CN105144595B - 具有检测到的星座点的误差反馈 - Google Patents

具有检测到的星座点的误差反馈 Download PDF

Info

Publication number
CN105144595B
CN105144595B CN201480014233.5A CN201480014233A CN105144595B CN 105144595 B CN105144595 B CN 105144595B CN 201480014233 A CN201480014233 A CN 201480014233A CN 105144595 B CN105144595 B CN 105144595B
Authority
CN
China
Prior art keywords
crosstalk
transceiver
received
frequency
constellation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201480014233.5A
Other languages
English (en)
Other versions
CN105144595A (zh
Inventor
D·范德黑根
D·范布雷塞尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Optical Networks Israel Ltd
Original Assignee
Alcatel Optical Networks Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Optical Networks Israel Ltd filed Critical Alcatel Optical Networks Israel Ltd
Publication of CN105144595A publication Critical patent/CN105144595A/zh
Application granted granted Critical
Publication of CN105144595B publication Critical patent/CN105144595B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/062Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明涉及有线通信系统内的串扰估计。根据本发明的实施例,一种用于耦合到传输线(Li)的收发器(110i;210i)被配置为,在串扰探测信号的接收期间,测量在串扰探测信号的接收到的频率样本(311;312)和接收到的频率样本被解映射到的已选择的星座点(321;322)之间的误差向量(331;332),并且对向量化控制器(130)报告指示测量的误差向量的误差信息(Ei‑(k))以用于串扰估计。收发器进一步被配置为对向量化控制器报告指示接收到的频率样本被解映射到的已选择的星座点的解映射信息(Ii‑(k))。本发明还涉及用于估计对传输线的串扰系数的向量化控制器、用于测量传输线上的串扰的方法以及用于估计对传输线的串扰系数的方法。

Description

具有检测到的星座点的误差反馈
技术领域
本发明涉及有线通信系统内的串扰估计。
背景技术
串扰(或信道间干扰)是多输入多输出(MIMO)有线通信系统,诸如数字订户线路(DSL)通信系统,的信道损害的主要来源。
随着对更高数据速率的需求的增加,DSL系统正朝着更高频带演进,其中,在相邻传输线(也就是说,在其部分或整个长度上紧密接近的传输线,诸如电缆束中的双绞铜线对)之间的串扰更加明显(频率越高,越耦合)。
MIMO系统可以由以下线性模型来描述:
Y(k)=H(k)X(k)+Z(k) (1),
其中N-分量复数向量X,相应地Y,表示离散频率表示,其为分别从N个信道接收到的、通过N个信道所传送的符号的频率/载波/音调索引k的函数,
其中N×N复矩阵H被称为信道矩阵:信道矩阵H的第(i,j)个分量描述了通信系统如何响应于被传送到第j个信道输入的信号而在第j个信道输出产生信号;信道矩阵的对角线元素描述了直接信道耦合,并且信道矩阵的非对角元素描述了信道间耦合(也被称为串扰系数),并且其中N分量复向量Z表示N个信道上的加性噪声,诸如无线电频率干扰(RFI)或热噪声。
已经开发了不同的策略来减轻串扰,并且最大化有效吞吐量,达到和线路稳定性。这些技术逐渐从静态或动态频谱管理技术演进到多用户信号协调(或向量化)。
一种用于减少信道间干扰的技术是联合信号预编码:传送数据符号在通过相应的通信信道被传送之前联合地通过预编码器。预编码器使得预编码器和通信信道的级联在接收机处几乎没有产生或者不产生信道间干扰。例如,线性预编码器在频域中执行发射向量X(k)与预编码矩阵P(k)的矩阵乘法,预编码矩阵P(k)使得所得到的信道矩阵H(k)P(k)被对角化,这意味着整个信道H(k)P(k)的非对角系数(并且由此信道间干扰)大部分减少为零。实际上并且作为一阶近似,预编码器使受害线路上的反相串扰的前置补偿信号以及接收机处的破坏性干扰的直接信号与来自各个干扰线路的实际串扰信号叠加。
用于减少信道间干扰的另一技术是联合信号后处理:接收数据符号在被检测之前联合地通过后编码器。后编码器使得通信信道和后编码器的级联在接收机处几乎不产生或者不产生信道间干扰。
信号被联合处理的向量化组的选择,也就是说通信线路的集合的选择,对于获得良好串扰减轻性能是非常关键的。在向量化组内,每个通信线路被认为是将串扰引入该组的其他通信线路的干扰线路,并且同一通信线路被认为是从该组的其他通信线路接收串扰的受害线路。来自不属于该向量化组的线路的串扰被看做外来噪声并且没有被消除。
理想地,向量化组应当匹配物理上并且明显地彼此交互的通信线路的整个集合。然而,在考虑到国家法规政策和/或有限的向量化能力的本地环路拆分可以防止这样的穷举方法,在该情况下,向量化组将仅包括所有物理上交互的线路的子集,由此产生有限的向量化增益。
信号向量化通常在业务量聚合点处被执行,在该业务量聚合点处可获得通过向量化组的所有订户线路被同时传送或接收的所有的数据符号。例如,信号向量化有利地在中心局(CO)处部署的数字订户线路接入复用器(DSLAM)内被执行或者作为更接近订户驻地(街道机柜、电线杆机柜等)的光纤馈送远程单元。信号预编码特别适合于下游通信(朝向客户驻地),而信号后处理特别适合于上游通信(来自客户驻地)。
在标题为“Self-FEXT Cancellation(Vectoring)For Use withVDSL2Transceivers”,ref.G.993.5并且在2010年4月由国际电信联盟(ITU)采纳的建议中,收发器被配置为通过所谓的同步符号发送上游或下游导频序列,该同步符号在每256个数据符号之后周期性地发生。在G.993.5建议中,进一步假定接入节点通过向量化线路同步传送和接收同步符号(超帧对准),从而在各个传输线上同步地执行导频信号传送和干扰测量。
在给定的受害线路上,对向量化控制器报告误差样本以用于进一步的串扰估计,误差样本包括在每音调或音调组的基础上针对特定同步符号测量的限制器误差(或接收误差向量)的实部和虚部。误差样本与通过给定干扰线路传送的给定导频序列相关,以便于从该干扰线路获得串扰耦合函数。为了拒绝来自其他干扰线路的串扰贡献,例如通过使用包括‘+1’和‘-1’的反相符号的沃尔什-哈达玛序列来使导频序列彼此正交。串扰估计被用于初始化预编码器或后编码器系数。
一旦预编码器或后编码器系数被初始化,针对任何信道变化并且针对串扰信道的初始估计中的任何残余误差来保持跟踪串扰系数。这通常通过迭代更新方法来实现,诸如最小均方(LMS)方法,其关于给定成本函数朝着最优解逐渐收敛,该给定成本函数当前是残余串扰信号的幂。
在理想化的线性模型中,按照G.993.5建议的正交导频序列是非常有效的,并且总会产生串扰信道(初始化)或残余串扰信道(跟踪)的准确和无偏差的估计。然而,由于非线性效应,串扰估计可能具有驱使预编码器或后编码器系数远离实际串扰信道的不期望的偏移(或偏差)。
在例如高串扰环境中,来自通过所有干扰线路传送的导频序列的串扰向量之和可以使得接收矢量(或接收频率样本)超出解调器的判决边界。结果,报告针对错误星座点的误差向量,产生在标称或残余串扰信道的估计中的偏移。
在G.993.5建议中,通过接收机估计理想期望发射向量。可以用作导频的向量集合被限制为两个状态:正常状态(1)和反向状态(-1),这等同于二进制相移键控(BPSK)调制。接收机基于确定最合适的半平面来确定期望的传送矢量是什么(进一步称为解映射操作),并且这仅使用特定音调本身的信息。正交相移键控(QPSK或4-QAM)调制可以替代地用于导频调制,在该情况下,解映射基于确定最可能的象限。
在解映射错误的情况下,即当接收机选择不同于发射星座点的星座点时,所报告的限制器(slicer)误差具有完全错误的值。在矢量化控制器不知道解映射误差已经在接收机内发生时,这导致在串扰耦合系数(并且因此预编码器和后编码系数)的计算中的主要不准确。
用于处理解映射误差的可能已知的解决方案可以是使用跨多个音调的多个解映射判决。假定在具体同步符号中的所有探测音调全部利用来自给定导频序列的相同特定比特来调制,可以使用多个音调来进行联合估计。这应当比每音调的方法更加稳健,但是在非常低的信噪比(SNR)环境中,接收机仍然可能作出错误判决。
另一已知的解决方案是向接收机通知使用的导频序列。优点是接收机不再需要作出判决。缺点是每次发送消息以改变导频序列是麻烦的,在初始化过程中引入延迟,并且降低了使向量化控制器在运行中改变导频序列的灵活度。
又一种已知的解决方案是报告完整的接收到的向量。优点是接收机不再需要作出判决。然而,该解决方案遭受分辨率问题:在高SNR的情况下,想要实现非常高的消除深度。将串扰减小到低于噪声的水平将意味着,与接收到的矢量相比,误差信号将被减小为非常小的值。在G.993.5建议中的用于误差反馈的最有效的选择利用二进制浮点格式。随着误差向量在收敛过程期间变小,指数减小,保持恒定的相对量化误差。因此,绝对量化误差在收敛期间减少,即使利用小的比特数目用于误差反馈。如果要报告完整的接收到的向量,则字长度需要使得在MSB侧,可以表示最大直接信号,并且在LSB侧可以表示最小误差信号。因此,存在特定的绝对不准确。在收敛的最后阶段,该绝对量化误差产生相对大的不准确性。为了对付这种情况,可能需要很多比特来对误差向量进行编码,这将增加用于误差反馈所需要的带宽,并且由此可以减少用于最终用户的上游数据速率。
发明内容
本发明的目的在于减轻或克服上述已知方案的缺点或缺陷。
根据本发明的第一方面,一种用于耦合到传输线的收发器,被配置为在串扰探测信号的接收期间测量在串扰探测信号的接收到的频率样本和该接收到的频率样本被解映射到的已选择星座点之间的误差向量,并且对向量化控制器报告指示所测量的误差向量的误差信息以用于串扰估计。收发器还被配置为对向量化控制器报告解映射信息,该解映射信息指示接收到的频率样本被解映射到的已选择星座点。
这样的收发器通常形成下述设备的一部分:
-支持通过订户环路的有线通信的订户设备,诸如台式计算机、膝上型计算机、调制解调器、网络网关、媒体网关等;或者
-支持通过接入设备对订户设备的有线通信的接入节点(或接入复用器),诸如DSLAM、以太网交换机、边缘路由器等,并且布置在CO处或作为与订户驻地(街道机柜、电线杆机柜等)更近的光纤馈送远程单元。
根据本发明的另一方面,一种向量化控制器被配置为在串扰探测信号的传送期间,接收误差信息,该误差信息指示由收发器所测量的、在串扰探测信号的接收到的频率样本和接收到的频率样本被解映射到的选择的星座点之间的误差向量。向量化控制器进一步被配置为从收发器接收解映射信息,该解映射信息指示接收到的频率样本被解映射到的已选择星座点,并且基于接收到的误差信息和接收到的解映射信息两者来估计串扰系数。
这样的向量化控制器通常形成接入节点的一部分。
根据本发明的又一方面,一种用于测量传输线上的串扰的方法包括下述步骤:在串扰探测信号的接收期间,测量在串扰探测信号的接收到的频率样本和接收到的频率样本被解映射到的已选择星座点之间的误差向量,以及对向量化控制器报告指示所测量的误差向量的误差信息以用于串扰估计。该方法进一步包括下述步骤:对向量化控制器报告解映射信息,该解映射信息指示接收到的频率样本被解映射到的已选择星座点。
根据本发明的又一方面,一种用于估计对传输线的串扰系数的方法,包括下述步骤:在串扰探测信号的传送期间,接收误差信息,该误差信息指示由收发器所测量的、在串扰探测信号的接收到的频率样本和接收到的频率样本被解映射到的已选择星座点之间的误差向量的。该方法进一步包括下述步骤:从收发器接收解映射信息,该解映射信息指示接收到的频率样本被解映射到的已选择星座点,以及基于接收到的误差信息和接收到的解映射信息两者来估计串扰系数。
在本发明的一个实施例中,解映射信息包括索引值,该索引值是从用于解映射接收到的频率样本的星座网格的星座点的经排序的索引表示中选择的。
在本发明的一个实施例中,星座网格是BPSK星座网格,并且解映射信息包括每报告频率样本1比特。
在本发明的替代实施例中,星座网格是QPSK星座网格,并且解映射信息包括每报告频率样本2比特。
在本发明的一个实施例中,误差信息包括所测量的误差向量的经量化的同相(I)分量和正交(Q)分量。
在本发明的一个实施例中,所测量的误差向量的I/Q分量被使用浮点数表示来进行量化。
在本发明的一个实施例中,所测量的误差向量的I/Q分量使用公共指数值。
向量化控制器利用来自收发器的误差反馈报告来估计串扰系数,并且进一步初始化或细化预编码器和后编码器的系数。
在所提出的方法中,误差反馈报告包括两条信息:
-由收发器所测量的限制器误差的I/Q分量(实部和虚部),通常被表示为包括对应尾数(mantissa)和指数二进制值的两个二进制浮点数;以及
-由收发器按照假定的发射星座点已经做出的判决,已经关于该发射星座点测量了限制器误差。
在BPSK解映射的情况下,这是用于指示所选择的半平面的每报告的误差向量的一个附加比特。在4-QAM解映射的情况下,这对应于用于指示所选择的象限的每报告的错误向量的两个附加比特。
因此,向量化控制器可以基于附加比特与在传输线路上传送的确切导频序列的比较来发现收发机是否已经产生了解映射误差。如果已经发生了解映射误差,向量化控制器将错误的误差向量值校正回正确的值,并且在串扰估计过程中使用经校正的值。
所提出的方法允许具有最低可能量化噪声(例如,通过对浮点数表示)的误差报告,同时对解映射误差不敏感,并且还允许在不对订户设备的事先通知的情况下由向量化控制器在运行中改变导频序列。
附图说明
本发明的上述和其他目的和特征将变得更加明显,并且本发明本身将通过参考结合附图的实施例的以下描述来更好地理解,在附图中:
-图1表示接入设备的概述;
-图2表示根据本发明的接入节点和订户设备;
-图3A表示没有任何解映射误差的接收到的频率样本的测量的误差向量;以及
-图3B表示具有解映射误差的接收到的频率样本的测量的误差向量。
具体实施方式
在图1中看到接入设备1包括在CO处的网络单元10、远程单元20,远程单元20经由一个或多个光纤耦合到网络单元10并且进一步经由铜回路设备耦合到各种订户驻地处的客户驻地设备(CPE)30。
铜环路设备包括公共接入段40和用于到订户驻地的最终连接的专用回路段50,其中,订户线彼此紧密接近,并且因此互相引入串扰。传输媒体通常由高类(high-category)铜非屏蔽双绞线对(UTP)组成。
远程单元20包括用于联合处理数据符号的向量化处理单元,该数据符号通过回路设备传送或者从回路设备接收,以便于减轻在公共接入段内引入的串扰,并且提高可通过相应订户线提供的通信数据速率。
图2中看到根据本发明的远程单元100和CPE 200i。远程单元100通过相应的传输线Li耦合到CPE 200i,相应的传输线Li被假设为形成同一向量化组的一部分。
远程单元100包括:
-DSL收发器110i;
-向量化处理单元120(或VPU);和
-用于控制VPU 120的操作的向量化控制单元130(或VCU)。
DSL收发器110i独立地耦合到VPU 120和VCU 130。VCU 130进一步耦合到VPU 120。
DSL收发器110i分别包括:
-数字信号处理器(DSP)111i;以及
-模拟前端(AFE)112i。
CPE 200i包括相应的DSL收发器210i。
DSL收发机210i分别包括:
-数字信号处理器(DSP)211i;以及
-模拟前端(AFE)212i。
AFE 112i和212i分别包括数字到模拟转换器(DAC)和模拟到数字转换器(ADC)、用于在拒绝带外干扰的同时将信号能量限制在适当的通信频带内的发射滤波器和接收滤波器、用于放大发射信号和用于驱动传输线的线路驱动器、以及用于以尽可能小的噪声放大接收信号的低噪声放大器(LNA)。
AFE 112i和212i进一步包括用于将发射机输出耦合到传输线并且将传输线耦合到接收机输入、同时实现低发射机-接收机耦合比率的桥接岔路(hybrid),用于适配传输线的特征阻抗的阻抗匹配电路以及隔离电路(通常为变压器)。
DSP 111i和211i被分别配置为操作下游和上游DSL通信信道。
DSP 111i和211i进一步被配置为操作用于传送DSL控制业务量的下游和上游DSL控制信道,诸如诊断或管理命令和响应。控制业务量与用户业务量在DSL信道上被复用。
更具体地,DSP111i和211i用于将用户和控制数据编码和调制成数字数据符号,并且用于从数字数据符号中解调和解码用户和控制数据。
通常在DSP 111i和211i内执行以下发射步骤:
-数据编码,诸如数据复用、成帧、加扰、纠错编码和交织;
-信号调制,包括下述步骤:根据载波排序表来对载波进行排序,根据经排序的载波的比特负载来解析编码比特流,并且可能利用格状(Trellis)编码来将每个比特块映射到适当的(具有相应的载波幅度和相位的)发射星座点;
-信号缩放;
-快速傅立叶反变换(IFFT);
-循环前缀(CP)插入;以及可能地
-时间加窗。
通常在DSP 111i和211i内执行以下接收步骤:
-CP移除以及可能地时间加窗;
-快速傅里叶变换(FFT);
-频率均衡(FEQ);
-信号解调制和检测,包括下述步骤:对各个和每个经均衡的频率采样应用适当的星座网格,星座网格的模式取决于相应的载波比特加载,可能地利用格状解码来检测期望的发射星座点和相应的发射比特序列,以及根据载波排序表对所有检测到的比特块进行重新排序;以及
-数据解码,诸如数据解交织、RS解码(字节错误,如果有,则在该阶段被校正)、解扰、帧定界和解复用。
DSP 111i进一步被配置为在用于联合信号预编码的快速傅立叶反变换(IFFT)步骤之前向VPU 120供应发射频率样本,并且在用于联合信号后编码的快速傅立叶变换(IFFT)步骤之后向VPU 120供应接收频率样本。
DSP 111i进一步被配置为从VPU 120接收校正的频率样本以用于进一步的传输或检测。替代地,DSP 111i可以接收校正样本用于在进一步传输或检测之前添加到初始频率样本。
VPU 120被配置为减轻通过传输线引入的串扰。这是通过下述来实现的:使发射频率样本的向量乘以预编码矩阵P,以预补偿期望串扰的估计(下游),或者通过使接收频率样本的向量乘以串扰消除矩阵G,用于后补偿所引发的串扰的估计(上游)。
使N表示向量化组内的传输线的总数,并且使i和j表示从1到N的范围中的线路索引。使k表示从0到K的范围中的频率索引,并且使1表示数据符号发送或接收索引。
在频分双工(FDD)传输的情况下,频率索引k根据考虑下游还是上游通信来取不同的和不重叠的范围值。在时分双工(TDD)传输的情况下,频率索引k可以针对下游和上游通信取共同的范围值。
使表示在由VPU 120进行串扰预补偿之前要在数据符号1期间由收发器110i在频率索引k处通过线路Li传送的传送下游频率样本。使表示在由VPU 120进行串扰预补偿之后的发射下游频率样本。并且最后,使表示在数据符号1期间由收发器210i在频率索引k处从线路Li接收到的接收下游频率样本。
类似地,使表示在数据符号1期间要由收发器210i在频率索引k处通过线路Li传送的传送上游频率样本。使表示在数据符号1期间由收发器110i在频率索引k处从线路Li接收到的接收上游频率样本。并且最后,使表示由VPU 120进行串扰后补偿之后的接收上游频率样本。
下面的等式成立:
并且
在矩阵P或G中,行i表示特定受害线路Li,而列j表示特定干扰线路Lj。在交叉处,耦合系数应当被施加到相应干扰方传送或接收频率样本,用于减轻受害线路Li上的、来自干扰方线路Lj的串扰。例如考虑到最初对最强串扰指派的有限向量化能力,或者还例如由于一些线路并不明显地彼此交互的事实,不需要确定所有的矩阵系数。未确定的系数优选地被设定为0。
而且,值得注意的是,诸如传统线路的、其向量化操作未被支持或未被使能、仍然显著地干扰其他通信线路的通信线路Li仅被认为是向量化组内的干扰线路。矩阵P或G的相应第i行的非对角线系数由此全部被设定为0。
VCU 130基本上用于控制VPU 120的操作,并且更具体地用于估计在向量化组的传输线路之间的串扰系数,并且用于根据如此估计的串扰系数初始化或更新预编码矩阵P和串扰消除矩阵G的系数。
VCU 130首先通过配置要通过相应传输线使用的各个下游和上游导频序列来开始。在给定符号时段1期间在频率索引k处通过传输线Li传送的导频数字被表示为导频序列是相互正交的,并且包括要通过L个符号时段传送的L个导频数字其中L≥N(以便于满足正交性要求)。
VCU 130收集在导频数字的检测期间由远程收发器210i针对下游通信以及由本地收发器110i针对上游通信所测量的各个限制器误差。
由收发器110i或210i在符号时段1期间在频率索引k处在受害线路Li上所测量的限制器误差被表示为
关于图3A并且假定BPSK被用于调制导频信号,限制器误差被定义为在串扰预补偿或后补偿之后的经均衡的接收频率样本311和用于解映射接收频率样本311的、已经由接收机选择的参考星座点之间的误差向量331,当前星座点为321,其对应于正常状态(+1)。
在图3A中还描绘了对应于反向状态(-1)的星座点322以及用于解映射接收频率样本的判决边界线340。如果接收频率样本311属于由判决边界线340界定的右上半平面,则星座点321(+1)被选定为是最可能的发射频率样本;否则如果接收频率样本310属于左下半平面,则星座点322(-1)被选择为是最可能的发射频率样本。
