WO2009104762A1 - Compression performance coefficient calculating apparatus, contact performance coefficient calculating apparatus, compression performance coefficient calculating method, and contact performance coefficient calculating method - Google Patents

Compression performance coefficient calculating apparatus, contact performance coefficient calculating apparatus, compression performance coefficient calculating method, and contact performance coefficient calculating method Download PDF

Info

Publication number
WO2009104762A1
WO2009104762A1 PCT/JP2009/053085 JP2009053085W WO2009104762A1 WO 2009104762 A1 WO2009104762 A1 WO 2009104762A1 JP 2009053085 W JP2009053085 W JP 2009053085W WO 2009104762 A1 WO2009104762 A1 WO 2009104762A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
model
core wire
extracted
caulking
Prior art date
Application number
PCT/JP2009/053085
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 角田
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008038208A external-priority patent/JP5123000B2/en
Priority claimed from JP2008038209A external-priority patent/JP5123001B2/en
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Publication of WO2009104762A1 publication Critical patent/WO2009104762A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/183Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section
    • H01R4/184Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section comprising a U-shaped wire-receiving portion
    • H01R4/185Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section comprising a U-shaped wire-receiving portion combined with a U-shaped insulation-receiving portion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/04Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for forming connections by deformation, e.g. crimping tool
    • H01R43/048Crimping apparatus or processes
    • H01R43/0488Crimping apparatus or processes with crimp height adjusting means

