WO2009105974A1 - Mpls vpn中实现快速重路由的方法及设备 - Google Patents

Mpls vpn中实现快速重路由的方法及设备 Download PDF

Info

Publication number
WO2009105974A1
WO2009105974A1 PCT/CN2009/070360 CN2009070360W WO2009105974A1 WO 2009105974 A1 WO2009105974 A1 WO 2009105974A1 CN 2009070360 W CN2009070360 W CN 2009070360W WO 2009105974 A1 WO2009105974 A1 WO 2009105974A1
Authority
WO
WIPO (PCT)
Prior art keywords
lsp
primary
status
traffic
primary lsp
Prior art date
Application number
PCT/CN2009/070360
Other languages
English (en)
French (fr)
Inventor
李鉴
吕鸿
姜玉萍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2009105974A1 publication Critical patent/WO2009105974A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]

Definitions

  • the present invention relates to the field of electronic communications, and in particular, to a method and a routing device for implementing fast rerouting by a border router in a multi-protocol label switching virtual private network. Background technique
  • Multi-Protocol Label Switching (MPLS) Virtual Private Network (VPN) is widely used in metropolitan area networks and backbone networks, in addition to carrying VPN users and large customers.
  • the service is also used to carry the key services of the 3rd generation mobile communication (3G), softswitch and other telecommunications itself. As more and more services are launched, operators are paying more and more attention to the cross-domain requirements of VPNs.
  • 3G 3rd generation mobile communication
  • the current ASBR inter-domain routing is illustrated in the inter-domain deployment of the VPN service.
  • AS Autonomous System
  • AS2 are two MPLS domains.
  • MP-EBGP Multi-Protocol External Border Gateway Protocol
  • Client Edge (CE) 1 and CE3 belong to VPN1
  • CE3 is dual-homed to two network provider Provider Edge (PE) devices, namely PE3 and PE4 in Figure 1.
  • PE Provider Edge
  • CE2 and CE4 belong to VPN2
  • CE4 is dual-homed to two PEs, namely PE3 and PE4 in Figure 1.
  • ASBR1 internal border gateway protocol
  • ASBR3 and ASBR4 are the remote ASBR devices in AS2, and between AS3 and ASBR4.
  • ASBR1 and ASBR3 and ASBR4 are the remote ASBR devices in AS2, and between AS3 and ASBR4.
  • ASBR1 and ASBR3, ASBR2, and ASBR4 establish an external border gateway protocol (EGBP) neighbor relationship.
  • ASBR1 can receive the VPN route advertised by ASBR3, that is, the VPN route in Figure 1. 1.
  • ASBR1 can also receive the VPN route advertised by ASBR4 through ASBR2, that is, VPN route 2 in Figure 1.
  • FIG. 1 For the sake of brevity, no network provider router (Provider, P router) is marked in Figure 1.
  • a bidirectional forwarding detection mechanism (BFD for BGP) of the border gateway protocol is run between ASBR1 and ASBR3 to implement real-time detection of device and link faults.
  • FIG. 1 is a schematic diagram of a local ASBR route convergence when a VPN service is deployed in an inter-area manner. As shown in Figure 2, when the ASBR3 device is faulty or the link between ASBR1 and ASBR3 is faulty, ASBR1 can quickly detect this fault through BFD for BGP, and then directly trigger local convergence of VPN routes, including:
  • ASBR1 re-routing is preferred, and the route 2 of the ASBR4 advertised by the ASBR2 is used as the preferred route.
  • the ASBR1 delivers the new preferred route to the forwarding plane and removes the route advertised by the original ASBR3. After the forwarding entry of the forwarding plane is updated, the traffic arrives. After ASBR1, VPN routing 2 is preferred to forward traffic to CE3, so that VPN cross-domain services can be re-converged.
  • the ASBR1 After the BFD detects the fault of the device or the link within 30 ms, the ASBR1 reports the fault to the interface board. It usually takes about 100 ms.
  • the interface board notifies the main control board that the BGP protocol converges. It usually takes several hundred milliseconds to one second.
  • the re-convergence of the route depends on the number of idle and VPN routes on the ASBR1 control plane. That is, the control plane is busy.
  • the number of VPN routes is large, which will reduce the convergence speed of VPN routes to a certain extent.
  • FIG. 3 the schematic diagram of the intra-ASBR intra-domain routing when the current VPN service is deployed across domains is shown.
  • the autonomous system (AS) 1 and AS2 are two MPLS domains.
  • the single-hop MP-EBGP Option B scheme
  • CE1 and CE3 belong to VPN1
  • CE3 is dual-homed to two network provider Provider Edge (PE) devices, that is, PE3 and PE4 in the figure.
  • PE Provider Edge
  • CE2 and CE4 belong to VPN2.
  • CE4 is dual-homed to two PEs, namely PE3 and PE4 in the figure.
  • ASBR1 and ASBR2 establish an IBGP neighbor relationship.
  • ASBR1 and ASBR2 are local ASBR devices.
  • ASBR3 and PE4, PE3, ASBR3, and PE4 are configured.
  • An ASBGP neighbor relationship is established between ASBR4, ASBR3, and ASBR4.
  • ASBR3 and ASBR4 are remote ASBR devices.
  • the ASBR3 can receive the VPN route advertised by the PE3, that is, the VPN route 3 in the figure.
  • the ASBR3 can also receive the VPN route advertised by the PE4 through the ASBR4, that is, the VPN route 4 in the figure.
  • the VPN 1 route is used as an example.
  • the main process of the route convergence of the remote ASBR is as follows: After the traffic from CE1 to ASBR3 is reached, ASBR3 prefers VPN route 3 to continue forwarding traffic. As shown in Figure 4, when the PE3 device is faulty or the link between ASBR3 and PE3 is faulty, ASBR3 can quickly detect the fault through BFD for BGP and then directly trigger local convergence of the VPN route. Includes:
  • ASBR3 re-routes the preference, and uses the VPN route 4 advertised by the ASBR4 as the preferred route.
  • the ASBR3 sends the new preferred route to the forwarding plane and removes the VPN route 3 advertised by the original PE3. After the forwarding entry of the forwarding plane is updated, After the traffic reaches the ASBR3, the VPN route 4 is preferentially forwarded to the CE3 to re-converge the VPN service.
  • the ASBR3 After the BFD detects the fault of the device or the link within 30 ms, the ASBR3 reports the fault to the interface board, which usually takes about 100 ms.
  • the interface board notifies the main control board to advertise the convergence of the BGP protocol. It usually takes several hundred milliseconds to one second. The re-convergence of the route depends on the number of busy and VPN routes on the ASBR3 control plane. That is, the control plane is busy. The number of VPN routes is large, which will reduce the convergence speed of VPN routes to a certain extent. It can be seen that the convergence speed of the existing remote ASBR route is very slow, and the user is unacceptable for a service with high real-time requirements such as voice and video.
  • the inventor finds that in the inter-domain application scenario of the MPLS VPN, the ASBR route convergence speed is slow, and the real-time service is slow when the inter-domain link is faulty or the ASBR device is faulty. , seriously affecting its Quality of Service (QoS), unable to meet user needs.
  • QoS Quality of Service
  • An embodiment of the present invention provides a method and a routing device for implementing fast re-routing in a multi-protocol label switching virtual private network (MPLS VPN), which can implement fast re-routing, achieve fast convergence of services when equipment failures, and improve real-time services.
