WO2009105989A1 - 信道估计的方法、设备和系统 - Google Patents

信道估计的方法、设备和系统 Download PDF

Info

Publication number
WO2009105989A1
WO2009105989A1 PCT/CN2009/070517 CN2009070517W WO2009105989A1 WO 2009105989 A1 WO2009105989 A1 WO 2009105989A1 CN 2009070517 W CN2009070517 W CN 2009070517W WO 2009105989 A1 WO2009105989 A1 WO 2009105989A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
channel
signal
loaded
combination
Prior art date
Application number
PCT/CN2009/070517
Other languages
English (en)
French (fr)
Inventor
方李明
拉斐尔·辛德瑞那
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES09713664T priority Critical patent/ES2382240T3/es
Priority to AT09713664T priority patent/ATE545223T1/de
Priority to EP09713664A priority patent/EP2114028B1/en
Priority to PL09713664T priority patent/PL2114028T3/pl
Priority to US12/551,664 priority patent/US8824264B2/en
Publication of WO2009105989A1 publication Critical patent/WO2009105989A1/zh
Priority to US13/719,761 priority patent/US8576691B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/487Testing crosstalk effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/062Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response

Definitions

  • the present invention relates to the field of network communications, and in particular to a method, apparatus and system for channel estimation.
  • Digital Subscriber Line is a data transmission technology that uses telephone twisted pair as a transmission medium.
  • the X Digital Subscriber Line is a combination of this transmission technology, including High Speed Digital Subscriber Line (HDSL), Single Pair High Speed Digital Subscriber Line (SHDSL), Asymmetric Digital Subscriber Line (ADSL), and the like.
  • HDSL High Speed Digital Subscriber Line
  • SHDSL Single Pair High Speed Digital Subscriber Line
  • ADSL Asymmetric Digital Subscriber Line
  • POTS traditional telephone service
  • X is the signal vector sent by the N x 1 joint transceiver (which can be the digital subscriber line access multiplexer DSLAM), and y is the signal received by the peer device (which can be the user-side device) of N x 1 Vector, n is the noise vector of N xl.
  • the shared channel is represented by a channel transmission matrix as
  • Embodiments of the present invention provide a method, device, and system for channel estimation, which can overcome the shortcomings of the prior channel estimation techniques that a device must be able to provide signal errors.
  • an embodiment of the present invention provides a channel estimation method, including: loading a combination of transmission signals of other lines on one line of a channel; measuring a signal to noise ratio of the loaded line; A coefficient of the combination of the transmitted signals and the measured signal to noise ratio, the crosstalk channel of the loaded line is calculated.
  • an embodiment of the present invention provides a joint transceiver device, including:
  • a loading unit configured to load a combination of transmission signals of other lines on one line of the channel
  • a receiving unit configured to receive a signal to noise ratio of the loaded line measured by the peer device
  • a calculating unit configured to calculate a crosstalk channel of the loaded line according to a combined coefficient of the transmitted signals of the other lines and the received signal to noise ratio.
  • an embodiment of the present invention provides a system for channel estimation, including: a joint transceiver device and a peer device;
  • the joint transceiver device includes:
  • a loading unit configured to load a combination of transmission signals of other lines on one line of the channel
  • a receiving unit configured to receive a signal to noise ratio of the loaded line measured by the peer device
  • a calculating unit configured to Calculating a crosstalk channel of the loaded line by using a combined coefficient of a transmitted signal of the line and the received signal to noise ratio
  • the peer device includes:
  • a measuring unit configured to measure a signal to noise ratio of the loaded line
  • a sending unit configured to send the measured signal to noise ratio to the joint transceiver device.
  • the embodiment of the invention further provides a joint transceiver device, including:
  • a loading unit configured to load a combination of transmission signals of other lines on one line of the channel; a transmitting unit, a coefficient for transmitting a combination of transmission signals of other lines to the peer device; and a receiving unit, configured to receive the calculation of the opposite device The crosstalk channel of the loaded line.
  • the embodiment of the present invention further provides a peer device, including:
  • a measuring unit configured to measure a signal to noise ratio of the loaded line
  • a receiving unit configured to receive a coefficient of a combination of transmission signals of other lines sent by the joint transceiver device
  • a calculating unit configured to calculate a crosstalk channel of the loaded line according to a combined coefficient of the transmitted signals of the other lines and a measured signal to noise ratio
  • a sending unit configured to send the calculated crosstalk channel to the joint transceiver device.
  • the embodiment of the present invention further provides a system for channel estimation, including: a joint transceiver device and a peer device;
  • the joint transceiver device includes:
  • the peer device includes:
  • a measuring unit configured to measure a signal to noise ratio of the loaded line
  • a receiving unit configured to receive a combination of a combination of transmission signals of other lines sent by the joint transceiver device
  • a calculating unit configured to calculate a crosstalk channel of the loaded line according to a combination of a coefficient of a transmission signal of the other line and the measured signal to noise ratio;
  • a sending unit configured to send the calculated crosstalk channel to the joint transceiver device.
  • the channel estimation provided by the present invention is provided.
  • the method, device and system utilize the characteristics of the signal-to-noise ratio (SNR) parameter by the equipment of the existing network, and calculate the crosstalk characteristic of the line by the combination of the measured SNR parameter and the transmitted signal of other lines loaded.
  • SNR signal-to-noise ratio
  • the technical solution provided by the embodiment of the invention does not need to redesign the device, and has short measurement time, high precision and good robustness.
  • FIG. 1 is a schematic diagram of a vectored-DSL technology for solving xDSL crosstalk in the prior art
  • FIG. 2 is a schematic diagram of a method for channel estimation according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a system for channel estimation according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a loading unit of a joint transceiver device according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of a system for estimating a channel according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a loading unit of a joint transceiver device according to Embodiment 3 of the present invention.
  • the crosstalk channel can be estimated when the new user goes online, and the scenario for tracking the crosstalk channel can also be applied.
  • the following is an example of a new user joining a vector group (vector group).
  • vector group Suppose there are K-1 lines in a vector group.
  • the other K-1 lines can be estimated by the signal-to-noise ratio (SNR) measured on the Kth line.
  • SNR signal-to-noise ratio
  • FIG. 2 is a schematic diagram of a method for channel estimation according to an embodiment of the present invention. The steps of channel estimation in this embodiment are as follows:
  • Step 101 loading a combination of transmission signals of other lines on one line of the channel; the step is specifically for the joint transceiver device to transmit a signal of the transmission line of the line 1 to the line K-1 in a sub-band of the downlink direction of the line K.
  • the signals of which lines are loaded, and which lines are crosstalked to the Kth line can be calculated by the embodiment of the present invention. The above processing is performed in parallel on each sub-band.
  • the transmission signal after the Kth line is loaded is:
  • the sum of the squares of the absolute values of the combination coefficients is 1, which is a preferred embodiment of the present invention and may be other coefficients.
  • is the step size, so that the effect of the loaded signal on the Kth line does not cause additional errors.
