JP5123000B2 - Crimping performance coefficient calculation device and crimping performance coefficient calculation method - Google Patents

Crimping performance coefficient calculation device and crimping performance coefficient calculation method Download PDF

Info

Publication number
JP5123000B2
JP5123000B2 JP2008038208A JP2008038208A JP5123000B2 JP 5123000 B2 JP5123000 B2 JP 5123000B2 JP 2008038208 A JP2008038208 A JP 2008038208A JP 2008038208 A JP2008038208 A JP 2008038208A JP 5123000 B2 JP5123000 B2 JP 5123000B2
Authority
JP
Japan
Prior art keywords
node
core wire
model
caulking
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008038208A
Other languages
Japanese (ja)
Other versions
JP2009199791A (en
Inventor
直樹 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2008038208A priority Critical patent/JP5123000B2/en
Priority to PCT/JP2009/053085 priority patent/WO2009104762A1/en
Publication of JP2009199791A publication Critical patent/JP2009199791A/en
Application granted granted Critical
Publication of JP5123000B2 publication Critical patent/JP5123000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、圧着係数算出装置及び圧着性能係数算出方法に係り、特に、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出装置及び圧着性能係数算出方法に関するものである。   The present invention relates to a crimping coefficient calculation device and a crimping performance coefficient calculation method, and in particular, calculates a crimping performance coefficient according to contact resistance between a crimping piece provided on a terminal fitting and a core wire crimped to the crimping piece. The present invention relates to a crimping performance coefficient calculation device and a crimping performance coefficient calculation method.

従来から、導線の芯線と端子金具とを電気的に接続する方法として、例えば、端子金具に設けられたかしめ片によって、芯線を加締め圧着して接続する方法がある(例えば特許文献1〜3)。この圧着接続に用いられる端子金具は、一般的に、図8(A)に示すような構成になっている。同図に示すように、端子金具1はかしめ片2を備えている。そして、上述した端子金具1のかしめ片2及び芯線3を、図8(B)及び(C)に示すように、クリンパ4(上型)及びアンビル5(下型)によって挟んだ後、圧力を加えることにより、かしめ片2によって芯線3が加締め圧着され、図8(D)に示すように、端子金具1と芯線3とが電気的、機械的に接続される。   Conventionally, as a method of electrically connecting a core wire of a conducting wire and a terminal fitting, for example, there is a method of crimping and crimping a core wire with a caulking piece provided on the terminal fitting (for example, Patent Documents 1 to 3). ). The terminal fitting used for this crimp connection is generally configured as shown in FIG. As shown in the figure, the terminal fitting 1 includes a caulking piece 2. Then, the crimping piece 2 and the core wire 3 of the terminal fitting 1 described above are sandwiched between the crimper 4 (upper mold) and the anvil 5 (lower mold), as shown in FIGS. 8B and 8C, and then the pressure is applied. By adding, the core wire 3 is crimped and crimped by the caulking piece 2, and the terminal fitting 1 and the core wire 3 are electrically and mechanically connected as shown in FIG. 8 (D).

ところで、上述した圧着後のクリンプ高さC/H(図8(D)参照)と、圧着後の端子金具1−芯線3間の固着力F又は接触抵抗Rとの関係は、図9に示すようになる。同図に示すように、固着力Fは、クリンプ高さC/Hに対して上に凸の非線形特性を有するため、クリンプ高さC/Hは一定範囲に対して使用可能な固着力Fが存在することになる。同様に、接触抵抗Rはクリンプ高さC/Hに対して使用可能な接触抵抗Rが存在することになる。このような非線形特性を有する固着力Fと接触抵抗Rとの関係から、固着力F、接触抵抗R共に使用可能とするクリンプ高さC/Hの範囲(図9中に示す「最適クリンプ高さ」)が限定されることになる。   By the way, the relationship between the crimp height C / H after crimping (see FIG. 8D) and the fixing force F or contact resistance R between the terminal fitting 1 and the core wire 3 after crimping is shown in FIG. It becomes like this. As shown in the figure, since the fixing force F has a non-linear characteristic that is convex upward with respect to the crimp height C / H, the crimp height C / H can be used for a certain range. Will exist. Similarly, there is a contact resistance R that can be used with respect to the crimp height C / H. From the relationship between the fixing force F having such a non-linear characteristic and the contact resistance R, the range of the crimp height C / H that can be used for both the fixing force F and the contact resistance R (“optimum crimp height shown in FIG. 9”). ") Will be limited.

そこで、従来では、例えば、新しい接続設計をする際、端子金具1、芯線3、クリンパ4又はアンビル5などの設計を行う。そして、この設計された端子金具1、芯線3、クリンパ4又はアンビル5などを用いて、実際に、圧着接続を行った後、固着力F、接触抵抗Rなどを計測して、最適な固着力F、接触抵抗Rが得られるか否かといった評価が実行される。得られない場合は、また、新たに端子金具1、芯線3、クリンパ4又はアンビル5などの設計を行った後、上述したことを繰り返し行う。   Therefore, conventionally, for example, when designing a new connection, the terminal fitting 1, the core wire 3, the crimper 4 or the anvil 5 are designed. Then, after actually performing the crimping connection using the designed terminal fitting 1, core wire 3, crimper 4 or anvil 5, etc., the fixing force F, the contact resistance R, etc. are measured to obtain the optimum fixing force. F and evaluation of whether or not the contact resistance R is obtained are executed. If not obtained, the terminal fitting 1, the core wire 3, the crimper 4 or the anvil 5 is newly designed, and then the above is repeated.