  • MPLS VPN multi-protocol label switching virtual private network
  • an embodiment of the present invention provides a method for implementing fast rerouting in an MPLS VPN, including:
  • the border router receives traffic
  • the forwarding table stores the information of the Label Switch Path (LSP) and the at least one standby LSP and the status of the primary LSP.
  • LSP Label Switch Path
  • an embodiment of the present invention further provides a routing device, including:
  • a forwarding table storage module configured to store a storage forwarding table, where the forwarding table stores an active LSP, at least one standby LSP information, and a status of the primary LSP;
  • a querying module configured to query whether an outbound interface of the primary LSP is valid
  • the LSP selection module is configured to select the primary LSP or the backup LSP to forward the traffic according to the status of the primary LSP that is queried by the query module.
  • a fast re-routing method and a routing device are implemented in an MPLS VPN, and the primary LSP and the backup LSP are respectively generated by the two routes, and are simultaneously installed in the forwarding entry, and the primary LSP is queried. The status is selected to forward the link.
  • the primary LSP fails, the traffic is immediately switched to the backup LSP, which effectively implements fast re-routing, improves convergence speed, ensures QoS, and can better meet user requirements.
  • Figure 1 is a schematic diagram of ASBR inter-domain routing when the current VPN service is deployed across domains.
  • FIG. 2 is a schematic diagram of a local ASBR route convergence when a VPN service is deployed in an inter-area manner
  • FIG. 3 is a schematic diagram of a remote ASBR intra-domain route when the VPN service is deployed in an inter-domain manner
  • FIG. 4 is a schematic diagram of a remote ASBR route convergence in a VPN service cross-domain deployment
  • FIG. 5 is a flowchart of a route configuration in a method for implementing fast reroute in an MPLS VPN according to an embodiment of the present invention
  • FIG. 6 is a flowchart of routing selection in a method for implementing fast re-routing in an MPLS VPN according to an embodiment of the present invention
  • Figure ⁇ is a flowchart of route convergence in a method for implementing fast re-routing in an MPLS VPN according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of application scenarios of an ASBR domain in a method for implementing fast re-routing in an MPLS VPN according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of an application scenario of an ASBR domain in a method for implementing fast re-routing in an MPLS VPN according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a routing device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a forwarding table of an ASBR according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a forwarding table of PE1 according to an embodiment of the present invention. detailed description
  • the method for implementing the fast re-routing in the MPLS VPN is provided by the embodiment of the present invention.
  • the two routes are used to generate the primary and backup label switching paths (LSPs), and are simultaneously delivered to the forwarding entry.
  • the forwarding link is selected by querying the status of the primary LSP.
  • the method includes at least: routing configuration, route selection when forwarding traffic, and Route convergence occurs when a failure occurs.
  • FIG. 5 a flow chart of routing configuration in a method for implementing fast re-routing in an MPLS VPN according to an embodiment of the present invention is illustrated, which specifically includes:
  • the border routing device receives at least two VPN routes, and uses one VPN route as the primary route and one VPN route as the backup route.
  • the inter-domain label or the intra-domain label includes an outgoing label and an inbound label, respectively, to generate an active LSP and a backup LSP, where one ingress label corresponds to two primary and backup LSPs;
  • the primary LSP and the backup LSP are simultaneously installed in the MPLS forwarding table of the border routing device, where the forwarding table is as shown in FIG. 11 , and the entry includes at least: an inbound label, an outgoing label, and a next hop. Status of the outbound interface and the primary LSP.
  • the route selection is performed.
  • FIG. 6 the fast rerouting in the MPLS VPN according to the embodiment of the present invention is illustrated.
  • the flow chart of the route selection in the method includes:
  • Query the status of the primary LSP according to the label carried by the traffic in the MPLS forwarding table Specifically, refer to FIG. 11 to search for the ingress label corresponding to the label carried by the traffic in the forwarding table according to the label carried by the traffic, so as to obtain the Status of the primary LSP corresponding to the incoming label;
  • the traffic forwarding path is selected by determining the state of the primary LSP.
  • the traffic can be switched to the standby LSP in time to achieve fast convergence.
  • the link is faulty or the device is faulty. As shown in Figure 7, it includes:
  • the BFD detects the fault of the primary LSP, including: link fault or equipment fault.
  • the status of the primary LSP in the MPLS forwarding table is invalid, that is, the status of the primary LSP is set to down, and the control layer is configured.
  • the MPLS forwarding table is queried, and the status of the active LSP is down, that is, invalid.
  • FIG. 8 is a diagram showing an application scenario of an ASBR inter-domain in an MPLS VPN according to an embodiment of the present invention.
  • AS1 and AS2 are two MPLS domains.
  • the single-hop MP-EBGP (Option B scheme) is used to implement cross-domain exchange of VPN routing information.
  • CE1 and CE3 belong to VPN1
  • CE3 is dual-homed to two PE devices, namely PE3 and PE4 in the figure.
  • Both CE2 and CE4 belong to VPN2, and CE4 is dual-homed to two PEs, namely PE3 and PE4 in the figure.
  • ASBR1 and ASBR2 are local ASBR devices.
  • ASBR3, ASBR3, and PE4 are configured.
  • ASBR4 An ASBGP neighbor relationship is established between ASBR4, ASBR3, and ASBR4. Assume that ASBR3 and ASBR4 are remote ASBR devices. Between AS1 and AS2, ASBR1 and ASBR3, ASBR2 and ASBR4 establish an EGBP neighbor relationship. ASBR1 can receive the VPN route advertised by ASBR3, that is, VPN route 1 in the figure. At the same time, ASBR1 can also receive ASBR4 through ASBR2. The published VPN route, that is, the VPN route 2 in the figure, is not labeled as any P router for the sake of brevity. Run BFD for BGP between ASBR1 and ASBR3 to implement real-time detection of device and link faults.
  • the ASBR1 generally selects the VPN route 1 advertised by the ASBR3 as the primary route, and selects the VPN route 2 advertised by the ASBR4 as the backup route, and combines with the label in the AS1 domain to generate the primary LSP1 and the backup LSP2 respectively.
  • the ASBR1 delivers the primary LSP1 and the backup LSP2 to the MPLS forwarding table.
  • the traffic After the traffic from the CE1 to the ASBR1, the traffic is forwarded to the ASBR3 through the LSP1.
  • the ASBR3 device fails or the link between the ASBR1 and the ASBR3 is faulty, the ASBR1 immediately detects the FRR.
  • the traffic is switched to the backup LSP2, that is, after the traffic reaches the ASBR1 from the CE1, the inter-domain traffic is forwarded to the CE3 through the LSP2, so that the 50ms fast switching of the traffic is ensured, which greatly improves the convergence speed of the inter-AS VPN service.
  • the triggering of the inter-domain FRR and the switching of the traffic to the standby LSP2 is as follows:
  • the primary LSP1 state of the forwarding table is set to be Down.
  • the primary LSP1 is found by querying the forwarding table. If the state is down, the standby LSP2 in the MPLS forwarding table is enabled for traffic forwarding.
  • FIG. 9 a scenario diagram of an application method for implementing the fast rerouting method in an ASBR domain in an MPLS VPN according to an embodiment of the present invention is illustrated.
  • AS1 and AS2 are two MPLS domains.
  • the single-hop MP-EBGP (Option B scheme) is used to implement cross-domain exchange of VPN routing information.
  • CE1 and CE3 belong to VPN1
  • CE3 is dual-homed to two PE devices, namely PE3 and PE4 in the figure.
  • Both CE2 and CE4 belong to VPN2, and CE4 is dual-homed to two PEs, namely PE3 and PE4 in the figure.
  • AS1, PE1 and PE2 PE1 and ASBR1, PE2 and ASBR2, and ASBR1 and ASBR2 establish an IBGP neighbor relationship.
  • ASBR1 and ASBR2 are local ASBR devices.
  • ASBR3 and PE4, PE3, ASBR3, and PE4 are configured.
  • ASBR4, ASBR3, and ASBR4 establish an IBGP neighbor relationship. Assume that ASBR3 and ASBR4 are remote ASBR devices. ASBR3 can receive VPN routes advertised by PE3, that is, VPN route 3 in the figure. At the same time, ASBR3 can receive PE4. The VPN route advertised by ASBR4 is the VPN route 4 in the figure. For the sake of brevity, no P router is marked in the figure. Run BFD for BGP between ASBR3 and PE3 to implement real-time detection of device and link faults.
  • the ASBR3 generally selects the VPN route 3 advertised by the PE3 as the primary route, and selects the VPN route 4 advertised by the PE4 as the backup route, and combines with the inter-domain label to generate the primary LSP3 and the backup LSP4 respectively.
  • the ASBR3 delivers the primary LSP3 and the backup LSP4 to the MPLS forwarding table.
  • the traffic is forwarded to the CE3 through the LSP3.
  • the ASBR3 immediately detects the fault. FRR, the traffic is switched to the backup LSP4, that is, after the traffic reaches the ASBR3 from the CE1, the inter-domain traffic is forwarded to the CE3 through the LSP4, so that the 50ms fast switching of the traffic is ensured, which greatly improves the convergence speed of the inter-AS VPN service. .
  • the triggering of the FRR in the local area and the switching of the traffic to the standby LSP4 are as follows:
  • the status of the primary LSP3 of the forwarding table is set to be Down.
  • the status of the primary LSP3 is found to be down by querying the forwarding table.
  • the embodiment of the present invention shows that the FRR is configured in the ASBR domain or in the domain.
  • the FRR scheme can also be configured in the ASBR domain, and the FRR scheme is also configured in the ASBR domain.
  • the VPN FRR may be further configured on the PE1, and the forwarding table of the PE1 is as shown in FIG. 12, and the table thereof is configured on the basis of the FRR configuration in the ASBR domain and/or the domain.
  • the items include: the status of the LSP corresponding to the VPN route prefix, the VPN route, the private network label, the public network label, the next hop, the outbound interface, and the primary VPN route.
  • PE1 selects the primary LSP corresponding to PE1-ASBR1 to forward traffic.
  • PE1 selects the backup LSP corresponding to the PE1-PE2-ASBR2 to forward traffic. This implements fast re-routing on PE1.
  • an embodiment of the present invention provides a routing device, including:
  • the forwarding table storage module 1020 is configured to store a forwarding table, where the forwarding table stores the status of the primary LSP, the backup LSP, and the primary LSP; wherein, when the border router is an ASBR, for example, the structure of the forwarding table As shown in FIG. 11, the entry includes at least: an inbound label, an outbound label, a next hop, an outbound interface, and a status of the primary LSP.
  • the query module 1030 is configured to query, according to the label carried by the traffic, whether the status of the primary LSP is valid according to the label carried by the traffic, and specifically, according to FIG. 11, the label corresponding to the traffic carried in the forwarding table according to the traffic carrying the label Enter the label to obtain the status of the primary LSP corresponding to the incoming label;
  • the LSP selection module 1040 is configured to: when the query module 1030 queries the status of the active LSP to be valid, select the primary LSP to forward the traffic. When the query module finds that the status of the primary LSP is invalid, the LSP is selected to forward the traffic.
  • the routing device further includes:
  • the LSP generation module 1010 is configured to generate the primary LSP and the backup LSP respectively along with the obtained two routes.
  • the routing device further includes:
  • the fault detection module 1050 is configured to detect whether the primary LSP is faulty.
  • the fault processing module 1060 is configured to: when the fault detection module 1050 detects that the primary LSP is faulty, set the state corresponding to the primary LSP in the forwarding table storage module 1020 to an invalid state, and report the status to the control layer.
  • the routing device in the embodiment of the present invention specifically includes an autonomous system border router (ASBR) or a network provider (PE) border router.
  • ASBR autonomous system border router
  • PE network provider
  • the Packet Over SONET/SDH (POS) link on the Synchronous Digital Hierarchy (SDH) system usually implements fault detection through the POS alarm mechanism and modifies the status of the active LSP.
  • the primary and backup LSPs are generated by the two routes, and are simultaneously installed in the forwarding entry, and the forwarding link (the primary LSP or the secondary LSP) is selected by querying the status of the primary LSP. And, by performing BFD between the inter-ASBRs and the intra-ASBRs, the two-way forwarding detection is performed.
  • the fault detection speed is in milliseconds, ensuring that the BFD detection is associated with the active LSP status.
  • Update the forwarding table or use the self-emphasis mechanism or OAM mechanism of the POS link to implement fast fault detection, update the forwarding table in time, speed up the triggering of the FRR, and switch the traffic forwarding to the standby LSP to ensure fast convergence of 50ms.
  • the earth improves the reliability of the VPN across domains, guarantees QoS, and can better meet user needs.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

MPLS VPN中实现快速重路由的方法及设备 本申请要求于 2008年 2月 27日提交中国专利局、申请号为 200810026498.3、 发明名称为 "MPLS VPN中实现快速重路由的方法及设备" 的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及电子通信领域, 尤其涉及一种多协议标签交换虚拟专用网中边 界路由器实现快速重路由的方法及路由设备。 背景技术
随着网络技术的发展, 多协议标签交换(Multi-Protocol Label Switching, MPLS )虚拟专用网 ( Virtual Private Network, VPN )广泛地应用于城域网、 骨 干网,除了用于承载 VPN用户及大客户业务,还用于承载第 3代移动通信( 3G )、 软交换等电信自身的关键业务。 由于越来越多业务的开展, 使得运营商越来越 重视 VPN跨域需求。
在 MPLS VPN跨域应用场景中, 对于出现域间链路故障、 自治系统边界路 由器(Autonomous System Boundary Router, ASBR )设备故障等问题时, 现有 一、 本地 ASBR路由收敛:
如图 1所示, 图示了目前的 VPN业务跨域部署时 ASBR域间路由示意图; 图 1中, 自治系统( Autonomous System, AS ) 1和 AS2是两个 MPLS域, 其间 通过建立单跳多协议外部边界网关协议 ( Multi-Protocol External Border Gateway Protocol , MP-EBGP ) ( Option B方案)来实现 VPN路由信息跨域交换。 其中 , 客户边界路由器(Client Edge, CE ) 1和 CE3同属于 VPN1 , CE3双归属两个网 络提供商边界路由器 ( Provider Edge, PE )设备, 即图 1中的 PE3、 PE4。 CE2 和 CE4同属于 VPN2, CE4双归属到两个 PE设备, 即图 1中的 PE3、 PE4。
在 AS1内, PE1和 PE2、 PE1和 ASBR1、 PE2和 ASBR2、 ASBR1和 ASBR2 之间分别建立内部边界网关协议 ( Interior Border Gateway Protocol, IBGP )邻居 关系 ,假设 ASBR1和 ASBR2为本地 ASBR设备; 在 AS2内, PE3和 PE4、 PE3 和 ASBR3、 PE4和 ASBR4、 ASBR3和 ASBR4之间分别建立 IBGP邻居关系, 假设 ASBR3和 ASBR4为远端 ASBR设备。 在 AS1和 AS2之间 , ASBR1和 ASBR3、 ASBR2和 ASBR4之间分别建立外部路由网关协议(External Border Gateway Protocol, EGBP )邻居关系, ASBR1可以接收到 ASBR3发布的 VPN 路由,即图 1中的 VPN路由 1,同时, ASBR1还可以接收到 ASBR4经过 ASBR2 发布的 VPN路由, 即图 1中的 VPN路由 2, 为了描述简洁, 图 1中没有标出任 何网络提供商路由器(Provider, P路由器)。 在 ASBR1和 ASBR3之间运行边 界网关协议的双向转发检测机制 ( BFD for BGP ) , 实现设备和链路故障实时检 测。
以 VPN1路由为例, 本地 ASBR路由收敛的主要流程为: 假设流量从 CE1 到达 ASBR1后, ASBR1优选 VPN路由 1跨域转发流量。 图 2是在 VPN业务 跨域部署时现有的一种本地 ASBR路由收敛示意图, 如图 2所示, 当在流量转 发过程中 , ASBR3设备故障、或 ASBR1与 ASBR3之间链路故障,那么 , ASBR1 可以通过 BFD for BGP快速感知这种故障 ,然后直接触发 VPN路由的本地收敛, 包括:
ASBR1重新进行路由优选, 将 ASBR4经 ASBR2发布的 VPN路由 2作为 优选路由; ASBR1将新的优选路由下发到转发平面, 同时拆除原 ASBR3发布 的路由; 转发平面的转发表项更新后, 流量到达 ASBR1后, 会优选 VPN路由 2 跨域转发流量至 CE3 , 从而实现 VPN跨域业务的重新收敛。
然而 , 现有的本地 ASBR路由收敛过程中:
ASBR1通过 BFD在 30ms内感知设备或链路故障之后, 上报给接口板, 通 常需要 100ms左右;
接口板通知主控板, 通告 BGP协议收敛, 通常需要几百毫秒到 1秒左右; 路由的重新收敛 ,还取决于 ASBR1控制平面的闲忙与 VPN路由数的多少, 即: 控制面比较忙, VPN路由数较多, 都将在一定程度上降低 VPN路由的收敛 速度。
可见, 现有的本地 ASBR路由收敛速度很慢, 对于语音、 视频等实时性要 求很高的业务而言, 用户是无法接受的。
二、 远端 ASBR路由收敛: 如图 3所示, 图示了目前的 VPN业务跨域部署时远端 ASBR域内路由示意 图。 图 3中, 自治系统( Autonomous System, AS ) 1和 AS2是两个 MPLS域, 其间通过建立单跳 MP-EBGP ( Option B方案 )来实现 VPN路由信息跨域交换。 其中, 客户边界路由器(Client Edge, CE ) 1和 CE3同属于 VPN1, CE3双归属 两个网络提供商边界路由器(Provider Edge, PE )设备, 即图中的 PE3、 PE4。 CE2和 CE4同属于 VPN2, CE4双归属到两个 PE设备, 即图中的 PE3、 PE4。
在 AS1内, PE1和 PE2、 PE1和 ASBR1、 PE2和 ASBR2、 ASBR1和 ASBR2 之间分别建立 IBGP邻居关系, 假设 ASBR1和 ASBR2为本地 ASBR设备; 在 AS2内, PE3和 PE4、 PE3和 ASBR3、 PE4和 ASBR4、 ASBR3和 ASBR4之间 分别建立 IBGP邻居关系, 假设 ASBR3和 ASBR4为远端 ASBR设备。 ASBR3 可以接收到 PE3发布的 VPN路由, 即图中的 VPN路由 3 , 同时, ASBR3还可 以接收到 PE4经过 ASBR4发布的 VPN路由, 即图中的 VPN路由 4 , 为了描述 简洁, 图中没有标出任何 P路由器。 在 ASBR3和 PE3之间运行 BFD for BGP, 实现设备和链路故障实时检测。
以 VPN1路由为例, 远端 ASBR路由收敛的主要流程为: 假设流量从 CE1 跨域到达 ASBR3后, ASBR3优选 VPN路由 3继续转发流量。 如图 4所示, 当 在流量转发过程中, PE3设备故障、 或 ASBR3与 PE3之间链路故障, 那么, ASBR3可以通过 BFD for BGP快速感知这种故障 , 然后直接触发 VPN路由的 本地收敛, 包括:
ASBR3重新进行路由优选,将 PE4经 ASBR4发布的 VPN路由 4作为优选 路由; ASBR3将新的优选路由下发到转发平面, 同时拆除原 PE3发布的 VPN 路由 3; 转发平面的转发表项更新后, 流量跨域到达 ASBR3后, 会优选 VPN路 由 4转发流量至 CE3 , 从而实现 VPN业务的重新收敛。
然而 , 现有的远端 ASBR路由收敛过程中:
ASBR3通过 BFD在 30ms内感知设备或链路故障之后 , 上报给接口板, 通 常需要 100ms左右;
接口板通知主控板, 通告 BGP协议收敛, 通常需要几百毫秒到 1秒左右; 路由的重新收敛 ,还取决于 ASBR3控制平面的闲忙与 VPN路由数的多少, 即: 控制面比较忙, VPN路由数较多, 都将在一定程度上降低 VPN路由的收敛 速度。 可见, 在现有的远端 ASBR路由收敛速度很慢, 对于语音、 视频等实时性 要求很高的业务而言, 用户是无法接受的。
综上所述, 在实现本发明的过程中, 发明人发现在 MPLS VPN跨域应用场 景中, 对于出现域间链路故障、 ASBR设备故障等问题时, ASBR路由收敛速度 较慢, 对于实时业务, 严重影响其服务质量(Quality of Service, QoS ), 无法满 足用户需求。 发明内容
本发明实施例在于提供一种多协议标签交换虚拟专用网( MPLS VPN )中实 现快速重路由的方法及路由设备, 可以实现快速重路由, 达到设备故障时使业 务快速收敛, 提高了实时业务的 QoS。
为了达到上述技术效果, 本发明实施例提供了一种在 MPLS VPN中实现快 速重路由的方法, 其包括:
边界路由器接收流量;
查询转发表, 获取所述流量对应的主用 LSP的状态, 所述转发表中存储了 主用标签交换路径 ( Label Switch Path, LSP )和至少一备用 LSP的信息以及主 用 LSP的状态;
根据所述主用 LSP的状态选择所述主用 LSP或备用 LSP转发所述流量。 相应地, 本发明实施例还提供了一种路由设备, 其包括:
转发表存储模块,用于存储用于存储转发表,所述转发表中保存了主用 LSP、 至少一备用 LSP信息以及主用 LSP的状态;
查询模块, 用于查询所述主用 LSP的出接口是否有效;
LSP选取模块, 用于根据所述查询模块查询到的主用 LSP的状态选择所述 主用 LSP或备用 LSP转发所述流量。
根据本发明实施例提出的一种 MPLS VPN中实现快速重路由方法及路由设 备, 通过将两条路由分别生成主用 LSP和备用 LSP, 并同时安装到转发表项中, 通过查询主用 LSP的状态来选择转发链路, 当主用 LSP故障时, 立即将流量切 换到备用 LSP, 有效地实现了快速重路由, 提高收敛速度, 保证了 QoS, 能够 更好地满足用户需求。 附图说明
图 1是目前的 VPN业务跨域部署时 ASBR域间路由示意图;
图 2是在 VPN业务跨域部署时现有的一种本地 ASBR路由收敛示意图; 图 3是目前的 VPN业务跨域部署时远端 ASBR域内路由示意图;
图 4是在 VPN业务跨域部署时现有的一种远端 ASBR路由收敛示意图; 图 5是本发明实施例提出的一种 MPLS VPN中实现快速重路由的方法中路 由配置的流程图;
图 6是本发明实施例提出的一种 MPLS VPN中实现快速重路由的方法中路 由选取的流程图;
图 Ί是本发明实施例提出的一种 MPLS VPN中实现快速重路由的方法中路 由收敛的流程图;
图 8是本发明实施例的一种 MPLS VPN中实现快速重路由的方法在 ASBR 域间应用场景图;
图 9是本发明实施例的一种 MPLS VPN中实现快速重路由的方法在 ASBR 域内应用场景图;
图 10是本发明实施例提出的一种路由设备的结构示意图;
图 11是本发明实施例中 ASBR的转发表的结构示意图;
图 12是本发明实施例中 PE1的转发表的结构示意图。 具体实施方式
本发明实施例提出的一种在 MPLS VPN中实现快速重路由的方法, 通过将 两条路由生成主用和备用标签交换路径(Label Switch Path, LSP ), 并同时下发 到转发表项中,通过查询主用 LSP的状态来选择转发链路, 当主用 LSP故障时, 立即将流量切换到备用 LSP, 以实现快速重路由, 在具体实施时至少包括: 路 由配置、 转发流量时进行路由选取、 发生故障时进行路由收敛。
参考图 5 , 图示了本发明实施例一种 MPLS VPN中实现快速重路由的方法 中路由配置的流程图, 具体包括:
S 11 , 边界路由设备接收到至少两条 VPN路由, 将一条 VPN路由作为主用 路由, 一条 VPN路由作为备用路由, 需要说明的是,本发明实施例不局限于此, 本领域的技术人员可以理解, 根据具体的网络结构可以设置多条 VPN路由作为 备用路由, 相应的实施方式也在本发明的范围内。 所述域间标签或域内标签包括出标签和入标签)一起分别生成主用 LSP和备用 LSP, 其中, 一个入标签对应主备用两条 LSP;
513 , 将主用 LSP和备用 LSP同时安装到所述边界路由设备的 MPLS转发 表中, 其中, 所述转发表如图 11所示, 其表项至少包括: 入标签、 出标签、 下 一跳、 出接口、 主用 LSP的状态。
514, 在主用 LSP上运行 BFD, 进行链路检测。
当所述边界路由器接收到 MPLS报文, 需要进行流量(或报文)转发时, 进行路由选取, 如图 6所示, 图示了本发明实施例提出的一种 MPLS VPN中实 现快速重路由的方法中路由选取的流程图, 包括:
521 ,在 MPLS转发表中根据流量携带的标签查询主用 LSP的状态,具体地, 结合图 11 , 根据流量携带的标签查找转发表中与所述流量携带的标签对应的入 标签, 从而获取该入标签对应的主用 LSP的状态;
522,判断所述主用 LSP的状态是否为有效, 当判断结果为是时,执行 S23 , 否则执行 S24;
523 , 选取主用 LSP转发流量;
524, 选取备用 LSP转发流量。
在本实施例中, 通过判断主用 LSP的状态进行流量转发路径的选取, 在主 用 LSP不可用时, 能及时将流量切换到备用 LSP, 实现快速收敛。
当在流量转发过程中, 在 S14中, 通过 BFD检查到链路故障或设备故障, 需要进行路由收敛, 如图 7所示, 包括:
531 , BFD检测到主用 LSP故障, 包括: 链路故障或设备故障;
532, 修改 MPLS转发表中主用 LSP的状态为无效, 即: 将主用 LSP的状 态置为 down, 并上 ^艮控制层;
534, 在流量转发过程中, 如图 6所示, 通过查询 MPLS转发表, 发现主用 LSP状态为 down, 即: 无效;
535, 选取备用 LSP进行流量转发。
通过运行 BFD, 确保在 30ms内完成故障检测, 一旦检测到主用 LSP故障, 及时更新转发表中主用 LSP的状态, 实现快速重路由, 确保 50ms的快速收敛, 提高了收敛速度, 降低了时延, 提高实时性业务的用户体验, 保证了服务质量。 为了进一步阐述本发明的一种在 MPLS VPN中实现快速重路由的方法, 下 面结合附图 , 分别从 ASBR域间快速重路由 ( Fast ReRoute , FRR )和 ASBR域 内 FRR两个方面进行说明。
参考图 8, 图示了本发明实施例的一种 MPLS VPN中实现快速重路由方法 在 ASBR域间应用场景图。
图中, AS1和 AS2是两个 MPLS域, 其间通过建立单跳 MP-EBGP ( Option B方案 )来实现 VPN路由信息跨域交换。其中, CE1和 CE3同属于 VPN1 , CE3 双归属两个 PE设备, 即图中的 PE3、 PE4。 CE2和 CE4同属于 VPN2, CE4双 归属到两个 PE设备,即图中的 PE3、PE4。在 AS1内, PE1和 PE2、PE1和 ASBR1、 PE2和 ASBR2、 ASBR1和 ASBR2之间分别建立 IBGP邻居关系, 假设 ASBR1 和 ASBR2为本地 ASBR设备; 在 AS2内, PE3和 PE4、 PE3和 ASBR3、 PE4 和 ASBR4、 ASBR3和 ASBR4之间分别建立 IBGP邻居关系 , 假设 ASBR3和 ASBR4为远端 ASBR设备。 在 AS1和 AS2之间, ASBR1和 ASBR3、 ASBR2 和 ASBR4之间分别建立 EGBP邻居关系, ASBR1可以接收到 ASBR3发布的 VPN路由, 即图中的 VPN路由 1 , 同时, ASBR1还可以接收到 ASBR4经过 ASBR2发布的 VPN路由, 即图中的 VPN路由 2, 为了描述简洁, 图中没有标 出任何 P路由器。 在 ASBR1和 ASBR3之间运行 BFD for BGP, 实现设备和链 路故障实时检测。
在本发明实施例中 , ASBR1通常选取 ASBR3发布的 VPN路由 1为主用路 由, 选取 ASBR4发布的 VPN路由 2为备用路由, 并与 AS1域内标签结合, 分 别生成主用 LSP1和备用 LSP2。 ASBR1将主用 LSP1和备用 LSP2同时下发至 MPLS转发表中。