Definitions

  • the present invention relates to a crimping coefficient calculation device and a crimping performance coefficient calculation method, and in particular, calculates a crimping performance coefficient according to contact resistance between a crimping piece provided on a terminal fitting and a core wire crimped to the crimping piece.
  • the present invention relates to a crimping performance coefficient calculation device and a crimping performance coefficient calculation method.
  • the present invention relates to a contact performance coefficient calculation device and a contact performance coefficient calculation method, and in particular, a contact performance coefficient according to a contact resistance between a caulking piece provided on a terminal fitting and a core wire caulked on the caulking piece.
  • the present invention relates to a contact performance coefficient calculation device and a contact performance coefficient calculation method to be calculated.
  • a terminal fitting used for this crimp connection is generally configured as shown in FIG.
  • the terminal fitting 1 includes a caulking piece 2.
  • the crimping piece 2 and the core wire 3 of the terminal fitting 1 described above are sandwiched between the crimper 4 (upper mold) and the anvil 5 (lower mold) as shown in FIGS. 14B and 14C, and then the pressure is applied.
  • the core wire 3 is crimped and crimped by the caulking piece 2, and the terminal fitting 1 and the core wire 3 are electrically and mechanically connected as shown in FIG.
  • FIG. 14D the relationship between the crimp height C / H after crimping (see FIG. 14D) and the fixing force F or contact resistance R between the terminal fitting 1 and the core wire 3 after crimping is shown in FIG. It becomes like this.
  • the fixing force F has a non-linear characteristic that is convex upward with respect to the crimp height C / H
  • the crimp height C / H can be used for a certain range. Will exist.
  • the terminal fitting 1, the core wire 3, the crimper 4 or the anvil 5 are designed. Then, after actually performing the crimping connection using the designed terminal fitting 1, core wire 3, crimper 4 or anvil 5, etc., the fixing force F, the contact resistance R, etc. are measured to obtain the optimum fixing force. F and evaluation of whether or not the contact resistance R is obtained are executed. If not obtained, the terminal fitting 1, the core wire 3, the crimper 4 or the anvil 5 is newly designed, and then the above is repeated.
  • the contact resistance R described above increases when left in a low temperature environment or a high temperature environment. Therefore, the measurement of the contact resistance R has been performed after, for example, a cold collision test in which a low temperature environment of ⁇ 40 ° C. and a high temperature environment of + 120 ° C. are alternately repeated 1000 times. If one cycle of the low temperature environment and the high temperature environment requires 2 hours, 2000 hours are required until the contact resistance R is measured. That is, in the conventional connection design of the terminal fitting 1 to the core wire 3, it is necessary to obtain an appropriate one by repeatedly performing the cut-and-try process as described above: design ⁇ actual connection ⁇ cooling collision test ⁇ evaluation (measurement).
  • the present invention pays attention to the problems as described above so that anyone can easily and quickly perform the connection design between the terminal fitting and the core wire without being influenced by the experience of the designer. It is an object of the present invention to provide a crimping performance coefficient calculation device and a crimping performance coefficient calculation method for calculating a crimping performance coefficient according to contact resistance by simulation so that they can be supported.
  • the present invention is based on simulation so that anyone can easily and quickly perform the connection design between the terminal fitting and the core wire without being influenced by the experience of the designer. It is an object of the present invention to provide a contact performance coefficient calculation device and a contact performance coefficient calculation method for calculating a contact performance coefficient according to contact resistance.
  • the inventor of the present invention has repeatedly studied to obtain a crimping performance coefficient calculation device and a crimping performance coefficient calculation method for calculating the crimping performance coefficient according to the contact resistance by simulation without being influenced by the experience of the designer.
  • the inventors have found that the crimping performance coefficient R CL shown in the following formulas (1) and (2) is a value corresponding to the contact resistance R, and have completed the present invention.
  • L k + 1 is the caulking piece model 2m among the nodes on the contour of the core wire model 3m after crimping (after caulking) obtained by executing the finite element method.
  • L k-1 is the node N SK This is the distance from the node N k-1 adjacent to the node N SK among the nodes.
  • n is the total number of nodes N SK contacting the crimping pieces model 2m of sections on the contour of the core wire model 3m.
  • the present invention is a crimping performance coefficient calculation device that calculates a crimping performance coefficient according to contact resistance between a crimping piece provided on a terminal fitting and a core wire crimped on the crimping piece, and a plurality of the core wires are provided.
  • the core wire model after caulking the caulking piece and the deformation calculating means for calculating the displacement of each knot constituting the caulking piece model by a finite element method, and the displacement of each knot calculated by the deformation calculating means From the nodes on the outline of the core model after caulking, a node extracting means for extracting a node that contacts the caulking piece model, the nodes extracted by the node extracting means and the caulking First distance calculating means for obtaining a first distance between one of a pair of nodes adjacent to the node extracted by the node extracting means among the nodes on the contour of the core model after the core model; A second distance between the node extracted by the extracting unit and the other of the pair of nodes adjacent
  • a second distance calculating means a contact length calculating means for obtaining 1/2 of the sum of the first distance and the second distance as a contact length of the node extracted by the node extracting means; Sum total calculating means for obtaining the sum of the contact lengths obtained for all the nodes extracted by the extracting means, and the sum of the volume resistivity of the core wire and the volume resistivity of the caulking piece was obtained by the sum calculating means.
  • the value obtained by dividing the sum by 8 times is the crimping performance coefficient.
  • a crimp performance coefficient calculating means for calculating Te is crimped performance coefficient calculation device equipped with.
  • the present invention is a crimping performance coefficient calculation method for calculating a crimping performance coefficient according to a contact resistance between a crimping piece provided on a terminal fitting and a core wire crimped on the crimping piece, wherein the core wire includes a plurality of core wires.
  • a step of calculating the displacement of each node constituting the crimped piece model by a finite element method, and the crimped piece model among the nodes on the outline of the core model after the crimping from the calculated displacement of each node A node that contacts the extracted node and one of a pair of nodes adjacent to the extracted node among the extracted nodes and the nodes on the contour of the core model after the caulking. 1 distance And obtaining a second distance between the extracted node and the other of the pair of nodes adjacent to the extracted node among the nodes on the contour of the core model after caulking. And calculating the half of the sum of the first distance and the second distance as the contact length of the extracted nodes, and the contact lengths calculated for all the extracted nodes.
  • a step of obtaining a sum a step of calculating a value obtained by dividing the sum of the volume resistivity of the core wire and the volume resistivity of the caulking piece by 8 times the sum obtained by the sum calculation means, as the crimping performance coefficient, Is a method of calculating the crimping performance coefficient by sequentially performing.
  • the inventor has repeatedly studied to obtain a contact performance coefficient calculation device and a contact performance coefficient calculation method for calculating a contact performance coefficient according to contact resistance by simulation without being influenced by the experience of the designer.
  • the inventors have found that the contact performance coefficient CC shown in the following formulas (3) and (2) is a value corresponding to the contact resistance R, and have completed the present invention.
  • PSK is a node that contacts the crimped piece model 2m among the nodes on the contour of the core wire model 3m after crimping (after crimping) obtained by executing the finite element method.
  • N SK is the force acting on the caulking piece model 2m.
  • n is the total number of nodes N SK contacting the crimping pieces model 2m of sections on the contour of the core wire model 3m.
  • the present invention is a contact performance coefficient calculation device for calculating a contact performance coefficient according to the contact resistance between a caulking piece provided on a terminal fitting and a caulking piece caulked to the caulking piece, wherein the core wire includes a plurality of elements.
  • a core wire model acquisition means for acquiring a core wire model divided into a plurality of elements
  • a caulking piece model acquisition means for acquiring a caulking piece model obtained by dividing the caulking piece into a plurality of elements, and the core wire sandwiched between an upper die and a lower die
  • Deformation calculating means for calculating the displacement and the force acting on each node constituting the core model and the caulking piece model after the caulking piece by the finite element method, and the deformation calculating means
  • a node extracting means for extracting a node in contact with the caulking piece model from the nodes on the contour of the core model after the caulking from the displacement of each node
  • the node extracting means First distance calculation for obtaining a first distance between one of the pair of nodes adjacent to the node extracted by the node extraction means among the nodes on the contour of the core model after caulking Means between the node extracted by the node extracting unit and the other of the pair of nodes adjacent to the
  • the present invention is a contact performance coefficient calculation method for calculating a contact performance coefficient according to contact resistance between a caulking piece provided on a terminal fitting and a caulking piece caulked to the caulking piece, wherein the core wire includes a plurality of elements.
  • the crimping performance coefficient corresponding to the contact resistance can be calculated by simulation, it is possible to determine the connection design between the terminal fitting and the core wire regardless of the designer's experience. It is possible to support so that it can be performed easily and in a short time.
  • the contact performance coefficient corresponding to the contact resistance can be calculated by simulation, anyone can easily design the connection between the terminal fitting and the core wire without being influenced by the experience of the designer. In addition, it is possible to assist so that it can be performed in a short time.
  • FIG. 2 It is a block diagram which shows one Embodiment of the crimping performance coefficient calculation apparatus which implemented the crimping performance coefficient calculation method of this invention. It is a flowchart which shows the analysis simulation process procedure of CPU shown in FIG. It is explanatory drawing for demonstrating the deformation
  • (A) is explanatory drawing for demonstrating the deformation
  • (B) is an enlarged view of the X section of (A).
  • 4 is a table showing the types of core wires, terminal fittings and crimping molds, order of contact resistance, and order of crimping performance coefficients corresponding to sample products (1) to (5).
  • FIG. 6 is a graph showing contact resistance and crimping performance coefficient of sample products (1) to (5) corresponding to the conductor compressibility. It is a block diagram which shows one Embodiment of the contact performance coefficient calculation apparatus which implemented the contact performance coefficient calculation method of this invention. It is a flowchart which shows the analysis simulation process procedure of CPU shown in FIG. It is explanatory drawing for demonstrating the deformation
  • FIG. 7 is a graph showing contact resistance and contact performance coefficient of sample products (1) to (5) corresponding to conductor compressibility. It is a graph which shows.
  • (A) is a side view which shows the shape of the terminal metal fitting used for crimping connection
  • (B) is a figure which shows the shape of the anvil and crimper used for crimping work
  • (C) is a terminal metal fitting and a core wire. It is a figure which shows the state in the time of a crimping
  • (D) is a figure which shows the state after crimping
  • the crimping performance coefficient calculation device 6 shown in FIG. 1 is composed of, for example, a personal computer.
  • This is a device for calculating a crimping performance coefficient R CL corresponding to the contact resistance R between the two.
  • the crimping performance coefficient calculation device 6 includes an input device 7, a display device 8, and a microcomputer 9.
  • the input device 7 is composed of operation means such as a keyboard and a mouse, for example, and includes information on the shape of the crimping piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 described in the prior art, and the crimping piece 2 and This is a device for inputting material property information which is a stress-strain property of the material of the core wire 3.
  • shape information for example, CAD data of the caulking piece 2, the core wire 3, the crimper 4, and the anvil 5 created by CAD can be considered.
  • the display device 8 is a device for displaying, for example, the calculated crimping performance coefficient RCL .
  • the microcomputer 9 is a read-only memory that stores a central processing unit (hereinafter referred to as CPU) 10 that controls the entire crimping performance coefficient calculation device 6 and performs various processes according to a processing program, and a program for processing performed by the CPU 10.
  • CPU central processing unit
  • a ROM 11 and a RAM 12 which is a readable / writable memory having a work area used in various processing steps in the CPU 10 and a data storage area for storing various data are included.
  • the CPU 10 starts the analysis simulation process.
  • the CPU 10 displays on the display device 8 an input screen for inputting the shape information of the crimping piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 and the material characteristic information of the crimping piece 2 and the core wire 3.
  • An input process for display is performed (step S1 in FIG. 2).
  • the user operates the operation means such as the keyboard and mouse of the input device 7 in accordance with the display on the display device 8 to input the shape information and material property information.
  • the shape information and material characteristics according to the types A, B, C,... Of the terminal fitting 1, the types A, B, C,... Of the core wire 3, and the types A, B, C,.
  • Information may be recorded in the ROM 11 in advance, and the user may be allowed to input the shape information and material information by selecting the types of the terminal fitting 1, the core wire 3, the crimper type crimper 4 and the anvil 5. .
  • the CPU 10 performs a finite element model conversion process (step S2).
  • the CPU 10 converts the crimped piece 2 and the core wire 3 input by the input processing into a crimped piece model 2m and a core wire model 3m, each of which is divided into a plurality of elements. To do.
  • the CPU 10 functions as a core wire model acquisition unit and a caulking piece model acquisition unit.
  • the CPU 10 performs a deformation calculation process (step S3).
  • the CPU 10 crimps the core wire 3 with the caulking piece 2 with the crimper 4 sandwiched between the crimper 4 and the anvil 5 using the finite element method. And the displacement of each node N which comprises the core wire model 3m and the caulking piece model 2m after releasing the anvil 5 and unloading the load applied to the caulking piece 2 and the core wire 3 is calculated.
  • the CPU 10 functions as a deformation calculation unit.
  • the displacement calculation process can calculate the displacement of each node N constituting the core model 3m and the caulking piece model 2m after the spring back.
  • the CPU 10 executes steps S4 to S6 to obtain a later-described crimping performance coefficient R CL corresponding to the contact resistance R between the crimping piece 2 and the core wire 3 from the displacement of each node N obtained by the deformation calculation process.
  • the contact resistance R is the sum of the concentrated resistance Rc and the film resistance Rf as shown in the following formula (4).
  • R Rc + Rf (4)
  • ⁇ 1 is the volume resistivity of the core wire 3
  • ⁇ 2 is the volume resistivity of the caulking piece 2.
  • ⁇ f is the volume resistivity of the metal film 13 (FIG. 5)
  • d is the thickness of the metal film 13 (assuming constant).
  • the thickness d of the metal film 13 is very thin. Therefore, the film resistance Rf is considered to be close to zero. Therefore, as is apparent from the equations (5) and (6), the contact resistance R increases as the sum of the volume resistivity ⁇ 1 of the core wire 3 and the volume resistivity ⁇ 2 of the caulking piece 2 increases. Further, the contact resistance R decreases as the contact area between the caulking piece 2 and the core wire 3 increases. Therefore, the CPU 10 executes the following steps S4 and S5 to obtain the contact length between the caulking piece 2 and the core wire 3 on the cross section as shown in FIG. 3 as a value corresponding to the contact area.
  • the CPU 10 functions as a node extracting means, and the node N that contacts the caulking piece model 2m among the nodes N on the contour of the core model 3m after the spring back from the displacement of each node N calculated by the deformation calculation process described above.
  • a node extraction process for extracting S is performed (step S4). The results are shown in FIG. As shown in the figure, as a result of the clause extraction process, for example, the total number of n nodes N S are extracted. Incidentally, P S in FIG.
  • step S5 force acting on the node N S on the core wire model 3m extracted in step S4, i.e., the crimping pieces model 2m from node N S on the core wire model 3m extracted in step S4
  • the contact pressure acting on is shown.
  • CPU 10 has the first distance calculating unit, the second distance calculating means, serves as a contact length calculating unit, a crimping piece 2 and the core wire 3 after the spring-back at each node N S extracted by clause extraction process
  • the contact length calculation process for obtaining the contact length is performed (step S5). As shown in FIG.
  • L k + 1 is the distance (first distance) between any extracted node N Sk and node N k + 1 .
  • the node N k + 1 is one of a pair of nodes N k + 1 and N k ⁇ 1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m.
  • L k-1 is a distance (second distance) between the extracted arbitrary nodes N Sk and N k-1 .
  • the node N k-1 is the other of the pair of nodes N k + 1 and N k-1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m.
  • the CPU 10 functions as a crimping performance coefficient calculation unit, and as shown in the following equation (1), the contact length L k obtained for all the nodes N S extracted in step S4, that is, the total number of nodes NS.
  • Crimping performance obtained by dividing the sum of the volume resistivity ⁇ 1 of the core wire 3 and the volume resistivity ⁇ 2 of the caulking piece 2 by 8 times the sum of the contact lengths L k as the crimping performance coefficient R CL
  • the calculated crimping performance coefficient R CL is displayed on the display device 8 (step 7), and the analysis simulation process is terminated.
  • the crimping performance coefficient R CL is a coefficient that increases as ( ⁇ 1 + ⁇ 2) increases as in the case of the contact resistance R.
  • the crimping performance coefficient R CL is a coefficient that decreases as the contact length (area) L k between the crimping piece 2 and the core wire 3 increases. That is, the present inventor assumed that the crimping performance coefficient R CL shown in the above formula (1) would be a value corresponding to the contact resistance R.
  • Sample product (1) is a product in which core wire 3 is crimped with crimping piece 2 of terminal metal fitting 1 using type A core wire 3, type A terminal metal fitting 1, type A crimping type (crimper 4, anvil 5). It is.
  • sample product (2) is of type A core wire 3, type B terminal fitting 1, type A crimping type
  • sample product (3) is type A core wire 3, type A terminal fitting 1, type B Crimp type
  • sample product (4) is type A core wire 3, type C terminal fitting 1, type A crimp type
  • sample product (5) is type A core wire 3, type A terminal fitting 1, type C
  • Each of the crimping molds is used to crimp the core wire 3 with the crimping piece 2 of the terminal fitting 1.
  • the contact resistance R according to the measured conductor compression ratio% is the sample product (4), sample product (3), sample product (2), sample product ( 1)
  • the sample product (5) increases in this order. Therefore, as the performance of the actually measured product, the sample product (4) is the best, and the sample product (3), the sample product (2), the sample product (1), and the sample product (5) become worse in this order.
  • the crimping performance coefficient R CL corresponding to the conductor compression ratio% which is a simulation value
  • the sample product (4) is the best from the crimping performance coefficient R CL which is a simulation value
  • the sample product (3), sample product (2), sample product (1), sample product It turns out that it gets worse in the order of 5). That is, it was found that the crimping performance coefficient R CL shown in the equation (1) is a value corresponding to the contact resistance R.
  • a plurality of samples can be obtained by calculating the crimping performance coefficient R CL which is a simulation value without actually making a plurality of sample products and actually measuring the contact resistance R.
  • the magnitude of the contact resistance R of the product can be compared. For this reason, it can support that anyone can perform the connection design of the terminal metal fitting 1 and the core wire 3 easily and in a short time without being influenced by a designer's experience.
  • the finite element model conversion process for converting the caulking piece 2 and the core wire 3 input by the input process into the caulking piece model 2m and the core wire model 3m, respectively, is provided. It is not limited to.
  • the caulking piece model 2m and the core wire model 3m may be input by input processing. In this case, it is not necessary to perform a finite element model conversion process.
  • the contact performance coefficient calculation device 106 shown in FIG. 8 is constituted by, for example, a personal computer, and when the terminal fitting 1 and the core wire 3 are connected by crimping, the terminal fitting 1-core wire 3 prior to the actual crimping connection.
  • This is a device for calculating a contact performance coefficient CC according to the contact resistance R between the two.
  • the contact performance coefficient calculation device 106 includes an input device 107, a display device 108, and a microcomputer 9.
  • the input device 107 is composed of operation means such as a keyboard and a mouse, for example, and includes information on the shape of the crimping piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 and the material of the crimping piece 2 and the core wire 3.
  • This is a device for inputting material property information which is a stress-strain property.
  • shape information for example, CAD data of the caulking piece 2, the core wire 3, the crimper 4, and the anvil 5 created by CAD can be considered.
  • the display device 108 is a device for displaying, for example, the calculated contact performance coefficient.
  • the microcomputer 109 is a read-only memory that stores a central processing unit (hereinafter referred to as CPU) 110 that controls the entire contact performance coefficient calculation device 106 and performs various processes according to a processing program, and a program for processing performed by the CPU 110.
  • CPU central processing unit
  • a ROM 111 and a RAM 112 which is a readable / writable memory having a work area used in various processing steps in the CPU 110 and a data storage area for storing various data are included.
  • the CPU 110 starts the analysis simulation process.
  • the CPU 110 displays on the display device 108 an input screen for inputting the shape information of the caulking piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 and the material characteristic information of the caulking piece 2 and the core wire 3.
  • An input process for display is performed (step S1 in FIG. 9).
  • the user operates the operation means such as the keyboard and mouse of the input device 107 according to the display on the display device 108 to input the shape information and material property information.
  • the shape information and material characteristics according to the types A, B, C,... Of the terminal fitting 1, the types A, B, C,... Of the core wire 3, and the types A, B, C,.
  • Information may be recorded in the ROM 111 in advance, and the shape information and material information may be input by allowing the user to select the types of the terminal fitting 1, the core wire 3, the crimping crimper 4 and the anvil 5. .
  • the CPU 110 performs a finite element model conversion process (step S2).
  • the CPU 110 converts the crimped piece 2 and the core wire 3 input by the input processing into a crimped piece model 2m and a core wire model 3m, which are each divided into a plurality of elements. To do.
  • the CPU 110 functions as a core wire model acquisition unit and a caulking piece model acquisition unit.
  • the CPU 110 performs deformation calculation processing (step S3).
  • the CPU 110 crimps the core wire 3 with the crimping piece 2 with the crimper 4 sandwiched between the crimper 4 and the anvil 5 using the finite element method.
  • the displacement of each node N constituting the core wire model 3m and the caulking piece model 2m after the load applied to the caulking piece 2 and the core wire 3 is released by separating the anvil 5 and the force P acting on each node N are calculated.
  • the CPU 110 functions as a deformation calculation unit.
  • the deformation calculation process can calculate the displacement of each node N and the force P acting on each node N constituting the core model 3m and the caulking piece model 2m after the spring back.
  • the CPU 110 executes steps S4 to S6 according to the contact resistance R between the caulking piece 2 and the core wire 3 from the displacement of each node N obtained by the deformation calculation process and the force P acting on each node N.
  • a contact performance coefficient CC described later is obtained.
  • the contact resistance R decreases as the contact area and contact pressure between the caulking piece 2 and the core wire 3 increase. Therefore, the CPU 110 executes the following steps S4 and S5 to obtain the contact length between the caulking piece 2 and the core wire 3 on the cross section as shown in FIG. 10 as a value corresponding to the contact area.
  • the CPU 110 functions as a node extracting means, and the node that contacts the caulking piece model 2m of the nodes N on the contour of the core model 3m after the spring back from the displacement of each node N calculated by the deformation calculation process described above.
  • performing clause extraction process for extracting the N S step S4.
  • the results are shown in FIG.
  • P S is the force acting on the node N S on the core wire model 3m extracted in step S4 in FIG. 11 (A), the words, the caulking pieces 2 model from node N S on the core wire model 3m extracted in step S4
  • the contact pressure acting on is shown.
  • CPU 110 is the first distance calculating unit, the second distance calculating means, and functions as a contact length calculating unit, crimping piece 2 and the core wire 3 after the spring-back at each node N S extracted by clause extraction process
  • the contact length calculation process for obtaining the contact length is performed (step S5).
  • the caulking piece model 2m and the core wire model 3m are in contact with each other at a point (node), but the present inventor actually made an arbitrary node N Sk extracted in step S4. Therefore, it is assumed that the contact is made with the contact length L k shown by the following formula (2).
  • L k (L k + 1 + L k-1 ) / 2 (2)
  • L k + 1 is the distance (first distance) between any extracted node N Sk and node N k + 1 .
  • the node N k + 1 is one of a pair of nodes N k + 1 and N k ⁇ 1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m.
  • L k-1 is a distance (second distance) between the extracted arbitrary nodes N Sk and N k-1 .
  • the node N k-1 is the other of the pair of nodes N k + 1 and N k-1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m.
  • the CPU 110 functions as a contact performance coefficient calculation unit, and as shown in the following formula (3), the contact length L obtained for all the nodes N S extracted in step S4, that is, a total of n nodes NS. k and a node N S extracted in step S4 is the total sum of values obtained by multiplying the contact pressure P SK acting on crimping pieces model 2m, it obtains the reciprocal of the sum as the contact performance coefficient CC contact performance coefficient calculation process (Step S6), the calculated contact performance coefficient CC is displayed on the display device 108 (Step 7), and the analysis simulation process is terminated.
  • the contact length L obtained for all the nodes N S extracted in step S4 that is, a total of n nodes NS. k and a node N S extracted in step S4 is the total sum of values obtained by multiplying the contact pressure P SK acting on crimping pieces model 2m, it obtains the reciprocal of the sum as the contact performance coefficient CC contact performance coefficient calculation process (Step S6), the calculated contact
  • the contact performance coefficient CC decreases as the contact length (area) L k between the caulking piece 2 and the core wire 3 and the contact pressure P Sk increase as in the case of the contact resistance R. Is a coefficient. That is, the present inventor assumed that the contact performance coefficient CC shown in the above formula (3) would be a value corresponding to the contact resistance R.
  • Sample product (1) is a product in which core wire 3 is crimped with crimping piece 2 of terminal metal fitting 1 using type A core wire 3, type A terminal metal fitting 1, type A crimping type (crimper 4, anvil 5). It is.
  • sample product (2) is of type A core wire 3, type B terminal fitting 1, type A crimping type
  • sample product (3) is type A core wire 3, type A terminal fitting 1, type B Crimp type
  • sample product (4) is type A core wire 3, type C terminal fitting 1, type A crimp type
  • sample product (5) is type A core wire 3, type A terminal fitting 1, type C
  • Each of the crimping molds is used to crimp the core wire 3 with the crimping piece 2 of the terminal fitting 1.
  • the contact resistance R corresponding to the measured conductor compression ratio% is the sample product (4), sample product (3), sample product (2), sample product ( 1)
  • the sample product (5) increases in this order. Therefore, as the performance of the actually measured product, the sample product (4) is the best, and the sample product (3), the sample product (2), the sample product (1), and the sample product (5) become worse in this order.
  • the contact performance coefficient CC corresponding to the conductor compression ratio% which is a simulation value
  • the sample product (4) is the best from the contact performance coefficient CC that is a simulation value
  • the sample product (3), the sample product (2), the sample product (1), and the sample product (5) It turns out that it gets worse in the order of). That is, it was found that the contact performance coefficient CC shown in Equation (3) is a value corresponding to the contact resistance R.
  • a plurality of sample products can be obtained by calculating the contact performance coefficient CC, which is a simulation value, without actually making a plurality of sample products and actually measuring the contact resistance R.
  • the magnitude of the contact resistance R can be compared. For this reason, it can support that anyone can perform the connection design of the terminal metal fitting 1 and the core wire 3 easily and in a short time without being influenced by a designer's experience.
  • the finite element model conversion process for converting the caulking piece 2 and the core wire 3 input by the input process into the caulking piece model 2m and the core wire model 3m, respectively, is provided. It is not limited to.
  • the caulking piece model 2m and the core wire model 3m may be input by input processing. In this case, it is not necessary to perform a finite element model conversion process.
  • the crimping performance coefficient and the contact performance coefficient corresponding to the contact resistance can be calculated by simulation, anyone can design the connection between the terminal fitting and the core wire without being influenced by the designer's experience. Can be supported easily and in a short time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

Disclosed is a compression performance calculating apparatus that can provide such support that anybody can perform the connection design for the terminal fixtures and the core wires easily in a short period of time without depending on the experience of the designer by calculating the contact performance coefficient corresponding to the contact resistance derived from simulations. The displacement of each node that constitutes a core wire model (3m) and a crimping piece model (2m) after a core wire is crimped with a crimping piece is calculated by the finite element method. A node (Ns) in contact with the crimping piece (2m) is extracted from the nodes on the profile of the core wire model (3m) based on the calculated displacement of each node. Then, distance Lk+1 between the extracted node Ns and the node Nk+1 adjacent to the node Ns among the nodes on the profile of the core wire model 3m, and distance Lk - 1 between the extracted node Ns and the node Nk - 1 adjacent to the extracted node among the nodes on the profile of the core wire model 3m are calculated. Half of the sum of distance Lk+1 and distance Lk - 1 is calculated as the contact length Lk of the extracted node Ns. The sum of the contact lengths Lk derived for all the extracted nodes Ns is calculated. The value calculated by dividing the sum of the volume resistivity of the core wire and the volume resistivity of the crimping piece by 8 times the sum of contact lengths Lk is found as the compression performance coefficient.