ところで、上述した接触抵抗Rは低温環境や高温環境に放置すると上昇してしまうことが分かっている。そこで、接触抵抗Rの計測は、例えば−40℃の低温環境と+120℃の高温環境とを交互に1000回繰り返す冷熱衝突試験を実行した後に行っていた。この低温環境と高温環境との1サイクルが仮に2時間要する場合には、接触抵抗Rの計測までに2000時間を要する。即ち、従来の端子金具1−芯線3の接続設計では、上述したように設計→実際に接続する→冷熱衝突試験→評価(測定)といったカットアンドトライを繰り返して適正なものを得る必要がある。このため、設計の経験があまりない者が上述した接続設計を行うと、希望のものを得るまで無駄な時間を費やすことが多くなり、設計期間が長くなったり、設計コストアップを招くという問題があった。
特開2007−173215号公報 特開2006−351451号公報 特開平10−50449号公報
By the way, it is known that the contact resistance R described above increases when left in a low temperature environment or a high temperature environment. Therefore, the measurement of the contact resistance R has been performed after, for example, a cold collision test in which a low temperature environment of −40 ° C. and a high temperature environment of + 120 ° C. are alternately repeated 1000 times. If one cycle of the low temperature environment and the high temperature environment requires 2 hours, 2000 hours are required until the contact resistance R is measured. That is, in the conventional connection design of the terminal fitting 1 to the core wire 3, it is necessary to obtain an appropriate one by repeating the cut-and-try process as described above: design → actual connection → cooling collision test → evaluation (measurement). For this reason, if the person who has little design experience performs the connection design described above, there is a problem that a lot of time is wasted until the desired product is obtained, and the design period becomes longer and the design cost increases. there were.
JP 2007-173215 A JP 2006-351451 A Japanese Patent Laid-Open No. 10-50449

そこで、本発明は、上記のような問題点に着目し、設計者の経験に左右されることなく、端子金具と芯線との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができるように、シミュレーションによって接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出装置及び圧着性能係数算出方法を提供することを課題とする。   Therefore, the present invention pays attention to the problems as described above so that anyone can easily and quickly perform the connection design between the terminal fitting and the core wire without being influenced by the experience of the designer. It is an object of the present invention to provide a crimping performance coefficient calculation device and a crimping performance coefficient calculation method for calculating a crimping performance coefficient according to contact resistance by simulation so that they can be supported.

本発明者は、設計者の経験に左右されることなく、シミュレーションによって接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出装置及び圧着性能係数算出方法を得るべく検討を重ねた結果、下記の式(1)及び(2)に示す圧着性能係数RCLが接触抵抗Rに応じた値となることを見出し、本発明を完成するに至った。

Figure 0005123000
k=(Lk+1+Lk-1)/2 …(2) As a result of repeated investigations to obtain a crimping performance coefficient calculation apparatus and a crimping performance coefficient calculation method for calculating the crimping performance coefficient according to the contact resistance by simulation without depending on the experience of the designer, The pressure-bonding performance coefficient R CL shown in the formulas (1) and (2) was found to be a value corresponding to the contact resistance R, and the present invention was completed.
Figure 0005123000
L k = (L k + 1 + L k-1 ) / 2 (2)

なお、ρ1は芯線の体積抵抗率であり、ρ2は芯線の体積抵抗率である。また、図4(B)に示すように、Lk+1は、有限要素法を実行して得た圧着後(かしめた後)の芯線モデル3mの輪郭上の節のうちかしめ片モデル2mに接触する節NSK、及び、芯線モデル3mの輪郭上の節のうち節NSKに隣接する節Nk+1との距離であり、Lk-1は節NSKと芯線モデル3mの輪郭上の節のうち節NSKに隣接する節Nk-1との距離である。nは、芯線モデル3mの輪郭上の節のうちかしめ片モデル2mに接触する節NSKの総数である。 Note that ρ1 is the volume resistivity of the core wire, and ρ2 is the volume resistivity of the core wire. Further, as shown in FIG. 4 (B), L k + 1 is the caulking piece model 2m among the nodes on the contour of the core wire model 3m after crimping (after caulking) obtained by executing the finite element method. Of the nodes on the contour of the node N SK that touches the node N SK and the node N k + 1 adjacent to the node N SK among the nodes on the contour of the core wire model 3m, L k-1 is on the contour of the node N SK and the core wire model 3m. This is the distance from the node N k-1 adjacent to the node N SK among n is the total number of nodes N SK contacting the crimping pieces model 2m of sections on the contour of the core wire model 3m.

即ち、請求項1記載の発明は、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出装置であって、前記芯線の断面を複数の要素に分割した芯線モデルを取得する芯線モデル取得手段と、前記かしめ片の断面を複数の要素に分割したかしめ片モデルを取得するかしめ片モデル取得手段と、上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位を有限要素法により算出する変形算出手段と、前記変形算出手段により算出された前記各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する節抽出手段と、前記節抽出手段により抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の一方、間の第1の距離を求める第1の距離算出手段と、前記節抽出手段により抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の他方、間の第2の距離を求める第2の距離算出手段と、前記第1の距離、及び、前記第2の距離、の和の1/2を前記節抽出手段により抽出された節の接触長さとして求める接触長さ算出手段と、前記節抽出手段により抽出された全ての節について求めた前記接触長さの総和を求める総和算出手段と、前記芯線の体積抵抗率と前記かしめ片の体積抵抗率との和を前記総和算出手段により求めた総和の8倍で除した値を前記圧着性能係数として算出する圧着性能係数算出手段と、を備えたことを特徴とする圧着性能係数算出装置に存する。 That is, the invention according to claim 1 is a crimping performance coefficient calculation device for calculating a crimping performance coefficient according to contact resistance between a crimping piece provided on a terminal fitting and a core wire crimped on the crimping piece, A core wire model acquisition means for acquiring a core wire model obtained by dividing a cross section of the core wire into a plurality of elements; a crimping piece model acquisition means for acquiring a caulking piece model obtained by dividing the cross section of the caulking piece into a plurality of elements; The core wire model after the core wire is caulked with the caulking piece sandwiched between lower molds, deformation calculating means for calculating displacement of each node constituting the caulking piece model by a finite element method, and the deformation calculating means A node extracting means for extracting a node in contact with the caulking piece model among nodes on the contour of the core model after the caulking from the calculated displacement of each node; and the node extracting means A first distance between one of a pair of nodes adjacent to the node extracted by the node extraction unit among the extracted nodes and the nodes on the outline of the core model after the caulking is obtained. The other of the pair of nodes adjacent to the node extracted by the node extracting unit among the nodes extracted by the node extracting unit, the nodes extracted by the node extracting unit, and the nodes on the outline of the core model after the caulking The contact length of the node extracted by the node extracting unit is ½ of the sum of the second distance calculating unit for calculating the second distance between the first distance and the second distance. Contact length calculation means to be obtained as a sum, total calculation means to obtain the sum of the contact lengths obtained for all nodes extracted by the node extraction means, volume resistivity of the core wire and volume resistance of the caulking piece Sum obtained by the sum calculation means And crimping performance coefficient calculating means for calculating a value obtained by dividing eight times as the crimping merit resides in compression performance coefficient calculation apparatus characterized by comprising a.