  • it is required to add the loaded signal and the SNR tolerance at the receiving end of the Kth line is not less than zero.
  • the signal-to-noise ratio tolerance of the line is set to 6dB.
  • This embodiment sets s by the following formula to meet the above requirements:
  • mm , ⁇ , where ⁇ , 2 represents the transmission power on the ith line (the transmission power of each line is known to the joint transceiver device); ⁇ 4. ) indicates the signal-to-noise ratio of the receiving end of the ⁇ line when it is not loaded.
  • Step 102 Measure a signal to noise ratio of the loaded line
  • This step is specifically for the peer device to measure the signal-to-noise ratio on the same sub-band in the downlink direction of the line K, and the signal-to-noise ratio is directly measured.
  • Step 103 Calculate according to the combined coefficient of the transmitted signals of other lines and the measured signal to noise ratio
  • the crosstalk channel of the loaded line is calculated by a coefficient combined with the transmission signal of the other line; or the coefficient of the combination of the transmission signals of the other lines is transmitted to the opposite device for the joint transceiver device, and the peer device is loaded according to the measured line K
  • the crosstalk channel of line K is calculated by the combination of the signal-to-noise ratio and the received signal of the other lines.
  • the signal received by the peer device of the Kth line is:
  • the received noise power is: noise
  • represents the power of the background noise t according to the above two formulas
  • the SNR measured by the peer device of the Kth line can be expressed by the following formula: 1 noisej
  • pinv (.) represents a pseudo inverse operation.
  • a crosstalk channel normalized by a direct channel expressed as follows: ⁇ , ⁇
  • the SNR can be expressed by:
  • pinv (.) represents a pseudo inverse operation.
  • a crosstalk channel normalized by direct channel expressed as follows:
  • G pitw(PB)P according to the combination of the transmission power and the transmitted signal on each line; according to the transmission power on each line, the combined coefficient of the transmitted signal and the measured SNR , calculation (" ⁇ ; ⁇ - ⁇ ⁇ 2 ⁇ ; according to the above calculation results,
  • repeat steps 101 and 102 should be no less than 2K-1 times to calculate the crosstalk of all other K-1 lines to the Kth line.
  • the number of times of repeating steps 101 and 102 described above is determined based on the number of other lines loaded (i.e., the number of crosstalk to be measured).
  • the above process can be repeated multiple times to continuously update the crosstalk channel.
  • the purpose of the repetition is to improve accuracy or track the line.
  • a first-order approximation crosstalk cancellation precompensation filter can also be designed based on the calculated crosstalk channel, as follows:
  • FIG. 3 is a schematic diagram of a system for channel estimation according to Embodiment 2 of the present invention, where the system includes at least a joint transceiver device 1 and a peer device 2.
  • the joint transceiver device 1 includes: a loading unit 11, a receiving unit 12, and a computing unit 13.
  • the loading unit 11 is configured to load a combination of transmission signals of other lines on one line of the channel;
  • the receiving unit 12 is configured to receive a signal to noise ratio of the loaded line measured by the opposite device;
  • the calculating unit 13 is configured to use according to other lines The combined coefficients of the transmitted signals and the received signal-to-noise ratio are used to calculate the crosstalk channel of the loaded line.
  • the peer device 2 comprises a measuring unit 21 and a transmitting unit 22.
  • the measuring unit 21 is configured to measure a signal to noise ratio of the loaded line
  • the sending unit 22 is configured to send the measured signal to noise ratio to the joint transceiver device.
  • FIG. 4 is a schematic structural diagram of a loading unit of the joint transceiver device according to the embodiment.
  • the loading unit 11 of the joint transceiver device may further include: a first calculating unit 111 and a first loading unit 112.
  • the first calculating unit 111 is configured to calculate a product of the combination of the transmission signals of the other lines and the step size; the first loading unit 112 is configured to load the combination of the transmission signals of the other lines and the step size on the loaded line.
  • the first calculating unit 111 may further include: a second calculating unit 1111, configured to calculate the step size according to the sending power of each line and the signal to noise ratio when the loaded line is not loaded.
  • the computing unit 13 of the combined transceiver device is further configured to calculate a crosstalk channel of the loaded line according to the step size and the transmission power of each line.
  • the system and device for channel estimation provided by this embodiment calculates the crosstalk characteristic of the loaded line by measuring the combination of the measured SNR parameter of the loaded line and the transmitted signal of other lines loaded. This embodiment does not require redesigning the device, and has a short measurement time, high precision, and good robustness.
  • FIG. 5 is a schematic diagram of a system for estimating three channels according to an embodiment of the present invention.
  • the system includes at least a combined transceiver device 3 and a peer device 4.
  • the joint transceiver device 3 includes: a loading unit 31, a transmitting unit 32, and a receiving unit 33.
  • a loading unit 31, configured to load a combination of transmission signals of other lines on one line of the channel;
  • the sending unit 32 is configured to send a coefficient of the combination of the sending signals of the other lines to the peer device, and the receiving unit 33 is configured to receive the crosstalk channel of the loaded line calculated by the peer device.
  • the peer device 4 includes: a measuring unit 41, a receiving unit 42, a calculating unit 43, and a transmitting unit 44.
  • a measuring unit 41 configured to measure a signal to noise ratio of the loaded line
  • a receiving unit 42 configured to receive a combination of transmission signals of other lines transmitted by the joint transceiver device
  • a calculating unit 43 configured to transmit signals according to other lines The combined coefficient and the measured signal to noise ratio, the crosstalk channel of the loaded line is calculated
  • the transmitting unit 44 is configured to send the calculated crosstalk channel to the joint transceiver device.
  • FIG. 6 is a schematic structural diagram of a loading unit of the joint transceiver device according to the embodiment.
  • the loading unit 31 of the joint transceiver device may further include: a first calculating unit 311 and a first loading unit 312.
  • the first calculating unit 311 is configured to calculate a product of the combination of the transmission signals of the other lines and the step size; the first loading unit 312 is configured to load the combination of the transmission signals of the other lines and the step size on the loaded line.
  • the first calculating unit 311 may further include: a second calculating unit 3111, configured to calculate the step size according to the sending power of each line and the signal to noise ratio when the loaded line is not loaded.
  • the sending unit 32 of the transceiver device 3 is further configured to send the step size and the transmission power of each line to the peer device.
  • the receiving unit 42 of the peer device 4 of the embodiment is further configured to receive the step size sent by the joint transceiver device and the transmission power of each line; the calculating unit 43 is further configured to use the step size and each line according to the received step. Transmit power, calculate the crosstalk channel of the loaded line.
  • the system and device for channel estimation provided by this embodiment calculates the crosstalk characteristic of the loaded line by measuring the combination of the measured SNR parameter of the loaded line and the transmitted signal of other lines loaded. This embodiment does not require redesigning the device, and has a short measurement time, high precision, and good robustness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Telephonic Communication Services (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Monitoring And Testing Of Exchanges (AREA)