在正常情况下, 流量从 CE1到达 ASBR1后, 通过 LSP1转发跨域流量至 ASBR3 , 当 ASBR3设备发生故障或者 ASBR1-ASBR3之间的链路故障, 并且 ASBR1通过 BFD快速感知后,立即触发域间 FRR,将流量切换到备用 LSP2上, 即: 流量从 CE1到达 ASBR1后, 通过 LSP2转发跨域流量至 CE3 , 从而, 确保 流量的 50ms快速倒换, 极大地提高了跨域 VPN业务的收敛速度。
其中, 触发域间 FRR, 将流量切换到备用 LSP2上具体为: 将转发表的主用 LSP1状态置为 down, 当流量到达时, 通过查询所述转发表发现主用 LSP1的状 态为 down, 则立即启用 MPLS转发表中的备用 LSP2进行流量转发。 参考图 9, 图示了本发明实施例的一种 MPLS VPN中实现快速重路由方法 在 ASBR域内应用场景图。
图中, AS1和 AS2是两个 MPLS域, 其间通过建立单跳 MP-EBGP ( Option B方案 )来实现 VPN路由信息跨域交换。其中, CE1和 CE3同属于 VPN1 , CE3 双归属两个 PE设备, 即图中的 PE3、 PE4。 CE2和 CE4同属于 VPN2, CE4双 归属两个 PE设备,即图中的 PE3、 PE4。在 AS1内, PE1和 PE2、 PE1和 ASBR1、 PE2和 ASBR2、 ASBR1和 ASBR2之间分别建立 IBGP邻居关系, 假设 ASBR1 和 ASBR2为本地 ASBR设备; 在 AS2内, PE3和 PE4、 PE3和 ASBR3、 PE4 和 ASBR4、 ASBR3和 ASBR4之间分别建立 IBGP邻居关系 , 假设 ASBR3和 ASBR4为远端 ASBR设备, ASBR3可以接收到 PE3发布的 VPN路由, 即图中 的 VPN路由 3,同时, ASBR3还可以接收到 PE4经过 ASBR4发布的 VPN路由 , 即图中的 VPN路由 4, 为了描述简洁, 图中没有标出任何 P路由器。 在 ASBR3 和 PE3之间运行 BFD for BGP , 实现设备和链路故障实时检测。
在本发明实施例中, ASBR3通常选取 PE3发布的 VPN路由 3为主用路由, 选取 PE4发布的 VPN路由 4为备用路由, 并与域间标签结合, 分别生成主用 LSP3和备用 LSP4。 ASBR3将主用 LSP3和备用 LSP4同时下发至 MPLS转发表 中。
在正常情况下, 流量从 CE1跨域到达 ASBR3后, 通过 LSP3转发流量至 CE3 , 当 PE3设备发生故障或者 ASBR3-PE3之间的链路发生故障,并且 ASBR3 通过 BFD快速感知后, 立即触发本域内 FRR, 将流量切换到备用 LSP4上, 即: 流量从 CE1跨域到达 ASBR3后, 通过 LSP4转发跨域流量至 CE3 , 从而, 确保 流量的 50ms快速倒换, 极大地提高了跨域 VPN业务的收敛速度。
其中, 触发本域内 FRR, 将流量切换到备用 LSP4上具体为: 将转发表的主 用 LSP3状态置为 down, 当流量到达时, 通过查询所述转发表发现主用 LSP3 的状态为 down, 则立即启用 MPLS转发表中的备用 LSP4进行流量转发。
上述本发明的实施例, 示出了 ASBR域间或域内配置 FRR的方案, 当然, 也可以采用 ASBR域间配置 FRR, 并且 ASBR域内也配置 FRR的方案。
在本发明的一个实施例中,在上述 ASBR域间和 /或域内配置 FRR的基础上, 可以进一步在 PE1上配置 VPN FRR, 其中, PE1的转发表如图 12所示, 其表 项包括: VPN路由前缀、 VPN路由、 私网标签、 公网标、 下一跳、 出接口、 主 用 VPN路由对应的 LSP的状态;
结合图 8或图 9, 在正常情况下, 接收到 CE1发送的流量时, PE1选择 PE1 -ASBR1对应的主用 LSP转发流量,
当发生 PE1-ASBR1链路故障、 或 ASBR1设备故障时, 确保 VPN业务的 50ms快速收敛, PE1选择 PE1— PE2— ASBR2对应的备用 LSP进行流量转发, 这样实现了 PE1上的快速重路由, 保证了 AS1内的可靠性, 在整个 MPLS VPN 中, 同时结合 ASBR域间和域内 FRR, 即可实现端到端的保护, 提高整个系统 可靠性和容灾性。
基于上述的一种在 MPLS VPN中实现快速重路由的方法实现 ASBR及其链 路出现故障实现快速收敛, 需要对相应的设备进行功能扩展。
如图 10所示, 本发明实施例提出了一种路由设备, 其包括:
转发表存储模块 1020, 用于存储转发表, 所述转发表中保存了主用 LSP、 备用 LSP信息以及主用 LSP的状态; 其中, 当边界路由器是 ASBR时, 举例来 说, 转发表的结构如图 11所示, 其表项至少包括: 入标签、 出标签、 下一跳、 出接口、 主用 LSP的状态。
查询模块 1030, 用于流量转发时, 根据流量携带的标签查询所述主用 LSP 的状态是否有效, 具体地, 结合图 11 , 根据流量携带的标签查找转发表中与所 述流量携带的标签对应的入标签, 从而获取该入标签对应的主用 LSP的状态;
LSP选取模块 1040, 用于当查询模块 1030查询到主用 LSP的状态有效时, 选取主用 LSP转发流量, 当查询模块查询到主用 LSP的状态无效时, 选取备用 LSP转发流量。
在本发明的另一种实施方式中, 所述路由设备还包括:
LSP生成模块 1010,用于将获得的两条路由连同标签一起分别生成主用 LSP 和备用 LSP。
在本发明的另一种实施方式中, 所述路由设备还包括:
故障检测模块 1050, 用于检测主用 LSP是否发生故障;
故障处理模块 1060, 用于当故障检测模块 1050检测到主用 LSP发生故障 时, 将所述转发表存储模块 1020中主用 LSP对应的状态置为无效状态, 并上报 控制层。 需要说明的是, 本发明实施例所述的路由设备具体包括自治系统边界路由 器(ASBR )或网络提供商 (PE )边界路由器。
在上述实施例中, 以采用 BFD实现故障检测, 修改主用 LSP的状态为例来 说明本发明的实现快速重路由的方法及设备, 本发明当然不限于此, 也可以采 用以太网运行、管理和维护 ( Operations, Administration and Maintenance, OAM )
/同步数字传输体系( Synchronous Digital Hierarchy, SDH )上的分组( Packet Over SONET/SDH, POS )链路, 通常通过 POS自身告警机制, 实现故障检测, 联动 修改主用 LSP的状态。
综上所述, 根据本发明实施例通过将两条路由生成主用和备用 LSP, 并同 时安装到转发表项中, 通过查询主用 LSP的状态来选择转发链路 (主用 LSP或 备用 LSP ), 并通过在域间 ASBR之间 , 域内 ASBR与 PE之间运行 BFD, 实现 双向转发检测, 故障检测速度在毫秒级, 确保在 30ms内完成, 并将 BFD检测 与主用 LSP状态联动, 及时更新转发表, 或者, 利用 POS链路的自身告紧机制 或 OAM机制实现快速故障检测, 并及时更新转发表, 加快 FRR的触发, 将流 量转发切换到备用 LSP上, 确保 50ms的快速收敛, 极大地提高了 VPN跨域时 的可靠性, 保证了 QoS, 能够更好地满足用户需求。
另外, 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分 流程, 是可以通过程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Radom Access Memory, RAM )等。
以上所述是本发明的优选实施方式, 应当指出, 对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。

Claims

权 利 要 求
1、 一种在多协议标签交换虚拟专用网中实现快速重路由的方法, 其特征在 于, 包括:
边界路由器接收流量;
查询转发表, 获取所述流量对应的主用标签交换路径 LSP的状态, 所述转 发表中存储了主用 LSP和至少一备用 LSP的信息以及主用 LSP的状态;
根据所述主用 LSP的状态选择所述主用 LSP或备用 LSP转发所述流量。
2、 如权利要求 1所述的方法, 其特征在于, 根据所述主用 LSP的状态选择 所述主用 LSP或备用 LSP转发所述流量具体为:
所述主用 LSP的状态为有效, 则使用所述主用 LSP转发所述流量; 或者
所述主用 LSP的状态为无效, 则使用所述流量对应的备用 LSP转发所述流
3、 如权利要求 1或 2所述的方法, 其特征在于, 还包括在所述边界路由器 上配置转发表, 具体为:
边界路由器将获得的两条路由连同标签一起分别生成主用 LSP和备用 LSP; 将所述主用 LSP和备用 LSP下发到转发表中。
4、 如权利要求 3所述的方法, 其特征在于, 所述转发表的表项至少包括: 入标签、 出标签、 下一跳、 出接口、 主用 LSP的状态。
5、 如权利要求 1或 2所述的方法, 其特征在于, 还包括:
在所述主用 LSP上运行 BFD;
当通过 BFD检测到所述主用 LSP故障时,将所述主用 LSP的状态置为无效。
6、 如权利要求 1或 2所述的方法, 其特征在于, 当所述 LSP采用同步光网 络 /同步数字传输体系上的分组 POS链路时, 所述方法还包括: 通过 POS自身告警机制检测所述主用 LSP是否发生故障;
当检测到所述主用 LSP故障时, 将所述主用 LSP的状态置为无效。
7、 如权利要求 3所述的方法, 其特征在于, 所述查询转发表, 获取所述流 量对应的主用 LSP的状态, 包括:
根据流量携带的标签在所述转发表中查找与该标签对应的主用 LSP 的状 态。
8、 一种路由设备, 其特征在于, 包括:
转发表存储模块, 用于存储转发表, 所述转发表中保存了主用 LSP、 至少 一备用 LSP信息以及主用 LSP的状态;
查询模块, 用于在流量转发时查询所述主用 LSP的状态是否有效;
LSP选取模块,用于根据所述主用 LSP的状态选择所述主用 LSP或备用 LSP 转发所述流量。
9、 如权利要求 8所述的路由设备, 其特征在于, 还包括:
LSP 生成模块, 用于将所述两条路由连同所述标签一起分别生成所述主用 LSP和所述备用 LSP。
10、 如权利要求 8或 9所述的路由设备, 其特征在于, 还包括:
故障检测模块, 用于检测所述主用 LSP是否发生故障;
故障处理模块,用于当所述故障检测模块检测到所述主用 LSP发生故障时, 将所述转发表存储模块中所述主用 LSP对应的状态置为无效状态, 并上报控制 层。
11、 如权利要求 10所述的路由设备, 其特征在于, 所述路由设备包括自治 系统边界路由器。
PCT/CN2009/070360 2008-02-27 2009-02-05 Mpls vpn中实现快速重路由的方法及设备 WO2009105974A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100264983A CN101237409B (zh) 2008-02-27 2008-02-27 Mpls vpn中实现快速重路由的方法及设备
CN200810026498.3 2008-02-27

Publications (1)

Publication Number Publication Date
WO2009105974A1 true WO2009105974A1 (zh) 2009-09-03

Family

ID=39920774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070360 WO2009105974A1 (zh) 2008-02-27 2009-02-05 Mpls vpn中实现快速重路由的方法及设备

Country Status (2)

Country Link
CN (1) CN101237409B (zh)
WO (1) WO2009105974A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938421A (zh) * 2010-09-14 2011-01-05 北京星网锐捷网络技术有限公司 多协议标签交换网络中实现路由汇聚的方法及路由设备
CN113992569A (zh) * 2021-09-29 2022-01-28 新华三大数据技术有限公司 Sdn网络中多路径业务收敛方法、装置及存储介质
CN114567593A (zh) * 2020-11-26 2022-05-31 南京中兴软件有限责任公司 路径切换方法及其装置、网络设备、计算机可读存储介质

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237409B (zh) * 2008-02-27 2011-06-08 华为技术有限公司 Mpls vpn中实现快速重路由的方法及设备
US8959245B2 (en) * 2008-11-25 2015-02-17 Broadcom Corporation Multiple pathway session setup to support QoS services
CN101442494B (zh) * 2008-12-16 2011-06-22 中兴通讯股份有限公司 一种实现快速重路由的方法
CN101459538B (zh) * 2008-12-31 2011-05-11 华为技术有限公司 流量转发方法、设备和系统
CN101616091B (zh) * 2009-07-23 2012-05-23 杭州华三通信技术有限公司 实现标签发布协议快速重路由的方法及标签交换路由器
CN101710875A (zh) * 2009-12-22 2010-05-19 中兴通讯股份有限公司 一种实现快速重路由的方法及装置
US8483049B2 (en) * 2010-03-29 2013-07-09 Futurewei Technologies, Inc. System and method for communications system routing component level high availability
CN101826954B (zh) * 2010-03-30 2014-12-10 中兴通讯股份有限公司 集中式网络节点中实现热备份的方法及系统
CN101860482B (zh) * 2010-05-25 2014-12-17 中兴通讯股份有限公司 二层虚拟专用网络快速重路由方法及装置
CN102035740B (zh) * 2010-12-17 2015-09-16 中兴通讯股份有限公司 多协议标签交换三层私有虚拟网快速重路由方法及系统
CN102130830B (zh) * 2010-12-28 2013-04-17 华为技术有限公司 一种备用lsp的激活方法、装置和系统
CN102195871B (zh) * 2011-01-07 2014-02-19 北京华为数字技术有限公司 一种mpls vpn网络中控制业务流量转发路径的方法
CN102123097B (zh) * 2011-03-14 2015-05-20 杭州华三通信技术有限公司 一种路由保护方法和设备
CN102377680B (zh) 2011-12-06 2014-03-26 杭州华三通信技术有限公司 路由收敛方法及设备
CN102611629B (zh) * 2012-04-05 2015-05-13 杭州华三通信技术有限公司 Mpls中快速重路由方法和装置
CN102710499B (zh) * 2012-05-09 2015-12-02 杭州华三通信技术有限公司 多发布源外部路由备下一跳选择方法及其设备
CN103200025B (zh) * 2013-02-19 2016-06-08 华为技术有限公司 一种可视化展现快速重路由中路由状态的方法和装置
CN106487696B (zh) * 2015-08-28 2019-07-23 中兴通讯股份有限公司 链路故障检测方法及装置
CN105592490B (zh) * 2015-08-31 2019-04-09 新华三技术有限公司 一种路由切换方法及设备
CN108702321B (zh) 2016-02-27 2021-05-07 华为技术有限公司 实现快速重路由(frr)的系统、方法和装置
WO2017143958A1 (en) * 2016-02-27 2017-08-31 Huawei Technologies Co., Ltd. System, method and apparatus for implementing fast reroute (frr)
CN107317753B (zh) * 2016-04-27 2021-02-05 华为技术有限公司 双向转发检测bfd会话建立的方法、装置和系统
CN106506367A (zh) * 2016-11-30 2017-03-15 杭州华三通信技术有限公司 一种下一跳确定方法及装置
CN106789629B (zh) * 2016-12-23 2019-09-20 锐捷网络股份有限公司 业务快速收敛方法及装置
CN107154888A (zh) * 2017-07-03 2017-09-12 国家电网公司 通信网络的部署方法和装置
CN109600291B (zh) * 2017-09-30 2021-06-01 华为技术有限公司 跨域QoS调整方法和装置
CN110557317B (zh) * 2018-06-01 2022-05-13 华为技术有限公司 管理虚拟专用网络的方法和设备
CN110838978B (zh) * 2018-08-15 2022-05-24 迈普通信技术股份有限公司 一种报文转发方法及设备
CN110336745B (zh) * 2019-08-28 2019-12-20 广州市高科通信技术股份有限公司 一种通过批量化操作实现业务路径快速收敛的方法及装置
CN111565145B (zh) * 2020-04-09 2022-07-01 烽火通信科技股份有限公司 一种跨域路径保护方法及系统
CN112398730A (zh) * 2020-10-28 2021-02-23 上海欣诺通信技术股份有限公司 数据中心网络中的报文转发方法、装置、设备及存储介质
CN116248576A (zh) * 2022-12-30 2023-06-09 天翼云科技有限公司 通信路径的选择方法、装置、电子设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909501A (zh) * 2005-08-05 2007-02-07 华为技术有限公司 一种端到端业务快速收敛的方法和路由设备
CN1933422A (zh) * 2006-09-30 2007-03-21 成都迈普产业集团有限公司 网络故障切换方法
CN101237409A (zh) * 2008-02-27 2008-08-06 华为技术有限公司 Mpls vpn中实现快速重路由的方法及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452755C (zh) * 2004-05-18 2009-01-14 华为技术有限公司 一种实现静态标签转发路径的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909501A (zh) * 2005-08-05 2007-02-07 华为技术有限公司 一种端到端业务快速收敛的方法和路由设备
CN1933422A (zh) * 2006-09-30 2007-03-21 成都迈普产业集团有限公司 网络故障切换方法
CN101237409A (zh) * 2008-02-27 2008-08-06 华为技术有限公司 Mpls vpn中实现快速重路由的方法及设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938421A (zh) * 2010-09-14 2011-01-05 北京星网锐捷网络技术有限公司 多协议标签交换网络中实现路由汇聚的方法及路由设备
CN101938421B (zh) * 2010-09-14 2012-06-27 北京星网锐捷网络技术有限公司 多协议标签交换网络中实现路由汇聚的方法及路由设备
CN114567593A (zh) * 2020-11-26 2022-05-31 南京中兴软件有限责任公司 路径切换方法及其装置、网络设备、计算机可读存储介质
CN113992569A (zh) * 2021-09-29 2022-01-28 新华三大数据技术有限公司 Sdn网络中多路径业务收敛方法、装置及存储介质
CN113992569B (zh) * 2021-09-29 2023-12-26 新华三大数据技术有限公司 Sdn网络中多路径业务收敛方法、装置及存储介质

Also Published As

Publication number Publication date
CN101237409A (zh) 2008-08-06
CN101237409B (zh) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2009105974A1 (zh) Mpls vpn中实现快速重路由的方法及设备
US8565098B2 (en) Method, device, and system for traffic switching in multi-protocol label switching traffic engineering
US7817542B2 (en) Method and network device for fast service convergence
KR101895092B1 (ko) Ldp를 사용한 mpls 고속 재라우팅(ldp-frr)
KR102055714B1 (ko) Ldp를 이용하는 mpls 고속 리라우트(ldp―frr)
Raj et al. A survey of IP and multiprotocol label switching fast reroute schemes
WO2008083590A1 (fr) Procédé et appareil de convergence rapide d'un service point à point
WO2009092253A1 (zh) 实现快速重路由的方法及路由器
US9571387B1 (en) Forwarding using maximally redundant trees
WO2007016834A1 (fr) Procede rapide de convergence de services de point a point et dispositif associe cote fournisseur de services
WO2012159489A1 (zh) 一种伪线双归网络的切换方法、系统和双归属运营商设备
WO2008148296A1 (fr) Procédé de détection des anomalies, système de communication et routeur de commutation d'étiquettes
WO2006017982A1 (fr) Procede de reacheminement dans le reseau multiprotocole a commutateur d'etiquettes
WO2011060667A1 (zh) 一种虚拟专用局域网络中链路保护的方法及设备
WO2012079375A1 (zh) 虚拟专用网络的链路保护方法和系统
WO2013040930A1 (zh) 一种组播标签交换路径的中间节点保护方法及装置
US20160142284A1 (en) Establishing a multicast backup path
WO2011120360A1 (zh) 集中式网络节点中实现热备份的方法及系统
EP1946499A2 (en) Constructing and implementing backup paths in autonomous systems
Benhcine et al. Fast Reroute-based network resiliency experimental investigations
WO2012109907A1 (zh) Lsp保护的建立方法和节点
Singh Protection and Restoration in MPLS based Networks
Park Management of BGP/MPLS VPN with resilient paths
Siriakkarap et al. RSVP based critical services path recovery in MPLS network
CN116527571A (zh) 一种跨地域广域网二层透明虚电路数据传输系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09714880

Country of ref document: EP

Kind code of ref document: A1