請求項2記載の発明は、処理プログラムに従って各種の処理を行うコンピュータを用いて、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出方法であって、前記コンピュータが、前記芯線の断面を複数の要素に分割した芯線モデル、及び、前記かしめ片の断面を複数の要素に分割したかしめ片モデル、を取得する工程と、前記コンピュータが、上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位を有限要素法により算出する工程と、前記コンピュータが、前記算出された各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する工程と、前記コンピュータが、前記抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の一方、間の第1の距離を求める工程と、前記コンピュータが、前記抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の他方、間の第2の距離を求める工程と、前記コンピュータが、前記第1の距離、及び、前記第2の距離、の和の1/2を前記抽出された節の接触長さとして求める工程と、前記コンピュータが、前記抽出された全ての節について求めた前記接触長さの総和を求める工程と、前記コンピュータが、前記芯線の体積抵抗率と前記かしめ片の体積抵抗率との和を前記総和算出工程により求めた総和の8倍で除した値を前記圧着性能係数として算出する工程と、を順次行うことを特徴とする圧着性能係数算出方法に存する。 The invention according to claim 2 uses a computer that performs various processes in accordance with a processing program , and provides a crimping performance coefficient corresponding to the contact resistance between the crimped piece provided on the terminal fitting and the core wire crimped on the crimped piece. A method for calculating a crimp performance coefficient to be calculated, wherein the computer acquires a core wire model in which a cross section of the core wire is divided into a plurality of elements, and a caulking piece model in which a cross section of the caulking piece is divided into a plurality of elements. And the computer calculates the displacement of each core constituting the core wire model and the caulking piece model after the caulking piece is caulked between the upper die and the lower die by the finite element method. clause a step, the computer is in contact with the crimping piece model of sections on the contour of the core wire model after the caulking from the displacement of each node of the calculated A step of extracting, the computer, the extracted section and one of a pair of nodes adjacent to the extracted section of the sections on the contour of the core wire model after the caulking, the first between a step of determining the distance, the computer, the extracted section and the other of the pair of nodes adjacent to the extracted section of the sections on the contour of the core wire model after the caulking, between a step of determining a second distance, a step wherein the computer, the first distance, and, for determining the second distance, the half of the sum as the contact length of the extracted section, the computer but a step of determining the contact length of the sum obtained for all clauses of the extracted, the computer, the sum of the volume resistivity of the crimping piece and the volume resistivity of the core by the total sum calculation step 8 times the total sum Resides value obtained by dividing the crimp performance coefficient calculating method characterized by sequentially performing the steps of calculating as the crimping performance factor.

以上説明したように請求項1及び2記載の発明によれば、シミュレーションによって接触抵抗に応じた圧着性能係数を算出することができるので、設計者の経験に左右されることなく、端子金具と芯線との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができる。   As described above, according to the first and second aspects of the invention, since the crimping performance coefficient corresponding to the contact resistance can be calculated by simulation, the terminal fitting and the core wire are not affected by the experience of the designer. Can be designed so that anyone can easily and quickly design connections.

以下、本発明の圧着性能係数算出装置及び圧着性能係数算出方法を図面に基づいて説明する。図1に示す圧着性能係数算出装置6は、例えばパーソナルコンピュータから構成されていて、端子金具1と芯線3とを圧着して接続する際に、実際の圧着接続に先立って端子金具1−芯線3間の接触抵抗Rに応じた圧着性能係数RCLを算出するための装置である。 Hereinafter, the crimping performance coefficient calculation device and the crimping performance coefficient calculation method of the present invention will be described with reference to the drawings. The crimping performance coefficient calculation device 6 shown in FIG. 1 is constituted by a personal computer, for example, and when the terminal fitting 1 and the core wire 3 are crimped and connected, the terminal fitting 1-core wire 3 prior to the actual crimping connection. This is a device for calculating a crimping performance coefficient R CL corresponding to the contact resistance R between the two.

同図に示すように、圧着性能係数算出装置6は、入力装置7と、表示装置8と、マイクロコンピュータ(以下μCOM9)と、を備えている。入力装置7は、例えばキーボードや、マウスといった操作手段などから構成されていて、従来技術で説明した端子金具1のかしめ片2、芯線3、クリンパ4及びアンビル5の形状情報と、かしめ片2及び芯線3の材料の応力−歪特性である材料特性情報を入力するための装置である。上記形状情報としては、例えばCADで作成したかしめ片2、芯線3、クリンパ4及びアンビル5のCADデータなどが考えられる。   As shown in the figure, the crimping performance coefficient calculation device 6 includes an input device 7, a display device 8, and a microcomputer (hereinafter referred to as μCOM 9). The input device 7 is composed of operation means such as a keyboard and a mouse, for example, and includes information on the shape of the crimping piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 described in the prior art, and the crimping piece 2 and This is a device for inputting material property information which is a stress-strain property of the material of the core wire 3. As the shape information, for example, CAD data of the caulking piece 2, the core wire 3, the crimper 4, and the anvil 5 created by CAD can be considered.

表示装置8は、例えば算出した圧着性能係数RCLを表示するための装置である。μCOM9は、圧着性能係数算出装置6全体の制御を司り処理プログラムに従って各種の処理を行う中央演算処理ユニット(以下CPU)10と、CPU10が行う処理のプログラムなどを格納した読出専用のメモリであるROM11と、CPU10での各種の処理過程で利用するワークエリア、各種データを格納するデータ記憶エリアなどを有する読出書込自在のメモリであるRAM12と、を有している。 The display device 8 is a device for displaying, for example, the calculated crimping performance coefficient RCL . The μCOM 9 is a ROM 11 which is a read-only memory storing a central processing unit (hereinafter referred to as CPU) 10 that controls the entire crimping performance coefficient calculation device 6 and performs various processes according to a processing program, and a processing program executed by the CPU 10. And a RAM 12 which is a readable / writable memory having a work area used in various processing steps in the CPU 10 and a data storage area for storing various data.