Description

信道估计的方法、 设备和系统
本申请要求于 2008 年 2 月 28 日提交中国专利局、 申请号为 200810065734.2、 发明名称为"一种信道估计的方法、 设备和系统"的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及网络通信领域, 具体地说, 涉及一种信道估计的方法、 设备 和系统。
背景技术
数字用户线(DSL )是一种以电话双绞线为传输介质的数据传输技术。 X 数字用户线(xDSL )作为该传输技术的组合, 包括高速数字用户线(HDSL )、 单线对高速数字用户线(SHDSL )、 非对称数字用户线(ADSL )等等。 其中, 除利用基带传输的 SHDSL等之外, 釆用通带传输的其它 xDSL利用频分复用 技术, 与传统电话业务(POTS )可共存于同一对双绞线上。
随着通带传输的 xDSL使用的频带越来越高, 高频段的串扰 ( Crosstalk ) 问题也表现得尤为突出。 现有技术提供一种向量数字用户线 ( vectored-DSL ) 技术解决 xDSL串扰问题, 如图 1所示。 在下行方向上, X是 N x 1的联合收 发设备(可以为数字用户线接入复用器 DSLAM )发送的信号向量, y是 N x 1的对端设备(可以为用户侧设备)接收的信号向量, n是 N x l的噪声向量。 共享信道用信道传输矩阵表示为
Figure imgf000003_0001
(1≤ 1≤ N' ≤ j≤ 表示线对 '对线对 i的串扰传递函数, h^≤ 1≤ 表示线 对 的信道传递函数, W为线对数, 即用户数。 在联合收发设备侧引入一个用 表示的向量预编码器, 则对端设备接收的信号向量为
y = HWx + n 当向量预编码器能使^^为一对角矩阵时, 如 diag H、, 则可消除串扰。 为了消除串扰, 必须先对信道进行估计, 获得信道传输矩阵。
在实现本发明的过程中, 发明人发现, 现有技术利用信号误差来对信道 进行估计, 要求设备必须能够提供信号误差。 然而, 许多网上运行的设备不 支持这个功能, 无法利用信号误差来估计信道, 从而不能进行串扰抵消。 发明内容
本发明实施例提供一种信道估计的方法、 设备和系统, 能够克服现有的 信道估计技术要求设备必须能够提供信号误差的缺点。
为解决上述技术问题, 本发明实施例提供一种信道估计的方法, 包括: 在信道的一条线路上加载其它线路的发送信号的组合; 测量被加载线路的信 噪比; 根据所述其它线路的发送信号的组合的系数和所述测量的信噪比, 计 算所述被加载线路的串扰信道。
相应地, 本发明实施例提供一种联合收发设备, 包括:
加载单元, 用于在信道的一条线路上加载其它线路的发送信号的组合; 接收单元, 用于接收对端设备测量的被加载线路的信噪比;
计算单元, 用于根据其它线路的发送信号的组合的系数和接收的信噪比, 计算被加载线路的串扰信道。
相应地, 本发明实施例提供一种信道估计的系统, 包括: 联合收发设备 和对端设备;
所述联合收发设备包括:
加载单元, 用于在信道的一条线路上加载其它线路的发送信号的组合; 接收单元, 用于接收对端设备测量的所述被加载线路的信噪比; 计算单元, 用于根据所述其它线路的发送信号的组合的系数和所述接收 的信噪比, 计算所述被加载线路的串扰信道;
所述对端设备, 包括:
测量单元, 用于测量被加载线路的信噪比; 发送单元, 用于发送所述测量的信噪比至所述联合收发设备。 本发明实施例还提供一种联合收发设备, 包括:
加载单元, 用于在信道的一条线路上加载其它线路的发送信号的组合; 发送单元, 用于发送其它线路的发送信号的组合的系数至对端设备; 接收单元, 用于接收对端设备计算的被加载线路的串扰信道。
相应地, 本发明实施例还提供一种对端设备, 包括:
测量单元, 用于测量被加载线路的信噪比;
接收单元, 用于接收联合收发设备发送的其它线路的发送信号的组合的 系数;
计算单元, 用于根据所述其它线路的发送信号的组合的系数和测量的信 噪比, 计算所述被加载线路的串扰信道;
发送单元, 用于发送所述计算的串扰信道至所述联合收发设备。
相应地, 本发明实施例还提供一种信道估计的系统, 包括: 联合收发设 备和对端设备;
所述联合收发设备包括:
加载单元, 用于在信道的一条线路上加载其它线路的发送信号的组合; 发送单元, 用于发送所述其它线路的发送信号的组合的系数至对端设备; 接收单元, 用于接收所述对端设备计算的被加载线路的串扰信道; 所述对端设备, 包括:
测量单元, 用于测量所述被加载线路的信噪比;
接收单元, 用于接收所述联合收发设备发送的其它线路的发送信号的组 合的系数;
计算单元, 用于根据所述其它线路的发送信号的组合的系数和所述测量 的信噪比, 计算所述被加载线路的串扰信道;
发送单元, 用于发送所述计算的串扰信道至所述联合收发设备。
由上述本发明实施例提供的技术方案可以看出, 本发明提供的信道估计 的方法、 设备和系统,利用现网的设备能提供信噪比 (SNR )参数的特点, 通 过测量的 SNR参数和加载的其他线路的发送信号的组合计算出线路的串扰特 性。 本发明实施例提供的技术方案, 不需要重新设计设备, 而且测量时间短, 精度高且有很好的鲁棒性。