Description

圧着性能係数算出装置、接触性能係数算出装置、圧着性能係数算出方法、及び接触性能係数算出方法Crimping performance coefficient calculation apparatus, contact performance coefficient calculation apparatus, crimping performance coefficient calculation method, and contact performance coefficient calculation method
 本発明は、圧着係数算出装置及び圧着性能係数算出方法に係り、特に、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出装置及び圧着性能係数算出方法に関するものである。 The present invention relates to a crimping coefficient calculation device and a crimping performance coefficient calculation method, and in particular, calculates a crimping performance coefficient according to contact resistance between a crimping piece provided on a terminal fitting and a core wire crimped to the crimping piece. The present invention relates to a crimping performance coefficient calculation device and a crimping performance coefficient calculation method.
 また、本発明は、接触性能係数算出装置及び接触性能係数算出方法に係り、特に、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線との接触抵抗に応じた接触性能係数を算出する接触性能係数算出装置及び接触性能係数算出方法に関するものである。 In addition, the present invention relates to a contact performance coefficient calculation device and a contact performance coefficient calculation method, and in particular, a contact performance coefficient according to a contact resistance between a caulking piece provided on a terminal fitting and a core wire caulked on the caulking piece. The present invention relates to a contact performance coefficient calculation device and a contact performance coefficient calculation method to be calculated.
 従来から、導線の芯線と端子金具とを電気的に接続する方法として、例えば、端子金具に設けられたかしめ片によって、芯線を加締め圧着して接続する方法がある(例えば特許文献1~3)。この圧着接続に用いられる端子金具は、一般的に、図14(A)に示すような構成になっている。同図に示すように、端子金具1はかしめ片2を備えている。そして、上述した端子金具1のかしめ片2及び芯線3を、図14(B)及び(C)に示すように、クリンパ4(上型)及びアンビル5(下型)によって挟んだ後、圧力を加えることにより、かしめ片2によって芯線3が加締め圧着され、図14(D)に示すように、端子金具1と芯線3とが電気的、機械的に接続される。 Conventionally, as a method of electrically connecting a core wire of a conductive wire and a terminal fitting, for example, there is a method of crimping and crimping a core wire with a caulking piece provided on the terminal fitting (for example, Patent Documents 1 to 3). ). A terminal fitting used for this crimp connection is generally configured as shown in FIG. As shown in the figure, the terminal fitting 1 includes a caulking piece 2. Then, the crimping piece 2 and the core wire 3 of the terminal fitting 1 described above are sandwiched between the crimper 4 (upper mold) and the anvil 5 (lower mold) as shown in FIGS. 14B and 14C, and then the pressure is applied. In addition, the core wire 3 is crimped and crimped by the caulking piece 2, and the terminal fitting 1 and the core wire 3 are electrically and mechanically connected as shown in FIG.
 ところで、上述した圧着後のクリンプ高さC/H(図14(D)参照)と、圧着後の端子金具1-芯線3間の固着力F又は接触抵抗Rとの関係は、図15に示すようになる。同図に示すように、固着力Fは、クリンプ高さC/Hに対して上に凸の非線形特性を有するため、クリンプ高さC/Hは一定範囲に対して使用可能な固着力Fが存在することになる。同様に、接触抵抗Rはクリンプ高さC/Hに対して使用可能な接触抵抗Rが存在することになる。このような非線形特性を有する固着力Fと接触抵抗Rとの関係から、固着力F、接触抵抗R共に使用可能とするクリンプ高さC/Hの範囲(図15中に示す「最適クリンプ高さ」)が限定されることになる。 By the way, the relationship between the crimp height C / H after crimping (see FIG. 14D) and the fixing force F or contact resistance R between the terminal fitting 1 and the core wire 3 after crimping is shown in FIG. It becomes like this. As shown in the figure, since the fixing force F has a non-linear characteristic that is convex upward with respect to the crimp height C / H, the crimp height C / H can be used for a certain range. Will exist. Similarly, there is a contact resistance R that can be used with respect to the crimp height C / H. From the relationship between the fixing force F having such a non-linear characteristic and the contact resistance R, the range of the crimp height C / H that can be used for both the fixing force F and the contact resistance R (“optimal crimp height shown in FIG. 15”). ") Will be limited.
 そこで、従来では、例えば、新しい接続設計をする際、端子金具1、芯線3、クリンパ4又はアンビル5などの設計を行う。そして、この設計された端子金具1、芯線3、クリンパ4又はアンビル5などを用いて、実際に、圧着接続を行った後、固着力F、接触抵抗Rなどを計測して、最適な固着力F、接触抵抗Rが得られるか否かといった評価が実行される。得られない場合は、また、新たに端子金具1、芯線3、クリンパ4又はアンビル5などの設計を行った後、上述したことを繰り返し行う。 Therefore, conventionally, for example, when designing a new connection, the terminal fitting 1, the core wire 3, the crimper 4 or the anvil 5 are designed. Then, after actually performing the crimping connection using the designed terminal fitting 1, core wire 3, crimper 4 or anvil 5, etc., the fixing force F, the contact resistance R, etc. are measured to obtain the optimum fixing force. F and evaluation of whether or not the contact resistance R is obtained are executed. If not obtained, the terminal fitting 1, the core wire 3, the crimper 4 or the anvil 5 is newly designed, and then the above is repeated.
 ところで、上述した接触抵抗Rは低温環境や高温環境に放置すると上昇してしまうことが分かっている。そこで、接触抵抗Rの計測は、例えば-40℃の低温環境と+120℃の高温環境とを交互に1000回繰り返す冷熱衝突試験を実行した後に行っていた。この低温環境と高温環境との1サイクルが仮に2時間要する場合には、接触抵抗Rの計測までに2000時間を要する。即ち、従来の端子金具1-芯線3の接続設計では、上述したように設計→実際に接続する→冷熱衝突試験→評価(測定)といったカットアンドトライを繰り返して適正なものを得る必要がある。このため、設計の経験があまりない者が上述した接続設計を行うと、希望のものを得るまで無駄な時間を費やすことが多くなり、設計期間が長くなったり、設計コストアップを招くという問題があった。
特開2007-173215号公報 特開2006-351451号公報 特開平10-50449号公報
By the way, it is known that the contact resistance R described above increases when left in a low temperature environment or a high temperature environment. Therefore, the measurement of the contact resistance R has been performed after, for example, a cold collision test in which a low temperature environment of −40 ° C. and a high temperature environment of + 120 ° C. are alternately repeated 1000 times. If one cycle of the low temperature environment and the high temperature environment requires 2 hours, 2000 hours are required until the contact resistance R is measured. That is, in the conventional connection design of the terminal fitting 1 to the core wire 3, it is necessary to obtain an appropriate one by repeatedly performing the cut-and-try process as described above: design → actual connection → cooling collision test → evaluation (measurement). For this reason, if the person who has little design experience performs the connection design described above, there is a problem that a lot of time is wasted until the desired product is obtained, and the design period becomes longer and the design cost increases. there were.
JP 2007-173215 A JP 2006-351451 A Japanese Patent Laid-Open No. 10-50449
 そこで、本発明は、上記のような問題点に着目し、設計者の経験に左右されることなく、端子金具と芯線との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができるように、シミュレーションによって接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出装置及び圧着性能係数算出方法を提供することを課題とする。 Therefore, the present invention pays attention to the problems as described above so that anyone can easily and quickly perform the connection design between the terminal fitting and the core wire without being influenced by the experience of the designer. It is an object of the present invention to provide a crimping performance coefficient calculation device and a crimping performance coefficient calculation method for calculating a crimping performance coefficient according to contact resistance by simulation so that they can be supported.
 また、本発明は、設計者の経験に左右されることなく、端子金具と芯線との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができるように、シミュレーションによって接触抵抗に応じた接触性能係数を算出する接触性能係数算出装置及び接触性能係数算出方法を提供することを課題とする。 In addition, the present invention is based on simulation so that anyone can easily and quickly perform the connection design between the terminal fitting and the core wire without being influenced by the experience of the designer. It is an object of the present invention to provide a contact performance coefficient calculation device and a contact performance coefficient calculation method for calculating a contact performance coefficient according to contact resistance.
 また、本発明者は、設計者の経験に左右されることなく、シミュレーションによって接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出装置及び圧着性能係数算出方法を得るべく検討を重ねた結果、下記の式(1)及び(2)に示す圧着性能係数RCLが接触抵抗Rに応じた値となることを見出し、本発明を完成するに至った。
Figure JPOXMLDOC01-appb-M000001
In addition, the inventor of the present invention has repeatedly studied to obtain a crimping performance coefficient calculation device and a crimping performance coefficient calculation method for calculating the crimping performance coefficient according to the contact resistance by simulation without being influenced by the experience of the designer. The inventors have found that the crimping performance coefficient R CL shown in the following formulas (1) and (2) is a value corresponding to the contact resistance R, and have completed the present invention.
Figure JPOXMLDOC01-appb-M000001
 なお、ρ1は芯線の体積抵抗率であり、ρ2は芯線の体積抵抗率である。また、図4(B)に示すように、Lk+1は、有限要素法を実行して得た圧着後(かしめた後)の芯線モデル3mの輪郭上の節のうちかしめ片モデル2mに接触する節NSK、及び、芯線モデル3mの輪郭上の節のうち節NSKに隣接する節Nk+1との距離であり、Lk-1は節NSKと芯線モデル3mの輪郭上の節のうち節NSKに隣接する節Nk-1との距離である。nは、芯線モデル3mの輪郭上の節のうちかしめ片モデル2mに接触する節NSKの総数である。 Note that ρ1 is the volume resistivity of the core wire, and ρ2 is the volume resistivity of the core wire. Further, as shown in FIG. 4 (B), L k + 1 is the caulking piece model 2m among the nodes on the contour of the core wire model 3m after crimping (after caulking) obtained by executing the finite element method. Of the nodes on the contour of the node N SK that touches the node N SK and the node N k + 1 adjacent to the node N SK among the nodes on the contour of the core wire model 3m, L k-1 is the node N SK This is the distance from the node N k-1 adjacent to the node N SK among the nodes. n is the total number of nodes N SK contacting the crimping pieces model 2m of sections on the contour of the core wire model 3m.
 即ち、本発明は、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出装置であって、前記芯線を複数の要素に分割した芯線モデルを取得する芯線モデル取得手段と、前記かしめ片を複数の要素に分割したかしめ片モデルを取得するかしめ片モデル取得手段と、上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位を有限要素法により算出する変形算出手段と、前記変形算出手段により算出された前記各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する節抽出手段と、前記節抽出手段により抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の一方との間の第1の距離を求める第1の距離算出手段と、前記節抽出手段により抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の他方との間の第2の距離を求める第2の距離算出手段と、前記第1の距離及び前記第2の距離の和の1/2を前記節抽出手段により抽出された節の接触長さとして求める接触長さ算出手段と、前記節抽出手段により抽出された全ての節について求めた前記接触長さの総和を求める総和算出手段と、前記芯線の体積抵抗率と前記かしめ片の体積抵抗率との和を前記総和算出手段により求めた総和の8倍で除した値を前記圧着性能係数として算出する圧着性能係数算出手段と、を備えた圧着性能係数算出装置である。 That is, the present invention is a crimping performance coefficient calculation device that calculates a crimping performance coefficient according to contact resistance between a crimping piece provided on a terminal fitting and a core wire crimped on the crimping piece, and a plurality of the core wires are provided. A core wire model acquisition means for acquiring a core wire model divided into elements, a crimped piece model acquisition means for acquiring a caulking piece model obtained by dividing the caulking piece into a plurality of elements, and sandwiched between an upper mold and a lower mold The core wire model after caulking the caulking piece and the deformation calculating means for calculating the displacement of each knot constituting the caulking piece model by a finite element method, and the displacement of each knot calculated by the deformation calculating means From the nodes on the outline of the core model after caulking, a node extracting means for extracting a node that contacts the caulking piece model, the nodes extracted by the node extracting means and the caulking First distance calculating means for obtaining a first distance between one of a pair of nodes adjacent to the node extracted by the node extracting means among the nodes on the contour of the core model after the core model; A second distance between the node extracted by the extracting unit and the other of the pair of nodes adjacent to the node extracted by the node extracting unit among the nodes on the outline of the core model after the caulking is obtained. A second distance calculating means; a contact length calculating means for obtaining 1/2 of the sum of the first distance and the second distance as a contact length of the node extracted by the node extracting means; Sum total calculating means for obtaining the sum of the contact lengths obtained for all the nodes extracted by the extracting means, and the sum of the volume resistivity of the core wire and the volume resistivity of the caulking piece was obtained by the sum calculating means. The value obtained by dividing the sum by 8 times is the crimping performance coefficient. , A crimp performance coefficient calculating means for calculating Te is crimped performance coefficient calculation device equipped with.
 また、本発明は、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線との接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出方法であって、前記芯線を複数の要素に分割した芯線モデル及び前記かしめ片を複数の要素に分割したかしめ片モデルを取得する工程と、上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位を有限要素法により算出する工程と、前記算出された各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する工程と、前記抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の一方、間の第1の距離を求める工程と、前記抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の他方との間の第2の距離を求める工程と、前記第1の距離及び前記第2の距離、の和の1/2を前記抽出された節の接触長さとして求める工程と、前記抽出された全ての節について求めた前記接触長さの総和を求める工程と、前記芯線の体積抵抗率と前記かしめ片の体積抵抗率との和を前記総和算出手段により求めた総和の8倍で除した値を前記圧着性能係数として算出する工程と、を順次行う圧着性能係数算出方法である。 Further, the present invention is a crimping performance coefficient calculation method for calculating a crimping performance coefficient according to a contact resistance between a crimping piece provided on a terminal fitting and a core wire crimped on the crimping piece, wherein the core wire includes a plurality of core wires. A core wire model divided into elements and a caulking piece model obtained by dividing the caulking piece into a plurality of elements; and the core wire model after caulking the core wire between the upper die and the lower die. And a step of calculating the displacement of each node constituting the crimped piece model by a finite element method, and the crimped piece model among the nodes on the outline of the core model after the crimping from the calculated displacement of each node A node that contacts the extracted node and one of a pair of nodes adjacent to the extracted node among the extracted nodes and the nodes on the contour of the core model after the caulking. 1 distance And obtaining a second distance between the extracted node and the other of the pair of nodes adjacent to the extracted node among the nodes on the contour of the core model after caulking. And calculating the half of the sum of the first distance and the second distance as the contact length of the extracted nodes, and the contact lengths calculated for all the extracted nodes. A step of obtaining a sum, a step of calculating a value obtained by dividing the sum of the volume resistivity of the core wire and the volume resistivity of the caulking piece by 8 times the sum obtained by the sum calculation means, as the crimping performance coefficient, Is a method of calculating the crimping performance coefficient by sequentially performing.
 また、本発明者は、設計者の経験に左右されることなく、シミュレーションによって接触抵抗に応じた接触性能係数を算出する接触性能係数算出装置及び接触性能係数算出方法を得るべく検討を重ねた結果、下記の式(3)及び(2)に示す接触性能係数CCが接触抵抗Rに応じた値となることを見出し、本発明を完成するに至った。
Figure JPOXMLDOC01-appb-M000002
Further, the inventor has repeatedly studied to obtain a contact performance coefficient calculation device and a contact performance coefficient calculation method for calculating a contact performance coefficient according to contact resistance by simulation without being influenced by the experience of the designer. The inventors have found that the contact performance coefficient CC shown in the following formulas (3) and (2) is a value corresponding to the contact resistance R, and have completed the present invention.