次に、上述した構成の圧着性能係数算出装置6の動作について図2〜図4を参照して以下説明する。まず、入力装置7によって解析シミュレーション処理の開始操作が行われると、CPU10は、解析シミュレーション処理を開始する。まず、CPU10は、上述した端子金具1のかしめ片2、芯線3、クリンパ4及びアンビル5の形状情報と、かしめ片2及び芯線3の材料特性情報を入力させるための入力画面を表示装置8に表示させる入力処理を行う(図2のステップS1)。   Next, operation | movement of the crimping | compression-bonding performance coefficient calculation apparatus 6 of the structure mentioned above is demonstrated below with reference to FIGS. First, when an analysis simulation process start operation is performed by the input device 7, the CPU 10 starts the analysis simulation process. First, the CPU 10 displays on the display device 8 an input screen for inputting the shape information of the crimping piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 and the material characteristic information of the crimping piece 2 and the core wire 3. An input process for display is performed (step S1 in FIG. 2).

ユーザは、表示装置8の表示に従って入力装置7のキーボードやマウスといった操作手段を操作して上記形状情報、材料特性情報を入力させる。なお、端子金具1の種類A、B、C…、芯線3の種類A、B、C…、圧着型であるクリンパ4及びアンビル5の種類A、B、C…に応じた形状情報、材料特性情報を予めROM11内に記録させて、ユーザにより端子金具1、芯線3、圧着型であるクリンパ4及びアンビル5の種類を選択させることで、上記形状情報、材料情報を入力させるようにしてもよい。   The user operates the operation means such as the keyboard and mouse of the input device 7 in accordance with the display on the display device 8 to input the shape information and material property information. The shape information and material characteristics according to the types A, B, C,... Of the terminal fitting 1, the types A, B, C,... Of the core wire 3, and the types A, B, C,. Information may be recorded in the ROM 11 in advance, and the user may be allowed to input the shape information and material information by selecting the types of the terminal fitting 1, the core wire 3, the crimper type crimper 4 and the anvil 5. .

その後、CPU10は、有限要素モデル変換処理を行う(ステップS2)。有限要素モデル変換処理においてCPU10は、図3(A)に示すように、上記入力処理によって入力されたかしめ片2及び芯線3をそれぞれ複数の要素に分割したかしめ片モデル2m及び芯線モデル3mに変換する。この有限要素モデル変換処理においてCPU10は、請求項中の芯線モデル取得手段、かしめ片モデル取得手段として働く。   Thereafter, the CPU 10 performs a finite element model conversion process (step S2). In the finite element model conversion processing, as shown in FIG. 3A, the CPU 10 converts the crimped piece 2 and the core wire 3 input by the input processing into a crimped piece model 2m and a core wire model 3m, each of which is divided into a plurality of elements. To do. In this finite element model conversion process, the CPU 10 functions as a core wire model acquisition unit and a caulking piece model acquisition unit in the claims.

次に、CPU10は、変形算出処理を行う(ステップS3)。変形算出処理においてCPU10は、図3(B)〜(D)に示すように、有限要素法を用いてクリンパ4とアンビル5との間に挟んで芯線3をかしめ片2によりかしめた後にクリンパ4及びアンビル5を離してかしめ片2及び芯線3に加えられた負荷を除荷した後の芯線モデル3m及びかしめ片モデル2mを構成する各節Nの変位を算出する。この変形算出処理においてCPU10は、請求項中の変形算出手段として働く。   Next, the CPU 10 performs a deformation calculation process (step S3). In the deformation calculation process, as shown in FIGS. 3B to 3D, the CPU 10 crimps the core wire 3 with the caulking piece 2 after being crimped between the crimper 4 and the anvil 5 using the finite element method. And the displacement of each node N which comprises the core wire model 3m and the caulking piece model 2m after releasing the anvil 5 and unloading the load applied to the caulking piece 2 and the core wire 3 is calculated. In this deformation calculation process, the CPU 10 functions as deformation calculation means in the claims.

上記クリンパ4及びアンビル5を近づけてかしめ片2をかしめた後にクリンパ4及びアンビル5を離してかしめ片2及び芯線3に加えられた負荷を除荷すると、かしめ片2及び芯線3にはスプリングバックと呼ばれる弾性回復現象が生じる。よって、上記変形算出処理により、スプリングバック後の芯線モデル3m及びかしめ片モデル2mを構成する各節Nの変位を算出することができる。   When the crimper 4 and the anvil 5 are brought close to each other and the crimping piece 2 is caulked and then the crimper 4 and the anvil 5 are separated and the load applied to the caulking piece 2 and the core wire 3 is unloaded, the caulking piece 2 and the core wire 3 are spring-backed. This causes an elastic recovery phenomenon called. Therefore, the displacement calculation process can calculate the displacement of each node N constituting the core model 3m and the caulking piece model 2m after the spring back.

その後、CPU10は、ステップS4〜S6を実行して、上記変形算出処理によって求めた各節Nの変位からかしめ片2及び芯線3間の接触抵抗Rに応じた後述する圧着性能係数RCLを求める。上記接触抵抗Rは、下記の式(3)に示すように、集中抵抗Rcと皮膜抵抗Rfの和である。
R=Rc+Rf …(3)
Thereafter, the CPU 10 executes steps S4 to S6 to obtain a later-described crimping performance coefficient R CL corresponding to the contact resistance R between the crimping piece 2 and the core wire 3 from the displacement of each node N obtained by the deformation calculation process. . The contact resistance R is the sum of the concentrated resistance Rc and the film resistance Rf as shown in the following formula (3).
R = Rc + Rf (3)

今、図5に示すように、かしめ片2と芯線3とが半径a1、a2…の複数の接触面S1、S2…で接触しているとすると、集中抵抗Rc、皮膜抵抗Rfは下記の式(4)及び(5)で各々求めることができる。

Figure 0005123000
なお、ρ1は芯線3の体積抵抗率であり、ρ2はかしめ片2の体積抵抗率である。
Figure 0005123000
なお、ρfは金属皮膜13(図5)の体積抵抗率であり、dは金属皮膜13の厚さ(一定と仮定)である。 As shown in FIG. 5, if the crimping piece 2 and the core wire 3 are in contact at a plurality of contact surfaces S 1 , S 2 ... Having radii a 1 , a 2 . Can be obtained by the following equations (4) and (5), respectively.
Figure 0005123000
In addition, ρ1 is the volume resistivity of the core wire 3, and ρ2 is the volume resistivity of the caulking piece 2.
Figure 0005123000
Here, ρf is the volume resistivity of the metal film 13 (FIG. 5), and d is the thickness of the metal film 13 (assuming constant).