附图说明
图 1为现有技术中 vectored-DSL技术解决 xDSL串扰的示意图; 图 2为本发明实施例一信道估计的方法示意图;
图 3为本发明实施例二信道估计的系统示意图;
图 4为本发明实施例二联合收发设备的加载单元的结构示意图; 图 5为本发明实施例三信道估计的系统示意图;
图 6为本发明实施例三的联合收发设备的加载单元的结构示意图。
具体实施方式
本发明实施例, 既可以适用于新用户上线时估计串扰信道, 也可以适用 于对串扰信道进行跟踪等场景。 以下均以新用户加入向量组(vector group ) 为例进行说明。 假设在一个向量组中已有 K-1条线路, 当第 K条新线路要求加 入这个向量组时, 可以通过第 K条线路上测量的信噪比(SNR )来估计出其他 K-1条线路分别对第 K条线路的串扰。
如图 2所示, 为本发明实施例一信道估计的方法示意图。 本实施例进行信 道估计的步骤如下:
步骤 101 : 在信道的一条线路上加载其它线路的发送信号的组合; 该步骤具体为联合收发设备在线路 K的下行方向的某个子频带上, 同时注 入线路 1至线路 K-1的发送信号的全部或部分信号的组合。 加载了哪些线路的 信号, 哪些线路对第 K条线路的串扰就能被本发明实施例计算出来。 各个子频 带上是并列进行上述处理的。
这里以加载线路 1至线路 K-1的发送信号的全部信号的组合为例。 假设在 线路 K上所需要的 SNR测量次数为 N, 每个 SNR测量需要持续 L符号 (symbol ) 的时间,其他的 K- 1条线路已经进入 showtime状态。假定在第 n个 SNR测量期间 第 i条线路上的第 1个符号所需发送的信号为 (/),那么在该线路上实际发送的 信号为 )(/)。 当第 K条线路加入到向量组时, 其他的线路继续发送原来的信 号, 则有:
Figure imgf000007_0001
通过在第 K条线路的发送信号上添加所有其他 1到 K-1条线路的发送信号 的组合, 则第 K条线路被加载后的发送信号为:
Figure imgf000007_0002
其中, 为在第 n个 SNR测量期间第 i条线路的组合系数, 且满足:
Figure imgf000007_0003
组合系数的绝对值的平方和为 1 , 是本发明的一个优选实施例, 还可为其它系 数。
^为步长, 是为了使加载的信号对第 K条线路的影响不至于产生额外的误 码, 这里要求加上加载的信号后在第 K条线路的接收端的 SNR容限不小于零。 一般情况下, 线路的信噪比容限设为 6dB, 为了保险起见, 应保证加载后第 K 条线路的接收端 SNR降低不大于 3.5dB。 本实施例通过下面的公式来设置 s , 以满足上述要求:
. 1 1 σκ
ε = mm , ―^ , 其中, σ,2表示在第 i条线路上的发送功率(联合收发设备已知各条线路的发送 功率); ^4。)表示第 κ条线路在未被加载信号时接收端的信噪比。
步骤 102: 测量被加载线路的信噪比;
该步骤具体为对端设备测量线路 K的下行方向的上述相同子频带上的信 噪比, 信噪比是直接测量得到的。
步骤 103: 根据其它线路的发送信号的组合的系数和测量的信噪比, 计算 被加载线路的串扰信道。 比和其它线路的发送信号的组合的系数计算线路 K的串扰信道;或者为联合收 发设备将其它线路的发送信号的组合的系数发送至对端设备, 对端设备根据 测量的线路 K被加载后的信噪比和接收的其它线路的发送信号的组合的系数 计算线路 K的串扰信道。
计算被加载线路的串扰信道的推导过程如下:
根据步骤 101中第 K条线路被加载后的发送信号的公式, 则第 K条线路的 对端设备所接收的信号为:
^") (/) =∑ Λ(") (/) + (/)
= hK,K 、 (/) + X (hK>l + ε 、 κ (/) + (/) 其中, 接收的信号功率为:
signal^ = ¼Κ^] {1)
Figure imgf000008_0001
接收的噪声功率为: noise
Figure imgf000008_0002
其中, ^表示背景噪声的功率 t 根据上述两个公式, 当各条线路的发送功率相等时, 即 σ,2 = , 第 K条 线路的对端设备所测量的 SNR可以通过下式表示: 1 noisej
SNR^ ~ signal
Figure imgf000009_0001
σ
a + £"b +■ 且当 σ,2 = 时, 步长为
1 1
ε = mm-
2 X
定义 。 根据勾股定
Figure imgf000009_0002
理, 有
Figure imgf000009_0003
将 和 w分别分解为实部和虚部 , 即 = Re { ; } , αΙ4 = Im { ; } , b = Re { } } , ) =Im ¾(")} , 则有
=bw a,
其中, a = [aR, · .. aR^ a · .. f , b(") = [b^ · .. ... 为了方便, 义 a;=[a]; , (")=[!>(")],.。 根据上述两个公式, 可得