Figure JPOXMLDOC01-appb-M000002
 なお、図11(B)に示すように、PSKは有限要素法を実行して得た圧着後(かしめた後)の芯線モデル3mの輪郭上の節のうちかしめ片モデル2mに接触する節NSKからかしめ片モデル2mに作用する力である。Lk+1は節NSK、及び、芯線モデル3mの輪郭上の節のうち節NSKに隣接する節Nk+1との距離であり、Lk-1は節NSKと芯線モデル3mの輪郭上の節のうち節NSKに隣接する節Nk-1との距離である。nは、芯線モデル3mの輪郭上の節のうちかしめ片モデル2mに接触する節NSKの総数である。 As shown in FIG. 11B, PSK is a node that contacts the crimped piece model 2m among the nodes on the contour of the core wire model 3m after crimping (after crimping) obtained by executing the finite element method. N SK is the force acting on the caulking piece model 2m. L k + 1 sections N SK, and a distance between the node N k + 1 adjacent to the inner section N SK sections on the contour of the core wire model 3m, L k-1 sections N SK and the core wire model 3m This is the distance from the node N k-1 adjacent to the node N SK among the nodes on the contour of the. n is the total number of nodes N SK contacting the crimping pieces model 2m of sections on the contour of the core wire model 3m.
 即ち、本発明は、端子金具に設けられたかしめ片と前記かしめ片にかしめられる芯線との接触抵抗に応じた接触性能係数を算出する接触性能係数算出装置であって、前記芯線を複数の要素に分割した芯線モデルを取得する芯線モデル取得手段と、前記かしめ片を複数の要素に分割したかしめ片モデルを取得するかしめ片モデル取得手段と、上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位及び各節に作用する力を有限要素法により算出する変形算出手段と、前記変形算出手段により算出された前記各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する節抽出手段と、前記節抽出手段により抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の一方との間の第1の距離を求める第1の距離算出手段と、前記節抽出手段により抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の他方との間の第2の距離を求める第2の距離算出手段と、前記第1の距離及び前記第2の距離の和の1/2を前記節抽出手段により抽出された節の接触長さとして求める接触長さ算出手段と、前記節抽出手段により抽出された全ての節について求めた前記接触長さと前記節抽出手段により抽出された節が前記かしめ片モデルに作用する力とを乗じた値の総和を求めて、当該総和の逆数を前記接触性能係数として求める接触性能係数算出手段と、を備えた接触性能係数算出装置である。 That is, the present invention is a contact performance coefficient calculation device for calculating a contact performance coefficient according to the contact resistance between a caulking piece provided on a terminal fitting and a caulking piece caulked to the caulking piece, wherein the core wire includes a plurality of elements. A core wire model acquisition means for acquiring a core wire model divided into a plurality of elements, a caulking piece model acquisition means for acquiring a caulking piece model obtained by dividing the caulking piece into a plurality of elements, and the core wire sandwiched between an upper die and a lower die Deformation calculating means for calculating the displacement and the force acting on each node constituting the core model and the caulking piece model after the caulking piece by the finite element method, and the deformation calculating means A node extracting means for extracting a node in contact with the caulking piece model from the nodes on the contour of the core model after the caulking from the displacement of each node, and the node extracting means First distance calculation for obtaining a first distance between one of the pair of nodes adjacent to the node extracted by the node extraction means among the nodes on the contour of the core model after caulking Means between the node extracted by the node extracting unit and the other of the pair of nodes adjacent to the node extracted by the node extracting unit among the nodes on the contour of the core model after the caulking A second distance calculation means for obtaining a distance of 2, and a contact length calculation for obtaining a contact length of a node extracted by the node extraction means as ½ of the sum of the first distance and the second distance A total sum of values obtained by multiplying the force acting on the caulking piece model by the means and the contact length obtained for all the nodes extracted by the node extracting means and the nodes extracted by the node extracting means; Obtain the reciprocal of the sum as the contact performance coefficient The contact performance coefficient calculating means, the contact performance coefficient calculation device equipped with.
 また、本発明は、端子金具に設けられたかしめ片と前記かしめ片にかしめられる芯線との接触抵抗に応じた接触性能係数を算出する接触性能係数算出方法であって、前記芯線を複数の要素に分割した芯線モデル及び前記かしめ片を複数の要素に分割したかしめ片モデルを取得する工程と、上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位及び各節に作用する力を有限要素法により算出する工程と、前記算出された各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する工程と、前記抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の一方との間の第1の距離を求める工程と、前記抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の他方との間の第2の距離を求める工程と、前記第1の距離及び前記第2の距離の和の1/2を前記抽出された節の接触長さとして求める工程と、前記抽出された全ての節について求めた前記接触長さと前記抽出された節が前記かしめ片モデルに作用する力とを乗じた値の総和を求めて、当該総和の逆数を前記接触性能係数として求める工程と、を順次行う接触性能係数算出方法である。 Further, the present invention is a contact performance coefficient calculation method for calculating a contact performance coefficient according to contact resistance between a caulking piece provided on a terminal fitting and a caulking piece caulked to the caulking piece, wherein the core wire includes a plurality of elements. A core line model divided into a plurality of elements and a caulking piece model obtained by dividing the caulking piece into a plurality of elements, and the core wire model after caulking the core wire with the caulking pieces sandwiched between an upper mold and a lower mold, and Calculating a displacement of each node constituting the crimped piece model and a force acting on each node by a finite element method, and a node on the contour of the core model after the crimping from the calculated displacement of each node One of a pair of nodes adjacent to the extracted node out of the extracted nodes and the nodes on the outline of the core model after caulking. When A first distance between the extracted node and the other of the pair of nodes adjacent to the extracted node among the nodes on the contour of the core model after the caulking A step of obtaining a distance of 2, a step of obtaining ½ of a sum of the first distance and the second distance as a contact length of the extracted nodes, and obtaining all of the extracted nodes. Calculating a contact performance coefficient by sequentially calculating a sum of values obtained by multiplying the contact length and a force acting on the caulking piece model by the extracted node, and obtaining a reciprocal of the sum as the contact performance coefficient. Is the method.
 以上説明したように本発明によれば、シミュレーションによって接触抵抗に応じた圧着性能係数を算出することができるので、設計者の経験に左右されることなく、端子金具と芯線との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができる。 As described above, according to the present invention, since the crimping performance coefficient corresponding to the contact resistance can be calculated by simulation, it is possible to determine the connection design between the terminal fitting and the core wire regardless of the designer's experience. It is possible to support so that it can be performed easily and in a short time.
 また、本発明によれば、シミュレーションによって接触抵抗に応じた接触性能係数を算出することができるので、設計者の経験に左右されることなく、端子金具と芯線との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができる。 In addition, according to the present invention, since the contact performance coefficient corresponding to the contact resistance can be calculated by simulation, anyone can easily design the connection between the terminal fitting and the core wire without being influenced by the experience of the designer. In addition, it is possible to assist so that it can be performed in a short time.
本発明の圧着性能係数算出方法を実施した圧着性能係数算出装置の一実施の形態を示すブロック図である。It is a block diagram which shows one Embodiment of the crimping performance coefficient calculation apparatus which implemented the crimping performance coefficient calculation method of this invention. 図1に示すCPUの解析シミュレーション処理手順を示すフローチャートである。It is a flowchart which shows the analysis simulation process procedure of CPU shown in FIG. 図2に示す変形算出処理を説明するための説明図である。It is explanatory drawing for demonstrating the deformation | transformation calculation process shown in FIG. 接触抵抗を説明するための説明図である。It is explanatory drawing for demonstrating contact resistance. (A)は図2に示す変形算出処理結果を説明するための説明図であり、(B)は(A)のX部の拡大図である。(A) is explanatory drawing for demonstrating the deformation | transformation calculation process result shown in FIG. 2, (B) is an enlarged view of the X section of (A). サンプル品(1)~(5)に対応する芯線、端子金具及び圧着型の種類、接触抵抗の序列、圧着性能係数の序列を示す表である。4 is a table showing the types of core wires, terminal fittings and crimping molds, order of contact resistance, and order of crimping performance coefficients corresponding to sample products (1) to (5). 導体圧縮率に対応するサンプル品(1)~(5)の接触抵抗及び圧着性能係数を示すグラフである。6 is a graph showing contact resistance and crimping performance coefficient of sample products (1) to (5) corresponding to the conductor compressibility. 本発明の接触性能係数算出方法を実施した接触性能係数算出装置の一実施の形態を示すブロック図である。It is a block diagram which shows one Embodiment of the contact performance coefficient calculation apparatus which implemented the contact performance coefficient calculation method of this invention. 図8に示すCPUの解析シミュレーション処理手順を示すフローチャートである。It is a flowchart which shows the analysis simulation process procedure of CPU shown in FIG. 図9に示す変形算出処理を説明するための説明図である。It is explanatory drawing for demonstrating the deformation | transformation calculation process shown in FIG. (A)は図9に示す変形算出処理結果を説明するための説明図であり、(B)は(A)のX部の拡大図である。(A) is explanatory drawing for demonstrating the deformation | transformation calculation process result shown in FIG. 9, (B) is an enlarged view of the X section of (A). サンプル品(1)~(5)に対応する芯線、端子金具及び圧着型の種類、接触抵抗の序列、接触性能係数の序列を示す表である。7 is a table showing the types of core wires, terminal fittings and crimping dies, order of contact resistance, and order of contact performance coefficient corresponding to sample products (1) to (5). 導体圧縮率に対応するサンプル品(1)~(5)の接触抵抗及び接触性能係数を示すグラフである。を示すグラフである。7 is a graph showing contact resistance and contact performance coefficient of sample products (1) to (5) corresponding to conductor compressibility. It is a graph which shows. (A)は圧着接続に用いられる端子金具の形状を示す側面図であり、(B)は圧着作業に用いられるアンビルとクリンパとの形状を示す図であり、(C)は端子金具と芯線との圧着作業中の状態を示す図であり、(D)は端子金具と芯線との圧着後の状態を示す図である。(A) is a side view which shows the shape of the terminal metal fitting used for crimping connection, (B) is a figure which shows the shape of the anvil and crimper used for crimping work, (C) is a terminal metal fitting and a core wire. It is a figure which shows the state in the time of a crimping | compression-bonding operation | work, (D) is a figure which shows the state after crimping | bonding of a terminal metal fitting and a core wire. 圧着接続を行った際のクリンプ高さ対固着力及び接触抵抗の関係を示すグラフである。It is a graph which shows the relationship between crimp height at the time of crimping | bonding connection, sticking force, and contact resistance.
符号の説明Explanation of symbols
 1   端子金具
 2   かしめ片
 3   芯線
 4   クリンパ(上型)
 5   アンビル(下型)
 6   圧着性能係数算出装置
 106   接触性能係数算出装置
 10,110  CPU
 Lk+1  距離(第1の距離)
 Lk-1  距離(第2の距離)
 N   節
 N  節
 NSk  節
1 Terminal fitting 2 Caulking piece 3 Core wire 4 Crimper (upper mold)
5 Anvil (bottom)
6 Crimping performance coefficient calculating device 106 Contact performance coefficient calculating device 10,110 CPU
L k + 1 distance (first distance)
L k-1 distance (second distance)
N nodes N S node N Sk clause
 以下、本発明の圧着性能係数算出装置及び圧着性能係数算出方法を図面に基づいて説明する。図1に示す圧着性能係数算出装置6は、例えばパーソナルコンピュータから構成されていて、端子金具1と芯線3とを圧着して接続する際に、実際の圧着接続に先立って端子金具1-芯線3間の接触抵抗Rに応じた圧着性能係数RCLを算出するための装置である。 Hereinafter, the crimping performance coefficient calculation device and the crimping performance coefficient calculation method of the present invention will be described based on the drawings. The crimping performance coefficient calculation device 6 shown in FIG. 1 is composed of, for example, a personal computer. When the terminal fitting 1 and the core wire 3 are crimped and connected, the terminal fitting 1 to the core wire 3 prior to the actual crimping connection. This is a device for calculating a crimping performance coefficient R CL corresponding to the contact resistance R between the two.
 同図に示すように、圧着性能係数算出装置6は、入力装置7と、表示装置8と、マイクロコンピュータ9と、を備えている。入力装置7は、例えばキーボードや、マウスといった操作手段などから構成されていて、従来技術で説明した端子金具1のかしめ片2、芯線3、クリンパ4及びアンビル5の形状情報と、かしめ片2及び芯線3の材料の応力-歪特性である材料特性情報を入力するための装置である。上記形状情報としては、例えばCADで作成したかしめ片2、芯線3、クリンパ4及びアンビル5のCADデータなどが考えられる。 As shown in the figure, the crimping performance coefficient calculation device 6 includes an input device 7, a display device 8, and a microcomputer 9. The input device 7 is composed of operation means such as a keyboard and a mouse, for example, and includes information on the shape of the crimping piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 described in the prior art, and the crimping piece 2 and This is a device for inputting material property information which is a stress-strain property of the material of the core wire 3. As the shape information, for example, CAD data of the caulking piece 2, the core wire 3, the crimper 4, and the anvil 5 created by CAD can be considered.
 表示装置8は、例えば算出した圧着性能係数RCLを表示するための装置である。マイクロコンピュータ9は、圧着性能係数算出装置6全体の制御を司り処理プログラムに従って各種の処理を行う中央演算処理ユニット(以下CPU)10と、CPU10が行う処理のプログラムなどを格納した読出専用のメモリであるROM11と、CPU10での各種の処理過程で利用するワークエリア、各種データを格納するデータ記憶エリアなどを有する読出書込自在のメモリであるRAM12と、を有している。 The display device 8 is a device for displaying, for example, the calculated crimping performance coefficient RCL . The microcomputer 9 is a read-only memory that stores a central processing unit (hereinafter referred to as CPU) 10 that controls the entire crimping performance coefficient calculation device 6 and performs various processes according to a processing program, and a program for processing performed by the CPU 10. A ROM 11 and a RAM 12 which is a readable / writable memory having a work area used in various processing steps in the CPU 10 and a data storage area for storing various data are included.
 次に、上述した構成の圧着性能係数算出装置6の動作について図2~図4を参照して以下説明する。まず、入力装置7によって解析シミュレーション処理の開始操作が行われると、CPU10は、解析シミュレーション処理を開始する。まず、CPU10は、上述した端子金具1のかしめ片2、芯線3、クリンパ4及びアンビル5の形状情報と、かしめ片2及び芯線3の材料特性情報を入力させるための入力画面を表示装置8に表示させる入力処理を行う(図2のステップS1)。 Next, the operation of the crimping performance coefficient calculation device 6 having the above-described configuration will be described below with reference to FIGS. First, when an analysis simulation process start operation is performed by the input device 7, the CPU 10 starts the analysis simulation process. First, the CPU 10 displays on the display device 8 an input screen for inputting the shape information of the crimping piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 and the material characteristic information of the crimping piece 2 and the core wire 3. An input process for display is performed (step S1 in FIG. 2).
 ユーザは、表示装置8の表示に従って入力装置7のキーボードやマウスといった操作手段を操作して上記形状情報、材料特性情報を入力させる。なお、端子金具1の種類A、B、C…、芯線3の種類A、B、C…、圧着型であるクリンパ4及びアンビル5の種類A、B、C…に応じた形状情報、材料特性情報を予めROM11内に記録させて、ユーザにより端子金具1、芯線3、圧着型であるクリンパ4及びアンビル5の種類を選択させることで、上記形状情報、材料情報を入力させるようにしてもよい。 The user operates the operation means such as the keyboard and mouse of the input device 7 in accordance with the display on the display device 8 to input the shape information and material property information. The shape information and material characteristics according to the types A, B, C,... Of the terminal fitting 1, the types A, B, C,... Of the core wire 3, and the types A, B, C,. Information may be recorded in the ROM 11 in advance, and the user may be allowed to input the shape information and material information by selecting the types of the terminal fitting 1, the core wire 3, the crimper type crimper 4 and the anvil 5. .
 その後、CPU10は、有限要素モデル変換処理を行う(ステップS2)。有限要素モデル変換処理においてCPU10は、図3(A)に示すように、上記入力処理によって入力されたかしめ片2及び芯線3をそれぞれ複数の要素に分割したかしめ片モデル2m及び芯線モデル3mに変換する。この有限要素モデル変換処理においてCPU10は、芯線モデル取得手段、かしめ片モデル取得手段として機能する。 Thereafter, the CPU 10 performs a finite element model conversion process (step S2). In the finite element model conversion processing, as shown in FIG. 3A, the CPU 10 converts the crimped piece 2 and the core wire 3 input by the input processing into a crimped piece model 2m and a core wire model 3m, each of which is divided into a plurality of elements. To do. In this finite element model conversion process, the CPU 10 functions as a core wire model acquisition unit and a caulking piece model acquisition unit.
 次に、CPU10は、変形算出処理を行う(ステップS3)。変形算出処理においてCPU10は、図3(B)~(D)に示すように、有限要素法を用いてクリンパ4とアンビル5との間に挟んで芯線3をかしめ片2によりかしめた後にクリンパ4及びアンビル5を離してかしめ片2及び芯線3に加えられた負荷を除荷した後の芯線モデル3m及びかしめ片モデル2mを構成する各節Nの変位を算出する。この変形算出処理においてCPU10は、変形算出手段として機能する。 Next, the CPU 10 performs a deformation calculation process (step S3). In the deformation calculation process, as shown in FIGS. 3B to 3D, the CPU 10 crimps the core wire 3 with the caulking piece 2 with the crimper 4 sandwiched between the crimper 4 and the anvil 5 using the finite element method. And the displacement of each node N which comprises the core wire model 3m and the caulking piece model 2m after releasing the anvil 5 and unloading the load applied to the caulking piece 2 and the core wire 3 is calculated. In this deformation calculation process, the CPU 10 functions as a deformation calculation unit.
 上記クリンパ4及びアンビル5を近づけてかしめ片2をかしめた後にクリンパ4及びアンビル5を離してかしめ片2及び芯線3に加えられた負荷を除荷すると、かしめ片2及び芯線3にはスプリングバックと呼ばれる弾性回復現象が生じる。よって、上記変形算出処理により、スプリングバック後の芯線モデル3m及びかしめ片モデル2mを構成する各節Nの変位を算出することができる。 When the crimper 4 and the anvil 5 are brought close to each other and the crimping piece 2 is caulked and then the crimper 4 and the anvil 5 are released to remove the load applied to the caulking piece 2 and the core wire 3, the caulking piece 2 and the core wire 3 are spring-backed. This causes an elastic recovery phenomenon called. Therefore, the displacement calculation process can calculate the displacement of each node N constituting the core model 3m and the caulking piece model 2m after the spring back.
 その後、CPU10は、ステップS4~S6を実行して、上記変形算出処理によって求めた各節Nの変位からかしめ片2及び芯線3間の接触抵抗Rに応じた後述する圧着性能係数RCLを求める。上記接触抵抗Rは、下記の式(4)に示すように、集中抵抗Rcと皮膜抵抗Rfの和である。
R=Rc+Rf …(4)
Thereafter, the CPU 10 executes steps S4 to S6 to obtain a later-described crimping performance coefficient R CL corresponding to the contact resistance R between the crimping piece 2 and the core wire 3 from the displacement of each node N obtained by the deformation calculation process. . The contact resistance R is the sum of the concentrated resistance Rc and the film resistance Rf as shown in the following formula (4).
R = Rc + Rf (4)
 今、図5に示すように、かしめ片2と芯線3とが半径a1、a2…の複数の接触面S1、S2…で接触しているとすると、集中抵抗Rc、皮膜抵抗Rfは下記の式(5)及び(6)で各々求めることができる。 As shown in FIG. 5, if the crimping piece 2 and the core wire 3 are in contact at a plurality of contact surfaces S 1 , S 2 ... Having radii a 1 , a 2 . Can be obtained by the following equations (5) and (6), respectively.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
なお、ρ1は芯線3の体積抵抗率であり、ρ2はかしめ片2の体積抵抗率である。 In addition, ρ1 is the volume resistivity of the core wire 3, and ρ2 is the volume resistivity of the caulking piece 2.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
なお、ρfは金属皮膜13(図5)の体積抵抗率であり、dは金属皮膜13の厚さ(一定と仮定)である。 Here, ρf is the volume resistivity of the metal film 13 (FIG. 5), and d is the thickness of the metal film 13 (assuming constant).
 上記金属皮膜13の厚さdは非常に薄い。よって、皮膜抵抗Rfは0に近いと考えられる。よって、式(5)及び(6)から明らかなように、接触抵抗Rは、芯線3の体積抵抗率ρ1とかしめ片2の体積抵抗率ρ2との和が大きくなるに従って大きくなる。また、接触抵抗Rは、かしめ片2及び芯線3間の接触面積が大きくなるに従って小さくなる。そこで、CPU10は、下記のステップS4及びS5を実行して、図3に示すような断面上のかしめ片2及び芯線3間の接触長さを接触面積に応じた値として求める。 The thickness d of the metal film 13 is very thin. Therefore, the film resistance Rf is considered to be close to zero. Therefore, as is apparent from the equations (5) and (6), the contact resistance R increases as the sum of the volume resistivity ρ1 of the core wire 3 and the volume resistivity ρ2 of the caulking piece 2 increases. Further, the contact resistance R decreases as the contact area between the caulking piece 2 and the core wire 3 increases. Therefore, the CPU 10 executes the following steps S4 and S5 to obtain the contact length between the caulking piece 2 and the core wire 3 on the cross section as shown in FIG. 3 as a value corresponding to the contact area.
 即ち、CPU10は、節抽出手段として働き、上述した変形算出処理により算出された各節Nの変位からスプリングバック後の芯線モデル3mの輪郭上の節Nのうちかしめ片モデル2mに接触する節NSを抽出する節抽出処理を行う(ステップS4)。結果を図5(A)に示す。同図に示すように、節抽出処理を行った結果、例えば総数n個の節NSが抽出される。なお、図5(A)中のPSはステップS4で抽出した芯線モデル3m上の節NSに作用する力、即ち、ステップS4で抽出した芯線モデル3m上の節NSからかしめ片モデル2mに作用する接触圧力を示す。次に、CPU10は、第1の距離算出手段、第2の距離算出手段、接触長さ算出手段として働き、節抽出処理により抽出した各節NSにおけるスプリングバック後のかしめ片2と芯線3との接触長さを求める接触長さ算出処理を行う(ステップS5)。図5(B)に示すように、かしめ片モデル2mと芯線モデル3mとは点(節)で接触しているが、本発明者は、実際にはステップS4で抽出された任意の節NSkでは、下記の式(2)で示す接触長さLkで接触していると仮定した。
k=(Lk+1+Lk-1)/2 …(2)
That is, the CPU 10 functions as a node extracting means, and the node N that contacts the caulking piece model 2m among the nodes N on the contour of the core model 3m after the spring back from the displacement of each node N calculated by the deformation calculation process described above. A node extraction process for extracting S is performed (step S4). The results are shown in FIG. As shown in the figure, as a result of the clause extraction process, for example, the total number of n nodes N S are extracted. Incidentally, P S in FIG. 5 (A) force acting on the node N S on the core wire model 3m extracted in step S4, i.e., the crimping pieces model 2m from node N S on the core wire model 3m extracted in step S4 The contact pressure acting on is shown. Then, CPU 10 has the first distance calculating unit, the second distance calculating means, serves as a contact length calculating unit, a crimping piece 2 and the core wire 3 after the spring-back at each node N S extracted by clause extraction process The contact length calculation process for obtaining the contact length is performed (step S5). As shown in FIG. 5 (B), the caulking piece model 2m and the core wire model 3m are in contact with each other at a point (node), but the present inventor actually made an arbitrary node N Sk extracted in step S4. Therefore, it is assumed that the contact is made with the contact length L k shown by the following formula (2).
L k = (L k + 1 + L k-1 ) / 2 (2)
 なお、Lk+1は抽出された任意の節NSk及び節Nk+1間の距離(第1の距離)である。上記節Nk+1は、芯線モデル3mの輪郭上の節Nのうち節NSkに隣接する一対の節Nk+1、Nk-1の一方である。Lk-1は抽出された任意の節NSk及び節Nk-1間の距離(第2の距離)である。上記節Nk-1は、芯線モデル3mの輪郭上の節Nのうち節NSkに隣接する一対の節Nk+1、Nk-1の他方である。 Note that L k + 1 is the distance (first distance) between any extracted node N Sk and node N k + 1 . The node N k + 1 is one of a pair of nodes N k + 1 and N k−1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m. L k-1 is a distance (second distance) between the extracted arbitrary nodes N Sk and N k-1 . The node N k-1 is the other of the pair of nodes N k + 1 and N k-1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m.
 次に、CPU10は、圧着性能係数算出手段として働き、下記の式(1)に示すように、ステップS4で抽出された全ての、即ち総数n個の節NSについて求めた接触長さLkの総和を求めて、芯線3の体積抵抗率ρ1とかしめ片2の体積抵抗率ρ2との和を接触長さLkの総和の8倍で除した値を圧着性能係数RCLとして求める圧着性能係数算出処理を行った後(ステップS6)、その算出した圧着性能係数RCLを表示装置8に表示して(ステップ7)、解析シミュレーション処理を終了する。 Next, the CPU 10 functions as a crimping performance coefficient calculation unit, and as shown in the following equation (1), the contact length L k obtained for all the nodes N S extracted in step S4, that is, the total number of nodes NS. Crimping performance obtained by dividing the sum of the volume resistivity ρ1 of the core wire 3 and the volume resistivity ρ2 of the caulking piece 2 by 8 times the sum of the contact lengths L k as the crimping performance coefficient R CL After performing the coefficient calculation process (step S6), the calculated crimping performance coefficient R CL is displayed on the display device 8 (step 7), and the analysis simulation process is terminated.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記圧着性能係数RCLは、式(1)からも明らかなように、接触抵抗Rと同様に(ρ1+ρ2)が大きくなるに従って大きくなる係数である。また、圧着性能係数RCLは、かしめ片2及び芯線3間の接触長さ(面積)Lkが大きくなるに従って小さくなる係数である。即ち、本発明者は、上記式(1)に示す圧着性能係数RCLが接触抵抗Rに応じた値になるだろうと仮定した。 As is apparent from the equation (1), the crimping performance coefficient R CL is a coefficient that increases as (ρ1 + ρ2) increases as in the case of the contact resistance R. The crimping performance coefficient R CL is a coefficient that decreases as the contact length (area) L k between the crimping piece 2 and the core wire 3 increases. That is, the present inventor assumed that the crimping performance coefficient R CL shown in the above formula (1) would be a value corresponding to the contact resistance R.
 次に、本発明の発明者は、図6に示すサンプル品(1)~(5)について前述した本発明品を用いて算出した圧着性能係数RCLと、図6に示すサンプル品(1)~(5)を実際に試作して冷熱衝突試験を実行した後に計測した接触抵抗Rと、比較した。結果を図7に示す。サンプル品(1)は、種類Aの芯線3、種類Aの端子金具1、種類Aの圧着型(クリンパ4、アンビル5)を用いて、芯線3を端子金具1のかしめ片2でかしめた品である。同様に、サンプル品(2)は種類Aの芯線3、種類Bの端子金具1、種類Aの圧着型、サンプル品(3)は種類Aの芯線3、種類Aの端子金具1、種類Bの圧着型、サンプル品(4)は種類Aの芯線3、種類Cの端子金具1、種類Aの圧着型、サンプル品(5)は種類Aの芯線3、種類Aの端子金具1、種類Cの圧着型を各々用いて、芯線3を端子金具1のかしめ片2でかしめた品である。 Next, the inventor of the present invention uses the crimping performance coefficient R CL calculated using the product of the present invention described above for the sample products (1) to (5) shown in FIG. 6, and the sample product (1) shown in FIG. A comparison was made with the contact resistance R measured after actually making a prototype of (5) to (5) and executing the cold collision test. The results are shown in FIG. Sample product (1) is a product in which core wire 3 is crimped with crimping piece 2 of terminal metal fitting 1 using type A core wire 3, type A terminal metal fitting 1, type A crimping type (crimper 4, anvil 5). It is. Similarly, the sample product (2) is of type A core wire 3, type B terminal fitting 1, type A crimping type, and the sample product (3) is type A core wire 3, type A terminal fitting 1, type B Crimp type, sample product (4) is type A core wire 3, type C terminal fitting 1, type A crimp type, sample product (5) is type A core wire 3, type A terminal fitting 1, type C Each of the crimping molds is used to crimp the core wire 3 with the crimping piece 2 of the terminal fitting 1.
 図7に示すように、実測値である導体圧縮比率%(=クリンプ高さ)に応じた接触抵抗Rは、サンプル品(4)、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で大きくなる。よって、実測品の性能としては、サンプル品(4)が1番良く、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で悪くなる。 As shown in FIG. 7, the contact resistance R according to the measured conductor compression ratio% (= crimp height) is the sample product (4), sample product (3), sample product (2), sample product ( 1) The sample product (5) increases in this order. Therefore, as the performance of the actually measured product, the sample product (4) is the best, and the sample product (3), the sample product (2), the sample product (1), and the sample product (5) become worse in this order.
 これに対して、シミュレーション値である導体圧縮比率%に応じた圧着性能係数RCLも、サンプル品(4)、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で大きくなる。よって、実測品と同様に、シミュレーション値である圧着性能係数RCLからもサンプル品(4)が1番良く、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で悪くなることが分かる。即ち、式(1)に示す圧着性能係数RCLが接触抵抗Rに応じた値になっていることが分かった。 In contrast, the crimping performance coefficient R CL corresponding to the conductor compression ratio%, which is a simulation value, is also the sample product (4), sample product (3), sample product (2), sample product (1), sample product ( Increase in the order of 5). Therefore, similarly to the actual measurement product, the sample product (4) is the best from the crimping performance coefficient R CL which is a simulation value, and the sample product (3), sample product (2), sample product (1), sample product ( It turns out that it gets worse in the order of 5). That is, it was found that the crimping performance coefficient R CL shown in the equation (1) is a value corresponding to the contact resistance R.
 上述した圧着性能係数算出装置6によれば、実際に複数のサンプル品を作ってその接触抵抗Rを実測しなくても、シミュレーション値である圧着性能係数RCLを算出することにより、複数のサンプル品の接触抵抗Rの大きさを比較することができる。このため、設計者の経験に左右されることなく、端子金具1と芯線3との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができる。 According to the crimping performance coefficient calculation device 6 described above, a plurality of samples can be obtained by calculating the crimping performance coefficient R CL which is a simulation value without actually making a plurality of sample products and actually measuring the contact resistance R. The magnitude of the contact resistance R of the product can be compared. For this reason, it can support that anyone can perform the connection design of the terminal metal fitting 1 and the core wire 3 easily and in a short time without being influenced by a designer's experience.
 なお、上述した実施形態によれば、入力処理によって入力されたかしめ片2及び芯線3をそれぞれかしめ片モデル2m及び芯線モデル3mに変換する有限要素モデル変換処理を設けていたが、本発明はこれに限ったものではない。例えば、端子金具1の種類A、B、C…に応じたかしめ片モデル2m及び芯線3の種類A、B、C…に応じた芯線モデル3mを予めROM11内に記録させて、ユーザにより端子金具1及び芯線3の種類を選択させることで、入力処理によって上記かしめ片モデル2m、芯線モデル3mを入力させるようにしてもよい。この場合、有限要素モデル変換処理を行う必要がない。 According to the above-described embodiment, the finite element model conversion process for converting the caulking piece 2 and the core wire 3 input by the input process into the caulking piece model 2m and the core wire model 3m, respectively, is provided. It is not limited to. For example, the caulking piece model 2m corresponding to the types A, B, C... Of the terminal fitting 1 and the core wire model 3m corresponding to the types A, B, C. By selecting the type of 1 and the core wire 3, the caulking piece model 2m and the core wire model 3m may be input by input processing. In this case, it is not necessary to perform a finite element model conversion process.
 次に、本発明の接触性能係数算出装置及び接触性能係数算出方法を図面に基づいて説明する。図8に示す接触性能係数算出装置106は、例えばパーソナルコンピュータから構成されていて、端子金具1と芯線3とを圧着して接続する際に、実際の圧着接続に先立って端子金具1-芯線3間の接触抵抗Rに応じた接触性能係数CCを算出するための装置である。 Next, the contact performance coefficient calculation device and the contact performance coefficient calculation method of the present invention will be described with reference to the drawings. The contact performance coefficient calculation device 106 shown in FIG. 8 is constituted by, for example, a personal computer, and when the terminal fitting 1 and the core wire 3 are connected by crimping, the terminal fitting 1-core wire 3 prior to the actual crimping connection. This is a device for calculating a contact performance coefficient CC according to the contact resistance R between the two.
 同図に示すように、接触性能係数算出装置106は、入力装置107と、表示装置108と、マイクロコンピュータ9と、を備えている。入力装置107は、例えばキーボードや、マウスといった操作手段などから構成されていて、端子金具1のかしめ片2、芯線3、クリンパ4及びアンビル5の形状情報と、かしめ片2及び芯線3の材料の応力-歪特性である材料特性情報とを入力するための装置である。上記形状情報としては、例えばCADで作成したかしめ片2、芯線3、クリンパ4及びアンビル5のCADデータなどが考えられる。 As shown in the figure, the contact performance coefficient calculation device 106 includes an input device 107, a display device 108, and a microcomputer 9. The input device 107 is composed of operation means such as a keyboard and a mouse, for example, and includes information on the shape of the crimping piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 and the material of the crimping piece 2 and the core wire 3. This is a device for inputting material property information which is a stress-strain property. As the shape information, for example, CAD data of the caulking piece 2, the core wire 3, the crimper 4, and the anvil 5 created by CAD can be considered.
 表示装置108は、例えば算出した接触性能係数を表示するための装置である。マイクロコンピュータ109は、接触性能係数算出装置106全体の制御を司り処理プログラムに従って各種の処理を行う中央演算処理ユニット(以下CPU)110と、CPU110が行う処理のプログラムなどを格納した読出専用のメモリであるROM111と、CPU110での各種の処理過程で利用するワークエリア、各種データを格納するデータ記憶エリアなどを有する読出書込自在のメモリであるRAM112と、を有している。 The display device 108 is a device for displaying, for example, the calculated contact performance coefficient. The microcomputer 109 is a read-only memory that stores a central processing unit (hereinafter referred to as CPU) 110 that controls the entire contact performance coefficient calculation device 106 and performs various processes according to a processing program, and a program for processing performed by the CPU 110. A ROM 111 and a RAM 112 which is a readable / writable memory having a work area used in various processing steps in the CPU 110 and a data storage area for storing various data are included.
 次に、上述した構成の接触性能係数算出装置106の動作について図9~図11を参照して以下説明する。まず、入力装置107によって解析シミュレーション処理の開始操作が行われると、CPU110は、解析シミュレーション処理を開始する。まず、CPU110は、上述した端子金具1のかしめ片2、芯線3、クリンパ4及びアンビル5の形状情報と、かしめ片2及び芯線3の材料特性情報を入力させるための入力画面を表示装置108に表示させる入力処理を行う(図9のステップS1)。 Next, the operation of the contact performance coefficient calculating apparatus 106 having the above-described configuration will be described below with reference to FIGS. First, when an analysis simulation process start operation is performed by the input device 107, the CPU 110 starts the analysis simulation process. First, the CPU 110 displays on the display device 108 an input screen for inputting the shape information of the caulking piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 and the material characteristic information of the caulking piece 2 and the core wire 3. An input process for display is performed (step S1 in FIG. 9).
 ユーザは、表示装置108の表示に従って入力装置107のキーボードやマウスといった操作手段を操作して上記形状情報、材料特性情報を入力させる。なお、端子金具1の種類A、B、C…、芯線3の種類A、B、C…、圧着型であるクリンパ4及びアンビル5の種類A、B、C…に応じた形状情報、材料特性情報を予めROM111内に記録させて、ユーザにより端子金具1、芯線3、圧着型であるクリンパ4及びアンビル5の種類を選択させることで、上記形状情報、材料情報を入力させるようにしてもよい。 The user operates the operation means such as the keyboard and mouse of the input device 107 according to the display on the display device 108 to input the shape information and material property information. The shape information and material characteristics according to the types A, B, C,... Of the terminal fitting 1, the types A, B, C,... Of the core wire 3, and the types A, B, C,. Information may be recorded in the ROM 111 in advance, and the shape information and material information may be input by allowing the user to select the types of the terminal fitting 1, the core wire 3, the crimping crimper 4 and the anvil 5. .
 その後、CPU110は、有限要素モデル変換処理を行う(ステップS2)。有限要素モデル変換処理においてCPU110は、図10(A)に示すように、上記入力処理によって入力されたかしめ片2及び芯線3をそれぞれ複数の要素に分割したかしめ片モデル2m及び芯線モデル3mに変換する。この有限要素モデル変換処理においてCPU110は、芯線モデル取得手段、かしめ片モデル取得手段として機能する。 Thereafter, the CPU 110 performs a finite element model conversion process (step S2). In the finite element model conversion processing, as shown in FIG. 10A, the CPU 110 converts the crimped piece 2 and the core wire 3 input by the input processing into a crimped piece model 2m and a core wire model 3m, which are each divided into a plurality of elements. To do. In this finite element model conversion process, the CPU 110 functions as a core wire model acquisition unit and a caulking piece model acquisition unit.
 次に、CPU110は、変形算出処理を行う(ステップS3)。変形算出処理においてCPU110は、図10(B)~(D)に示すように、有限要素法を用いてクリンパ4とアンビル5との間に挟んで芯線3をかしめ片2によりかしめた後にクリンパ4及びアンビル5を離してかしめ片2及び芯線3に加えられた負荷を除荷した後の芯線モデル3m及びかしめ片モデル2mを構成する各節Nの変位及び各節Nに作用する力Pを算出する。この変形算出処理においてCPU110は、変形算出手段として機能する。 Next, the CPU 110 performs deformation calculation processing (step S3). In the deformation calculation process, as shown in FIGS. 10B to 10D, the CPU 110 crimps the core wire 3 with the crimping piece 2 with the crimper 4 sandwiched between the crimper 4 and the anvil 5 using the finite element method. The displacement of each node N constituting the core wire model 3m and the caulking piece model 2m after the load applied to the caulking piece 2 and the core wire 3 is released by separating the anvil 5 and the force P acting on each node N are calculated. To do. In this deformation calculation process, the CPU 110 functions as a deformation calculation unit.
 上記クリンパ4及びアンビル5を近づけてかしめ片2をかしめた後にクリンパ4及びアンビル5を離してかしめ片2及び芯線3に加えられた負荷を除荷すると、かしめ片2及び芯線3にはスプリングバックと呼ばれる弾性回復現象が生じる。よって、上記変形算出処理により、スプリングバック後の芯線モデル3m及びかしめ片モデル2mを構成する各節Nの変位及び各節Nに作用する力Pを算出することができる。 When the crimper 4 and the anvil 5 are brought close to each other and the crimping piece 2 is caulked and then the crimper 4 and the anvil 5 are released to remove the load applied to the caulking piece 2 and the core wire 3, the caulking piece 2 and the core wire 3 are spring-backed. This causes an elastic recovery phenomenon called. Therefore, the deformation calculation process can calculate the displacement of each node N and the force P acting on each node N constituting the core model 3m and the caulking piece model 2m after the spring back.
 その後、CPU110は、ステップS4~S6を実行して、上記変形算出処理によって求めた各節Nの変位及び各節Nに作用する力Pからかしめ片2及び芯線3間の接触抵抗Rに応じた後述する接触性能係数CCを求める。上記接触抵抗Rは、かしめ片2及び芯線3間の接触面積、接触圧力が大きくなるに従って小さくなる。そこで、CPU110は、下記のステップS4及びS5を実行して、図10に示すような断面上のかしめ片2及び芯線3間の接触長さを接触面積に応じた値として求める。 Thereafter, the CPU 110 executes steps S4 to S6 according to the contact resistance R between the caulking piece 2 and the core wire 3 from the displacement of each node N obtained by the deformation calculation process and the force P acting on each node N. A contact performance coefficient CC described later is obtained. The contact resistance R decreases as the contact area and contact pressure between the caulking piece 2 and the core wire 3 increase. Therefore, the CPU 110 executes the following steps S4 and S5 to obtain the contact length between the caulking piece 2 and the core wire 3 on the cross section as shown in FIG. 10 as a value corresponding to the contact area.
 即ち、CPU110は、節抽出手段として機能し、上述した変形算出処理により算出された各節Nの変位からスプリングバック後の芯線モデル3mの輪郭上の節Nのうちかしめ片モデル2mに接触する節NSを抽出する節抽出処理を行う(ステップS4)。結果を図11(A)に示す。同図に示すように、節抽出処理を行った結果、例えば総数n個の節NSが抽出される。なお、図11(A)中のPSはステップS4で抽出した芯線モデル3m上の節NSに作用する力、即ち、ステップS4で抽出した芯線モデル3m上の節NSからかしめ片2モデルに作用する接触圧力を示す。次に、CPU110は、第1の距離算出手段、第2の距離算出手段、接触長さ算出手段として機能し、節抽出処理により抽出した各節NSにおけるスプリングバック後のかしめ片2と芯線3との接触長さを求める接触長さ算出処理を行う(ステップS5)。図11(B)に示すように、かしめ片モデル2mと芯線モデル3mとは点(節)で接触しているが、本発明者は、実際にはステップS4で抽出された任意の節NSkでは、下記の式(2)で示す接触長さLkで接触していると仮定した。
k=(Lk+1+Lk-1)/2 …(2)
That is, the CPU 110 functions as a node extracting means, and the node that contacts the caulking piece model 2m of the nodes N on the contour of the core model 3m after the spring back from the displacement of each node N calculated by the deformation calculation process described above. performing clause extraction process for extracting the N S (step S4). The results are shown in FIG. As shown in the figure, as a result of the clause extraction process, for example, the total number of n nodes N S are extracted. Incidentally, P S is the force acting on the node N S on the core wire model 3m extracted in step S4 in FIG. 11 (A), the words, the caulking pieces 2 model from node N S on the core wire model 3m extracted in step S4 The contact pressure acting on is shown. Next, CPU 110 is the first distance calculating unit, the second distance calculating means, and functions as a contact length calculating unit, crimping piece 2 and the core wire 3 after the spring-back at each node N S extracted by clause extraction process The contact length calculation process for obtaining the contact length is performed (step S5). As shown in FIG. 11 (B), the caulking piece model 2m and the core wire model 3m are in contact with each other at a point (node), but the present inventor actually made an arbitrary node N Sk extracted in step S4. Therefore, it is assumed that the contact is made with the contact length L k shown by the following formula (2).
L k = (L k + 1 + L k-1 ) / 2 (2)
 なお、Lk+1は抽出された任意の節NSk及び節Nk+1間の距離(第1の距離)である。上記節Nk+1は、芯線モデル3mの輪郭上の節Nのうち節NSkに隣接する一対の節Nk+1、Nk-1の一方である。Lk-1は抽出された任意の節NSk及び節Nk-1間の距離(第2の距離)である。上記節Nk-1は、芯線モデル3mの輪郭上の節Nのうち節NSkに隣接する一対の節Nk+1、Nk-1の他方である。 Note that L k + 1 is the distance (first distance) between any extracted node N Sk and node N k + 1 . The node N k + 1 is one of a pair of nodes N k + 1 and N k−1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m. L k-1 is a distance (second distance) between the extracted arbitrary nodes N Sk and N k-1 . The node N k-1 is the other of the pair of nodes N k + 1 and N k-1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m.
 次に、CPU110は、接触性能係数算出手段として機能し、下記の式(3)に示すように、ステップS4で抽出された全ての、即ち総数n個の節NSについて求めた接触長さLkとステップS4で抽出された節NSがかしめ片モデル2mに作用する接触圧力PSKとを乗じた値の総和を求めて、当該総和の逆数を接触性能係数CCとして求める接触性能係数算出処理を行った後(ステップS6)、その算出した接触性能係数CCを表示装置108に表示して(ステップ7)、解析シミュレーション処理を終了する。
Figure JPOXMLDOC01-appb-M000006
Next, the CPU 110 functions as a contact performance coefficient calculation unit, and as shown in the following formula (3), the contact length L obtained for all the nodes N S extracted in step S4, that is, a total of n nodes NS. k and a node N S extracted in step S4 is the total sum of values obtained by multiplying the contact pressure P SK acting on crimping pieces model 2m, it obtains the reciprocal of the sum as the contact performance coefficient CC contact performance coefficient calculation process (Step S6), the calculated contact performance coefficient CC is displayed on the display device 108 (Step 7), and the analysis simulation process is terminated.
Figure JPOXMLDOC01-appb-M000006
 上記接触性能係数CCは、式(3)からも明らかなように、接触抵抗Rと同様にかしめ片2及び芯線3間の接触長さ(面積)Lk、接触圧力PSkが大きくなるに従って小さくなる係数である。即ち、本発明者は、上記式(3)に示す接触性能係数CCが接触抵抗Rに応じた値になるだろうと仮定した。 As is clear from the equation (3), the contact performance coefficient CC decreases as the contact length (area) L k between the caulking piece 2 and the core wire 3 and the contact pressure P Sk increase as in the case of the contact resistance R. Is a coefficient. That is, the present inventor assumed that the contact performance coefficient CC shown in the above formula (3) would be a value corresponding to the contact resistance R.
 次に、本発明の発明者は、図12に示すサンプル品(1)~(5)について前述した本発明品を用いて算出した接触性能係数CCと、図12に示すサンプル品(1)~(5)を実際に試作して冷熱衝突試験を実行した後に計測した接触抵抗Rと、比較した。結果を図13に示す。サンプル品(1)は、種類Aの芯線3、種類Aの端子金具1、種類Aの圧着型(クリンパ4、アンビル5)を用いて、芯線3を端子金具1のかしめ片2でかしめた品である。同様に、サンプル品(2)は種類Aの芯線3、種類Bの端子金具1、種類Aの圧着型、サンプル品(3)は種類Aの芯線3、種類Aの端子金具1、種類Bの圧着型、サンプル品(4)は種類Aの芯線3、種類Cの端子金具1、種類Aの圧着型、サンプル品(5)は種類Aの芯線3、種類Aの端子金具1、種類Cの圧着型を各々用いて、芯線3を端子金具1のかしめ片2でかしめた品である。 Next, the inventor of the present invention uses the contact performance coefficient CC calculated using the product of the present invention described above for the sample products (1) to (5) shown in FIG. 12, and the sample products (1) to (5) shown in FIG. Comparison was made with the contact resistance R measured after actually making a prototype of (5) and executing the thermal collision test. The results are shown in FIG. Sample product (1) is a product in which core wire 3 is crimped with crimping piece 2 of terminal metal fitting 1 using type A core wire 3, type A terminal metal fitting 1, type A crimping type (crimper 4, anvil 5). It is. Similarly, the sample product (2) is of type A core wire 3, type B terminal fitting 1, type A crimping type, and the sample product (3) is type A core wire 3, type A terminal fitting 1, type B Crimp type, sample product (4) is type A core wire 3, type C terminal fitting 1, type A crimp type, sample product (5) is type A core wire 3, type A terminal fitting 1, type C Each of the crimping molds is used to crimp the core wire 3 with the crimping piece 2 of the terminal fitting 1.
 図13に示すように、実測値である導体圧縮比率%(=クリンプ高さ)に応じた接触抵抗Rは、サンプル品(4)、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で大きくなる。よって、実測品の性能としては、サンプル品(4)が1番良く、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で悪くなる。 As shown in FIG. 13, the contact resistance R corresponding to the measured conductor compression ratio% (= crimp height) is the sample product (4), sample product (3), sample product (2), sample product ( 1) The sample product (5) increases in this order. Therefore, as the performance of the actually measured product, the sample product (4) is the best, and the sample product (3), the sample product (2), the sample product (1), and the sample product (5) become worse in this order.
 これに対して、シミュレーション値である導体圧縮比率%に応じた接触性能係数CCも、サンプル品(4)、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で大きくなる。よって、実測品と同様に、シミュレーション値である接触性能係数CCからもサンプル品(4)が1番良く、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で悪くなることが分かる。即ち、式(3)に示す接触性能係数CCが接触抵抗Rに応じた値になっていることが分かった。 In contrast, the contact performance coefficient CC corresponding to the conductor compression ratio%, which is a simulation value, is also the sample product (4), sample product (3), sample product (2), sample product (1), sample product (5). ) In order. Therefore, similarly to the actual measurement product, the sample product (4) is the best from the contact performance coefficient CC that is a simulation value, and the sample product (3), the sample product (2), the sample product (1), and the sample product (5) It turns out that it gets worse in the order of). That is, it was found that the contact performance coefficient CC shown in Equation (3) is a value corresponding to the contact resistance R.
 上述した接触性能係数算出装置106によれば、実際に複数のサンプル品を作ってその接触抵抗Rを実測しなくても、シミュレーション値である接触性能係数CCを算出することにより、複数のサンプル品の接触抵抗Rの大きさを比較することができる。このため、設計者の経験に左右されることなく、端子金具1と芯線3との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができる。 According to the contact performance coefficient calculation device 106 described above, a plurality of sample products can be obtained by calculating the contact performance coefficient CC, which is a simulation value, without actually making a plurality of sample products and actually measuring the contact resistance R. The magnitude of the contact resistance R can be compared. For this reason, it can support that anyone can perform the connection design of the terminal metal fitting 1 and the core wire 3 easily and in a short time without being influenced by a designer's experience.
 なお、上述した実施形態によれば、入力処理によって入力されたかしめ片2及び芯線3をそれぞれかしめ片モデル2m及び芯線モデル3mに変換する有限要素モデル変換処理を設けていたが、本発明はこれに限ったものではない。例えば、端子金具1の種類A、B、C…に応じたかしめ片モデル2m及び芯線3の種類A、B、C…に応じた芯線モデル3mを予めROM111内に記録させて、ユーザにより端子金具1及び芯線3の種類を選択させることで、入力処理によって上記かしめ片モデル2m、芯線モデル3mを入力させるようにしてもよい。この場合、有限要素モデル変換処理を行う必要がない。 According to the above-described embodiment, the finite element model conversion process for converting the caulking piece 2 and the core wire 3 input by the input process into the caulking piece model 2m and the core wire model 3m, respectively, is provided. It is not limited to. For example, the caulking piece model 2m corresponding to the types A, B, C... Of the terminal fitting 1 and the core wire model 3m corresponding to the types A, B, C. By selecting the type of 1 and the core wire 3, the caulking piece model 2m and the core wire model 3m may be input by input processing. In this case, it is not necessary to perform a finite element model conversion process.
 また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。 Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.
本出願は、2008年2月20日出願の日本特許出願(特願2008-038208)及び2008年2月20日出願の日本特許出願(特願2008-038209)、に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on the Japanese patent application filed on February 20, 2008 (Japanese Patent Application No. 2008-038208) and the Japanese patent application filed on February 20, 2008 (Japanese Patent Application No. 2008-038209), and its contents Is incorporated herein by reference.
 本発明によれば、シミュレーションによって接触抵抗に応じた圧着性能係数や接触性能係数を算出することができるので、設計者の経験に左右されることなく、端子金具と芯線との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができる。 According to the present invention, since the crimping performance coefficient and the contact performance coefficient corresponding to the contact resistance can be calculated by simulation, anyone can design the connection between the terminal fitting and the core wire without being influenced by the designer's experience. Can be supported easily and in a short time.

Claims (4)

  1.  端子金具に設けられたかしめ片と前記かしめ片にかしめられる芯線との接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出装置であって、
     前記芯線を複数の要素に分割した芯線モデルを取得する芯線モデル取得手段と、
     前記かしめ片を複数の要素に分割したかしめ片モデルを取得するかしめ片モデル取得手段と、
     上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位を有限要素法により算出する変形算出手段と、
     前記変形算出手段により算出された前記各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する節抽出手段と、
     前記節抽出手段により抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の一方との間の第1の距離を求める第1の距離算出手段と、
     前記節抽出手段により抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の他方との間の第2の距離を求める第2の距離算出手段と、
     前記第1の距離及び前記第2の距離の和の1/2を、前記節抽出手段により抽出された節の接触長さとして求める接触長さ算出手段と、
     前記節抽出手段により抽出された全ての節について求めた前記接触長さの総和を求める総和算出手段と、
     前記芯線の体積抵抗率と前記かしめ片の体積抵抗率との和を前記総和算出手段により求めた総和の8倍で除した値を前記圧着性能係数として算出する圧着性能係数算出手段と、
     を備えたことを特徴とする圧着性能係数算出装置。
    A crimping performance coefficient calculating device for calculating a crimping performance coefficient according to a contact resistance between a crimping piece provided on a terminal fitting and a core wire crimped on the crimping piece,
    A core wire model acquisition means for acquiring a core wire model obtained by dividing the core wire into a plurality of elements;
    A caulking piece model obtaining means for obtaining a caulking piece model obtained by dividing the caulking piece into a plurality of elements;
    Deformation calculation means for calculating displacement of each node constituting the core wire model and the caulking piece model after caulking the core wire with the caulking piece sandwiched between an upper die and a lower die; and
    A node extracting unit that extracts a node that contacts the caulking piece model from the nodes on the outline of the core model after the caulking from the displacement of each node calculated by the deformation calculating unit;
    A first distance between the node extracted by the node extraction unit and one of a pair of nodes adjacent to the node extracted by the node extraction unit among the nodes on the outline of the core model after the caulking First distance calculating means for obtaining
    A second distance between the node extracted by the node extraction unit and the other of the pair of nodes adjacent to the node extracted by the node extraction unit among the nodes on the outline of the core model after the caulking Second distance calculating means for obtaining
    Contact length calculating means for obtaining 1/2 of the sum of the first distance and the second distance as the contact length of the node extracted by the node extracting means;
    A sum total calculating means for calculating a sum of the contact lengths obtained for all the nodes extracted by the node extracting means;
    A crimping performance coefficient calculating unit that calculates a value obtained by dividing the sum of the volume resistivity of the core wire and the volume resistivity of the caulking piece by 8 times the total obtained by the total calculating unit, as the crimping performance coefficient;
    A crimping performance coefficient calculation device comprising:
  2.  端子金具に設けられたかしめ片と前記かしめ片にかしめられる芯線との接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出方法であって、
     前記芯線を複数の要素に分割した芯線モデル及び前記かしめ片を複数の要素に分割したかしめ片モデルを取得する工程と、
     上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位を有限要素法により算出する工程と、
     前記算出された各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する工程と、
     前記抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の一方との間の第1の距離を求める工程と、
     前記抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の他方との間の第2の距離を求める工程と、
     前記第1の距離及び前記第2の距離の和の1/2を前記抽出された節の接触長さとして求める工程と、
     前記抽出された全ての節について求めた前記接触長さの総和を求める工程と、
     前記芯線の体積抵抗率と前記かしめ片の体積抵抗率との和を前記総和算出手段により求めた総和の8倍で除した値を前記圧着性能係数として算出する工程と、
     を順次行うことを特徴とする圧着性能係数算出方法。
    A crimping performance coefficient calculation method for calculating a crimping performance coefficient according to a contact resistance between a crimping piece provided on a terminal fitting and a core wire crimped on the crimping piece,
    Obtaining a core wire model obtained by dividing the core wire into a plurality of elements and a caulking piece model obtained by dividing the caulking pieces into a plurality of elements;
    Calculating the displacement of each node constituting the core wire model and the caulking piece model after the caulking piece is caulked between the upper die and the lower die by the finite element method; and
    Extracting a node that contacts the caulking piece model from nodes on the outline of the core model after the caulking from the calculated displacement of each node;
    Obtaining a first distance between the extracted node and one of a pair of nodes adjacent to the extracted node among the nodes on the contour of the core model after caulking;
    Obtaining a second distance between the extracted node and the other of the pair of nodes adjacent to the extracted node among the nodes on the outline of the core model after the caulking;
    Obtaining 1/2 of the sum of the first distance and the second distance as the contact length of the extracted node;
    Determining the sum of the contact lengths determined for all the extracted nodes;
    Calculating the value obtained by dividing the sum of the volume resistivity of the core wire and the volume resistivity of the caulking piece by 8 times the total obtained by the total calculation means as the crimping performance coefficient;
    Are sequentially performed.
  3.  端子金具に設けられたかしめ片と前記かしめ片にかしめられる芯線との接触抵抗に応じた接触性能係数を算出する接触性能係数算出装置であって、
     前記芯線を複数の要素に分割した芯線モデルを取得する芯線モデル取得手段と、
     前記かしめ片を複数の要素に分割したかしめ片モデルを取得するかしめ片モデル取得手段と、
     上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位及び各節に作用する力を有限要素法により算出する変形算出手段と、
     前記変形算出手段により算出された前記各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する節抽出手段と、
     前記節抽出手段により抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の一方との間の第1の距離を求める第1の距離算出手段と、
     前記節抽出手段により抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の他方との間の第2の距離を求める第2の距離算出手段と、
     前記第1の距離及び前記第2の距離の和の1/2を、前記節抽出手段により抽出された節の接触長さとして求める接触長さ算出手段と、
     前記節抽出手段により抽出された全ての節について求めた前記接触長さと前記節抽出手段により抽出された節が前記かしめ片モデルに作用する力とを乗じた値の総和を求めて、当該総和の逆数を前記接触性能係数として求める接触性能係数算出手段と、
     を備えたことを特徴とする接触性能係数算出装置。
    A contact performance coefficient calculation device that calculates a contact performance coefficient according to a contact resistance between a caulking piece provided on a terminal fitting and a core wire caulked on the caulking piece,
    A core wire model acquisition means for acquiring a core wire model obtained by dividing the core wire into a plurality of elements;
    A caulking piece model obtaining means for obtaining a caulking piece model obtained by dividing the caulking piece into a plurality of elements;
    The core wire model after the core wire is caulked by the caulking piece sandwiched between the upper die and the lower die, the displacement of each node constituting the caulking piece model and the force acting on each node are calculated by the finite element method. Deformation calculation means;
    A node extracting unit that extracts a node that contacts the caulking piece model from the nodes on the outline of the core model after the caulking from the displacement of each node calculated by the deformation calculating unit;
    A first distance between the node extracted by the node extraction unit and one of a pair of nodes adjacent to the node extracted by the node extraction unit among the nodes on the outline of the core model after the caulking First distance calculating means for obtaining
    A second distance between the node extracted by the node extraction unit and the other of the pair of nodes adjacent to the node extracted by the node extraction unit among the nodes on the outline of the core model after the caulking Second distance calculating means for obtaining
    Contact length calculating means for obtaining 1/2 of the sum of the first distance and the second distance as the contact length of the node extracted by the node extracting means;
    The sum of values obtained by multiplying the contact lengths obtained for all the nodes extracted by the node extracting means and the force that the nodes extracted by the node extracting means act on the caulking piece model is obtained. Contact performance coefficient calculating means for obtaining the reciprocal as the contact performance coefficient;
    A contact performance coefficient calculation device comprising:
  4.  端子金具に設けられたかしめ片と前記かしめ片にかしめられる芯線との接触抵抗に応じた接触性能係数を算出する接触性能係数算出方法であって、
     前記芯線を複数の要素に分割した芯線モデル及び前記かしめ片を複数の要素に分割したかしめ片モデルを取得する工程と、
     上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位及び各節に作用する力を有限要素法により算出する工程と、
     前記算出された各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する工程と、
     前記抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の一方との間の第1の距離を求める工程と、
     前記抽出された節と前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の他方との間の第2の距離を求める工程と、
     前記第1の距離及び前記第2の距離の和の1/2を、前記抽出された節の接触長さとして求める工程と、
     前記抽出された全ての節について求めた前記接触長さと前記抽出された節が前記かしめ片モデルに作用する力とを乗じた値の総和を求めて、当該総和の逆数を前記接触性能係数として求める工程と、
     を順次行うことを特徴とする接触性能係数算出方法。
    A contact performance coefficient calculation method for calculating a contact performance coefficient according to contact resistance between a crimped piece provided on a terminal fitting and a core wire crimped on the crimped piece,
    Obtaining a core wire model obtained by dividing the core wire into a plurality of elements and a caulking piece model obtained by dividing the caulking pieces into a plurality of elements;
    The core wire model after the core wire is caulked by the caulking piece sandwiched between the upper die and the lower die, the displacement of each node constituting the caulking piece model and the force acting on each node are calculated by the finite element method. Process,
    Extracting a node that contacts the caulking piece model from nodes on the outline of the core model after the caulking from the calculated displacement of each node;
    Obtaining a first distance between the extracted node and one of a pair of nodes adjacent to the extracted node among the nodes on the contour of the core model after caulking;
    Obtaining a second distance between the extracted node and the other of the pair of nodes adjacent to the extracted node among the nodes on the outline of the core model after the caulking;
    Obtaining 1/2 of the sum of the first distance and the second distance as the contact length of the extracted node;
    The sum of values obtained by multiplying the contact lengths obtained for all the extracted nodes by the force acting on the caulking piece model by the extracted nodes is obtained, and the reciprocal of the sum is obtained as the contact performance coefficient. Process,
    The contact performance coefficient calculation method characterized by performing sequentially.
PCT/JP2009/053085 2008-02-20 2009-02-20 Compression performance coefficient calculating apparatus, contact performance coefficient calculating apparatus, compression performance coefficient calculating method, and contact performance coefficient calculating method WO2009104762A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-038209 2008-02-20
JP2008-038208 2008-02-20
JP2008038208A JP5123000B2 (en) 2008-02-20 2008-02-20 Crimping performance coefficient calculation device and crimping performance coefficient calculation method
JP2008038209A JP5123001B2 (en) 2008-02-20 2008-02-20 Contact performance coefficient calculation device and contact performance coefficient calculation method

Publications (1)

Publication Number Publication Date
WO2009104762A1 true WO2009104762A1 (en) 2009-08-27

Family

ID=40985639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053085 WO2009104762A1 (en) 2008-02-20 2009-02-20 Compression performance coefficient calculating apparatus, contact performance coefficient calculating apparatus, compression performance coefficient calculating method, and contact performance coefficient calculating method

Country Status (1)

Country Link
WO (1) WO2009104762A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870707A (en) * 2014-03-28 2014-06-18 首钢总公司 Method for predicting temperature changing rule of pure-calcium core-spun yarn in melting and gasifying process
JP2018155624A (en) * 2017-03-17 2018-10-04 矢崎総業株式会社 Estimation method of pressure contact part resistance value of electric wire with terminal and estimation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190868A (en) * 1993-12-24 1995-07-28 Yazaki Corp Measuring method for repulsive force of electric wire at compression-bonded part

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190868A (en) * 1993-12-24 1995-07-28 Yazaki Corp Measuring method for repulsive force of electric wire at compression-bonded part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870707A (en) * 2014-03-28 2014-06-18 首钢总公司 Method for predicting temperature changing rule of pure-calcium core-spun yarn in melting and gasifying process
JP2018155624A (en) * 2017-03-17 2018-10-04 矢崎総業株式会社 Estimation method of pressure contact part resistance value of electric wire with terminal and estimation device

Similar Documents

Publication Publication Date Title
Li et al. Simulation of springback
Chan et al. Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper
Firat U-channel forming analysis with an emphasis on springback deformation
WO2010038539A1 (en) Molding simulation method, molding simulation device, program, recording medium, and molding method based on simulation result
Carbonniere et al. Comparison of the work hardening of metallic sheets in bending–unbending and simple shear
WO2009104762A1 (en) Compression performance coefficient calculating apparatus, contact performance coefficient calculating apparatus, compression performance coefficient calculating method, and contact performance coefficient calculating method
JP5123001B2 (en) Contact performance coefficient calculation device and contact performance coefficient calculation method
JP5834698B2 (en) Springback factor analysis method and apparatus in press molding
CN111487384B (en) Method and system for processing lipid content simulation training samples and predicting blend formulations
JP5123000B2 (en) Crimping performance coefficient calculation device and crimping performance coefficient calculation method
Mendiguren et al. On the definition of an kinematic hardening effect graph for sheet metal forming process simulations
JP2007313533A (en) Method for making shape correction data of press die
JP2018132431A (en) Strength evaluation method, method for producing structure, strength evaluation device, and strength evaluation program
Beloufa The effect of cable section on the variation of power automotive connector temperature
Khadra et al. Prediction of springback in the air bending process using a Kriging metamodel
de Salles et al. A modal decomposition approach for experimental buckling analysis of thin-walled lipped channel columns
JP5655394B2 (en) Drawing bead test method and press forming analysis method using physical property values obtained by the test method
Li et al. Identification of material parameters from punch stretch test
JP6850168B2 (en) Estimator of resistance value of crimping part of electric wire with terminal
Nguyen et al. Numerical and data-driven uncertainty quantification of process parameters on clinching joint geometries
CA2349824C (en) A method of modeling the forming of anisotropic sheet
JP4813999B2 (en) Forging shape prediction method and program thereof
JP5140388B2 (en) Material stress-strain relationship prediction method, material processing method, and material stress-strain relationship prediction apparatus
Sivaprasad et al. An assessment of the interface friction factor using the geometry of upset specimens
Brezmes et al. Mechanical analysis of wafer testing with FEM simulations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712086

Country of ref document: EP

Kind code of ref document: A1