上記金属皮膜13の厚さdは非常に薄い。よって、皮膜抵抗Rfは0に近いと考えられる。よって、式(4)及び(5)から明らかなように、接触抵抗Rは、芯線3の体積抵抗率ρ1とかしめ片2の体積抵抗率ρ2との和が大きくなるに従って大きくなる。また、接触抵抗Rは、かしめ片2及び芯線3間の接触面積が大きくなるに従って小さくなる。そこで、CPU10は、下記のステップS4及びS5を実行して、図3に示すような断面上のかしめ片2及び芯線3間の接触長さを接触面積に応じた値として求める。   The thickness d of the metal film 13 is very thin. Therefore, the film resistance Rf is considered to be close to zero. Therefore, as is apparent from the equations (4) and (5), the contact resistance R increases as the sum of the volume resistivity ρ1 of the core wire 3 and the volume resistivity ρ2 of the caulking piece 2 increases. Further, the contact resistance R decreases as the contact area between the caulking piece 2 and the core wire 3 increases. Therefore, the CPU 10 executes the following steps S4 and S5 to obtain the contact length between the caulking piece 2 and the core wire 3 on the cross section as shown in FIG. 3 as a value corresponding to the contact area.

即ち、CPU10は、節抽出手段として働き、上述した変形算出処理により算出された各節Nの変位からスプリングバック後の芯線モデル3mの輪郭上の節Nのうちかしめ片モデル2mに接触する節NSを抽出する節抽出処理を行う(ステップS4)。結果を図5(A)に示す。同図に示すように、節抽出処理を行った結果、例えば総数n個の節NSが抽出される。なお、図5(A)中のPSはステップS4で抽出した芯線モデル3m上の節NSに作用する力、即ち、ステップS4で抽出した芯線モデル3m上の節NSからかしめ片モデル2mに作用する接触圧力を示す。次に、CPU10は、第1の距離算出手段、第2の距離算出手段、接触長さ算出手段として働き、節抽出処理により抽出した各節NSにおけるスプリングバック後のかしめ片2と芯線3との接触長さを求める接触長さ算出処理を行う(ステップS5)。図5(B)に示すように、かしめ片モデル2mと芯線モデル3mとは点(節)で接触しているが、本発明者は、実際にはステップS4で抽出された任意の節NSkでは、下記の式(2)で示す接触長さLkで接触していると仮定した。
k=(Lk+1+Lk-1)/2 …(2)
That is, the CPU 10 functions as a node extracting means, and the node N that contacts the caulking piece model 2m among the nodes N on the contour of the core model 3m after the spring back from the displacement of each node N calculated by the deformation calculation process described above. A node extraction process for extracting S is performed (step S4). The results are shown in FIG. As shown in the figure, as a result of the clause extraction process, for example, Total n-number of nodes N S are extracted. Incidentally, P S in FIG. 5 (A) force acting on the node N S on the core wire model 3m extracted in step S4, i.e., the crimping pieces model 2m from node N S on the core wire model 3m extracted in step S4 The contact pressure acting on is shown. Then, CPU 10 has the first distance calculating unit, the second distance calculating means, serves as a contact length calculating unit, a crimping piece 2 and the core wire 3 after the spring-back at each node N S extracted by clause extraction process The contact length calculation process for obtaining the contact length is performed (step S5). As shown in FIG. 5 (B), the caulking piece model 2m and the core wire model 3m are in contact with each other at a point (node), but the present inventor actually made an arbitrary node N Sk extracted in step S4. Therefore, it is assumed that the contact is made with the contact length L k shown by the following formula (2).
L k = (L k + 1 + L k-1 ) / 2 (2)

なお、Lk+1は抽出された任意の節NSk及び節Nk+1間の距離(第1の距離)である。上記節Nk+1は、芯線モデル3mの輪郭上の節Nのうち節NSkに隣接する一対の節Nk+1、Nk-1の一方である。Lk-1は抽出された任意の節NSk及び節Nk-1間の距離(第2の距離)である。上記節Nk-1は、芯線モデル3mの輪郭上の節Nのうち節NSkに隣接する一対の節Nk+1、Nk-1の他方である。 Note that L k + 1 is the distance (first distance) between any extracted node N Sk and node N k + 1 . The node N k + 1 is one of a pair of nodes N k + 1 and N k−1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m. L k-1 is a distance (second distance) between the extracted arbitrary nodes N Sk and N k-1 . The node N k-1 is the other of the pair of nodes N k + 1 and N k-1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m.

次に、CPU10は、圧着性能係数算出手段として働き、下記の式(1)に示すように、ステップS4で抽出された全ての、即ち総数n個の節NSについて求めた接触長さLkの総和を求めて、芯線3の体積抵抗率ρ1とかしめ片2の体積抵抗率ρ2との和を接触長さLkの総和の8倍で除した値を圧着性能係数RCLとして求める圧着性能係数算出処理を行った後(ステップS6)、その算出した圧着性能係数RCLを表示装置8に表示して(ステップ7)、解析シミュレーション処理を終了する。

Figure 0005123000
Next, the CPU 10 functions as a crimping performance coefficient calculation unit, and as shown in the following equation (1), the contact length L k obtained for all the nodes N S extracted in step S4, that is, the total number of nodes NS. Crimping performance obtained by dividing the sum of the volume resistivity ρ1 of the core wire 3 and the volume resistivity ρ2 of the caulking piece 2 by 8 times the sum of the contact lengths L k as the crimping performance coefficient R CL After performing the coefficient calculation process (step S6), the calculated crimping performance coefficient R CL is displayed on the display device 8 (step 7), and the analysis simulation process is terminated.
Figure 0005123000

上記圧着性能係数RCLは、式(1)からも明らかなように、接触抵抗Rと同様に(ρ1+ρ2)が大きくなるに従って大きくなる係数である。また、圧着性能係数RCLは、かしめ片2及び芯線3間の接触長さ(面積)Lkが大きくなるに従って小さくなる係数である。即ち、本発明者は、上記式(1)に示す圧着性能係数RCLが接触抵抗Rに応じた値になるだろうと仮定した。 As is apparent from the equation (1), the crimping performance coefficient R CL is a coefficient that increases as (ρ1 + ρ2) increases as in the case of the contact resistance R. The crimping performance coefficient R CL is a coefficient that decreases as the contact length (area) L k between the crimping piece 2 and the core wire 3 increases. That is, the present inventor assumed that the crimping performance coefficient R CL shown in the above formula (1) would be a value corresponding to the contact resistance R.

次に、本発明の発明者は、図6に示すサンプル品(1)〜(5)について前述した本発明品を用いて算出した圧着性能係数RCLと、図6に示すサンプル品(1)〜(5)を実際に試作して冷熱衝突試験を実行した後に計測した接触抵抗Rと、比較した。結果を図7に示す。サンプル品(1)は、種類Aの芯線3、種類Aの端子金具1、種類Aの圧着型(クリンパ4、アンビル5)を用いて、芯線3を端子金具1のかしめ片2でかしめた品である。同様に、サンプル品(2)は種類Aの芯線3、種類Bの端子金具1、種類Aの圧着型、サンプル品(3)は種類Aの芯線3、種類Aの端子金具1、種類Bの圧着型、サンプル品(4)は種類Aの芯線3、種類Cの端子金具1、種類Aの圧着型、サンプル品(5)は種類Aの芯線3、種類Aの端子金具1、種類Cの圧着型を各々用いて、芯線3を端子金具1のかしめ片2でかしめた品である。 Next, the inventor of the present invention uses the crimping performance coefficient R CL calculated using the products of the present invention described above for the sample products (1) to (5) shown in FIG. 6, and the sample product (1) shown in FIG. The contact resistance R measured after actually producing prototype (5) and executing the thermal collision test was compared. The results are shown in FIG. Sample product (1) is a product in which core wire 3 is crimped with crimping piece 2 of terminal metal fitting 1 using type A core wire 3, type A terminal metal fitting 1, type A crimping type (crimper 4, anvil 5). It is. Similarly, the sample product (2) is of type A core wire 3, type B terminal fitting 1, type A crimping type, and the sample product (3) is type A core wire 3, type A terminal fitting 1, type B Crimp type, sample product (4) is type A core wire 3, type C terminal fitting 1, type A crimp type, sample product (5) is type A core wire 3, type A terminal fitting 1, type C Each of the crimping molds is used to crimp the core wire 3 with the crimping piece 2 of the terminal fitting 1.

図7に示すように、実測値である導体圧縮比率%(=クリンプ高さ)に応じた接触抵抗Rは、サンプル品(4)、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で大きくなる。よって、実測品の性能としては、サンプル品(4)が1番良く、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で悪くなる。   As shown in FIG. 7, the contact resistance R according to the measured conductor compression ratio% (= crimp height) is the sample product (4), sample product (3), sample product (2), sample product ( 1) The sample product (5) increases in this order. Therefore, as the performance of the actually measured product, the sample product (4) is the best, and the sample product (3), the sample product (2), the sample product (1), and the sample product (5) become worse in this order.

これに対して、シミュレーション値である導体圧縮比率%に応じた圧着性能係数RCLも、サンプル品(4)、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で大きくなる。よって、実測品と同様に、シミュレーション値である圧着性能係数RCLからもサンプル品(4)が1番良く、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で悪くなることが分かる。即ち、式(1)に示す圧着性能係数RCLが接触抵抗Rに応じた値になっていることが分かった。 In contrast, the crimping performance coefficient R CL corresponding to the conductor compression ratio%, which is a simulation value, is also the sample product (4), sample product (3), sample product (2), sample product (1), sample product ( Increase in the order of 5). Therefore, similarly to the actual measurement product, the sample product (4) is the best from the crimping performance coefficient R CL which is a simulation value, and the sample product (3), sample product (2), sample product (1), sample product ( It turns out that it gets worse in the order of 5). That is, it was found that the crimping performance coefficient R CL shown in the equation (1) is a value corresponding to the contact resistance R.

上述した圧着性能係数算出装置6によれば、実際に複数のサンプル品を作ってその接触抵抗Rを実測しなくても、シミュレーション値である圧着性能係数RCLを算出することにより、複数のサンプル品の接触抵抗Rの大きさを比較することができる。このため、設計者の経験に左右されることなく、端子金具1と芯線3との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができる。 According to the crimping performance coefficient calculation device 6 described above, a plurality of samples can be obtained by calculating the crimping performance coefficient R CL which is a simulation value without actually making a plurality of sample products and actually measuring the contact resistance R. The magnitude of the contact resistance R of the product can be compared. For this reason, it can support that anyone can perform the connection design of the terminal metal fitting 1 and the core wire 3 easily and in a short time without being influenced by a designer's experience.

なお、上述した実施形態によれば、入力処理によって入力されたかしめ片2及び芯線3をそれぞれかしめ片モデル2m及び芯線モデル3mに変換する有限要素モデル変換処理を設けていたが、本発明はこれに限ったものではない。例えば、端子金具1の種類A、B、C…に応じたかしめ片モデル2m及び芯線3の種類A、B、C…に応じた芯線モデル3mを予めROM11内に記録させて、ユーザにより端子金具1及び芯線3の種類を選択させることで、入力処理によって上記かしめ片モデル2m、芯線モデル3mを入力させるようにしてもよい。この場合、有限要素モデル変換処理を行う必要がない。   According to the above-described embodiment, the finite element model conversion process for converting the caulking piece 2 and the core wire 3 input by the input process into the caulking piece model 2m and the core wire model 3m, respectively, is provided. It is not limited to. For example, the caulking piece model 2m corresponding to the types A, B, C... Of the terminal fitting 1 and the core wire model 3m corresponding to the types A, B, C. By selecting the type of 1 and the core wire 3, the caulking piece model 2m and the core wire model 3m may be input by input processing. In this case, it is not necessary to perform a finite element model conversion process.

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

本発明の圧着性能係数算出方法を実施した圧着性能係数算出装置の一実施の形態を示すブロック図である。It is a block diagram which shows one Embodiment of the crimping performance coefficient calculation apparatus which implemented the crimping performance coefficient calculation method of this invention. 図1に示すCPUの解析シミュレーション処理手順を示すフローチャートである。It is a flowchart which shows the analysis simulation process procedure of CPU shown in FIG. 図2に示す変形算出処理を説明するための説明図である。It is explanatory drawing for demonstrating the deformation | transformation calculation process shown in FIG. 接触抵抗を説明するための説明図である。It is explanatory drawing for demonstrating contact resistance. (A)は図2に示す変形算出処理結果を説明するための説明図であり、(B)は(A)のX部の拡大図である。(A) is explanatory drawing for demonstrating the deformation | transformation calculation process result shown in FIG. 2, (B) is an enlarged view of the X section of (A). サンプル品(1)〜(5)に対応する芯線、端子金具及び圧着型の種類、接触抵抗の序列、圧着性能係数の序列を示す表である。It is a table | surface which shows the order of the core wire corresponding to sample goods (1)-(5), the terminal metal fitting and the crimping | compression-bonding type | mold, the order of contact resistance, and a crimping | crimping performance coefficient. 導体圧縮率に対応するサンプル品(1)〜(5)の接触抵抗及び圧着性能係数を示すグラフである。It is a graph which shows the contact resistance and the crimping | compression-bonding performance coefficient of the sample goods (1)-(5) corresponding to a conductor compressibility. (A)は圧着接続に用いられる端子金具の形状を示す側面図であり、(B)は圧着作業に用いられるアンビルとクリンパとの形状を示す図であり、(C)は端子金具と芯線との圧着作業中の状態を示す図であり、(D)は端子金具と芯線との圧着後の状態を示す図である。(A) is a side view which shows the shape of the terminal metal fitting used for crimping connection, (B) is a figure which shows the shape of the anvil and crimper used for crimping work, (C) is a terminal metal fitting and a core wire. It is a figure which shows the state in the time of a crimping | compression-bonding operation | work, (D) is a figure which shows the state after crimping | bonding of a terminal metal fitting and a core wire. 圧着接続を行った際のクリンプ高さ対固着力及び接触抵抗の関係を示すグラフである。It is a graph which shows the relationship between crimp height at the time of crimping | bonding connection, sticking force, and contact resistance.

符号の説明Explanation of symbols

1 端子金具
2 かしめ片
3 芯線
4 クリンパ(上型)
5 アンビル(下型)
6 圧着性能係数算出装置
10 CPU(芯線モデル取得手段、かしめ片モデル取得手段、変形算出手段、節抽出手段、第1の距離算出手段、第2の距離算出手段、接触長さ算出手段、圧着性能係数算出手段)
k+1 距離(第1の距離)
k-1 距離(第2の距離)
N 節
S
Sk
1 Terminal fitting 2 Caulking piece 3 Core wire 4 Crimper (upper mold)
5 Anvil (bottom)
6 Crimping performance coefficient calculation device 10 CPU (core wire model acquisition means, caulking piece model acquisition means, deformation calculation means, node extraction means, first distance calculation means, second distance calculation means, contact length calculation means, crimping performance Coefficient calculation means)
L k + 1 distance (first distance)
L k-1 distance (second distance)
N nodes N S node N Sk clause

Claims (2)