|a + ^b(B)| - ||a|| +2ε\)(η)ΗΆ
根据上式和前面 SNR的表达式, 有
Figure imgf000009_0004
因此,
Figure imgf000010_0001
又由于 =z , 则
Figure imgf000010_0002
定义 cw =丄^^—丄^ |zw 2 , 则
2 SNR^ 2 台 I '
s = , V«
Figure imgf000010_0003
定义一个大小为 MxN的矩阵 P , 且其元素 Pm,n 满足
∑P„,,„ =0,Vm 它作为 SNR的组合矩阵, 有
Figure imgf000010_0004
由于 ί ,„.„ =0,Vw , 则有
对每一个 η, 都有一个上述形式的公式。 将所有这些公式合并为一个矩阵, 有
Figure imgf000010_0005
定义 C = [C ( .C(w)f B = [b(1) •bw:T因此, 有
^PBa-Pc
则 a的最小二乘解为
a = ε ι pinv(PB)Pc,
其中, pinv(.)表示伪逆操作。 求解出 a后, 再根据 α,. αΙ ... ]τ , 就可以得到经
Figure imgf000011_0001
过直接信道归一化的串扰信道, 如下式表示: ικ,κ
根据上述推导, 计算串扰信道的具体步骤如下:
选择合适的组合矩阵, 根据各条线路上的发送信号的组合的系数, 计算
G = pinv(PB)P;根据各条线路上的发送信号的组合的系数和测量的 SNR, 计算 '·) ^2Xk(" ; 根据上述计算结果, 计算 a = ^Gc; 最后, 得出经
2 SNR() 2 直接信道归一化的串扰信道 而当各条线路的发送功率不相等时, 第 Κ条线路的对端设备所测量的
SNR可以通过下式表示:
1 noise
SNR") signal
定义 = [ … 根据勾股定
Figure imgf000011_0002
理, 有
=| +|^(") + 2^Re{b("wa^
将 和 5W分别分解为实部和虚部, 即 aR i = e{a,} , αα = Im{ ,} , = e^"'} ,
Figure imgf000011_0003
其中, a = [aR l ... αΙΛ ... αΙ Κ f , b(") = [bR ("} ... ... : Γ为了方便, 定义 a;=[a]; , 6iw=[bw];. 根据上述两个公式, 可得
Figure imgf000012_0001
根据上式和前面 SNR的表达式, 有
Figure imgf000012_0002
因此,
Figure imgf000012_0003
又由于 W 定义
Figure imgf000012_0004
定义一个大小为 MxN的矩阵 P, 且其元素 „ =[P]m„满足
Figure imgf000012_0005
它作为 SNR的组合矩阵, 有
∑pm>nc(n)
Figure imgf000012_0006
由于 i m=0VW, 则有
对每一个 n, 都有一个上述形式的公式。 将所有这些公式合并为一个矩阵, 有
Figure imgf000012_0007
Figure imgf000013_0001
因此, 有
ε PBa = Pc
则 a的最小二乘解为
a 1 pinv(PB)Pc
其中, pinv(.)表示伪逆操作。 求解出 a后, 再根据 ,. [aR l ... aR K_, aL ..aIK f , 就可以得到
Figure imgf000013_0002
经过直接信道归一化的串扰信道, 如下式表示:
-r^ =—(ai+jaK_l+i),
"κ,κ σί
根据上述推导, 此时计算串扰信道的具体步骤如下:
选择合适的组合矩阵, 根据各条线路上的发送功率和发送信号的组合的 系数, 计算 G = pitw(PB)P;根据各条线路上的发送功率、 发送信号的组合的系 数和测量的 SNR, 计算 (" ^^;^^^-^ ^^ 2^; 根据上述计算结果, 计
2 2
Gc; 最后, 得出经直接信道归一化的
Figure imgf000013_0003
为了使性能在普遍的情况下, 性能最优, 可以事先选择一个矩阵卩和 特别地进行如下的选择: 定义归一化的离散余弦变换的系数如下:
Figure imgf000013_0004
把上述的系数写成矩阵形式, 并去掉第一行的直流项得:
Figure imgf000013_0005
选定 作为探测信号矩阵: B = U"。 这样, B = ul1:,_1+7-ulW)0 设定 SNR 组合矩阵为: P = u之所以这么选择的理由是, 在反馈回来的 SNR受到干扰的 时候使信道估计的误差最小。 另外的一个原因是选择这样的矩阵可以使我们 不需要计算 PB矩阵乘积的伪逆。 在算法中的 G矩阵可以直接通过矩阵 P获 得。 如下式。 这样可以降低算法的运算复杂度。
G = pinv(PB)P
= pinv(UUff )P
= P 另夕卜,如果用户的数量是 2的 n次方的话,我们可以选择 Walsh-Hadamard 序列来生成矩阵 B。 这样的另一个好处是由于 Walsh-Hadamard序列是有正负 一构成, 计算过程中的乘法就可以用简单的加减法来代替。 当然只要满足本 方法要求的任意矩阵 B都可以正确的计算出信道矩阵, 本方法并不限于上述 的选择方法。
利用不同的组合系数, 重复步骤 101和步骤 102应不少于 2K-1次, 才能 计算出所有其他 K-1条线路对第 K条线路的串扰。 上述重复步骤 101和步骤 102的次数,是根据加载的其他线路的个数(即要测量的串扰的个数)决定的。
上述整个过程可以重复多次, 不断更新串扰信道, 重复的目的是为了提 高精度或是进行线路跟踪。
还可以根据计算出来的串扰信道, 设计一阶近似的串扰抵消预补偿滤波 器, 如下式:
F =
Figure imgf000014_0001
其中, 。ffdiag(X) = X - diag(X)。
本实施例提供的信道估计的方法,通过测量的被加载线路的 SNR参数和 加载的其它线路的发送信号的组合, 计算被加载线路的串扰特性。 本实施例 不需要重新设计设备, 而且测量时间短, 精度高且有很好的鲁棒性。 如图 3所示为本发明实施例二信道估计的系统示意图, 该系统至少包括联 合收发设备 1和对端设备 2。
其中, 联合收发设备 1包括: 加载单元 11 , 接收单元 12和计算单元 13。 加载单元 11 , 用于在信道的一条线路上加载其它线路的发送信号的组合; 接 收单元 12, 用于接收对端设备测量的被加载线路的信噪比; 计算单元 13 , 用 于根据其它线路的发送信号的组合的系数和接收的信噪比, 计算被加载线路 的串扰信道。
相应地, 对端设备 2包括测量单元 21 , 发送单元 22。 测量单元 21 , 用于 测量所述被加载线路的信噪比; 发送单元 22, 用于发送测量的信噪比至联合 收发设备。
如图 4所示为本实施例联合收发设备的加载单元的结构示意图。 联合收 发设备的加载单元 11 可以进一步包括: 第一计算单元 111 和第一加载单元 112。 第一计算单元 111 , 用于计算其它线路的发送信号的组合与步长的乘积; 第一加载单元 112,用于在被加载线路上加载其它线路的发送信号的组合与步 长的乘积。
第一计算单元 111还可以进一步包括: 第二计算单元 1111 , 用于根据各 条线路的发送功率和被加载线路未被加载时的信噪比计算步长。
本实施例联合收发设备的计算单元 13 , 还用于根据步长和各条线路的发 送功率, 计算被加载线路的串扰信道。
本实施例提供的信道估计的系统和设备,通过测量的被加载线路的 SNR 参数和加载的其它线路的发送信号的组合, 计算被加载线路的串扰特性。 本 实施例不需要重新设计设备, 而且测量时间短, 精度高且有很好的鲁棒性。
如图 5所示为本发明实施例三信道估计的系统示意图。 该系统至少包括联 合收发设备 3和对端设备 4。
其中, 联合收发设备 3包括: 加载单元 31 , 发送单元 32和接收单元 33。 加载单元 31 , 用于在信道的一条线路上加载其它线路的发送信号的组合; 发 送单元 32, 用于发送所述其它线路的发送信号的组合的系数至对端设备; 接 收单元 33 , 用于接收对端设备计算的被加载线路的串扰信道。
相应地, 对端设备 4包括: 测量单元 41 , 接收单元 42, 计算单元 43和 发送单元 44。 测量单元 41 , 用于测量被加载线路的信噪比; 接收单元 42, 用 于接收联合收发设备发送的其它线路的发送信号的组合的系数;计算单元 43 , 用于根据其它线路的发送信号的组合的系数和测量的信噪比, 计算被加载线 路的串扰信道; 发送单元 44, 用于发送计算的串扰信道至联合收发设备。
如图 6所示为本实施例联合收发设备的加载单元的结构示意图。 联合收 发设备的加载单元 31 可以进一步包括: 第一计算单元 311 和第一加载单元 312。 第一计算单元 311 , 用于计算其它线路的发送信号的组合与步长的乘积; 第一加载单元 312,用于在被加载线路上加载其它线路的发送信号的组合与步 长的乘积。
第一计算单元 311还可以进一步包括: 第二计算单元 3111 , 用于根据各 条线路的发送功率和被加载线路未被加载时的信噪比计算步长。
本实施例联合收发设备 3的发送单元 32, 还用于发送步长和各条线路的 发送功率至对端设备。
相应地, 本实施例对端设备 4的接收单元 42, 还用于接收联合收发设备 发送的步长和各条线路的发送功率; 计算单元 43 , 还用于根据接收的步长和 各条线路的发送功率, 计算被加载线路的串扰信道。
本实施例提供的信道估计的系统和设备,通过测量的被加载线路的 SNR 参数和加载的其它线路的发送信号的组合, 计算被加载线路的串扰特性。 本 实施例不需要重新设计设备, 而且测量时间短, 精度高且有很好的鲁棒性。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一计算机可 读存储介质中, 如 ROM/RAM、 磁碟或光盘等。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应该以权利要求所界定的保护范围为准。

Claims

权利 要求 书
1、 一种信道估计的方法, 其特征在于, 包括:
在信道的一条线路上加载其它线路的发送信号的组合;
测量被加载线路的信噪比;
根据所述其它线路的发送信号的组合的系数和所述测量的信噪比, 计算所 述被加载线路的串扰信道。
2、 如权利要求 1所述的信道估计的方法, 其特征在于, 所述其它线路的发 送信号的组合的系数的绝对值的平方和为常数。
3、 如权利要求 2所述的信道估计的方法, 其特征在于, 所述在所述信道的 一条线路上加载其它线路的发送信号的组合, 具体包括:
取所述其它线路的发送信号的组合与步长的乘积;
在所述信道的一条线路上加载所述其它线路的发送信号的组合与所述步长 的乘积。
4、 如权利要求 3所述的信道估计的方法, 其特征在于, 所述步长根据各条 线路的发送功率和所述被加载线路未被加载时的信噪比进行计算。
5、 如权利要求 4所述的信道估计的方法, 其特征在于, 所述根据所述其它 线路的发送信号的组合的系数和所述测量的信噪比, 计算所述被加载线路的串 扰信道, 还包括:
根据所述步长和所述各条线路的发送功率, 计算所述被加载线路的串扰信 道。
6、 如权利要求 5所述的信道估计的方法, 其特征在于, 所述被加载线路的 串扰信道为经所述被加载线路的直接信道归一化的串扰信道。
7、 一种联合收发设备, 其特征在于, 包括:
加载单元, 用于在信道的一条线路上加载其它线路的发送信号的组合; 接收单元, 用于接收对端设备测量的所述被加载线路的信噪比;
计算单元, 用于根据所述其它线路的发送信号的组合的系数和所述接收的 信噪比, 计算所述被加载线路的串扰信道。
8、 如权利要求 7所述的联合收发设备, 其特征在于, 所述加载单元包括: 第一计算单元, 用于计算所述其它线路的发送信号的组合与步长的乘积; 第一加载单元, 用于在所述被加载线路上加载所述其它线路的发送信号的 组合与所述步长的乘积。
9、 如权利要求 8所述的联合收发设备, 其特征在于, 所述第一计算单元进 一步包括:
第二计算单元, 用于根据各条线路的发送功率和所述被加载线路未被加载 时的信噪比计算所述步长。
10、 如权利要求 9所述的联合收发设备, 其特征在于, 所述计算单元, 还 用于根据所述步长和所述各条线路的发送功率, 计算所述被加载线路的串扰信 道。
11、 一种信道估计的系统, 其特征在于, 包括: 联合收发设备和对端设备; 所述联合收发设备包括:
加载单元, 用于在信道的一条线路上加载其它线路的发送信号的组合; 接收单元, 用于接收对端设备测量的所述被加载线路的信噪比;
计算单元, 用于根据所述其它线路的发送信号的组合的系数和所述接收的 信噪比, 计算所述被加载线路的串扰信道;
所述对端设备, 包括:
测量单元, 用于测量所述被加载线路的信噪比;
发送单元, 用于发送所述测量的信噪比至所述联合收发设备。
12、 如权利要求 11所述的信道估计的系统, 其特征在于, 所述计算单元, 还用于根据所述步长和所述各条线路的发送功率, 计算所述被加载线路的串扰 信道。
13、 一种联合收发设备, 其特征在于, 包括:
加载单元, 用于在信道的一条线路上加载其它线路的发送信号的组合; 发送单元, 用于发送所述其它线路的发送信号的组合的系数至对端设备; 接收单元, 用于接收所述对端设备计算的所述被加载线路的串扰信道。
14、如权利要求 13所述的联合收发设备, 其特征在于, 所述加载单元包括: 第一计算单元, 用于计算所述其它线路的发送信号的组合与步长的乘积; 第一加载单元, 用于在所述被加载线路上加载所述其它线路的发送信号的 组合与所述步长的乘积。
15、 如权利要求 14所述的联合收发设备, 其特征在于, 所述第一计算单元 进一步包括:
第二计算单元, 用于根据各条线路的发送功率和所述被加载线路未被加载 时的信噪比计算所述步长。
16、 如权利要求 15所述的联合收发设备, 其特征在于, 所述发送单元, 还 用于发送所述步长和所述各条线路的发送功率至所述对端设备。
17、 一种对端设备, 其特征在于, 包括:
测量单元, 用于测量被加载线路的信噪比;
接收单元, 用于接收联合收发设备发送的其它线路的发送信号的组合的系 数;
计算单元, 用于根据所述其它线路的发送信号的组合的系数和所述测量的 信噪比, 计算所述被加载线路的串扰信道;
发送单元, 用于发送所述计算的串扰信道至所述联合收发设备。
18、 如权利要求 17所述的对端设备, 其特征在于,
所述接收单元, 还用于接收所述联合收发设备发送的步长和各条线路的发 送功率;
所述计算单元, 还用于根据所述步长和所述各条线路的发送功率, 计算所 述被加载线路的串扰信道。
19、 一种信道估计的系统, 其特征在于, 包括: 联合收发设备和对端设备; 所述联合收发设备包括: 加载单元, 用于在信道的一条线路上加载其它线路的发送信号的组合; 发送单元, 用于发送所述其它线路的发送信号的组合的系数至对端设备; 接收单元, 用于接收所述对端设备计算的所述被加载线路的串扰信道; 所述对端设备, 包括:
测量单元, 用于测量所述被加载线路的信噪比;
接收单元, 用于接收所述联合收发设备发送的其它线路的发送信号的组合 的系数;
计算单元, 用于根据所述其它线路的发送信号的组合的系数和所述测量的 信噪比, 计算所述被加载线路的串扰信道;
发送单元, 用于发送所述计算的串扰信道至所述联合收发设备。
20、 如权利要求 19所述的信道估计的系统, 其特征在于, 所述联合收发设 备的发送单元, 还用于发送所述步长和所述各条线路的发送功率至所述对端设 备;
所述对端设备的计算单元, 还用于根据所述步长和所述各条线路的发送功 率, 计算所述被加载线路的串扰信道。
PCT/CN2009/070517 2008-02-28 2009-02-24 信道估计的方法、设备和系统 WO2009105989A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES09713664T ES2382240T3 (es) 2008-02-28 2009-02-24 Método, dispositivo y sistema para estimación de canales
AT09713664T ATE545223T1 (de) 2008-02-28 2009-02-24 Verfahren, vorrichtung und system zur kanalschätzung
EP09713664A EP2114028B1 (en) 2008-02-28 2009-02-24 A method, device and system for estimating channel
PL09713664T PL2114028T3 (pl) 2008-02-28 2009-02-24 Sposób, urządzenie i system do estymacji kanałowej
US12/551,664 US8824264B2 (en) 2008-02-28 2009-09-01 Method, device, and system for channel estimation
US13/719,761 US8576691B2 (en) 2008-02-28 2012-12-19 Method and apparatus for crosstalk channel estimation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100657342A CN101521637B (zh) 2008-02-28 2008-02-28 一种信道估计的方法、设备和系统
CN200810065734.2 2008-02-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/648,843 Continuation US8614939B2 (en) 2008-02-28 2012-10-10 Method and apparatus for crosstalk channel estimation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/551,664 Continuation US8824264B2 (en) 2008-02-28 2009-09-01 Method, device, and system for channel estimation

Publications (1)

Publication Number Publication Date
WO2009105989A1 true WO2009105989A1 (zh) 2009-09-03

Family

ID=41015529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070517 WO2009105989A1 (zh) 2008-02-28 2009-02-24 信道估计的方法、设备和系统

Country Status (7)

Country Link
US (3) US8824264B2 (zh)
EP (2) EP2114028B1 (zh)
CN (1) CN101521637B (zh)
AT (1) ATE545223T1 (zh)
ES (1) ES2382240T3 (zh)
PL (1) PL2114028T3 (zh)
WO (1) WO2009105989A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514800B (zh) * 2012-11-12 2015-12-21 Wistron Neweb Corp 電力線通訊系統及其控制方法
CN108418607B (zh) * 2017-02-09 2021-06-01 台达电子企业管理(上海)有限公司 电力线载波通讯串扰抑制方法、装置和系统
CN111917442B (zh) * 2020-05-19 2021-06-01 宁波大学 一种大规模mimo通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1813417A (zh) * 2003-04-28 2006-08-02 索拉尔弗拉雷通讯公司 多信道干扰消除
US20070004286A1 (en) * 2005-04-12 2007-01-04 Hobbel Jan C Cancellation of crosstalk energy in communication loops
CN101036318A (zh) * 2004-12-31 2007-09-12 中兴通讯股份有限公司 用于具有天线阵列的无线通信系统的联合检测方法及基站
WO2008009853A1 (fr) 2006-07-21 2008-01-24 France Telecom Procede d'estimation de canal dans un systeme coordonne lors de la mise en service d'une ligne

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0138281B1 (ko) * 1995-03-17 1998-07-01 김광호 주파수 선택적 방해신호 검출장치 및 그 검출방법
US6266347B1 (en) * 1998-12-08 2001-07-24 Globespan, Inc. System and method for modifying symbol duration for the efficient transmission of information in a time duplex noise environment
JP3784585B2 (ja) * 1999-08-26 2006-06-14 富士通株式会社 光ファイバ伝送のための方法、光デバイス及びシステム
US7154845B1 (en) * 2002-05-03 2006-12-26 Cisco Technology, Inc. Method and system for measuring crosstalk utilizing a crossbar switch
US20040047283A1 (en) * 2002-09-10 2004-03-11 Bonwick Mark Henry FDM signals crosstalk cancellation technique
ATE528748T1 (de) * 2006-01-31 2011-10-15 Nuance Communications Inc Verfahren und entsprechendes system zur erweiterung der spektralen bandbreite eines sprachsignals
US8750353B2 (en) * 2006-08-07 2014-06-10 Lantiq Deutschland Gmbh Performance stabilization for multi-carrier DSL
US20080089433A1 (en) * 2006-10-13 2008-04-17 Jun Hyok Cho Method and apparatus for adapting to dynamic channel conditions in a multi-channel communication system
US7843990B2 (en) * 2007-04-09 2010-11-30 Alcatel-Lucent Usa Inc. Determining a channel matrix by measuring interference
US7783207B2 (en) * 2007-06-27 2010-08-24 Alcatel-Lucent Usa Inc. Automatic threshold voltage adjustment circuit for dense wavelength division multiplexing or packet transport system and method of operating the same
US7830978B2 (en) * 2007-08-31 2010-11-09 Alcatel Lucent Determining channel matrices by correlated transmissions to different channels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1813417A (zh) * 2003-04-28 2006-08-02 索拉尔弗拉雷通讯公司 多信道干扰消除
CN101036318A (zh) * 2004-12-31 2007-09-12 中兴通讯股份有限公司 用于具有天线阵列的无线通信系统的联合检测方法及基站
US20070004286A1 (en) * 2005-04-12 2007-01-04 Hobbel Jan C Cancellation of crosstalk energy in communication loops
WO2008009853A1 (fr) 2006-07-21 2008-01-24 France Telecom Procede d'estimation de canal dans un systeme coordonne lors de la mise en service d'une ligne

Also Published As

Publication number Publication date
CN101521637A (zh) 2009-09-02
PL2114028T3 (pl) 2012-07-31
EP2114028A4 (en) 2010-07-07
EP2114028B1 (en) 2012-02-08
US20130039399A1 (en) 2013-02-14
CN101521637B (zh) 2012-07-18
EP2114028A1 (en) 2009-11-04
US8576691B2 (en) 2013-11-05
ATE545223T1 (de) 2012-02-15
US20130108026A1 (en) 2013-05-02
US8824264B2 (en) 2014-09-02
EP2426839A1 (en) 2012-03-07
US20090323787A1 (en) 2009-12-31
EP2426839B1 (en) 2014-01-01
ES2382240T3 (es) 2012-06-06
US8614939B2 (en) 2013-12-24

Similar Documents

Publication Publication Date Title
EP2995072B1 (en) Training optimization of multiple lines in a vectored system using a prepared-to-join group
US20030099208A1 (en) Method and system for varying an echo canceller filter length based on data rate
US20130229905A1 (en) Adaptive monitoring of crosstalk coupling strength
US20030099286A1 (en) Method and system for shaping transmitted power spectral density according to line conditions
US8300803B2 (en) Cooperative MIMO for alien noise cancellation (COMAC) for upstream VDSL systems
WO2016061254A1 (en) Crosstalk cancellation over multiple mediums
US7672447B1 (en) Frequency domain echo canceller
US20120106605A1 (en) Detection and Correction of Impulse Noise in Communication Channel Crosstalk Estimates
US10721012B2 (en) Error reporting in multi-carrier signal communication
US20030099285A1 (en) Method and system for determining data rate using sub-band capacity
US20030086486A1 (en) Method and system for determining maximum power backoff using frequency domain geometric signal to noise ratio
US20030101206A1 (en) Method and system for estimating a base-2 logarithm of a number
WO2009105989A1 (zh) 信道估计的方法、设备和系统
US20170237465A1 (en) Nonlinear precoding bit loading method, transmit end, receive end, and system
WO2011137799A1 (zh) 一种串扰抵消方法和系统
US20150350415A1 (en) Methods and systems for determining crosstalk for a joining line in a vectored system
JP2007533177A (ja) サブブロック領域変換多重信号処理
US10455079B2 (en) Effective crosstalk estimation in presence of clipping errors
CN106716853B (zh) Dsl向量化系统中的方法和布置
WO2003013048A2 (en) Power backoff method and system for g.shdsl modem using frequency domain geometric signal to noise ratio
EP2955857B1 (en) In-service estimation of vectoring performance metrics
US10505583B2 (en) Crosstalk channel estimation for legacy CPE
CN102724148A (zh) 一种信道估计的方法、设备和系统
CN105144595B (zh) 具有检测到的星座点的误差反馈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009713664

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE