WO2009105106A2 - Implant équipé pour une localisation nerveuse et son procédé d'utilisation - Google Patents

Implant équipé pour une localisation nerveuse et son procédé d'utilisation Download PDF

Info

Publication number
WO2009105106A2
WO2009105106A2 PCT/US2008/054578 US2008054578W WO2009105106A2 WO 2009105106 A2 WO2009105106 A2 WO 2009105106A2 US 2008054578 W US2008054578 W US 2008054578W WO 2009105106 A2 WO2009105106 A2 WO 2009105106A2
Authority
WO
WIPO (PCT)
Prior art keywords
implant
set forth
neural structure
distal end
fastener
Prior art date
Application number
PCT/US2008/054578
Other languages
English (en)
Other versions
WO2009105106A3 (fr
Inventor
Wyatt Drake Geist
Christopher Walsh
Original Assignee
Integrity Intellect, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integrity Intellect, Inc. filed Critical Integrity Intellect, Inc.
Priority to PCT/US2008/054578 priority Critical patent/WO2009105106A2/fr
Priority to EP08730391A priority patent/EP2249914A4/fr
Priority to CN200880127332.9A priority patent/CN101951848B/zh
Publication of WO2009105106A2 publication Critical patent/WO2009105106A2/fr
Publication of WO2009105106A3 publication Critical patent/WO2009105106A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/4893Nerves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/866Material or manufacture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass

Definitions

  • the invention generally relates to surgical implants and methods for their insertion; particularly to surgical implants and methods using an electrical potential to avoid nerve damage during surgical insertion of implants; most particularly to an implant having at least one electrically conductive region that is utilized to determine the distance from and direction to a nerve with respect to the implant.
  • Pedicle screw fixation has become the favored mode of rigid internal fixation of the three vertebral columns of the spine.
  • the use of pedicle screw-based instrumentation systems has steadily increased over the past three decades due to their superior biomechanical properties and higher bony fusion rates.
  • violation of the pedicle medial wall or vertebral body while implanting these screws carries the risk of injury to neural, vascular, and visceral structures.
  • the screw body can break through the vertebral cortex causing direct trauma to the spinal cord or injury to nearby nerves (para-spinal nerves, nerve roots, etc) during positioning.
  • Pedicle screws are inserted into the spinal pedicle, the bony process projecting backward from the vertebral body, and stabilized with connecting rods or plates placed longitudinally with regard to the vertebrae.
  • Biomechanical tests of pedicle- screw constructs have demonstrated the critical importance of screw placement in the isthmus of the pedicle to obtain proper cortical purchase necessary to resist screw pullout.
  • surgical pedicle screw placement is technically demanding. Extensive training and meticulous attention to detail are required to avoid injuring the patient.
  • a portion of the screw may inadvertently contact the nerve through the breach created by the installation equipment. This can give rise to neurological trauma, sensory deficit, or pain. Consequently, a need exists in the surgical arts for a system capable of providing proper fastener placement during implantation process to actively negotiate around or past nerves to prevent damage or improper screw placement.
  • PRIOR ART U.S. Patent No. 2,704,064, to Fizzell et al. discloses a device called a neurosurgical stimulator which is used to distinguish nerves.
  • the device comprises two probes that are placed on the body in an area to be stimulated and the operating surgeon watches for a response to the applied current (twitching) . If a response is observed, the surgeon avoids cutting in that particular area to prevent inadvertent damage to a nerve.
  • the device is useful for tumor excision as it is capable of distinguishing tumor tissue from the surrounding nerves.
  • Function of the Fizzell device is dependent upon manual adjustment of the electric current and the visual observations of the user. This requires that the surgeon continuously observe the muscular response; however, when anaesthesia is used the muscular response may be attenuated to a point where the muscular response isn't perceivable by the surgeon. Thus, the surgeon using this device may still damage the nerve.
  • U.S. Patent No. 5,284,153 discloses a method in which a nerve stimulator is used to locate, identify the function of, and guard against the inadvertent cutting of nerves during surgical procedures.
  • the nerve locator includes a surgical probe which is coupled to an electrical source, a device for detecting responses of the nerve to electrical stimuli and means for automatically modulating the magnitude of the stimulus.
  • U.S. Patent Nos. 5,196,015, and 5,474,558, both to Neubardt disclose a system and procedure for spinal pedicle screw insertion to reduce the likelihood of nerve damage caused by improper screw placement.
  • a screw opening is started in part of a skeletal region, e.g., a pedicle of a lumbar vertebra and an electric potential of a certain magnitude is applied to the inner surface of the opening while the patient is observed for nervous reactions such as leg twitching.
  • the opening continues to be formed while the electric potential is applied until a desired hole depth is obtained in the absence of nervous reaction to the potential.
  • the direction in which the screw opening is being formed is changed to a direction other than the last direction, after observing patient reactions to the electric potential when the screw opening was being formed in the last direction.
  • the ⁇ 558 patent further discloses a tool that includes a handle and detachable installation equipment (probe member, tapping member and driver) extending from the handle for forming an opening in bone tissue, tapping, and inserting the screw, respectively.
  • Stimulator circuitry arranged inside the handle produces an electric potential of a predetermined level.
  • the electrical potential is applied to the detachable installation members, not the implant itself. Therefore, the installation equipment measures the distance between the equipment and a proximate nerve. This can create in a proximity gap between the installation equipment and the implant tip which could result in an implant that is dangerously close to or impinging a neural structure.
  • U.S. Patent No. 6,796,985 to Bolger et al. discloses a method and equipment for drilling bone, in particular for setting a pedicle screw.
  • the equipment includes a drilling instrument, a source of electric impulses and a connector for connecting the electric impulse source to the drilling instrument.
  • the equipment also includes at least one sensor for detecting a muscle signal either implanted in a muscle or placed on the skin in the vicinity of a muscle before and during drilling. An alert is produced in the event of detection by at least one sensor of a muscle signal correlated with the source of electric impulses connected to the drilling instrument.
  • the implant in the '985 patent does not include at least one electrically conductive region capable of providing a stimulation signal used to test the integrity of the bony structure (e.g., pedicle) and location of any proximal neural structures as it is being implanted therein.
  • the bony structure e.g., pedicle
  • U.S. Pub. No. 2005/0149035 discloses a surgical access system including a tissue distraction assembly and a tissue retraction assembly, both of which may be equipped with one or more electrodes for use in detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor to a surgical target site.
  • a tissue distraction assembly and a tissue retraction assembly, both of which may be equipped with one or more electrodes for use in detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor to a surgical target site.
  • 2005/0075578 to Gharib et al. discloses systems and related methods for performing surgical procedures and assessments, including the use of neurophysiology-based monitoring to: (a) determine nerve proximity and nerve direction to surgical instruments employed in accessing a surgical target site; (b) assess the pathology (health or status) of a nerve or nerve root before, during, or after a surgical procedure; and/or (c) assess pedicle integrity before, during or after pedicle screw placement.
  • the electrodes for providing stimulation to a given nerve are located on the surgical accessories in both Pimenta et al., and Gharib et al.
  • the surgical accessories refer to the devices or components used to create an operative corridor to the surgical target site (e.g., K-wires, dilating cannula systems, distractor systems and/or retractor systems) or for assessing pedicle integrity (via a screw test probe) .
  • This system also provides a proximity gap between the location of the anode (s) on the accessories and the implant, which could result in an implant residing dangerously close to or impinging a neural structure.
  • the pedicle test probe is able to apply a stimulation signal to test the integrity of the medial wall of the pedicle only after the pedicle screw has been fully implanted into the bony structure.
  • the present invention teaches at least one electrically conductive region formed on the distal end of the implant itself. This difference is critical since these electrically conductive regions are able to apply a stimulation signal to test the integrity of a bony structure and/or proximity (direction, distance) of neural structures as the implant is being secured in situ. Thus, any neural structures exposed by the surgical accessories or those undetected by the surgical accessories may be still be avoided prior to any neurological trauma being done.
  • the purpose of this invention is to provide an implant suitable for neurophysiological monitoring of a target implant site.
  • the implant includes a body member having a proximal and distal end, wherein the distal end is constructed and arranged to secure to a surgical target site.
  • the distal end includes at least one region constructed and arranged to emit an electrical potential in an amount effective to generate a stimulating electrical signal in any proximally located neural structure.
  • the stimulating electrical signal provides the distance and/or direction of the neural structure relative to the distal end during securement of the implant in vivo.
  • the implant may be maneuvered during surgery such that any neural structure may be avoided.
  • Another objective of the instant invention to provide a system that minimizes neural damage, thereby providing less post-operative pain.
  • Yet another objective of the present invention is to teach an implant system with an alarm means that utilizes audio and/or visual feedback to indicate to the surgeon when the implant is close to the neutral structures.
  • Still a further objective of the invention is to teach an implant which allows for shorter surgery, decreased x-ray exposure, and fewer complications for the patient.
  • Another objective of the present invention is to teach an implant system simple enough to ensure the surgeon will routinely use it.
  • FIG. 1 is a cross-sectional view of a fixed axial bone screw in accordance with one embodiment of the present invention
  • FIG. 2 is another cross-sectional view of a fixed axial bone screw in accordance with another embodiment of the present invention.
  • FIG. 3 is a lateral view of the lumbar spinal region and a bone screw driver in communication with components of a nerve stimulator used to carry out implantation of the implant.
  • FIG. 1 shows one non-limiting example of an implant, depicted here as fixed-axial pedicle or bone screw.
  • the bone fastener body includes a proximal end 12 and a distal end 14.
  • the proximal end includes head portion 16 with a tool opening 18 configured to receive any suitable driving tool 20.
  • the distal end includes a threaded shank 22 designed to rotatably engage bone at a selected target site located inside the body of a patient, e.g. isthmus of the pedicle (see FIG. 3) .
  • At least a portion of the pedicle screw body is made from a surgically implantable and electrically conductive material including, but not limited to, titanium, stainless steel, or the like.
  • the bone fastener shown here is a fixed axial screw wherein the proximal end of the screw includes a connector portion 24 fixedly connected to the head portion of the screw.
  • a multi-axial screw could be used without departing from the scope of the invention. That is, the connector is capable of 360 degree rotation relative to the threaded shank of the screw along the longitudinal axis L of the shank and angular motion defined by the angle.
  • a suitable multi-axial screw is described in U.S. Patent No. 5,797,911, herein incorporated by reference.
  • the shank of the anchor member may or may be not be cannulated, as is known in the art.
  • the connector portion 24 of the screw is constructed and arranged to form a passageway designed to removably receive at least one biocompatible stabilizing members (not shown) e.g., interconnecting rod or plate.
  • the connector portion includes an opening constructed and arranged to receive a set screw (not shown), as is known in the art.
  • the set screw may be threadably lowered along the longitudinal axis of the connector portion of the screw to form the passageway.
  • the passageway is narrowed until the exterior surfaces of the biocompatible device are sandwiched between the screw head and the set screw. This acts to reliably secure the biocompatible device onto the screw.
  • the implant body is made from an electrically conductive material, such as titanium, stainless steel, or other suitable biocompatable conductive metallic material of sufficient strength to engage bone.
  • the opening in the bone may be previously formed using any suitable technique and device, such as a drill, awl, or curette. In addition, the opening may or may not be tapped prior to insertion of the bone fastener.
  • the bone fastener is inserted into the opening in the pedicle by any suitable driving tool 20, (e.g., screw driver) .
  • Driving tools are well known in the surgical arts and are used to rotatably secure the bone fastener to the desired position within the opening formed in the pedicle.
  • the head portion of the bone fastener includes a tool opening 18 configured to receive any suitable driving tool.
  • the driving tool is in electrical communication with a nerve simulator and used to deliver an electrical potential along the electrically conductive material 34 of the bone fastener to its distal end.
  • the driving means may include a electrically conductive tip 26 (hex head, flat head, or phillips head) designed to correspond with the tool opening in the head of the screw.
  • the head of the screw may include at least one electrical contact 40 designed to mate with the conductive tip of the driving means.
  • the conductive tip 26 may be protected by an insulated shaft 28 connected to a handle 30 which the surgeon grips. The conductive tip is then placed into the head of the bone fastener.
  • the distal end of the screw includes at least one region constructed and arranged to emit the electrical potential produced in the nerve simulator.
  • electrically conductive region may include a non-insulated, electrically conductive region 38 (FIG. 2), or a least one electrode 36 (FIG. 1), or the like.
  • the electrical potential emitted from the distal end of the screw will produce a stimulating electrical signal in any proximally located neural structure.
  • the anode may extend along at least a portion of the length of an outer surface of the implantable device for stimulation of neural structure (s) .
  • the electrically conductive material of the bone fastener is used to establish electrical communication between the driving means and the distal end. This may be accomplished by any suitable means.
  • a lead wire or otherwise electrically conductive material 34 titanium, steel, etc
  • the conductive core material may be electrically coupled to at least electrode 36, preferably an anode, used to deliver the electrical potential charge to any proximately located neural structure (e.g., nerve) .
  • the stimulating electrical signal produced by the nerve stimulation monitoring device is then detected by a suitable response detecting device 42 in communication therewith, as is known in the art.
  • nerve stimulation monitoring device is capable of generating and detecting and/or recording the stimulating signal evoked in the neural structure itself (nerve action potentials) or within the fibers of associated skeletal muscle (muscle action potentials) .
  • nerve stimulation monitoring devices include, albeit it not limited to, electromyography (EMG) unit, somatosensory (SSEP) unit and/or motor evoked potentials (MEP) unit as known in the art.
  • these devices are connected to the patients via patches or probes 48, and capable of providing visual alarm messages on a user display 46 or and/or audible alarms 44 as an indication that the magnitude of the simulating electrical signal exceeds a predetermined threshold.
  • the presence of a neural structure near the distal end of the implant e.g., tip of the pedicle screw
  • the response detecting device is measured by the response detecting device once the electrically conductive region simulates, i.e., depolarizes a nearby nerve.
  • the stimulus necessary to elicit an EMG response will vary with distance from the nerve.
  • the stimulating signal can be measured and monitored by a computer algorithm in the nerve stimulation monitoring device or alternatively may be monitored by a Neurophysiology technician using traditional EMG monitoring equipment. In response, the algorithm will automatically modulate the magnitude of the electrical potential supplied to the implant according to the distance to the nerve.
  • the nerve stimulation monitoring device should include controls 50 that allow the surgeon or Neurophysiology technician to selectively moderate the amount of electrical potential utilized to generate the simulating electrical signal. The simulating electrical signals are then monitored and assessed by the detector unit to provide the nerve proximity and/or nerve direction.
  • the nerve stimulation monitoring device is in communication with the response-detecting means and the driving tool used to deliver the electrical current to the conductive bone fastener. Any means for providing electrical communication 52 to and from the various devices may be used (wires, cable, etc) . Electrical communication is established between the nerve simulation monitoring device unit and the implant once the driving means is placed into the corresponding tool opening at the proximal end of the screw. Although depicted in FIG. 3 as a separate external unit, the nerve stimulation monitoring device may be integrated with the driver tool as disclosed in U.S. Patent No. 5,196,015 and 5,474,558.
  • the bone fastener body i.e., the shank 22 and head 16
  • the bone fastener body is formed from an electrically conductive material 54 and is electrically insulated with a coating 56, with the exception of at least one electrically conductive region 38 located at the distal end. Since this region is not electrically insulated, it is able to emit the electrical potential therefrom.
  • the conductive material of the bone fastener may be electrically insulated by a non-conductive material, such as epoxy resin, ceramic, polyethylene, or any other biocompatible material that has electrical insulating properties. This embodiment insures that the source of the electrical potential is isolated to the distal end of the screw which allows for the determination of the proximity as well as direction of any nearby neural structure.
  • the bone fastener body should include a single electrically conductive region or electrode disposed at the distal end that corresponds to the location of an identifiable mark 54.
  • the identifiable mark should be constructed and arranged so that it remains visible by the surgeon during the implantation process, shown here located on the connector portion of a fixed axis bone fastener.
  • the nerve stimulation monitoring device will provide the electrical potential in a periodic or continuous manner to the electrically conductive region (electrode) while the implant is being secured by rotation into the target site (e.g., bony structure) . As the bone fastener rotates, changes (e.g., strength) in the stimulating electrical signal detected by the nerve stimulation monitoring device will indicate the direction of the neural structure relative to the electrode and corresponding reference mark.
  • bone fasteners specifically a pedicle screw, commonly used for the stabilization and fusion of adjacent spinal vertebrae
  • any type of biocompatible implant that may effect neurologic function could be used at any joint found in the human or animal body.
  • implants include intervertebral inserts, disc prostheses, or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

L'invention porte sur un implant chirurgical qui est équipé pour fournir des données neurologiques pendant et après l'implantation. Une surveillance neurologique assure une introduction précise de l'implant avec une perturbation minimale des structures neuronales. L'implant comprend au moins une région conductrice de l'électricité qui est utilisée pour déterminer la distance à partir de et la direction vers un nerf par rapport à l'implant.
PCT/US2008/054578 2008-02-21 2008-02-21 Implant équipé pour une localisation nerveuse et son procédé d'utilisation WO2009105106A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/US2008/054578 WO2009105106A2 (fr) 2008-02-21 2008-02-21 Implant équipé pour une localisation nerveuse et son procédé d'utilisation
EP08730391A EP2249914A4 (fr) 2008-02-21 2008-02-21 Implant équipé pour une localisation nerveuse et son procédé d'utilisation
CN200880127332.9A CN101951848B (zh) 2008-02-21 2008-02-21 为神经定位而装备的植入物及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2008/054578 WO2009105106A2 (fr) 2008-02-21 2008-02-21 Implant équipé pour une localisation nerveuse et son procédé d'utilisation

Publications (2)

Publication Number Publication Date
WO2009105106A2 true WO2009105106A2 (fr) 2009-08-27
WO2009105106A3 WO2009105106A3 (fr) 2009-12-30

Family

ID=40986082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/054578 WO2009105106A2 (fr) 2008-02-21 2008-02-21 Implant équipé pour une localisation nerveuse et son procédé d'utilisation

Country Status (3)

Country Link
EP (1) EP2249914A4 (fr)
CN (1) CN101951848B (fr)
WO (1) WO2009105106A2 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067018A3 (fr) * 2011-11-01 2013-08-01 Synthes Usa, Llc Système de surveillance neurophysiologique intra-opératoire
US9642633B2 (en) 2010-06-29 2017-05-09 Mighty Oak Medical, Inc. Patient-matched apparatus and methods for performing surgical procedures
EP3275387A1 (fr) * 2013-08-26 2018-01-31 Kyungpook National University Industry-Academic Cooperation Foundation Appareil d'insertion médicale
US9987024B2 (en) 2010-06-29 2018-06-05 Mighty Oak Medical, Inc. Patient-matched apparatus and methods for performing surgical procedures
US10231764B2 (en) 2014-11-19 2019-03-19 Kyungpook National University Industry-Academic Cooperation Foundation System for fixing cervical vertebrae, an apparatus for fixing cervical vertebrae and a driver used for an apparatus for fixing cervical vertebrae
US10390863B2 (en) 2015-12-29 2019-08-27 Kyungpook National University Industry-Academic Cooperation Foundation Rod connector
USD857893S1 (en) 2017-10-26 2019-08-27 Mighty Oak Medical, Inc. Cortical surgical guide
USD858765S1 (en) 2017-10-26 2019-09-03 Mighty Oak Medical, Inc. Cortical surgical guide
US10575885B2 (en) 2015-07-16 2020-03-03 Kyungpook National University Industry-Academic Cooperation Foundation Screw anchor assembly
US10653454B2 (en) 2007-07-13 2020-05-19 Mighty Oak Medical, Inc. Spinal fixation systems
US10729473B2 (en) 2014-11-11 2020-08-04 Kyungpook National University Industry-Academic Cooperation Foundation System for fixing cervical vertebrae and a driver used for an apparatus for fixing cervical vertebrae
US10743890B2 (en) 2016-08-11 2020-08-18 Mighty Oak Medical, Inc. Drill apparatus and surgical fixation devices and methods for using the same
US10874445B2 (en) 2015-10-13 2020-12-29 Kyungpook National University Industry-Academic Cooperation Foundation Screw fixing apparatus
US11039889B2 (en) 2010-06-29 2021-06-22 Mighty Oak Medical, Inc. Patient-matched apparatus and methods for performing surgical procedures
US11083509B2 (en) 2016-06-08 2021-08-10 Kyungpook National University Industry-Academic Cooperation Foundation Screw anchor assembly and method of using the same in pedicle screw fixation
USD948717S1 (en) 2018-06-04 2022-04-12 Mighty Oak Medical, Inc. Sacro-iliac guide
US11376073B2 (en) 2010-06-29 2022-07-05 Mighty Oak Medical Inc. Patient-matched apparatus and methods for performing surgical procedures
US11419655B2 (en) 2020-04-20 2022-08-23 Henry E. Aryan Intraoperative monitoring and screw placement apparatus
US11633254B2 (en) 2018-06-04 2023-04-25 Mighty Oak Medical, Inc. Patient-matched apparatus for use in augmented reality assisted surgical procedures and methods for using the same
USD992114S1 (en) 2021-08-12 2023-07-11 Mighty Oak Medical, Inc. Surgical guide
US11806197B2 (en) 2010-06-29 2023-11-07 Mighty Oak Medical, Inc. Patient-matched apparatus for use in spine related surgical procedures and methods for using the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150342621A1 (en) * 2014-05-29 2015-12-03 Avery M. Jackson, III Illuminated endoscopic pedicle probe with dynamic real time monitoring for proximity to nerves
RU2563107C2 (ru) * 2013-11-21 2015-09-20 Общество с ограниченной ответственностью "МЕДЭЛ" Способ лечения артрозов, остеонекрозов и других видов артропатий и устройство для его осуществления
CN105030334A (zh) * 2015-06-10 2015-11-11 中国人民解放军第二军医大学 一种脊柱手术用开孔导航检测系统
KR101981981B1 (ko) * 2017-11-10 2019-05-24 경북대학교 산학협력단 의료용 나사못
CN111818847A (zh) * 2018-03-05 2020-10-23 爱知外科股份有限公司 用于在医疗手术中使用的手持装置
CN116020054B (zh) * 2023-02-24 2023-12-08 北京微脊医疗科技有限公司 植入式电场治疗装置
CN116672607A (zh) * 2023-07-03 2023-09-01 北京微脊医疗科技有限公司 一种植入式电刺激器、植入方法和电刺激装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073221A1 (en) * 2002-10-11 2004-04-15 Spineco, Inc., A Corporation Of Ohio Electro-stimulation and medical delivery device
US7216001B2 (en) * 2003-01-22 2007-05-08 Medtronic Xomed, Inc. Apparatus for intraoperative neural monitoring
US20040225228A1 (en) * 2003-05-08 2004-11-11 Ferree Bret A. Neurophysiological apparatus and procedures
US20040243207A1 (en) * 2003-05-30 2004-12-02 Olson Donald R. Medical implant systems
US20040260358A1 (en) * 2003-06-17 2004-12-23 Robin Vaughan Triggered electromyographic test device and methods of use thereof
US7896815B2 (en) * 2005-03-01 2011-03-01 Checkpoint Surgical, Llc Systems and methods for intra-operative stimulation
US20060200023A1 (en) * 2005-03-04 2006-09-07 Sdgi Holdings, Inc. Instruments and methods for nerve monitoring in spinal surgical procedures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2249914A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10653454B2 (en) 2007-07-13 2020-05-19 Mighty Oak Medical, Inc. Spinal fixation systems
US9642633B2 (en) 2010-06-29 2017-05-09 Mighty Oak Medical, Inc. Patient-matched apparatus and methods for performing surgical procedures
US9987024B2 (en) 2010-06-29 2018-06-05 Mighty Oak Medical, Inc. Patient-matched apparatus and methods for performing surgical procedures
US11806197B2 (en) 2010-06-29 2023-11-07 Mighty Oak Medical, Inc. Patient-matched apparatus for use in spine related surgical procedures and methods for using the same
US11376073B2 (en) 2010-06-29 2022-07-05 Mighty Oak Medical Inc. Patient-matched apparatus and methods for performing surgical procedures
US11039889B2 (en) 2010-06-29 2021-06-22 Mighty Oak Medical, Inc. Patient-matched apparatus and methods for performing surgical procedures
US9949651B2 (en) 2011-11-01 2018-04-24 DePuy Synthes Products, Inc. Intraoperative neurophysiological monitoring system
WO2013067018A3 (fr) * 2011-11-01 2013-08-01 Synthes Usa, Llc Système de surveillance neurophysiologique intra-opératoire
US10980438B2 (en) 2011-11-01 2021-04-20 DePuy Synthes Products, LLC Intraoperative neurophysiological monitoring system
EP3275387A1 (fr) * 2013-08-26 2018-01-31 Kyungpook National University Industry-Academic Cooperation Foundation Appareil d'insertion médicale
US10154866B2 (en) 2013-08-26 2018-12-18 Kyungpook National University Industry-Academic Cooperation Foundation Medical inserting apparatus
US10729473B2 (en) 2014-11-11 2020-08-04 Kyungpook National University Industry-Academic Cooperation Foundation System for fixing cervical vertebrae and a driver used for an apparatus for fixing cervical vertebrae
US10231764B2 (en) 2014-11-19 2019-03-19 Kyungpook National University Industry-Academic Cooperation Foundation System for fixing cervical vertebrae, an apparatus for fixing cervical vertebrae and a driver used for an apparatus for fixing cervical vertebrae
US10575885B2 (en) 2015-07-16 2020-03-03 Kyungpook National University Industry-Academic Cooperation Foundation Screw anchor assembly
US10874445B2 (en) 2015-10-13 2020-12-29 Kyungpook National University Industry-Academic Cooperation Foundation Screw fixing apparatus
US10390863B2 (en) 2015-12-29 2019-08-27 Kyungpook National University Industry-Academic Cooperation Foundation Rod connector
US11083509B2 (en) 2016-06-08 2021-08-10 Kyungpook National University Industry-Academic Cooperation Foundation Screw anchor assembly and method of using the same in pedicle screw fixation
US10758283B2 (en) 2016-08-11 2020-09-01 Mighty Oak Medical, Inc. Fixation devices having fenestrations and methods for using the same
US10743890B2 (en) 2016-08-11 2020-08-18 Mighty Oak Medical, Inc. Drill apparatus and surgical fixation devices and methods for using the same
US11376049B2 (en) 2016-08-11 2022-07-05 Mighty Oak Medical Inc. Fixation devices having fenestrations and methods for using the same
US11925400B2 (en) 2016-08-11 2024-03-12 Mighty Oak Medical, Inc. Fixation devices having fenestrations and methods for using the same
USD858765S1 (en) 2017-10-26 2019-09-03 Mighty Oak Medical, Inc. Cortical surgical guide
USD857893S1 (en) 2017-10-26 2019-08-27 Mighty Oak Medical, Inc. Cortical surgical guide
USD948717S1 (en) 2018-06-04 2022-04-12 Mighty Oak Medical, Inc. Sacro-iliac guide
US11633254B2 (en) 2018-06-04 2023-04-25 Mighty Oak Medical, Inc. Patient-matched apparatus for use in augmented reality assisted surgical procedures and methods for using the same
US11419655B2 (en) 2020-04-20 2022-08-23 Henry E. Aryan Intraoperative monitoring and screw placement apparatus
USD992114S1 (en) 2021-08-12 2023-07-11 Mighty Oak Medical, Inc. Surgical guide

Also Published As

Publication number Publication date
WO2009105106A3 (fr) 2009-12-30
EP2249914A4 (fr) 2011-03-30
CN101951848A (zh) 2011-01-19
EP2249914A2 (fr) 2010-11-17
CN101951848B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
US7981144B2 (en) Implant equipped for nerve location and method of use
WO2009105106A2 (fr) Implant équipé pour une localisation nerveuse et son procédé d'utilisation
US8977352B2 (en) Systems and methods for performing surgical procedures and assessments
US11259737B2 (en) Systems and methods for performing neurophysiologic monitoring during spine surgery
US20060200023A1 (en) Instruments and methods for nerve monitoring in spinal surgical procedures
JP6842735B1 (ja) 医療手技における使用のためのハンドヘルドデバイス
US11992227B2 (en) Handheld devices for use in medical procedures
EP3349639A1 (fr) Sonde pédiculaire endoscopique éclairée à surveillance dynamique en temps réel de la proximité par rapport aux nerfs
US20170238788A1 (en) Illuminated Endoscopic Pedicle Probe With Dynamic Real Time Monitoring For Proximity To Nerves
JP2024506167A (ja) 医療手技において使用するためのハンドヘルドデバイス
AU2002340026A1 (en) System and methods for performing surgical procedures and assessments

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127332.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08730391

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008730391

Country of ref document: EP