端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出装置であって、
前記芯線の断面を複数の要素に分割した芯線モデルを取得する芯線モデル取得手段と、
前記かしめ片の断面を複数の要素に分割したかしめ片モデルを取得するかしめ片モデル取得手段と、
上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位を有限要素法により算出する変形算出手段と、
前記変形算出手段により算出された前記各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する節抽出手段と、
前記節抽出手段により抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の一方、間の第1の距離を求める第1の距離算出手段と、
前記節抽出手段により抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の他方、間の第2の距離を求める第2の距離算出手段と、
前記第1の距離、及び、前記第2の距離、の和の1/2を前記節抽出手段により抽出された節の接触長さとして求める接触長さ算出手段と、
前記節抽出手段により抽出された全ての節について求めた前記接触長さの総和を求める総和算出手段と、
前記芯線の体積抵抗率と前記かしめ片の体積抵抗率との和を前記総和算出手段により求めた総和の8倍で除した値を前記圧着性能係数として算出する圧着性能係数算出手段と、
を備えたことを特徴とする圧着性能係数算出装置。
A crimping performance coefficient calculating device for calculating a crimping performance coefficient according to a contact resistance between a crimped piece provided on a terminal fitting and a core wire crimped on the crimped piece,
A core wire model acquisition means for acquiring a core wire model obtained by dividing the cross section of the core wire into a plurality of elements;
A caulking piece model obtaining means for obtaining a caulking piece model obtained by dividing a cross section of the caulking piece into a plurality of elements;
Deformation calculation means for calculating displacement of each node constituting the core wire model and the caulking piece model after caulking the core wire with the caulking piece sandwiched between an upper die and a lower die; and
A node extracting unit that extracts a node that contacts the caulking piece model from the nodes on the outline of the core model after the caulking from the displacement of each node calculated by the deformation calculating unit;
A node extracted by the node extracting unit and a first node between one of a pair of nodes adjacent to the node extracted by the node extracting unit among the nodes on the contour of the core model after the caulking First distance calculating means for obtaining a distance;
A second node between the node extracted by the node extracting unit and the other of the pair of nodes adjacent to the node extracted by the node extracting unit among the nodes on the contour of the core model after the caulking A second distance calculating means for obtaining a distance;
Contact length calculation means for obtaining 1/2 of the sum of the first distance and the second distance as the contact length of the node extracted by the node extraction means;
A sum total calculating means for calculating a sum of the contact lengths obtained for all the nodes extracted by the node extracting means;
A crimping performance coefficient calculating unit that calculates a value obtained by dividing the sum of the volume resistivity of the core wire and the volume resistivity of the caulking piece by 8 times the total obtained by the total calculating unit, as the crimping performance coefficient;
A crimping performance coefficient calculation device comprising:
処理プログラムに従って各種の処理を行うコンピュータを用いて、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた圧着性能係数を算出する圧着性能係数算出方法であって、
前記コンピュータが、前記芯線の断面を複数の要素に分割した芯線モデル、及び、前記かしめ片の断面を複数の要素に分割したかしめ片モデル、を取得する工程と、
前記コンピュータが、上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位を有限要素法により算出する工程と、
前記コンピュータが、前記算出された各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する工程と、
前記コンピュータが、前記抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の一方、間の第1の距離を求める工程と、
前記コンピュータが、前記抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の他方、間の第2の距離を求める工程と、
前記コンピュータが、前記第1の距離、及び、前記第2の距離、の和の1/2を前記抽出された節の接触長さとして求める工程と、
前記コンピュータが、前記抽出された全ての節について求めた前記接触長さの総和を求める工程と、
前記コンピュータが、前記芯線の体積抵抗率と前記かしめ片の体積抵抗率との和を前記総和算出工程により求めた総和の8倍で除した値を前記圧着性能係数として算出する工程と、
を順次行うことを特徴とする圧着性能係数算出方法。
Using a computer that performs various processes according to a processing program, a crimping performance coefficient calculation method that calculates a crimping performance coefficient according to the contact resistance between the crimped piece provided on the terminal fitting and the core wire crimped to the crimped piece. There,
The computer obtains a core wire model obtained by dividing the cross section of the core wire into a plurality of elements, and a caulking piece model obtained by dividing the cross section of the caulking piece into a plurality of elements;
Calculating the displacement of each node constituting the core wire model and the caulking piece model after the caulking piece is caulked with the caulking piece sandwiched between the upper die and the lower die by a finite element method;
A step of extracting the section of the computer, contacts the crimping pieces model of sections on the contour of the core wire model after the caulking from the displacement of each node of the calculated,
The computer obtains a first distance between one of a pair of nodes adjacent to the extracted node among the extracted nodes and the nodes on the contour of the core model after the caulking. When,
The computer obtains a second distance between the extracted node and the other of the pair of nodes adjacent to the extracted node among the nodes on the outline of the core model after the caulking. When,
The computer determining 1/2 of the sum of the first distance and the second distance as a contact length of the extracted node;
Calculating the sum of the contact lengths determined for all the extracted nodes by the computer ;
A step of calculating a value obtained by dividing the sum of the volume resistivity of the core wire and the volume resistivity of the caulking piece by 8 times the sum obtained by the sum calculation step as the crimping performance coefficient;
Are sequentially performed.
JP2008038208A 2008-02-20 2008-02-20 Crimping performance coefficient calculation device and crimping performance coefficient calculation method Expired - Fee Related JP5123000B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008038208A JP5123000B2 (en) 2008-02-20 2008-02-20 Crimping performance coefficient calculation device and crimping performance coefficient calculation method
PCT/JP2009/053085 WO2009104762A1 (en) 2008-02-20 2009-02-20 Compression performance coefficient calculating apparatus, contact performance coefficient calculating apparatus, compression performance coefficient calculating method, and contact performance coefficient calculating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038208A JP5123000B2 (en) 2008-02-20 2008-02-20 Crimping performance coefficient calculation device and crimping performance coefficient calculation method

Publications (2)

Publication Number Publication Date
JP2009199791A JP2009199791A (en) 2009-09-03
JP5123000B2 true JP5123000B2 (en) 2013-01-16

Family

ID=41143103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038208A Expired - Fee Related JP5123000B2 (en) 2008-02-20 2008-02-20 Crimping performance coefficient calculation device and crimping performance coefficient calculation method

Country Status (1)

Country Link
JP (1) JP5123000B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190868A (en) * 1993-12-24 1995-07-28 Yazaki Corp Measuring method for repulsive force of electric wire at compression-bonded part

Also Published As

Publication number Publication date
JP2009199791A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
Chan et al. Modeling of grain size effect on micro deformation behavior in micro-forming of pure copper
Firat U-channel forming analysis with an emphasis on springback deformation
Zhu et al. Springback prediction for rotary-draw bending of rectangular H96 tube based on isotropic, mixed and Yoshida–Uemori two-surface hardening models
JP4854586B2 (en) Optical element press molding simulation method and program
JP5834698B2 (en) Springback factor analysis method and apparatus in press molding
Capelli et al. A genetic-algorithm-optimized fractal model to predict the constriction resistance from surface roughness measurements
JP5123001B2 (en) Contact performance coefficient calculation device and contact performance coefficient calculation method
WO2009104762A1 (en) Compression performance coefficient calculating apparatus, contact performance coefficient calculating apparatus, compression performance coefficient calculating method, and contact performance coefficient calculating method
JP5123000B2 (en) Crimping performance coefficient calculation device and crimping performance coefficient calculation method
Jackson The effect of scale-dependent hardness on elasto-plastic asperity contact between rough surfaces
JP2018132431A (en) Strength evaluation method, method for producing structure, strength evaluation device, and strength evaluation program
JP2016163907A (en) Analysis method for hot stamp formation, determination method, analyzer and program
Beloufa Design optimization of electrical power contact using finite element method
de Salles et al. A modal decomposition approach for experimental buckling analysis of thin-walled lipped channel columns
JP5655394B2 (en) Drawing bead test method and press forming analysis method using physical property values obtained by the test method
Li et al. Identification of material parameters from punch stretch test
Stoyanov et al. Optimisation modelling for thermal fatigue reliability of lead‐free interconnects in fine‐pitch flip‐chip packaging
Ogihara et al. Mechanical analysis of the crimping connection
Brezmes et al. Mechanical analysis of wafer testing with FEM simulations
Nguyen et al. Numerical and data-driven uncertainty quantification of process parameters on clinching joint geometries
Sivaprasad et al. An assessment of the interface friction factor using the geometry of upset specimens
JP5140388B2 (en) Material stress-strain relationship prediction method, material processing method, and material stress-strain relationship prediction apparatus
JP6850168B2 (en) Estimator of resistance value of crimping part of electric wire with terminal
EP3089057A2 (en) Method and apparatus for use in thermal coupled analysis
Deng et al. Estimation of residual stress of metal material with yield plateau by continuous spherical indentation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees