar un etiquetado "policromático" como el empleado, por ejemplo, en Ia secuenciación de ADN (Smith, L., et al., N ature (1986), vol. 321 , pp. 674-679).
-Inercia: Tamaño y propiedades del fluoróforo raramente interfieren con Ia biomolécula marcada.
-Localización de Ia señal en el punto de etiquetado, a diferencia del etiquetado enzimático.
Sin embargo, su potencial va más allá de Ia detección pasiva dado que técnicas como Ia polarización de fluorescencia y FRET (Fluorescence Resonance Energy Transfer, también denominado Forster Resonance Energy Transfer) permiten evaluar cambios conformacionales, interacciones entre proteínas o entre proteína y ligando. La medida de Ia polarización proporciona información sobre orientaciones y movilidad que permite estudiar las interacciones receptor-ligando (Jameson, D. M., Seifried, S. E., Methods (1999), vol. 19, pp. 222-233). FRET es una interacción entre fluoróforos en Ia cual Ia excitación pasa de un fluoróforo excitado (donante) a otro que se excita (aceptor) sin Ia emisión de un fotón. Esta interacción se produce cuando Ia longitud de onda de emisión del donante es muy próxima a Ia de excitación del aceptor y es muy dependiente de Ia distancia entre donante y aceptor, por Io que se ha empleado como regla (Remedios, C. G., Moens, P. D., J. Struct. Biol. (1995), vol. 115, pp. 175-185) para analizar cambios conformacionales e interacción entre biomoléculas.
Actualmente existe una gran cantidad y variedad de fluoróforos. Entre los empleados para el etiquetado de biomoléculas se encuentran el dansilo, Ia fluoresceína y Ia rodamina B, cuyas características fundamentales y algunas de sus aplicaciones se resumen en Ia tabla adjunta:
Figure imgf000004_0001
Por otro lado, el etiquetado con biotina también tiene gran importancia biotecnológica (Wilchek, M.; Bayer, E. A., Anal. Biochem. (1988), vol. 171 , pp. 1-32). La biotina es una molécula que actúa como grupo prostético de determinadas carboxilasas relacionadas con el metabolismo del dióxido de carbono. Sin embargo, su interés biotecnológico radica en Ia alta especificidad y afinidad que Ia avidina, estreptavidina y otras proteínas relacionadas presentan por esta biomolécula (constante de disociación del orden de 10~15 M"1), haciendo que Ia interacción tenga Ia fortaleza de un enlace covalente sin serlo. Así, Ia biotinilización transforma moléculas difícilmente detectables en sondas que pueden ser detectadas o capturadas con avidina/estreptavidina marcadas o inmovilizadas. Este principio es común para localizar antígenos en tejidos, células y para detectar biomoléculas en inmunoensayos y en pruebas de hibridación de ADN. Sin embargo, para determinadas aplicaciones, como por ejemplo Ia purificación mediante cromatografía de afinidad, se necesita que Ia interacción biotina-avidina sea reversible, para Io cual se puede modificar tanto Ia avidina (por nitrosación de las tirosinas del centro activo (Morag, E., et al., Biochem. J. (1996), vol. 316, pp. 193-199) como usar derivados de biotina (destiobiotina e iminobiotina). Existen biotinas marcadas fluorescentemente para cuantificar los sitios activos de Ia avidina (Gruber, H. J, et al., Biochim. Biophvs. Acta (1998), vol. 1381 , pp. 203-212) y biotina etiquetada con DNP (DNP-X-biocytin-X; US5180828A) (dinitrofenol), etiquetado versátil que además de actuar como cromóforo es reconocido por anticuerpos anti-DNP, permitiendo Ia correlación entre fluorescencia y estudios de microscopía electrónica. Existe también en el mercado peroxidasa de rábano picante (HRP) etiquetada con biotina.
Un aspecto fundamental de cara al uso de cualquier etiquetado es Ia unión a Ia biomolécula y Ia estabilidad de dicha unión. Desde un punto de vista químico existen cuatro grupos presentes en las biomoléculas susceptibles de actuar como dianas para el anclaje de los reactivos de etiquetado convenientemente derivatizados a través de Ia formación de un enlace covalente, como son las aminas, tioles, alcoholes y ácidos carboxílicos, que a continuación se detallan:
Aminas: Son Ia diana más común de los reactivos de modificación covalente y Ia principal en proteínas. En Ia mayoría de estas biomoléculas el extremo amino esta libre y además prácticamente todas tienen lisina, residuo en cuya cadena lateral hay un grupo ε-amino fácilmente modificable dado que se localiza mayoritariamente en Ia superficie de las proteínas. Estos grupos reaccionan con reactivos acilantes y Ia reactividad es dependiente del reactivo acilante, del tipo de amina, basicidad y pH de reacción. Las aminas alifáticas, como Ia de Ia cadena lateral de Ia lisina, son moderadamente básicas y reaccionan con Ia mayoría de los reactivos acilantes a pH superior a 8.
Tres son las derivatizaciones de los reactivos de etiquetado que reaccionan con las aminas de las biomoléculas: - Succinimidil esteres. Reaccionan con aminas para originar amidas. Es Ia derivatización más frecuente dada Ia estabilidad del enlace amida que se genera. Reaccionan bien con aminas alifáticas y presentan baja reactividad con aminas aromáticas, alcoholes, fenoles (tirosina) e imidazoles (histidina). En presencia de tioles (cisteína) pueden formar tiosteres pero en proteínas el grupo acilo puede ser transferido a una amina vecina. Uno de los principales inconvenientes de los succinimidil esteres es su solubilidad, que en algunos casos puede ser muy baja. Por ello, en el mercado existen derivados de ácidos carboxílicos que pueden convertirse en sulfosuccinimidil esteres (Staros, J.V., et al., Anal. Biochem. (1986), vol. 156, pp. 220-222) o STP esteres (Gee, K.R., et al., Tetrahedron Lett. (1999), vol. 40, pp. 1471-1474), que son más polares, y por ello más solubles en agua, aunque también menos reactivos con aminas poco expuestas. - Isotiocianatos. Reaccionan con aminas para formar tioureas, las cuales son razonablemente estables en Ia mayoría de los casos.
- Cloruros de ácido sulfónico. Reaccionan con aminas y producen sulfonamidas. Son muy reactivos e inestables en medios acuosos, especialmente al pH alcalino necesario para que reaccionen con las aminas alifáticas, por Io que se trabaja a baja temperatura. Una vez conjugados el enlace es extremadamente estable y resistente. También reaccionan con fenoles (tirosina), alcoholes alifáticos (polisacáridos), tioles (cisteína), e imidazoles (histidina), aunque los conjugados con tioles e imidazoles son inestables y los conjugados con alcoholes alifáticos pueden sufrir desplazamientos nucleofílicos.
- Otras funcionalizaciones pueden ser: aldehidos y agentes arilantes. Aldehidos que reaccionan con las aminas para formar bases de Schiff. Se han preparado derivados del o-ftalaldehído (OPA), naftalendicarboxaldehído (NDA) y 3-acrilquinilencarbaxaldehído (OTTO- TAG) y se han empleado para cuantificación de aminas en solución (Liu, J., Hsieh, et al., Anal. Chem. (1991 ), vol. 163, pp. 408-412). Y agentes arilantes como el cloruro o fluoruro de 4-nitro-2,1 ,3-benzoxadiazol (NBD) (Watanable, Y., Imai, K., J. Chromatoqr. (1982), vol. 239, pp. 723-732)
Tioles: Son dianas más selectivas que el grupo amino, pues son poco frecuentes en biomoléculas y para ser reactivos tienen que estar libres (no formar puente disulfuro). El grupo sulfhídrico puede ser introducido en Ia macromolécula a marcar vía modificación química, reducción de puentes disulfuro o vía inteína (Tan, L. P., Yao, S.Q., Protein and Pept. Lett. (2005), vol. 12, pp. 769-751 ) (en el caso de proteínas), o mediante mutagénesis dirigida para introducir cisteína.
Los grupos tioles reaccionan a pH fisiológico (pH 6.5-8) con reactivos alquilantes (como son las yodoacetamidas y las maleimidas) o arilantes (como el 7-cloro ó 7-fluor-4-nitro-2,1 ,3-benzoxadiazol (NBD)), para originar tioéteres estables. Reaccionan también con muchos de los reactivos acilantes de aminas, incluyendo isotiocianatos y succinimidil esteres. También los disulfuros simétricos como Ia didansyl-L-cisteína o el ácido 5,5'-ditiobis-(2-nitrobenzoico) (DTNB) (DaIy, TJ. , et al., Biochemistry (1986), vol. 25, pp. 5468-5474) reaccionan con los tioles para dar uniones de tipo disulfuro no simétrico.
Alcoholes: La función hidroxilo está presente en las cadenas laterales de Ia tirosina, serina y treonina, en esteróles y carbohidratos, pero su reactividad en soluciones acuosas es extremadamente baja, especialmente en proteínas por Ia presencia de nucleófilos más activos como las aminas y los tioles. Una función que reacciona específicamente con dioles vecinales es el ácido borónico y forma complejos cíclicos (Gallop, P. M., et al., Science (1982), vol. 217, pp. 166-169). Sin embargo, un procedimiento estándar para incrementar Ia reactividad, especialmente en el caso de carbohidratos, es Ia oxidación con peryodato para originar Ia función aldehido. Las principales funcionalizaciones de los reactivos de etiquetado que reaccionan con Ia función aldehido de las biomoléculas son: amina, hidrazidas, semicarbazida, carbohidrazida y O-alquilhidroxilaminas.
Ácidos carboxílicos: Son abundantes en macromoléculas pero poco reactivos, por Io que es habitual derivatizarlos de forma tal que se introducen aminas que reaccionan con las funcionalizaciones anteriormente descritas.
Actualmente es posible adquirir comercialmente toda una gama de productos de etiquetado con fluorescencia y con biotina convenientemente derivatizados. La estrategia más frecuente para funcionalizar los reactivos de etiquetado es Ia derivatización como succinimidil esteres para reaccionar con las funciones aminas de Ia biomolécula.
Por otro lado, y desde una perspectiva química las sulfonas α,β- insaturadas (vinil sulfonas) son reconocidas como intermediarios sintéticos de gran utilidad debido fundamentalmente a su capacidad para participar en reacciones de adición 1 ,4 (aceptores de Michael). Adicionalmente, las vinilsulfonas son fáciles de preparar, a través de una amplia variedad de procesos sintéticos, y de manipular (Simphinks, N. S., Tetrahedron (1990), vol. 282, pp. 6951-6984). Estas características han encontrado recientemente utilidad en el diseño de fármacos y en química médica cuando se demostró su capacidad para inhibir de forma potente y reversible una variedad de procesos enzimáticos, fundamentalmente aquellos en los que están implicados cistein proteasas a las que se unen a través de reacciones de adición con el grupo tiol presente en el residuo de cisteína del sitio activo de estas enzimas (Meadows, D. C, et al., Med. Res. ReV1 (2006), vol. 26(6), pp. 793-814).
Sin embargo, desde un punto de vista biotecnológico su potencial va más allá. La reactividad de las vinilsulfonas con biomoléculas se ha aprovechado para Ia introducción de polietilenglicol vía reacción con tioles (Morpurgo, M., et al., Bioconiuq. Chem. (1996) vol. 7, pp. 363-368), para Ia formación de hidrogeles mediante entrecruzamiento de péptidos con polietilenglicol funcionalizado con vinilsulfona (Rizzi, S. C, et al., Biomacromolecules (2006), vol. 7, pp. 3019-3029) y para Ia introducción de moléculas de glucosa derivatizada con vinilsulfona vía reacción con las aminas de las proteínas (Lopez-Jaramillo, et al., Acta Crvst. (2005) vol. F61 , pp. 435-438).
Como marcadores, se han descrito diferentes compuestos coloreados que contienen grupos vinilsulfona. En este sentido, Ia patente US4473693 describe colorantes, para el mareaje intracelular, basados en amarillo Lucifer y que contienen un grupo vinilsulfona. En Ia patente EP0187076 se describen compuestos fluorescentes que contienen un grupo vinilsulfona, estos compuestos son útiles para estudios inmunológicos. EXPLICACIÓN DE LA INVENCIÓN
En Ia presente invención se proporciona un nuevo compuesto de fórmula general (I) que comprende dos moléculas etiquetas de distinta naturaleza, además de un grupo vinilsulfona, y que permite llevar a cabo el etiquetado de biomoléculas de una forma altamente eficaz y sencilla. Estos compuestos constituyen una alternativa a las derivatizaciones empleadas en proteómica y genómica para introducir un reactivo de etiquetado en biomoléculas.
Por tanto, un primer aspecto de Ia presente invención se refiere a los compuestos de fórmula general (I) (a partir de ahora compuestos de Ia invención):
Figure imgf000009_0001
O donde:
Y es el grupo -SO2R- ó no existe; donde
R es un radical, sustituido o no sustituido, seleccionado del grupo que comprende un alquilo (C1-C10), un dialquilarilo ((Ci-Cio)Ar(Ci-Cio)) ó un grupo (CH2CH2O)nCH2CH2; donde n toma valores de 2 a 20;
Z es un radical, sustituido o no sustituido, seleccionado del grupo que comprende un alquilo (C1-C10), un dialquilarilo ((Ci-Cio)Ar(d-Cio)) o un grupo (CH2CH2O)nCH2CH2; donde n toma valores de 2 a 20, preferiblemente n toma valores de 2 a 10, más preferidamente n es 2, 3, 4 ó 5 y aún más preferiblemente n es 2.
En una realización preferida, Z es un grupo alquilo (C1-C5); y más preferiblemente es un metilo (-CH2-) ó un alquilo (-CH2CH2-). m toma valores de 1 a 20 y representa una cadena alifática (lineal o ramificada, sustituida o no sustituida). Preferiblemente m toma valores de 1 a 10, más preferiblemente de 1 a 5 y aún más preferiblemente m es 1.
y
Figure imgf000010_0001
cac|a f¡gUra representa de forma independiente una molécula etiqueta. Cada molécula es de diferente naturaleza.
Cuando Y es un grupo -SO2R, los compuestos de Ia invención tiene Ia fórmula general (IV):
Figure imgf000010_0002
(IV)
En una realización preferida, R es un grupo (CH2CH2O)nCH2CH2. En otra realización preferida, n puede tomar un valor de entre 2 a 10, más preferiblemente n es 2, 3, 4 ó 5 y aún más preferiblemente n es 2.
Cuando Y no existe, los compuestos de Ia invención tienen Ia fórmula general (V):
Figure imgf000010_0003
(V)
Por "alquilo" se entiende en Ia presente invención a cadenas alifáticas, lineales o ramificadas, que tienen de 1 a 10 átomos de carbonos, más preferiblemente tienen de 1 a 5 átomos de carbono, por ejemplo, metilo, etilo, n-propilo, i-propilo, n-butilo, tert-butilo, sec-butilo, n-pentilo, etc. Por "dialquilarilo" se entiende en Ia presente invención a un grupo arilo que está sustituido con dos grupos alquilo que tienen de 1 a 10 átomos de carbono, más preferiblemente tienen de 1 a 5 átomos de carbono. Los grupos alquilo pueden ser iguales o diferentes, preferiblemente son iguales. Y por "arilo" se entiende en Ia presente invención a una cadena carbocíclica aromática, que tienen de 6 a 12 átomos de carbono, pueden ser de anillo único ó múltiple, separado y/o condensado. Los grupos arilo típicos contiene de 1 a 3 anillos separados o condensados y desde 6 hasta aproximadamente 18 átomos de carbono de anillo, tales como radicales fenilo, naftilo, indenilo, fenantrilo o antracilo.
El término "molécula etiqueta" se refiere en esta descripción a cualquier sustancia biorreconocible, colorante, fluoróforo o cualquier otro grupo detectable por técnicas espectrofotométricas, fluorométricas, de microscopía óptica, fluorescencia o confocal, anticuerpos y /o RMN, y que permite fácilmente Ia detección de otra molécula que por sí sola es difícil de detectar y/o cuantificar. Preferentemente, esta molécula etiqueta es biotina o un fluoróforo seleccionado de entre marcadores fluorescentes que contienen o son susceptibles de ser derivatizados para Ia introducción de un grupo ácido carboxílico, un grupo ácido sulfónico ó un grupo azido, a partir de ahora representadas las moléculas etiqueta, con grupos ácido carboxílico ó ácido sulfónico, también según las figuras:
Figure imgf000011_0001
Más preferiblemente estos fluoróforos son fluoresceína, dansilo, rodamina o cualquiera de sus derivados. Los derivados de las moléculas etiqueta pueden ser halogenuros de ácido ó de sulfonilo, y más preferiblemente cloruros de ácido o de sulfonilo.
En Ia presente invención, las dos moléculas etiqueta que incluyen los compuestos de Ia invención son de diferente naturaleza. Un segundo aspecto de Ia presente invención se refiere a un método de obtención de los compuestos de Ia invención de fórmula general (IV), es decir, cuando Y es el grupo -SO2R, y que comprende:
reaccionar:
-una vinilsulfona funcionalizada de fórmula general (II), conteniendo al menos un grupo amino y un grupo alquinilo terminal, para Ia unión con las moléculas etiqueta,
Figure imgf000012_0001
donde R y m están definidos anteriormente.
-con una molécula etiqueta que contiene un grupo ácido carboxílico, un grupo acido sulfónico o cualquiera de los derivados activados de estas funciones antes o después de reaccionar con un azido derivado de otra molécula de etiquetado de diferente naturaleza a Ia anterior, según cualquiera de los siguientes esquemas:
Figure imgf000012_0002
Figure imgf000012_0003
donde: Z, m y R están defindos anteriormente. El orden secuencial de estas reacciones es indistinto, primero puede reaccionar el ácido derivado de una molécula etiqueta o cualquiera de sus derivados activados con el compuesto de fórmula general (II) para formar una unión de tipo amida o sulfonamica y posteriormente el azido derivado de otra molécula etiqueta; o primero puede reaccionar el azido derivado de una molécula etiqueta con el compuesto de fórmula general (II) y posteriormente el ácido de otra molécula etiqueta o cualquiera de los derivados activados de esta función, obteniéndose de Ia misma forma, y en los dos casos, el compuesto de fórmula general (IV) que corresponde al compuesto de fórmula general (I) de Ia invención cuando Y es el grupo - SO2R.
En una realización preferida de Ia presente invención, se puede utilizar el cloruro de ácido derivado o el cloruro de sulfonilo derivado de las moléculas etiquetas.
Un tercer aspecto de Ia presente invención se refiere a un método de obtención de los compuestos de Ia invención de fórmula general (V), es decir, cuando Y no existe, y que comprende:
reaccionar:
-un compuesto derivado de 2-{[ω-alquinilalquilamino)ethyl]sulfonyl} etanol de fórmula (III), conteniendo al menos un grupo amino secundario y un grupo alquinilo terminal para Ia unión con moléculas de etiquetado,
Figure imgf000013_0001
donde m está definido anteriormente.
-con una molécula etiqueta que contiene un grupo ácido sulfónico, más preferiblemente una molécula etiqueta derivada con un grupo cloruro de sulfonilo, y posterior reacción con un azido derivado de otra molécula de etiquetado diferente de Ia anterior:
Figure imgf000014_0001
(V) Donde: Z y m están defínelos anteriormente.
El orden secuencial de las reacciones es el indicado anteriormente, obteniéndose mediante este procedimiento compuestos de fórmula general (V) que corresponden a los compuestos de fórmula general (I) de Ia invención cuando Y no existe.
Una realización preferida de Ia presente invención comprende vinilsulfonas funcionalizadas de fórmula general (II) donde R es el grupo (CH2CH2O)nCH2CH2, n está descrito anteriormente; n puede tomar un valor de entre 2 a 10, más preferiblemente n es 2, 3, 4 ó 5 y aún más preferiblemente n es 2.. Estas vinilsulfonas funcionalizadas se pueden obtener por reacción de divinilsulfona (DVS) con etilenglicol (cuando n es 2) ó derivados de polietilenglicol (cuando n es mayor de 2) y posterior reacción de uno de los grupos vinil sulfona con ω-alquinilalquilamino a través de una reacción de adición tipo Michael, como se muestra a continuación:
Figure imgf000014_0002
En otra realización preferida de Ia presente invención el compuesto de fórmula (III) es 2-{[2-(prop-2-in-1-ilamino)etill]sulfonil}etanol que se puede obtener por reacción de (2-etenilsulfonil)etanol y propargilamina, según el siguiente esquema:
Figure imgf000015_0001
De esta forma, los compuestos de fórmulas (II) y (III) son compuestos trifuncionales con grupos que presentan una reactividad ortogonal entre sí, circunstancia que permite modular su reactividad. Así, según cualquiera de los métodos de Ia presente invención, las vinilsulfonas de fórmula general (II) y (III) permiten llevar a cabo Ia incorporación de cualquier molécula etiqueta que contenga grupos funcionales con una reactividad complementaria a los grupos presentes en las mismas y que dejen inalterado un grupo vinilsulfona el cual es usado para Ia posterior ligación a las biomoléculas. En particular y dado que las vinisulfonas de fórmulas (II) de Ia realización preferida de Ia presente invención son portadoras de las funciones amino y alquinilo se pueden utilizar, pero sin limitarse a, derivados de moléculas etiqueta conteniendo: a) Ia función cloruro de ácido ó cloruro de sulfonilo y b) Ia función azido, respectivamente. De forma alternativa dado que las vinisulfonas de fórmulas (III) de Ia realización preferida de Ia presente invención son portadoras de las funciones amino, hidroxilo y alquinilo se pueden utilizar, pero sin limitarse a, derivados de moléculas etiqueta conteniendo: a) Ia función cloruro de sulfonilo y b) Ia función azido.
En una realización preferida de Ia presente invención las moléculas etiqueta utilizadas son biotina y los fluoróforos seleccionados de entre fluoresceína, dansilo o rodamina, o cualquiera de sus derivados. Una realización aún más preferida de Ia presente invención comprende los siguientes cloruros de ácido y el cloruro sulfonilo de estas moléculas etiqueta:
Figure imgf000015_0002
y también los azido derivados, que se indican a continuación:
Figure imgf000016_0001
En una realización preferida de Ia presente invención, Ia obtención de los compuestos de Ia invención, agentes de etiquetado doble, se lleva a cabo por reacción de los anteriores derivados de moléculas etiqueta (cloruros de ácido, cloruros de sulfonilo y azido derivados) con vinilsulfonas de fórmula general (II) ó con 2-{[ω-alquinilalquilamino)ethyl]sulfonyl}etanol de fórmula (III) a través de: a) reacciones de N-acilación con cloruros de ácido de las etiquetas; o reacciones de N-sulfonación con cloruros de sulfonilo y b) reacciones de cicloadición 1 ,3-dipolares con azido derivados de las moléculas etiqueta. El orden secuencial de estas reacciones es indistinto para el caso del primer método de Ia invención descrito, aunque en una realización preferida el orden es N-acilación/cicloadición. Para el caso del segundo método de Ia invención, anteriormente descrito, el orden secuencial de estas reacciones es N-sulfonación seguido de cicloadición.
El uso de Ia función vinilsulfona como derivatización de los reactivos de etiquetado para llevar a cabo Ia unión covalente biomolécula-compuesto de Ia invención, presenta las siguientes ventajas:
a) Estabilidad de los agentes de etiquetado. b) Formación de una unión covalente estable. c) La reacción es rápida y con altos rendimientos no generándose ningún tipo de subproducto. d) No se requieren grandes excesos de reactivos. e) Las reacciones se llevan a cabo en ausencia de catalizadores por simple mezcla de los reactivos. f) Las reacciones pueden llevarse a cabo en agua sin el uso de co- solventes. g) Las reacciones pueden llevarse a cabo bajo condiciones fisiológicas: medio acuoso, rango de pH estrecho, temperaturas suaves, h) Procesos de purificación y aislamiento sencillos, i) Existe una tolerancia hacia los otros grupos funcionales presentes en las biomoléculas distintos de los grupos amino y tioles con los que reaccionan las vinil-sulfonas.
Por tanto, otro aspecto de Ia presente invención se refiere al uso de los compuestos de fórmula general (I) como agentes de etiquetado para el mareaje o etiquetado de moléculas, y más preferiblemente de biomoléculas. En Ia presente invención se entiende por "agente de etiquetado" aquellos compuestos capaces de unirse a una molécula y que además permitan Ia visualización, detección y/o cuantificación mediante espectroscopia (absorción, fluorescencia, RMN y otros), reacción enzimática (peroxidasa, fosfatasa alcalina y otros) o espectrometría (masas y otros) de Ia molécula objeto del mareaje.
Los agentes de etiquetado doble conteniendo vinilsulfonas (compuestos de fórmula general (I)) pueden ser ligados a cualquier biomolécula que contenga grupos funcionales complementarios (grupos amino y grupos tioles) presentes en las mismas de forma natural o artificial a través de una reacción de adición tipo Michael. Además, los compuestos son compatibles con Ia naturaleza biológica de las biomoléculas y Ia reacción de mareaje no requiere ninguna estrategia de activación.
En una realización preferida de Ia presente invención, las biomoléculas seleccionas son proteínas. En una realización aún mas preferida de Ia presente invención, las proteínas seleccionadas son albúmina sérica bovina (BSA), albúmina sérica humana (HSA), lisozima, peroxidasa de rábano picante, peroxidasa de alcachofa, GFP (Green fluorescent protein) ó Concanavalina A.
En una realización preferida de Ia presente invención el etiquetado de proteínas se realiza en una solución de las mismas en un tampón que no contenga aminas libres como por ejemplo, pero sin limitarse a, fosfato o HEPES, de fuerza iónica moderada (50 - 200 mM) y pH básico (7,5 -8,7) y reacción con un exceso de los reactivo de etiquetado de fórmula general (I) durante un tiempo suficiente (habitualmente durante unas horas a temperatura ambiente o toda Ia noche a 4 0C) eliminándose el exceso de reactivo mediante diálisis. El etiquetado se lleva a cabo mediante el siguiente esquema:
Figure imgf000018_0001
Donde: Y, Z y m están definidos anteriormente; R2 puede ser NH ó S; y
*J representa una biomolécula.
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.
DESCRIPCIÓN DE LAS FIGURAS
FIG 1 : Muestra Ia fluorescencia de gel SDS-PAGE de BSA tras reacción con el agente de etiquetado doble 25 en función de las condiciones de reacción. Calles 2, 3, 4 y 5 mareaje a temperatura ambiente y estequiometrías reactivo de marcaje:proteína 5:1 , 10:1 , 25:1 , y 50:1 , respectivamente. Calles 6, 7, 8 y 9 mareaje a 370C y estequiometrías 5:1 , 10:1 , 25:1 , y 50:1 , respectivamente. Calle 10 BSA control (sin marcar).
FIG 2: Muestra el espectro de emisión del agente de etiquetado doble 29 (A), de Ia HSA control (B) y de Ia HSA marcada (C) tras excitación a 280 nm. FIG 3: Muestra la fluorescencia de gel SDS-PAGE tras reacción con el agente de etiquetado doble 25 con Ia HRP (FIG. 3A) y con Ia peroxidasa de alcachofa (FIG. 3B). De izquierda a derecha, las estequiometrías reactivo mareaje: peroxidasa son 1 :5, 1 :10, 1 :20, 1 :30, 1 :40 y 1 :50.
FIG 4: Muestra Ia fluorescencia de gel SDS-PAGE tras reacción de HRP con el agente de etiquetado doble 25 (calles de Ia izquierda) y 27 (calles de Ia derecha).
EJEMPLOS
A continuación se ilustrará Ia invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto Ia especificidad y efectividad de los compuestos de Ia invención.
EJEMPLO 1.- Síntesis de vinilsulfonas conteniendo grupos propargilo y aminas secundarias. Compuestos de fórmula general (II).
Figure imgf000019_0001
H9N'
Figure imgf000019_0002
Compuesto 3: A una disolución de etilenglicol 2 (330 mg, 5.3 mmol) en THF (100 ml_) se Ie adicionaron DVS 1 (1.6 ml_, 16 mmol) y t-BuOK (119 mg, 1.1 mmol). La mezcla de reacción se dejó a temperatura ambiente (30 min). El disolvente se eliminó por evaporación a vacío. El crudo obtenido se purificó por cromatografía en columna (AcOEt-hexano 2:1 a 3:1 ) obteniéndose 3 como un sirope (800 mg, 51 %). Compuesto 5: A una disolución de 3 (414 mg, 1.4 mmol) en CI2CH2- isopropanol 2:1 se Ie adicionó propargilamina 4 (51 mg, 0.93 mmol). La mezcla de reacción se dejó a temperatura ambiente (1 día). El disolvente se eliminó por evaporación a vacío obteniéndose un crudo que se purificó por cromatografía en columna (AcOEt a AcOEt-MeOH 10:1 ) obteniéndose 5 como un sirope (170 mg, 52%).
EJEMPLO 2.- Síntesis de derivados de 2-{[2-alquinilamino) ethyl] sulfonyl} etanol de fórmula general (III).
Figure imgf000020_0001
Compuesto 8: Una disolución de mercaptoetanol 6 (300 mg, 3.84 mmol) en acetonitrilo anhidro (15 ml_) se desoxigenó por burbujeo de Ar durante 5 min. Se adicionó bromocloroetano 7 (0.7 ml_, 7.68 mmol) y Cs2CO3 (1.9 g,
5.76 mmol). La mezcla de reacción se mantuvo con agitación durante 16 h.
Tras filtración del Cs2CO3, el disolvente se eliminó por evaporación a vacío y el crudo resultante se purificó por cromatografía en columna (éter-hexano 2:1 ) obteniéndose 8 (410 mg, 76%).
Compuesto 9: A una disolución de 8 (237 mg, 1.68 mmol) en AcOH (8.5 mL) se Ie adicionó H2O2 del 33% (3.4 mL). La mezcla de reacción se mantuvo a temperatura ambiente en Ia oscuridad durante 1 día. Tras evaporación a vacío el crudo resultante se purificó por cromatografía en columna (éter) obteniéndose 9 (182 mg, 63%).
Compuesto 10: A una disolución de 9 (0.846 g, 4.9 mmol) en THF (10 mL) se Ie adicionó Et3N (2 mL, 14 mmol). La mezcla de reacción se mantuvo a temperatura ambiente (1.5 h). El disolvente se eliminó por evaporación a vacío y el crudo resultante se purificó por cromatografía en columna (AcOEt) obteniéndose 10 (540 mg, 81 %).
Compuesto 11 : A una disolución de 10 (577 mg, 4.24 mmol) en THF- isopropanol 1 :2 (20 ml_) se Ie adicionó propargilamina 4 (212 mg, 3.85 mmol). La mezcla de reacción se dejó a temperatura ambiente (1 dia). El disolvente se eliminó por evaporación a vacío. El crudo obtenido se purificó por cromatografía en columna (AcOEt-MeOH 5:1 ) obteniéndose 11 como un sólido (710 mg, 96%).
EJEMPLO 3.- Síntesis de derivados de cloruros de ácido.
Ejemplo 3.1. Síntesis del cloruro de ácido derivado de biotina.
Figure imgf000021_0001
Compuesto 13: Una disolución de biotina 12 (200 mg, 0.82 mmol) en CI2SO (5 ml_) se mantuvo a temperatura ambiente (1 h). El exceso de CI2SO se eliminó por evaporación a vacío coevaporándose sucesivamente con tolueno anhidro. El sirope obtenido corresponde al compuesto 13 y se usa directamente sin ningún tipo de purificación.
Ejemplo 3.2. Síntesis del cloruro de ácido derivado de rodamina B.
Figure imgf000021_0002
Compuesto 15: Una disolución de rodamina B 14 (195 mg, 0.41 mmol) en POCI3 (5 ml_) y 1 ,2-dicloroetano (5 ml_) se mantuvo a reflujo (16 h). El exceso de POCI3 y el disolvente se eliminó por evaporación a vacío coevaporándose sucesivamente con tolueno anhidro. El crudo obtenido contiene el cloruro de rodamina 15 y es usado directamente sin ningún tipo de purificación.
EJEMPLO 4.- Síntesis de azido derivados.
Ejemplo 4.1. Síntesis del azido derivado de biotina 17.
Figure imgf000022_0001
Compuesto 17: A una disolución en acetonitrilo anhidro (15 ml_) del cloruro derivado de biotina 13 obtenido según se indica en el ejemplo 3.1 a partir de biotina (0.3 g, 1.22 mmol) se Ie adicionaron 2-azido etilamina 16 (0.22 g, 2.45 mmol) y Et3N (0.525 ml_) disueltos en acetonitirlo anhidro (5 ml_). La mezcla de reacción se dejó a temperatura ambiente (15 min). El disolvente se eliminó por evaporación a vacío y el crudo resultante se purificó por cromatografía en columna (AcOEt-MeOH 5:1 ) obteniéndose 17 (0.28 g, 73%).
Ejemplo 4.2. Síntesis del azido derivado de dansilo 19
Figure imgf000022_0002
Compuesto 19: A una disolución de cloruro de dansilo comercial 18 (600 mg, 2.2 mmol) en CI2CH2 (15 ml_) se Ie adicionaron 2-azido etilamina 16 (390 mg, 4.5 mmol) y Et3N (0.5 ml_, 3.5 mmol). La mezcla de reacción se dejó a temperatura ambiente (15 min). El disolvente se eliminó por evaporación a vacío. El crudo obtenido se purificó por cromatografía en columna (éter-hexano 2:1 ) obteniéndose 19 como una espuma sólida (680 mg, 96%).
Ejemplo 4.3. Síntesis del azido derivado de fluoresceína 22.
Figure imgf000023_0001
Compuesto 21 : A una disolución de fluoresceinaamina 20 (450 mg, 1.3 mmol) en MeOH se Ie adicionó anhídrido cloroacético (443 mg, 2.6 mmol). La mezcla de reacción se dejó a temperatura ambiente (1 día). El precipitado que fue apareciendo se filtró, lavó (con MeOH y posteriormente éter) y secó obteniéndose así 21 (440 mg, 80%).
Compuesto 22: A una suspensión de 21 (400 mg, 0.94 mmol) en MeOH (20 ml_) se Ie adicionó azida sódica (306 mg, 4.7 mmol). La mezcla de reacción se irradió con MW (500 W, 650C, 10h). El disolvente se eliminó por evaporación a vacío. El crudo obtenido se purificó por cromatografía en columna (AcOEt, AcOEt-MeOH 1 :1 a MeOH) obteniéndose 22 como un sólido (330 mg, 82%).
EJEMPLO 5. Síntesis de agentes de etiquetado doble basados en vinil sulfonas conteniendo biotina y fluoróforos.
Ejemplo 5.1. Síntesis de los agentes de etiquetado 24 y 25. + 13
Figure imgf000024_0001
24 25
Compuesto 23: Una disolución de cloruro de biotina 13 en THF anhidro (15 ml_), obtenido a partir de biotina (200 mg, 0.82 mmol) según se indica en el ejemplo 3.1 , se enfrió en un baño de agua-hielo y se Ie adicionaron 5 (353 mg, 1 mmol) y Et3N (0.230 ml_, 1.6 mmol) disueltos en THF anhidro (5 ml_). Se dejó que Ia mezcla de reacción alcanzara Ia temperatura ambiente procediéndose entonces a Ia eliminación del disolvente por evaporación a vacío. El crudo obtenido se purificó por cromatografía en columna (AcOEt- MeOH 5:1 ) obteniéndose 23 como un sirupo (438 mg, 92%).
Compuesto 24: A una disolución de 23 (120 mg, 0.21 mmol) en MeOH (15 ml_) se Ie adicionaron 19 (80 mg, 0.25 mmol), Et3N (0.09 ml_, 0.62 mmol) y Cul(C2HsO)3P (8 mg, 0.022 mmol). La mezcla de reacción se dejó a temperatura ambiente (3.5 h). El disolvente se eliminó por evaporación a vacío. El crudo obtenido se purificó por cromatografía en columna (AcOEt- MeOH 3:1 ) obteniéndose 24 como un sólido (167 mg, 90%).
Compuesto 25: A una disolución de 23 (115 mg, 0.2 mmol) en MeOH (15 ml_) se Ie adicionaron 22 (102 mg, 0.24 mmol), Et3N (0.085 ml_, 0.4 mmol) y
CuI(C^H5O)3P (10 mg, 0.023 mmol). La mezcla de reacción se dejó a temperatura ambiente (3.5 h). El disolvente se eliminó por evaporación a vacío. El crudo obtenido se purificó por cromatografía en columna (AcOEt- MeOH 3:1 a MeOH) obteniéndose 25 como un sólido (140 mg, 70%).
Ejemplo 5.2. Síntesis del agente de etiquetado 27.
Figure imgf000025_0001
Compuesto 26: Una disolución del cloruro de rodamina B 15 en THF anhidro (15 ml_), obtenido a partir de rodamina B (195 mg, 0.41 mmol) según se indica en el ejemplo 3.2, se enfríió en un baño de agua-hielo y se
Ie adicionaron 5 (174 mg, 0.49 mmol) y Et3N (0.174 ml_, 1.22 mmol) disueltos en THF anhidro (5 ml_). Se dejó que Ia mezcla de reacción alcanzara Ia temperatura ambiente procediéndose entonces a Ia eliminación del disolvente por evaporación a vacío. El crudo obtenido se purificó por cromatografía en columna (CI2CH2-MeOH 20:1 ) obteniéndose
26 como un sólido (272 mg, 86%).
Compuesto 27: A una disolución de 26 (140 mg, 0.18 mmol) en MeOH (15 ml_) se Ie adicionaron el azido derivado 17 (69 mg, 0.22 mmol), Et3N (0.080 ml_, 0.057 mmol) y CuI(C2H5O)3P (10 mg, 0.029 mmol). La mezcla de reacción se dejó a temperatura ambiente (3.5 h). El disolvente se eliminó por evaporación a vacío. El crudo obtenido se purificó por cromatografía en columna (AcOEt-MeOH 3:1 a MeOH) obteniéndose 27 como un sólido (141 mg, 72%).
Ejemplo 5.3. Síntesis del agente de etiquetado 29.
Figure imgf000026_0001
Compuesto 28: A una disolución de 11 (160 mg, 0.84 mmol) en CH2CI2 anhidro (20 ml_) se Ie adicionó cloruro de dansilo 18 (680 mg, 2.52 mmol) y Et3N (0.71 ml_, 5.02 mmol). La mezcla de reacción se dejó a temperatura ambiente (1 día). El disolvente se eliminó por evaporación a vacío. El crudo obtenido se purificó por cromatografía en columna (AcOEt-hexano 2:3) obteniéndose 28 como un sirope (230 mg, 68%).
Compuesto 29: A una disolución de 28 (128 mg, 0.31 mmol) en MeOH (15 mL) se Ie adicionaron el compuesto 17(89 mg, 0.29 mmol), Et3N (0.080 mL, 0.57 mmol) y CuI(C2H5O)3P (10 mg, 0.0.29 mmol). La mezcla de reacción se dejó a temperatura ambiente (2 h). El disolvente se eliminó por evaporación a vacío. El crudo obtenido se purificó por cromatografía en columna (AcOEt-MeOH 4:1 ) obteniéndose 29 como un sólido (188 mg, 92%).
EJEMPLO 6. Etiquetado doble de proteínas con biotina-fluoróforo.
El etiquetado de proteínas se realiza según el siguiente protocolo general: una disolución de proteína en un tampón que no contenga aminas libres, como por ejemplo fosfato o HEPES, de fuerza iónica moderada (50 - 200 mM) y pH básico (7,5 -8,7) se hace reaccionar con 5 moles de reactivo de mareaje por mol de proteína durante un tiempo suficiente (habitualmente durante toda Ia noche a temperatura ambiente). El exceso de reactivo se elimina mediante diálisis.
Ejemplo 6.1. Etiquetado de albúmina sérica bovina (BSA) con el agente de etiquetado doble 25.
La BSA tiene un peso molecular de 66.4 kDa y 4.8 de punto isoeléctrico, es hidrosoluble y estable en solución por Io que es un buen modelo para estudiar las condiciones óptimas de mareaje. Se estudió Ia influencia de Ia temperatura (temperatura ambiente y a 37° C) y Ia estequiometría (reactivo mareaje: proteína 5:1 , 10:1 , 25:1 y 50:1 ) en Ia reacción de mareaje. Se analizó Ia eficacia del mareaje mediante electroforesis en SDS-PAGE y Ia fluorescencia se visualizó con un transiluminador comercial (λ=365 nm) (FIG. 1 ). El resultado muestra que tanto Ia temperatura como las elevadas estequiometrías provocan un incremento de peso molecular del enzima consecuencia de un mayor número de moléculas de reactivo de doble mareaje unido a Ia BSA, aunque a efectos de fluorescencia de "visu" no se observan diferencias significativas.
Ejemplo 6.2. Etiquetado de albúmina humana (HSA) con el agente de etiquetado doble 29.
La albúmina sérica es Ia proteína más abundante en el sistema circulatorio, responsable del 80% de Ia presión oncótica de Ia sangre y el principal transportador de ácidos grasos, hormonas poco hidrosolubles o fármacos que de otra forma son insolubles en el suero. La reacción de mareaje se realizó durante 12 horas y agitación a 40C en tampón carbonato 0.1 M pH 9 y con una estequiometría HSA:reactivo de mareaje 1 :20. El exceso de agente de etiquetado doble se bloqueó con etanolamina y se eliminó mediante diálisis frente a tampón PBS.
La reacción de mareaje se puso de manifiesto mediante FRET. El experimento se realizó en un fluorímetro Shimadzu RF-5301 PC con una cubeta de cuarzo de 1 ml_ y 1 cm de paso de luz. La concentración de las muestras fue 0.1 mg/ml (en PBS). Se excitó a 280 nm que, es Ia longitud de onda de excitación del triptófano presente en Ia HSA, y se recogió el espectro de emisión desde 300 hasta 550 nm. Los resultados muestran que Ia proteína marcada presenta un espectro de emisión típico a 500-550 nm como consecuencia de Ia excitación del dansilo por Ia transmisión de Ia energía de fluorescencia emitida por el triptófano excitado a 280 nm de Ia propia proteina (FIG 2). Ni Ia proteína sin marcar ni el agente de etiquetado doble 29 presentan este máximo de fluorescencia cuando son excitados a 280 nm Io que demuestra Ia existencia de FRET en Ia proteína etiquetada.
Ejemplo 6.3 Etiquetado de lisozima con el agente de etiquetado 25.
La lisozima de huevo tiene un peso molecular de 14.3 kDa, un punto isoeléctrico del orden de 11 y es soluble en agua. Su punto isoeléctrico y bajo peso molecular Ia hacen un buen modelo para complementar los estudios realizados con BSA. Se estudió Ia influencia de Ia temperatura
(temperatura ambiente / 37° C) y Ia estequiometría (reactivo mareaje: proteína 5:1 , 10:1 , 25:1 y 50:1 ) en Ia reacción de mareaje. Se analizó Ia eficacia del mareaje mediante electroforesis en SDS-PAGE y Ia fluorescencia se visualizó con un transiluminador comercial (λ=365 nm), comprobándose que tanto Ia temperatura como las elevadas estequiometrías provocan un descenso en Ia solubilidad consecuencia de un mayor número de moléculas de reactivo de doble mareaje unidas a lisozima. Los mejores resultados se obtuvieron cuando Ia reacción de mareaje se llevó a cabo a temperatura ambiente y estequiometría 5:1.
Ejemplo 6.4. Peroxidasas de rábano picante y de alcachofa con los agentes de etiquetado doble 24, 25, 27 y 29.
Las peroxidasas son enzimas que catalizan Ia reducción de peróxido de hidrógeno con Ia ayuda de un sustrato que pierde dos átomos de hidrógeno. Son utilizadas ampliamente en bioquímica clínica. Además, al tratarse de glicoproteínas son un buen modelo para evaluar Ia capacidad del reactivo de mareaje para reaccionar con proteínas protegidas por una "cubierta" de carbohidratos. Se seleccionaron las peroxidasas de rábano picante y alcachofa porque Ia primera es Ia peroxidasa de referencia en aplicaciones biotecnológicas y Ia segunda por presentar una gran resistencia a Ia acción de proteasas, probablemente como consecuencia de una mayor densidad de carbohidratos.
Se realizaron experimentos de mareaje de Ia peroxidasa de rábano picante con los reactivos 24 y 29 en tampón HEPES 100 mM pH 8.5 a dos temperaturas (temperatura ambiente y 370C) y tres estequiometrías agente etiquetado:proteína (5:1 , 10:1 y 50:1 ). La eficacia del mareaje se analizó mediante electroforesis en SDS-PAGE y Ia fluorescencia se visualizó con un transiluminador comercial (λ=365 nm). Los resultados ponen de manifiesto Ia importancia de Ia temperatura de mareaje, pues ninguna de las dos persoxidasas se marcó a temperatura ambiente independientemente de Ia estequiometría, pero sí a 370C.
Se estudió el mareaje de 2 mg de ambas peroxidasas a 370C (1 día) en tampón HEPES 100 mM, pH 8.5, con el reactivo 25 y estequiometrías protei na: reactivo de mareaje 1 :5:, 1 :10, 1 :20, 1 :30, 1 :40 y 1 :50. Las muestras se analizaron mediante electroforesis en SDS-PAGE y Ia fluorescencia se visualizó con un transiluminador comercial (λ=365 nm). El reactivo de mareaje reacciona, aunque de manera dependiente de Ia estequiometría y de Ia peroxidasa: elevadas estequiometrías originaron mayor fluorescencia y Ia HRP (FIG 3A) se marca mejor que Ia peroxidasa de alcachofa (FIG 3B).
La HRP, 2mg/mL en HEPES 10OmM, pH 8.5, se hizo reaccionar con los reactivos de mareaje 25 y 27 usando dos estequiometrías diferentes (proteina:reactivo de mareaje 1 :25 y 1 :50) y 370C (1día). Las muestras se dializaron frente a tampón fosfato 50 mM pH 7.5, NaCI 100 mM para eliminar el exceso de reactivo de mareaje y se analizaron mediante electroforesis en SDS-PAGE y Ia fluorescencia se visualizó con un transiluminador comercial (λ=365 nm). Ambos reactivos de mareaje reaccionaron (FIG 4), y al igual que en los casos anteriores, a mayor estequiometría mayor fluorescencia. Se analizó el efecto de Ia unión de los reactivos de doble etiquetado sobre Ia actividad y sobre Ia capacidad para interaccionar con avidina. La actividad específica de las peroxiadasa marcadas es del orden del 65% de las no marcadas, valor que está en el rango de Io descrito por el proveedor (SIGMA) para soluciones de peroxidasa en tampón pH 8 después de 10 días, que es el tiempo que transcurrió desde el comienzo del mareaje hasta el estudio de Ia actividad. La interacción con avidina se puso de manifiesto incubando avidina inmovilizada sobre pocilios de placas de ELISA con las enzimas marcadas, comprobándose, tras lavar, Ia presencia de actividad peroxidasa consecuencia de Ia interacción de Ia avidina con las peroxidasas vía Ia biotina del mareaje, demostrando Ia funcionalidad de Ia biotina de los reactivos de doble mareaje.

Claims

REIVINDICACIONES
1. Compuesto de fórmula general (I):
Figure imgf000031_0001
(I)
donde:
Y es el grupo -SO2R- ó no existe; donde
R es un radical, sustituido o no sustituido, seleccionado del grupo que comprende un alquilo (C1-C10), un dialquilarilo((Ci-Cio)Ar(Ci-Cio)) ó el grupo (CH2CH2O)nCH2CH2; donde n toma valores de 2 a 20;
Z es un radical, sustituido o no sustituido, seleccionado del grupo que comprende un alquilo (C1-C10), un dialquilarilo ((Ci-Cio)Ar(d-Cio)) ó un grupo (CH2CH2O)nCH2CH2; donde n toma valores de 2 a 20;
m toma valores de 1 a 20; y
Figure imgf000031_0002
representan, independientemente, una molécula etiqueta.
2. Compuesto según Ia reivindicación 1 , donde las moléculas etiqueta se seleccionan de entre biotina, fluoróforo o cualquiera de sus derivados.
3. Compuesto según Ia reivindicación 2, donde el fluoróforo se selecciona de entre dansilo, fluoresceína, rodamina o cualquiera de sus derivados.
4. Compuesto según cualquiera de las reivindicaciones 1 a 3, donde Z es un alquilo (C1-C5).
5. Compuesto según Ia reivindicación 4, donde Z es un grupo etilo.
6. Compuesto según Ia reivindicación 4, donde Z es un grupo metilo.
7. Compuesto según cualquiera de las reivindicaciones 1 a 6, donde m es 1.
8. Compuesto según cualquiera de las reivindicaciones 1 a 7, donde Y es el grupo -SO2R.
9. Compuesto según cualquiera de las reivindicaciones 1 a 8 donde R es el grupo (CH2CH2O)nCH2CH2, n está definido en Ia reivindicación 1.
10. Compuesto según Ia reivindicación 9, donde n es 2.
11. Compuesto según cualquiera de las reivindicaciones 1 a 7, donde Y no existe.
12. Compuesto según Ia reivindicación 1 , de fórmula:
Figure imgf000032_0001
13. Compuesto según Ia reivindicación 1 , de fórmula:
Figure imgf000033_0001
14. Compuesto según Ia reivindicación 1 , de fórmula:
Figure imgf000033_0002
15. Compuesto según Ia reivindicación 1 , de fórmula:
Figure imgf000033_0003
16. Método de obtención de los compuestos de fórmula general (I) cuando Y es el grupo -SO2R que comprende Ia reacción del compuesto de fórmula general (II)
Figure imgf000034_0001
donde R y m están definidos en Ia reivindicación 1
con una molécula etiqueta o cualquiera de sus derivados, que contienen un grupo ácido ó sulfónilo, antes o después de reaccionar con otra molécula etiqueta o cualquiera de sus derivados distinta a Ia anterior que contiene un grupo azido.
17. Método según Ia reivindicación 16, donde los derivados de las moléculas etiqueta que contienen un grupo ácido o sulfónilo son cloruros de ácido o cloruros de sulfónilo.
18. Método según Ia reivindicación 16, donde R es el grupo (CH2CH2O)nCH2CH2, n está definido en Ia reivindicación 1.
19. Método según Ia reivindicación 18, donde n es 2.
20. Método según cualquiera de las reivindicaciones 16 a 19, donde m es 1.
21. Método de obtención de los compuestos de fórmula general (I), cuando Y no existe, que comprende: a. reacción del compuesto de fórmula general (III) con una molécula etiqueta o sus derivados, que contiene un grupo sulfónilo:
Figure imgf000034_0002
donde m está definido anteriormente; y
b. reacción del compuesto obtenido en el paso (a) con otra molécula etiqueta o sus derivados, distinta de Ia anterior y que contiene un grupo azido.
22. Método según Ia reivindicación 21 , donde los derivados de las moléculas etiqueta que contienen un grupo sulfonilo son cloruros de sulfonilo.
23. Método según Ia reivindicación 21 , donde m es 1.
24. Uso de un compuesto de fórmula general (I) según cualquiera de las reivindicaciones 1 a 15 como agente de etiquetado.
25. Agente de etiquetado que comprende un compuesto según cualquiera de las reivindicaciones 1 a 15.
26. Uso de un agente de etiquetado según Ia reivindicación 25 para el mareaje de biomoléculas.
27. Uso de un agente según Ia reivindicación 26, donde las biomoléculas son proteínas.
PCT/ES2009/070035 2008-02-27 2009-02-19 Agentes de etiquetado doble basados en vinilsulfona WO2009106665A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/920,042 US20110065164A1 (en) 2008-02-27 2009-02-19 Double-labelling agents based on vinyl sulphone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200800592A ES2325297B1 (es) 2008-02-29 2008-02-29 Agentes de etiquetado doble basados en vinilsulfona.
ESP200800592 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009106665A1 true WO2009106665A1 (es) 2009-09-03

Family

ID=40951225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070035 WO2009106665A1 (es) 2008-02-27 2009-02-19 Agentes de etiquetado doble basados en vinilsulfona

Country Status (3)

Country Link
US (1) US20110065164A1 (es)
ES (1) ES2325297B1 (es)
WO (1) WO2009106665A1 (es)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014059144A1 (en) 2012-10-10 2014-04-17 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Systems and devices for molecule sensing and method of manufacturing thereof
US9981997B2 (en) 2013-10-31 2018-05-29 Arizona Board Of Regents On Behalf Of Arizona State University Chemical reagents for attaching affinity molecules on surfaces
WO2015131073A1 (en) 2014-02-27 2015-09-03 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Triazole-based reader molecules and methods for synthesizing and use thereof
WO2018172503A2 (en) * 2017-03-24 2018-09-27 Basf Se Liquid laundry detergent comprising modified saccharide or polysaccharide

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ADAM, G.C. ET AL.: "Trifunctional Chemical Probes for the Consolidated Detection and Identification of Enzyme Activities from Complex Proteomes", MOLECULAR & CELLULAR PROTEOMICS, vol. 1, no. 10, 2002, pages 828 - 835 *
EVANS, M.J. ET AL.: "Mechanism-Based Profiling of Enzyme Families", CHEMICAL REVIEWS, vol. 106, 2006, pages 3279 - 3301 *
HAGENSTEIN, M.C. ET AL.: "Chemical Tools for Activity-Based Proteomics", JOURNAL OF BIOTECHNOLOGY, vol. 124, 2006, pages 56 - 73 *
SPEERS, A.E. ET AL.: "Profiling Enzyme Activities In Vivo Using Click Chemistry Methods", CHEMISTRY & BIOLOGY, vol. 11, 2004, pages 535 - 546 *
VAN SWIETEN, P.F. ET AL.: "Bioorthogonal Organic Chemistry in Living Cells: Novel Strategies for Labeling Biomolecules", ORGANIC AND BIOMOLECULAR CHEMISTRY, vol. 3, 2005, pages 20 - 27 *

Also Published As

Publication number Publication date
ES2325297B1 (es) 2010-06-04
ES2325297A1 (es) 2009-08-31
US20110065164A1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
ES2608484T3 (es) Compuestos y métodos para un marcaje rápido de N-glicanos
Hu et al. Small molecule fluorescent probes of protein vicinal dithiols
US20050031545A1 (en) Bis-transition-metal-chelate probes
US7282373B2 (en) Ultra-high specificity fluorescent labeling
EP2062944A1 (en) Water-soluble rylene dyes, methods for preparing the same and uses thereof as fluorescent labels for biomolecules
US20090004641A1 (en) Site-specific labeling of affinity peptides in fusion proteins
WO2005083394A2 (en) Methods for detecting anionic and non-anionic proteins using carbocyanine dyes
ES2325297B1 (es) Agentes de etiquetado doble basados en vinilsulfona.
US8435800B2 (en) Activated labeling reagents and methods for preparing and using the same
ES2341946T3 (es) Reactivos y un metodo para el marcaje por saturacion de proteinas.
ES2325293B1 (es) Agentes de etiquetado simple basados en vinilsulfona.
Haugland Covalent fluorescent probes
ES2331783B1 (es) Compuesto para el etiquetado de biomoleculas basado en vinilsulfona, preparacion y usos.
Gök et al. Binding of fluorescein isothiocyanate to insulin: a fluorimetric labeling study
US6919333B2 (en) Bis-transition-metal-chelate probes
US7141655B2 (en) Reagents and procedures for high-specificity labeling
JP2010533291A (ja) 三官能性擬ペプチド試薬、ならびにその使用および適用
CA2488819A1 (en) Bis-transition-metal-chelate-probes
ES2253899T3 (es) Quelatos de lantanido de cinoxacina y su uso como sondas biomoleculares.
CN112979509A (zh) 一种三氟甲磺酰基炔酰胺类化合物及其制备方法和用途
US20060134691A1 (en) Labeling methodology comprising oligopeptides
US20050239144A1 (en) Site-specific labelling of proteins using cyanine dye reporters
WO2004011556A1 (en) Site-specific labelling of proteins using cyanine dye reporters
US20060051811A1 (en) Site-specific labelling of proteins using acridone and quinacridone lifetime dyes
WO2005038460A2 (en) Site-specific labeling of affinity tags in fusion proteins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12920042

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12920027

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09715575

Country of ref document: EP

Kind code of ref document: A1