使分别表示用于下游和上游检测的期望发射星座点。因此,我们有:
对于收发器210i内的下游检测,并且对于收发器110i内的上游检测,其中表示在频率索引k处在传输线Li上使用的FEQ系数,其应当尽可能近地匹配直接传递函数Hii(k)的倒数。
限制器误差包括使用二进制浮点数表示来量化的实部和虚部:
以及
其中MR和MI表示在第一给定数目的比特(通常为6)上编码的误差向量的实部和虚部的相应二进制尾数值,并且其中E表示在第二给定数目的比特(通常为4)上编码的误差向量的实部和虚部的公共二进制指数值。
还可以设想替代的数目表示,诸如使用用于误差向量的实部和虚部的不同指数值,使用定点数字表示等。
收发器110i和210i进一步被配置为对向量化控制器130报告所测量的限制器误差值以及所选择的星座点的索引参考该星座点,限制器误差(参见在图1中的Err-C和Err-R消息)被测量。通过BPSK调制,索引是1比特长(例如,‘0’用于正常状态,并且‘1’用于反向状态),而通过4-QAM调制,索引是2比特长(例如,‘00’、‘01’、‘10’或‘11’用于4-QAM星座网格的4个相应的星座点)。
为了减少误差反馈信息量,干扰测量通常在抽取的频率索引k=kl.Dl处提供,其中D1表示频率抽取因子。
接下来,VCU 130通过将所报告的星座点索引与用于调制相应发射导频频率样本的相应发射导频数字作比较来确定针对相应误差测量是否已经发生了解映射误差。实际上,VCU 130具有被配置用于下游和上游两个方向上的给定传输线路的确切导频序列的确切知识,并且因此可以容易地得到用于给定传输线、给定通信方向和给定符号时段的实际发射星座点
如果检测到不匹配,则已经发生解映射误差,并且VCU 130相应地校正所报告的限制器误差值:
其中表示校正的限制器误差值,并且其中是从所报告的星座点索引直接得到的。
现在关于图3B并且仍然假设BPSK用于调制导频信号,描绘了在考虑到在传输线上发生的强串扰时与判决边界线340交叉的另一接收到的频率样本340。结果,尽管正常状态321(+1)被传送,接收机将接收到的频率样本解映射到错误的星座点322(-1),并且因此报告错误的误差向量332,从而使串扰估计过程大体上产生偏差。如果这样的解映射误差发生,则VCU 130根据等式10将误差向量校正回正确的值333。
最后,VCU 130使在完整获取周期中在受害线路Li上测量的L(可能校正的)误差测量与通过干扰线路Lj传送的导频序列的各个导频数字相关,以便于获得在频率索引k处从干扰线路Lj到受害线路Li的经均衡的串扰系数的估计Hi,j(k)/Hi,j(k)。由于导频序列相互正交,来自其他干扰线路的贡献在该相关步骤之后被减少为0。
VCU 130现在可以继续根据如此确定的串扰系数来计算或更新串扰消除矩阵G和预编码矩阵P。VCU 130可以使用一阶或二阶矩阵求逆来计算预编码矩阵P和串扰消除矩阵G的系数,或者LMS迭代算法来将预编码矩阵P和串扰消除矩阵G的系数更新为其最优值。
应当注意,术语“包括”不应该被解释为限于此后列出的装置。因此,表述‘设备包括装置A和B’的范围不应当被限制为仅由组件A和B构成的设备。这意味着,关于本发明,设备的相关组件是A和B。
还应当注意,术语“耦合”不应当被解释为仅限于直接连接。因此,表述‘设备A耦合到设备B’的范围应当不限于以下设备或系统,其中设备A的输出直接被连接到设备B的输入,并且/或反之亦然。这意味着,在A的输出和B的输入之间存在路径,和/或反之亦然,这可能是包括其他设备或装置的路径。
说明书和附图仅仅说明了本发明的原理。因此,应当理解,本领域的技术人员将能够设计各种布置,这些布置虽然本文没有明确描述或示出,但是体现本发明的原理,并且被包括在本发明的精神和范围内。此外,本文记载的所有示例都主要明确地仅意在出于教学目的而辅助读者理解本发明的原理和发明人对促进现有技术所贡献的概念,并且要被理解为不限于这样具体记载的示例和条件。而且,本文的记载本发明的原理、方面和实施例及其特定示例的所有陈述,意在包含其等价物。
在附图中示出的各种元件的功能可以通过使用专用硬件以及能够结合适当软件执行软件的硬件来提供。当由处理器提供时,该功能可以由单个专用处理器、由单个共享处理器或由多个单独处理器来提供,其中的一些可以被共享。此外,处理器不应当被解释为专指能够执行软件的硬件,并且可以隐含地包括但不限于,数字信号处理器(DSP)硬件、网络处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)等。还可以包括常规和/或定制的其他硬件,诸如只读存储器(ROM)、随机存取存储器(RAM)和非易失性存储。

Claims (13)

1.一种用于耦合到传输线(Li)的收发器(110i;210i),并且所述收发器(110i;210i)被配置为,在串扰探测信号的接收期间,测量在所述串扰探测信号的接收到的频率样本(311;312)和所述接收到的频率样本被解映射到的已选择星座点(321;322)之间的误差向量(331;332),并且对向量化控制器(130)报告指示测量的所述误差向量的误差信息以用于串扰估计,
其中所述收发器进一步被配置为对所述向量化控制器报告解映射信息所述解映射信息指示所述接收到的频率样本被解映射到的所述已选择星座点。
2.根据权利要求1所述的收发器(110i;210i),其中所述解映射信息包括:从用于解映射所述接收到的频率样本的星座网格的星座点(321;322)的经排序的索引表示中选择的索引值
3.根据权利要求2所述的收发器(110i;210i),其中所述星座网格是二进制相移键控BPSK星座网格,
并且其中所述解映射信息包括每报告的频率样本1比特。
4.根据权利要求2所述的收发器(110i;210i),其中所述星座网格是正交相移键控QPSK星座网格,
并且其中所述解映射信息包括每报告的频率样本2比特。
5.根据权利要求1所述的收发器(110i;210i),其中所述误差信息包括测量的所述误差向量的经量化的同相I分量和正交Q分量。
6.根据权利要求5所述的收发器(110i;210i),其中测量的所述误差向量的I/Q分量被使用浮点数表示来量化。
7.根据权利要求6所述的收发器(110i;210i),其中测量的所述误差向量的所述I/Q分量使用公共指数值。
8.一种订户设备(200),包括根据权利要求1至7中的任何一项所述的收发器(210i),
并且其中所述订户设备通过所述传输线通信地耦合到所述向量化控制器。
9.一种接入节点(100),包括根据权利要求1至7中的任何一项所述的收发器(110i)。
10.一种用于估计对传输线(Li)的串扰系数的向量化控制器(130),并且所述向量化控制器(130)被配置为,在串扰探测信号的传送期间,接收误差信息所述误差信息指示由收发器(110i;210i)所测量的、在所述串扰探测信号的接收到的频率样本(311;312)和所述接收到的频率样本被解映射到的已选择星座点(321;322)之间的误差向量(331;332),
其中所述向量化控制器进一步被配置为从所述收发器接收指示所述接收到的频率样本被解映射到的所述已选择星座点的解映射信息并且基于接收到的所述误差信息和接收到的所述解映射信息二者来估计所述串扰系数。
11.一种接入节点(100),包括根据权利要求10所述的向量化控制器(130)。
12.一种用于测量传输线(Li)上的串扰的方法,并且所述方法包括步骤:在串扰探测信号的接收期间,测量在所述串扰探测信号的接收到的频率样本(311;312)和所述接收到的频率样本被解映射到的已选择星座点(321;322)之间的误差向量(331;332),并且对向量化控制器(130)报告指示测量的所述误差向量的误差信息以用于串扰估计,
其中,所述方法进一步包括步骤:对所述向量化控制器报告指示所述接收到的频率样本被解映射到的所述已选择星座点的解映射信息
13.一种用于估计针对传输线(Li)的串扰系数的方法,并且所述方法包括步骤:在串扰探测信号的传送期间,接收误差信息所述误差信息指示由收发器(110i;210i)所测量的、在所述串扰探测信号的接收到的频率样本(311;312)和所述接收到的频率样本被解映射到的已选择星座点(321;322)之间的误差向量(331;332),
其中所述方法进一步包括步骤:从所述收发器接收指示所述接收到的频率样本被解映射到的所述已选择星座点的解映射信息并且基于接收到的所述误差信息和接收到的所述解映射信息二者来估计所述串扰系数。
CN201480014233.5A 2013-03-14 2014-03-11 具有检测到的星座点的误差反馈 Expired - Fee Related CN105144595B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13305288.6A EP2779475B1 (en) 2013-03-14 2013-03-14 Error feedback with detected constellation point
EP13305288.6 2013-03-14
PCT/EP2014/054685 WO2014140001A1 (en) 2013-03-14 2014-03-11 Error feedback with detected constellation point

Publications (2)

Publication Number Publication Date
CN105144595A CN105144595A (zh) 2015-12-09
CN105144595B true CN105144595B (zh) 2017-10-03

Family

ID=48047940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480014233.5A Expired - Fee Related CN105144595B (zh) 2013-03-14 2014-03-11 具有检测到的星座点的误差反馈

Country Status (4)

Country Link
EP (1) EP2779475B1 (zh)
JP (1) JP6114412B2 (zh)
CN (1) CN105144595B (zh)
WO (1) WO2014140001A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796807A (zh) * 2007-07-04 2010-08-04 诺基亚西门子通信公司 用于数据处理的方法和设备以及包括这种设备的通信系统
CN102301612A (zh) * 2009-01-30 2011-12-28 兰蒂克德国有限责任公司 矢量传输中的串扰系数更新

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940843B2 (en) * 2003-02-14 2005-09-06 Cisco Technology, Inc. Selecting an access point according to a measure of received signal quality
JP4345896B2 (ja) * 2006-03-22 2009-10-14 株式会社半導体理工学研究センター 無線受信装置とその復調方法
CN101197798B (zh) * 2006-12-07 2011-11-02 华为技术有限公司 信号处理系统、芯片、外接卡、滤波、收发装置及方法
US8750492B2 (en) * 2009-01-30 2014-06-10 Futurewei Technologies, Inc. Reducing the feedback overhead during crosstalk precoder initialization
US8218419B2 (en) * 2009-02-12 2012-07-10 Alcatel Lucent Simultaneous estimation of multiple channel coefficients using a common probing sequence
WO2012109856A1 (zh) * 2011-07-29 2012-08-23 华为技术有限公司 信号处理方法、设备及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796807A (zh) * 2007-07-04 2010-08-04 诺基亚西门子通信公司 用于数据处理的方法和设备以及包括这种设备的通信系统
CN102301612A (zh) * 2009-01-30 2011-12-28 兰蒂克德国有限责任公司 矢量传输中的串扰系数更新

Also Published As

Publication number Publication date
EP2779475B1 (en) 2016-07-27
CN105144595A (zh) 2015-12-09
JP2016517201A (ja) 2016-06-09
EP2779475A1 (en) 2014-09-17
JP6114412B2 (ja) 2017-04-12
WO2014140001A1 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
KR101364327B1 (ko) xDSL 시스템에서의 MIMO 프리코딩을 위한 시스템 및 방법
US8270524B2 (en) Method and apparatus for interference post-compensation using a bandwidth-adaptive postcoder interface
EP2046004A1 (en) Method and apparatus for estimating crosstalk
US9548792B2 (en) Adaptive monitoring of crosstalk coupling strength
CN106105048B (zh) 具有分开跟踪的非线性预编码器
US9667450B2 (en) Detection and correction of impulse noise in communication channel crosstalk estimates
EP2843845B1 (en) Randomization of crosstalk probing signals
US9722664B2 (en) Detection of demapping errors
US8559292B2 (en) Determining of coupling coefficients in a vector transmission system
CN101809882A (zh) 用于噪声处理的方法和设备及包含这种设备的通信系统
CN109314541A (zh) 用于带外音调的串扰减轻
US9432080B2 (en) Probing and estimation of cross-coupling
CN105144595B (zh) 具有检测到的星座点的误差反馈
EP2955857B1 (en) In-service estimation of vectoring performance metrics
EP3306825B1 (en) Two-step initialization procedure for adaptive analog echo cancellation
US9042498B2 (en) DM-CM diversity receiver for a wireline communication system
CN102318207A (zh) 用于数据处理的方法和设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171003

Termination date: 20210311