JP5123001B2 - Contact performance coefficient calculation device and contact performance coefficient calculation method - Google Patents

Contact performance coefficient calculation device and contact performance coefficient calculation method Download PDF

Info

Publication number
JP5123001B2
JP5123001B2 JP2008038209A JP2008038209A JP5123001B2 JP 5123001 B2 JP5123001 B2 JP 5123001B2 JP 2008038209 A JP2008038209 A JP 2008038209A JP 2008038209 A JP2008038209 A JP 2008038209A JP 5123001 B2 JP5123001 B2 JP 5123001B2
Authority
JP
Japan
Prior art keywords
node
model
core wire
extracted
nodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008038209A
Other languages
Japanese (ja)
Other versions
JP2009199792A (en
Inventor
直樹 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2008038209A priority Critical patent/JP5123001B2/en
Priority to PCT/JP2009/053085 priority patent/WO2009104762A1/en
Publication of JP2009199792A publication Critical patent/JP2009199792A/en
Application granted granted Critical
Publication of JP5123001B2 publication Critical patent/JP5123001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Description

本発明は、接触性能係数算出装置及び接触性能係数算出方法に係り、特に、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた接触性能係数を算出する接触性能係数算出装置及び接触性能係数算出方法に関するものである。   The present invention relates to a contact performance coefficient calculation device and a contact performance coefficient calculation method, and in particular, calculates a contact performance coefficient corresponding to a contact resistance between a caulking piece provided on a terminal fitting and a core wire caulked on the caulking piece. The present invention relates to a contact performance coefficient calculation device and a contact performance coefficient calculation method.

従来から、導線の芯線と端子金具とを電気的に接続する方法として、例えば、端子金具に設けられたかしめ片によって、芯線を加締め圧着して接続する方法がある(例えば特許文献1〜3)。この圧着接続に用いられる端子金具は、一般的に、図7(A)に示すような構成になっている。同図に示すように、端子金具1はかしめ片2を備えている。そして、上述した端子金具1のかしめ片2及び芯線3を、図7(B)及び(C)に示すように、クリンパ4(上型)及びアンビル5(下型)によって挟んだ後、圧力を加えることにより、かしめ片2によって芯線3が加締め圧着され、図7(D)に示すように、端子金具1と芯線3とが電気的、機械的に接続される。   Conventionally, as a method of electrically connecting a core wire of a conducting wire and a terminal fitting, for example, there is a method of crimping and crimping a core wire with a caulking piece provided on the terminal fitting (for example, Patent Documents 1 to 3). ). The terminal fitting used for this crimp connection is generally configured as shown in FIG. As shown in the figure, the terminal fitting 1 includes a caulking piece 2. Then, the crimping piece 2 and the core wire 3 of the terminal fitting 1 are sandwiched between the crimper 4 (upper mold) and the anvil 5 (lower mold) as shown in FIGS. 7B and 7C, and then the pressure is applied. By adding, the core wire 3 is crimped and crimped by the caulking piece 2, and the terminal fitting 1 and the core wire 3 are electrically and mechanically connected as shown in FIG.

ところで、上述した圧着後のクリンプ高さC/H(図7(D)参照)と、圧着後の端子金具1−芯線3間の固着力F又は接触抵抗Rとの関係は、図8に示すようになる。同図に示すように、固着力Fは、クリンプ高さC/Hに対して上に凸の非線形特性を有するため、クリンプ高さC/Hは一定範囲に対して使用可能な固着力Fが存在することになる。同様に、接触抵抗Rはクリンプ高さC/Hに対して使用可能な接触抵抗Rが存在することになる。このような非線形特性を有する固着力Fと接触抵抗Rとの関係から、固着力F、接触抵抗R共に使用可能とするクリンプ高さC/Hの範囲(図8中に示す「最適クリンプ高さ」)が限定されることになる。   By the way, the relationship between the crimp height C / H after crimping (see FIG. 7D) and the fixing force F or contact resistance R between the terminal fitting 1 and the core wire 3 after crimping is shown in FIG. It becomes like this. As shown in the figure, since the fixing force F has a non-linear characteristic that is convex upward with respect to the crimp height C / H, the crimp height C / H can be used for a certain range. Will exist. Similarly, there is a contact resistance R that can be used with respect to the crimp height C / H. From the relationship between the fixing force F having such non-linear characteristics and the contact resistance R, the range of the crimp height C / H that can be used for both the fixing force F and the contact resistance R (the “optimal crimp height shown in FIG. 8”). ") Will be limited.

そこで、従来では、例えば、新しい接続設計をする際、端子金具1、芯線3、クリンパ4又はアンビル5などの設計を行う。そして、この設計された端子金具1、芯線3、クリンパ4又はアンビル5などを用いて、実際に、圧着接続を行った後、固着力F、接触抵抗Rなどを計測して、最適な固着力F、接触抵抗Rが得られるか否かといった評価が実行される。得られない場合は、また、新たに端子金具1、芯線3、クリンパ4又はアンビル5などの設計を行った後、上述したことを繰り返し行う。   Therefore, conventionally, for example, when designing a new connection, the terminal fitting 1, the core wire 3, the crimper 4 or the anvil 5 are designed. Then, after actually performing the crimping connection using the designed terminal fitting 1, core wire 3, crimper 4 or anvil 5, etc., the fixing force F, the contact resistance R, etc. are measured to obtain the optimum fixing force. F and evaluation of whether or not the contact resistance R is obtained are executed. If not obtained, the terminal fitting 1, the core wire 3, the crimper 4 or the anvil 5 is newly designed, and then the above is repeated.

ところで、上述した接触抵抗Rは低温環境や高温環境に放置すると上昇してしまうことが分かっている。そこで、接触抵抗Rの計測は、例えば−40℃の低温環境と+120℃の高温環境とを交互に1000回繰り返す冷熱衝突試験を実行した後に行っていた。この低温環境と高温環境との1サイクルが仮に2時間要する場合には、接触抵抗Rの計測までに2000時間を要する。即ち、従来の端子金具1−芯線3の接続設計では、上述したように設計→実際に接続する→冷熱衝突試験→評価(測定)といったカットアンドトライを繰り返して適正なものを得る必要がある。このため、設計の経験があまりない者が上述した接続設計を行うと、希望のものを得るまで無駄な時間を費やすことが多くなり、設計期間が長くなったり、設計コストアップを招くという問題があった。
特開2007−173215号公報 特開2006−351451号公報 特開平10−50449号公報
By the way, it is known that the contact resistance R described above increases when left in a low temperature environment or a high temperature environment. Therefore, the measurement of the contact resistance R has been performed after, for example, a cold collision test in which a low temperature environment of −40 ° C. and a high temperature environment of + 120 ° C. are alternately repeated 1000 times. If one cycle of the low temperature environment and the high temperature environment requires 2 hours, 2000 hours are required until the contact resistance R is measured. That is, in the conventional connection design of the terminal fitting 1 to the core wire 3, it is necessary to obtain an appropriate one by repeating the cut-and-try process as described above: design → actual connection → cooling collision test → evaluation (measurement). For this reason, if the person who has little design experience performs the connection design described above, there is a problem that a lot of time is wasted until the desired product is obtained, and the design period becomes longer and the design cost increases. there were.
JP 2007-173215 A JP 2006-351451 A Japanese Patent Laid-Open No. 10-50449

そこで、本発明は、上記のような問題点に着目し、設計者の経験に左右されることなく、端子金具と芯線との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができるように、シミュレーションによって接触抵抗に応じた接触性能係数を算出する接触性能係数算出装置及び接触性能係数算出方法を提供することを課題とする。   Therefore, the present invention pays attention to the problems as described above so that anyone can easily and quickly perform the connection design between the terminal fitting and the core wire without being influenced by the experience of the designer. It is an object of the present invention to provide a contact performance coefficient calculation device and a contact performance coefficient calculation method for calculating a contact performance coefficient corresponding to a contact resistance by simulation so that they can be supported.

本発明者は、設計者の経験に左右されることなく、シミュレーションによって接触抵抗に応じた接触性能係数を算出する接触性能係数算出装置及び接触性能係数算出方法を得るべく検討を重ねた結果、下記の式(1)及び(2)に示す接触性能係数CCが接触抵抗Rに応じた値となることを見出し、本発明を完成するに至った。

Figure 0005123001
k=(Lk+1+Lk-1)/2 …(2) As a result of repeated investigations to obtain a contact performance coefficient calculation device and a contact performance coefficient calculation method for calculating the contact performance coefficient according to the contact resistance by simulation without being influenced by the experience of the designer, The contact performance coefficient CC shown in the formulas (1) and (2) is found to be a value corresponding to the contact resistance R, and the present invention has been completed.
Figure 0005123001
L k = (L k + 1 + L k-1 ) / 2 (2)

なお、図4(B)に示すように、PSKは有限要素法を実行して得た圧着後(かしめた後)の芯線モデル3mの輪郭上の節のうちかしめ片モデル2mに接触する節NSKからかしめ片モデル2mに作用する力である。Lk+1は節NSK、及び、芯線モデル3mの輪郭上の節のうち節NSKに隣接する節Nk+1との距離であり、Lk-1は節NSKと芯線モデル3mの輪郭上の節のうち節NSKに隣接する節Nk-1との距離である。nは、芯線モデル3mの輪郭上の節のうちかしめ片モデル2mに接触する節NSKの総数である。 As shown in FIG. 4B, PSK is a node that contacts the crimped piece model 2m among the nodes on the contour of the core wire model 3m after crimping (after crimping) obtained by executing the finite element method. N SK is the force acting on the caulking piece model 2m. L k + 1 sections N SK, and a distance between the node N k + 1 adjacent to the inner section N SK sections on the contour of the core wire model 3m, L k-1 sections N SK and the core wire model 3m This is the distance from the node N k-1 adjacent to the node N SK among the nodes on the contour of the. n is the total number of nodes N SK contacting the crimping pieces model 2m of sections on the contour of the core wire model 3m.

即ち、請求項1記載の発明は、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた接触性能係数を算出する接触性能係数算出装置であって、前記芯線の断面を複数の要素に分割した芯線モデルを取得する芯線モデル取得手段と、前記かしめ片の断面を複数の要素に分割したかしめ片モデルを取得するかしめ片モデル取得手段と、上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位及び各節に作用する力を有限要素法により算出する変形算出手段と、前記変形算出手段により算出された前記各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する節抽出手段と、前記節抽出手段により抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の一方、間の第1の距離を求める第1の距離算出手段と、前記節抽出手段により抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の他方、間の第2の距離を求める第2の距離算出手段と、前記第1の距離、及び、前記第2の距離、の和の1/2を前記節抽出手段により抽出された節の接触長さとして求める接触長さ算出手段と、前記節抽出手段により抽出された全ての節について求めた前記接触長さと前記節抽出手段により抽出された節が前記かしめ片モデルに作用する力とを乗じた値の総和を求めて、該総和の逆数を前記接触性能係数として求める接触性能係数算出手段と、を備えたことを特徴とする接触性能係数算出装置に存する。 That is, the invention according to claim 1 is a contact performance coefficient calculation device that calculates a contact performance coefficient according to the contact resistance between the crimped piece provided on the terminal fitting and the core wire crimped on the crimped piece, A core wire model acquisition means for acquiring a core wire model obtained by dividing a cross section of the core wire into a plurality of elements; a crimping piece model acquisition means for acquiring a caulking piece model obtained by dividing the cross section of the caulking piece into a plurality of elements; Deformation calculating means for calculating, by a finite element method, the displacement of each node constituting the core wire model after the core wire is caulked by the caulking piece and the force acting on each node and the force acting on each node after being sandwiched between lower molds And a node extracting means for extracting a node that contacts the caulking piece model from the nodes on the contour of the core model after the caulking from the displacement of each node calculated by the deformation calculating means; A first node between one of a pair of nodes adjacent to the node extracted by the node extraction unit among the nodes extracted by the node extraction unit and the nodes on the contour of the core model after the caulking The first distance calculating means for obtaining the distance, the node extracted by the node extracting means, and the node extracted by the node extracting means among the nodes on the outline of the core model after the caulking Half of the sum of the second distance calculating means for obtaining the second distance between the other of the pair of nodes, the first distance, and the second distance is extracted by the node extracting means. The contact length calculation means obtained as the contact length of the nodes, the contact lengths obtained for all the nodes extracted by the node extraction means, and the nodes extracted by the node extraction means act on the caulking piece model. Find the sum of the values multiplied by the force The contact performance coefficient calculating means for calculating the reciprocal of the sum as the contact of merit, lies in contact performance coefficient calculation apparatus characterized by comprising a.

請求項2記載の発明は、処理プログラムに従って各種の処理を行うコンピュータを用いて、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた接触性能係数を算出する接触性能係数算出方法であって、前記コンピュータが、前記芯線の断面を複数の要素に分割した芯線モデル、及び、前記かしめ片の断面を複数の要素に分割したかしめ片モデル、を取得する工程と、前記コンピュータが、上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位及び各節に作用する力を有限要素法により算出する工程と、前記コンピュータが、前記算出された各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する工程と、前記コンピュータが、前記抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の一方、間の第1の距離を求める工程と、前記コンピュータが、前記抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の他方、間の第2の距離を求める工程と、前記コンピュータが、前記第1の距離、及び、前記第2の距離、の和の1/2を前記抽出された節の接触長さとして求める工程と、前記コンピュータが、前記抽出された全ての節について求めた前記接触長さと前記抽出された節が前記かしめ片モデルに作用する力とを乗じた値の総和を求めて、当該総和の逆数を前記接触性能係数として求める工程と、を順次行うことを特徴とする接触性能係数算出方法に存する。 The invention according to claim 2 uses a computer that performs various processes in accordance with a processing program , and calculates a contact performance coefficient according to the contact resistance between a crimped piece provided on the terminal fitting and a core wire crimped on the crimped piece. A calculation method for a contact performance coefficient to be calculated, wherein the computer acquires a core wire model in which a cross section of the core wire is divided into a plurality of elements, and a caulking piece model in which a cross section of the caulking piece is divided into a plurality of elements. Steps, displacement of each node constituting the caulking piece model after the caulking piece is caulked with the caulking piece sandwiched between the upper die and the lower die, and force acting on each node a step of calculating by the finite element method, the computer, the crimping of the sections on the contour of the core wire model after the caulking from the displacement of each node of the calculated A step of extracting the section in contact with the model, the computer, the extracted section and a pair of nodes adjacent to the extracted section of the sections on the contour of the core wire model after the caulking On the other hand, a step of obtaining a first distance between the pair of the computer and the computer adjacent to the extracted node among the extracted nodes and the nodes on the outline of the core model after the caulking A step of obtaining a second distance between the other of the nodes, and the computer uses 1/2 of the sum of the first distance and the second distance as the contact length of the extracted node a step of determining, the computer, the contact length and the extracted sections obtained for all clauses of the extracted is the total sum of values obtained by multiplying the force acting on the crimping pieces model, of the total Let the reciprocal be the contact performance coefficient. Be carried out a step of determining, successively resides in contact performance coefficient calculation method according to claim.

以上説明したように請求項1及び2記載の発明によれば、シミュレーションによって接触抵抗に応じた接触性能係数を算出することができるので、設計者の経験に左右されることなく、端子金具と芯線との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができる。   As described above, according to the first and second aspects of the invention, since the contact performance coefficient corresponding to the contact resistance can be calculated by simulation, the terminal fitting and the core wire are not affected by the experience of the designer. Can be designed so that anyone can easily and quickly design connections.

以下、本発明の接触性能係数算出装置及び接触性能係数算出方法を図面に基づいて説明する。図1に示す接触性能係数算出装置6は、例えばパーソナルコンピュータから構成されていて、端子金具1と芯線3とを圧着して接続する際に、実際の圧着接続に先立って端子金具1−芯線3間の接触抵抗Rに応じた接触性能係数CCを算出するための装置である。   Hereinafter, a contact performance coefficient calculation apparatus and a contact performance coefficient calculation method according to the present invention will be described with reference to the drawings. The contact performance coefficient calculation device 6 shown in FIG. 1 is constituted by a personal computer, for example, and when the terminal fitting 1 and the core wire 3 are connected by crimping, the terminal fitting 1-core wire 3 prior to the actual crimping connection. This is a device for calculating a contact performance coefficient CC according to the contact resistance R between the two.

同図に示すように、接触性能係数算出装置6は、入力装置7と、表示装置8と、マイクロコンピュータ(以下μCOM9)と、を備えている。入力装置7は、例えばキーボードや、マウスといった操作手段などから構成されていて、従来技術で説明した端子金具1のかしめ片2、芯線3、クリンパ4及びアンビル5の形状情報と、かしめ片2及び芯線3の材料の応力−歪特性である材料特性情報を入力するための装置である。上記形状情報としては、例えばCADで作成したかしめ片2、芯線3、クリンパ4及びアンビル5のCADデータなどが考えられる。   As shown in the figure, the contact performance coefficient calculation device 6 includes an input device 7, a display device 8, and a microcomputer (hereinafter referred to as μCOM 9). The input device 7 is composed of operation means such as a keyboard and a mouse, for example, and includes information on the shape of the crimping piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 described in the prior art, and the crimping piece 2 and This is a device for inputting material property information which is a stress-strain property of the material of the core wire 3. As the shape information, for example, CAD data of the caulking piece 2, the core wire 3, the crimper 4, and the anvil 5 created by CAD can be considered.

表示装置8は、例えば算出した接触性能係数を表示するための装置である。μCOM9は、接触性能係数算出装置6全体の制御を司り処理プログラムに従って各種の処理を行う中央演算処理ユニット(以下CPU)10と、CPU10が行う処理のプログラムなどを格納した読出専用のメモリであるROM11と、CPU10での各種の処理過程で利用するワークエリア、各種データを格納するデータ記憶エリアなどを有する読出書込自在のメモリであるRAM12と、を有している。   The display device 8 is a device for displaying, for example, the calculated contact performance coefficient. The μCOM 9 controls the entire contact performance coefficient calculation device 6 and performs a central processing unit (hereinafter referred to as CPU) 10 that performs various processes according to a processing program, and a ROM 11 that is a read-only memory that stores a program for processing performed by the CPU 10 and the like. And a RAM 12 which is a readable / writable memory having a work area used in various processing steps in the CPU 10 and a data storage area for storing various data.

次に、上述した構成の接触性能係数算出装置6の動作について図2〜図4を参照して以下説明する。まず、入力装置7によって解析シミュレーション処理の開始操作が行われると、CPU10は、解析シミュレーション処理を開始する。まず、CPU10は、上述した端子金具1のかしめ片2、芯線3、クリンパ4及びアンビル5の形状情報と、かしめ片2及び芯線3の材料特性情報を入力させるための入力画面を表示装置8に表示させる入力処理を行う(図2のステップS1)。   Next, the operation of the contact performance coefficient calculation device 6 having the above-described configuration will be described below with reference to FIGS. First, when an analysis simulation process start operation is performed by the input device 7, the CPU 10 starts the analysis simulation process. First, the CPU 10 displays on the display device 8 an input screen for inputting the shape information of the crimping piece 2, the core wire 3, the crimper 4 and the anvil 5 of the terminal fitting 1 and the material characteristic information of the crimping piece 2 and the core wire 3. An input process for display is performed (step S1 in FIG. 2).

ユーザは、表示装置8の表示に従って入力装置7のキーボードやマウスといった操作手段を操作して上記形状情報、材料特性情報を入力させる。なお、端子金具1の種類A、B、C…、芯線3の種類A、B、C…、圧着型であるクリンパ4及びアンビル5の種類A、B、C…に応じた形状情報、材料特性情報を予めROM11内に記録させて、ユーザにより端子金具1、芯線3、圧着型であるクリンパ4及びアンビル5の種類を選択させることで、上記形状情報、材料情報を入力させるようにしてもよい。   The user operates the operation means such as the keyboard and mouse of the input device 7 in accordance with the display on the display device 8 to input the shape information and material property information. The shape information and material characteristics according to the types A, B, C,... Of the terminal fitting 1, the types A, B, C,... Of the core wire 3, and the types A, B, C,. Information may be recorded in the ROM 11 in advance, and the user may be allowed to input the shape information and material information by selecting the types of the terminal fitting 1, the core wire 3, the crimper type crimper 4 and the anvil 5. .

その後、CPU10は、有限要素モデル変換処理を行う(ステップS2)。有限要素モデル変換処理においてCPU10は、図3(A)に示すように、上記入力処理によって入力されたかしめ片2及び芯線3をそれぞれ複数の要素に分割したかしめ片モデル2m及び芯線モデル3mに変換する。この有限要素モデル変換処理においてCPU10は、請求項中の芯線モデル取得手段、かしめ片モデル取得手段として働く。   Thereafter, the CPU 10 performs a finite element model conversion process (step S2). In the finite element model conversion processing, as shown in FIG. 3A, the CPU 10 converts the crimped piece 2 and the core wire 3 input by the input processing into a crimped piece model 2m and a core wire model 3m, each of which is divided into a plurality of elements. To do. In this finite element model conversion process, the CPU 10 functions as a core wire model acquisition unit and a caulking piece model acquisition unit in the claims.

次に、CPU10は、変形算出処理を行う(ステップS3)。変形算出処理においてCPU10は、図3(B)〜(D)に示すように、有限要素法を用いてクリンパ4とアンビル5との間に挟んで芯線3をかしめ片2によりかしめた後にクリンパ4及びアンビル5を離してかしめ片2及び芯線3に加えられた負荷を除荷した後の芯線モデル3m及びかしめ片モデル2mを構成する各節Nの変位及び各節Nに作用する力Pを算出する。この変形算出処理においてCPU10は、請求項中の変形算出手段として働く。   Next, the CPU 10 performs a deformation calculation process (step S3). In the deformation calculation process, as shown in FIGS. 3B to 3D, the CPU 10 crimps the core wire 3 with the caulking piece 2 after being crimped between the crimper 4 and the anvil 5 using the finite element method. The displacement of each node N constituting the core wire model 3m and the caulking piece model 2m after the load applied to the caulking piece 2 and the core wire 3 is released by separating the anvil 5 and the force P acting on each node N are calculated. To do. In this deformation calculation process, the CPU 10 functions as deformation calculation means in the claims.

上記クリンパ4及びアンビル5を近づけてかしめ片2をかしめた後にクリンパ4及びアンビル5を離してかしめ片2及び芯線3に加えられた負荷を除荷すると、かしめ片2及び芯線3にはスプリングバックと呼ばれる弾性回復現象が生じる。よって、上記変形算出処理により、スプリングバック後の芯線モデル3m及びかしめ片モデル2mを構成する各節Nの変位及び各節Nに作用する力Pを算出することができる。   When the crimper 4 and the anvil 5 are brought close to each other and the crimping piece 2 is caulked and then the crimper 4 and the anvil 5 are separated and the load applied to the caulking piece 2 and the core wire 3 is unloaded, the caulking piece 2 and the core wire 3 are spring-backed. This causes an elastic recovery phenomenon called. Therefore, the deformation calculation process can calculate the displacement of each node N and the force P acting on each node N constituting the core model 3m and the caulking piece model 2m after the spring back.

その後、CPU10は、ステップS4〜S6を実行して、上記変形算出処理によって求めた各節Nの変位及び各節Nに作用する力Pからかしめ片2及び芯線3間の接触抵抗Rに応じた後述する接触性能係数CCを求める。上記接触抵抗Rは、かしめ片2及び芯線3間の接触面積、接触圧力が大きくなるに従って小さくなる。そこで、CPU10は、下記のステップS4及びS5を実行して、図3に示すような断面上のかしめ片2及び芯線3間の接触長さを接触面積に応じた値として求める。   Thereafter, the CPU 10 executes steps S4 to S6, and responds to the contact resistance R between the caulking piece 2 and the core wire 3 from the displacement of each node N obtained by the deformation calculation process and the force P acting on each node N. A contact performance coefficient CC described later is obtained. The contact resistance R decreases as the contact area and contact pressure between the caulking piece 2 and the core wire 3 increase. Therefore, the CPU 10 executes the following steps S4 and S5 to obtain the contact length between the caulking piece 2 and the core wire 3 on the cross section as shown in FIG. 3 as a value corresponding to the contact area.

即ち、CPU10は、節抽出手段として働き、上述した変形算出処理により算出された各節Nの変位からスプリングバック後の芯線モデル3mの輪郭上の節Nのうちかしめ片モデル2mに接触する節NSを抽出する節抽出処理を行う(ステップS4)。結果を図4(A)に示す。同図に示すように、節抽出処理を行った結果、例えば総数n個の節NSが抽出される。なお、図4(A)中のPSはステップS4で抽出した芯線モデル3m上の節NSに作用する力、即ち、ステップS4で抽出した芯線モデル3m上の節NSからかしめ片2モデルに作用する接触圧力を示す。次に、CPU10は、第1の距離算出手段、第2の距離算出手段、接触長さ算出手段として働き、節抽出処理により抽出した各節NSにおけるスプリングバック後のかしめ片2と芯線3との接触長さを求める接触長さ算出処理を行う(ステップS5)。図4(B)に示すように、かしめ片モデル2mと芯線モデル3mとは点(節)で接触しているが、本発明者は、実際にはステップS4で抽出された任意の節NSkでは、下記の式(2)で示す接触長さLkで接触していると仮定した。
k=(Lk+1+Lk-1)/2 …(2)
That is, the CPU 10 functions as a node extracting means, and the node N that contacts the caulking piece model 2m among the nodes N on the contour of the core model 3m after the spring back from the displacement of each node N calculated by the deformation calculation process described above. A node extraction process for extracting S is performed (step S4). The results are shown in FIG. As shown in the figure, as a result of the clause extraction process, for example, Total n-number of nodes N S are extracted. Incidentally, FIG. 4 P S in (A) the force acting on the node N S on the core wire model 3m extracted in step S4, i.e., the crimping pieces 2 model from node N S on the core wire model 3m extracted in step S4 The contact pressure acting on is shown. Then, CPU 10 has the first distance calculating unit, the second distance calculating means, serves as a contact length calculating unit, a crimping piece 2 and the core wire 3 after the spring-back at each node N S extracted by clause extraction process The contact length calculation process for obtaining the contact length is performed (step S5). As shown in FIG. 4B, the caulking piece model 2m and the core wire model 3m are in contact with each other at a point (node). However, the present inventor actually made an arbitrary node N Sk extracted in step S4. Therefore, it is assumed that the contact is made with the contact length L k shown by the following formula (2).
L k = (L k + 1 + L k-1 ) / 2 (2)

なお、Lk+1は抽出された任意の節NSk及び節Nk+1間の距離(第1の距離)である。上記節Nk+1は、芯線モデル3mの輪郭上の節Nのうち節NSkに隣接する一対の節Nk+1、Nk-1の一方である。Lk-1は抽出された任意の節NSk及び節Nk-1間の距離(第2の距離)である。上記節Nk-1は、芯線モデル3mの輪郭上の節Nのうち節NSkに隣接する一対の節Nk+1、Nk-1の他方である。 Note that L k + 1 is the distance (first distance) between any extracted node N Sk and node N k + 1 . The node N k + 1 is one of a pair of nodes N k + 1 and N k−1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m. L k-1 is a distance (second distance) between the extracted arbitrary nodes N Sk and N k-1 . The node N k-1 is the other of the pair of nodes N k + 1 and N k-1 adjacent to the node N Sk among the nodes N on the outline of the core wire model 3m.

次に、CPU10は、接触性能係数算出手段として働き、下記の式(1)に示すように、ステップS4で抽出された全ての、即ち総数n個の節NSについて求めた接触長さLkとステップS4で抽出された節NSがかしめ片モデル2mに作用する接触圧力PSKとを乗じた値の総和を求めて、当該総和の逆数を接触性能係数CCとして求める接触性能係数算出処理を行った後(ステップS6)、その算出した接触性能係数CCを表示装置8に表示して(ステップ7)、解析シミュレーション処理を終了する。

Figure 0005123001
Next, the CPU 10 functions as a contact performance coefficient calculation means, and as shown in the following equation (1), the contact length L k obtained for all the nodes N S extracted in step S4, that is, the total number of nodes NS. a node N S extracted in step S4 is the total sum of values obtained by multiplying the contact pressure P SK acting on crimping pieces model 2m, contact performance coefficient calculation process for obtaining the reciprocal of the sum as the contact performance coefficient CC After that (step S6), the calculated contact performance coefficient CC is displayed on the display device 8 (step 7), and the analysis simulation process is terminated.
Figure 0005123001

上記接触性能係数CCは、式(1)からも明らかなように、接触抵抗Rと同様にかしめ片2及び芯線3間の接触長さ(面積)Lk、接触圧力PSkが大きくなるに従って小さくなる係数である。即ち、本発明者は、上記式(1)に示す接触性能係数CCが接触抵抗Rに応じた値になるだろうと仮定した。 As apparent from the equation (1), the contact performance coefficient CC decreases as the contact length (area) L k between the caulking piece 2 and the core wire 3 and the contact pressure P Sk increase as in the case of the contact resistance R. Is a coefficient. That is, the present inventor assumed that the contact performance coefficient CC shown in the above formula (1) would be a value corresponding to the contact resistance R.

次に、本発明の発明者は、図5に示すサンプル品(1)〜(5)について前述した本発明品を用いて算出した接触性能係数CCと、図5に示すサンプル品(1)〜(5)を実際に試作して冷熱衝突試験を実行した後に計測した接触抵抗Rと、比較した。結果を図6に示す。サンプル品(1)は、種類Aの芯線3、種類Aの端子金具1、種類Aの圧着型(クリンパ4、アンビル5)を用いて、芯線3を端子金具1のかしめ片2でかしめた品である。同様に、サンプル品(2)は種類Aの芯線3、種類Bの端子金具1、種類Aの圧着型、サンプル品(3)は種類Aの芯線3、種類Aの端子金具1、種類Bの圧着型、サンプル品(4)は種類Aの芯線3、種類Cの端子金具1、種類Aの圧着型、サンプル品(5)は種類Aの芯線3、種類Aの端子金具1、種類Cの圧着型を各々用いて、芯線3を端子金具1のかしめ片2でかしめた品である。   Next, the inventor of the present invention calculates the contact performance coefficient CC calculated using the product of the present invention described above for the sample products (1) to (5) shown in FIG. 5 and the sample products (1) to (5) shown in FIG. Comparison was made with the contact resistance R measured after actually making a prototype of (5) and executing the thermal collision test. The results are shown in FIG. Sample product (1) is a product in which core wire 3 is crimped with crimping piece 2 of terminal metal fitting 1 using type A core wire 3, type A terminal metal fitting 1, type A crimping type (crimper 4, anvil 5). It is. Similarly, the sample product (2) is of type A core wire 3, type B terminal fitting 1, type A crimping type, and the sample product (3) is type A core wire 3, type A terminal fitting 1, type B Crimp type, sample product (4) is type A core wire 3, type C terminal fitting 1, type A crimp type, sample product (5) is type A core wire 3, type A terminal fitting 1, type C Each of the crimping molds is used to crimp the core wire 3 with the crimping piece 2 of the terminal fitting 1.

図6に示すように、実測値である導体圧縮比率%(=クリンプ高さ)に応じた接触抵抗Rは、サンプル品(4)、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で大きくなる。よって、実測品の性能としては、サンプル品(4)が1番良く、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で悪くなる。   As shown in FIG. 6, the contact resistance R corresponding to the measured conductor compression ratio% (= crimp height) is the sample product (4), sample product (3), sample product (2), sample product ( 1) The sample product (5) increases in this order. Therefore, as the performance of the actually measured product, the sample product (4) is the best, and the sample product (3), the sample product (2), the sample product (1), and the sample product (5) become worse in this order.

これに対して、シミュレーション値である導体圧縮比率%に応じた接触性能係数CCも、サンプル品(4)、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で大きくなる。よって、実測品と同様に、シミュレーション値である接触性能係数CCからもサンプル品(4)が1番良く、サンプル品(3)、サンプル品(2)、サンプル品(1)、サンプル品(5)の順で悪くなることが分かる。即ち、式(1)に示す接触性能係数CCが接触抵抗Rに応じた値になっていることが分かった。   In contrast, the contact performance coefficient CC corresponding to the conductor compression ratio%, which is a simulation value, is also the sample product (4), sample product (3), sample product (2), sample product (1), sample product (5). ) In order. Therefore, similarly to the actual measurement product, the sample product (4) is the best from the contact performance coefficient CC that is a simulation value, and the sample product (3), the sample product (2), the sample product (1), and the sample product (5) It turns out that it gets worse in the order of). That is, it was found that the contact performance coefficient CC shown in the equation (1) is a value corresponding to the contact resistance R.

上述した接触性能係数算出装置6によれば、実際に複数のサンプル品を作ってその接触抵抗Rを実測しなくても、シミュレーション値である接触性能係数CCを算出することにより、複数のサンプル品の接触抵抗Rの大きさを比較することができる。このため、設計者の経験に左右されることなく、端子金具1と芯線3との接続設計を誰もが簡単に、かつ、短時間に行えるように支援することができる。   According to the contact performance coefficient calculation device 6 described above, a plurality of sample products can be obtained by calculating the contact performance coefficient CC which is a simulation value without actually making a plurality of sample products and actually measuring the contact resistance R. The magnitude of the contact resistance R can be compared. For this reason, it can support that anyone can perform the connection design of the terminal metal fitting 1 and the core wire 3 easily and in a short time without being influenced by a designer's experience.

なお、上述した実施形態によれば、入力処理によって入力されたかしめ片2及び芯線3をそれぞれかしめ片モデル2m及び芯線モデル3mに変換する有限要素モデル変換処理を設けていたが、本発明はこれに限ったものではない。例えば、端子金具1の種類A、B、C…に応じたかしめ片モデル2m及び芯線3の種類A、B、C…に応じた芯線モデル3mを予めROM11内に記録させて、ユーザにより端子金具1及び芯線3の種類を選択させることで、入力処理によって上記かしめ片モデル2m、芯線モデル3mを入力させるようにしてもよい。この場合、有限要素モデル変換処理を行う必要がない。   According to the above-described embodiment, the finite element model conversion process for converting the caulking piece 2 and the core wire 3 input by the input process into the caulking piece model 2m and the core wire model 3m, respectively, is provided. It is not limited to. For example, the caulking piece model 2m corresponding to the types A, B, C... Of the terminal fitting 1 and the core wire model 3m corresponding to the types A, B, C. By selecting the type of 1 and the core wire 3, the caulking piece model 2m and the core wire model 3m may be input by input processing. In this case, it is not necessary to perform a finite element model conversion process.

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

本発明の接触性能係数算出方法を実施した接触性能係数算出装置の一実施の形態を示すブロック図である。It is a block diagram which shows one Embodiment of the contact performance coefficient calculation apparatus which implemented the contact performance coefficient calculation method of this invention. 図1に示すCPUの解析シミュレーション処理手順を示すフローチャートである。It is a flowchart which shows the analysis simulation process procedure of CPU shown in FIG. 図2に示す変形算出処理を説明するための説明図である。It is explanatory drawing for demonstrating the deformation | transformation calculation process shown in FIG. (A)は図2に示す変形算出処理結果を説明するための説明図であり、(B)は(A)のX部の拡大図である。(A) is explanatory drawing for demonstrating the deformation | transformation calculation process result shown in FIG. 2, (B) is an enlarged view of the X section of (A). サンプル品(1)〜(5)に対応する芯線、端子金具及び圧着型の種類、接触抵抗の序列、接触性能係数の序列を示す表である。It is a table | surface which shows the order of the core wire corresponding to sample goods (1)-(5), the type of a terminal metal fitting and a crimping | compression-bonding type | mold, contact resistance, and a contact performance coefficient. 導体圧縮率に対応するサンプル品(1)〜(5)の接触抵抗及び接触性能係数を示すグラフである。It is a graph which shows the contact resistance and contact performance coefficient of sample goods (1)-(5) corresponding to a conductor compressibility. (A)は圧着接続に用いられる端子金具の形状を示す側面図であり、(B)は圧着作業に用いられるアンビルとクリンパとの形状を示す図であり、(C)は端子金具と芯線との圧着作業中の状態を示す図であり、(D)は端子金具と芯線との圧着後の状態を示す図である。(A) is a side view which shows the shape of the terminal metal fitting used for crimping connection, (B) is a figure which shows the shape of the anvil and crimper used for crimping work, (C) is a terminal metal fitting and a core wire. It is a figure which shows the state in the time of a crimping | compression-bonding operation | work, (D) is a figure which shows the state after crimping | bonding of a terminal metal fitting and a core wire. 圧着接続を行った際のクリンプ高さ対固着力及び接触抵抗の関係を示すグラフである。It is a graph which shows the relationship between crimp height at the time of crimping | bonding connection, sticking force, and contact resistance.

符号の説明Explanation of symbols

1 端子金具
2 かしめ片
3 芯線
4 クリンパ(上型)
5 アンビル(下型)
6 接触性能係数算出装置
10 CPU(芯線モデル取得手段、かしめ片モデル取得手段、変形算出手段、節抽出手段、第1の距離算出手段、第2の距離算出手段、接触長さ算出手段、接触性能係数算出手段)
k+1 距離(第1の距離)
k-1 距離(第2の距離)
N 節
S
Sk
1 Terminal fitting 2 Caulking piece 3 Core wire 4 Crimper (upper mold)
5 Anvil (bottom)
6 Contact performance coefficient calculation device 10 CPU (core wire model acquisition means, caulking piece model acquisition means, deformation calculation means, node extraction means, first distance calculation means, second distance calculation means, contact length calculation means, contact performance Coefficient calculation means)
L k + 1 distance (first distance)
L k-1 distance (second distance)
N nodes N S node N Sk clause

Claims (2)

端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた接触性能係数を算出する接触性能係数算出装置であって、
前記芯線の断面を複数の要素に分割した芯線モデルを取得する芯線モデル取得手段と、
前記かしめ片の断面を複数の要素に分割したかしめ片モデルを取得するかしめ片モデル取得手段と、
上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位及び各節に作用する力を有限要素法により算出する変形算出手段と、
前記変形算出手段により算出された前記各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する節抽出手段と、
前記節抽出手段により抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の一方、間の第1の距離を求める第1の距離算出手段と、
前記節抽出手段により抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記節抽出手段により抽出された節に隣接する一対の節の他方、間の第2の距離を求める第2の距離算出手段と、
前記第1の距離、及び、前記第2の距離、の和の1/2を前記節抽出手段により抽出された節の接触長さとして求める接触長さ算出手段と、
前記節抽出手段により抽出された全ての節について求めた前記接触長さと前記節抽出手段により抽出された節が前記かしめ片モデルに作用する力とを乗じた値の総和を求めて、
当該総和の逆数を前記接触性能係数として求める接触性能係数算出手段と、
を備えたことを特徴とする接触性能係数算出装置。
A contact performance coefficient calculation device for calculating a contact performance coefficient according to a contact resistance between a crimped piece provided on a terminal fitting and a core wire crimped on the crimped piece,
A core wire model acquisition means for acquiring a core wire model obtained by dividing the cross section of the core wire into a plurality of elements;
A caulking piece model obtaining means for obtaining a caulking piece model obtained by dividing a cross section of the caulking piece into a plurality of elements;
The core wire model after the core wire is caulked by the caulking piece sandwiched between the upper die and the lower die, the displacement of each node constituting the caulking piece model and the force acting on each node are calculated by the finite element method. Deformation calculation means;
A node extracting unit that extracts a node that contacts the caulking piece model from the nodes on the outline of the core model after the caulking from the displacement of each node calculated by the deformation calculating unit;
A node extracted by the node extracting unit and a first node between one of a pair of nodes adjacent to the node extracted by the node extracting unit among the nodes on the contour of the core model after the caulking First distance calculating means for obtaining a distance;
A second node between the node extracted by the node extracting unit and the other of the pair of nodes adjacent to the node extracted by the node extracting unit among the nodes on the contour of the core model after the caulking A second distance calculating means for obtaining a distance;
Contact length calculation means for obtaining 1/2 of the sum of the first distance and the second distance as the contact length of the node extracted by the node extraction means;
Finding the sum of the values obtained by multiplying the contact length determined for all the nodes extracted by the node extracting means and the force that the nodes extracted by the node extracting means act on the caulking piece model,
Contact performance coefficient calculating means for obtaining the reciprocal of the sum as the contact performance coefficient;
A contact performance coefficient calculation device comprising:
処理プログラムに従って各種の処理を行うコンピュータを用いて、端子金具に設けられたかしめ片と、前記かしめ片にかしめられる芯線と、の接触抵抗に応じた接触性能係数を算出する接触性能係数算出方法であって、
前記コンピュータが、前記芯線の断面を複数の要素に分割した芯線モデル、及び、前記かしめ片の断面を複数の要素に分割したかしめ片モデル、を取得する工程と、
前記コンピュータが、上型及び下型の間に挟んで前記芯線を前記かしめ片によりかしめた後の前記芯線モデル及び前記かしめ片モデルを構成する各節の変位及び各節に作用する力を有限要素法により算出する工程と、
前記コンピュータが、前記算出された各節の変位から前記かしめた後の前記芯線モデルの輪郭上の節のうち前記かしめ片モデルに接触する節を抽出する工程と、
前記コンピュータが、前記抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の一方、間の第1の距離を求める工程と、
前記コンピュータが、前記抽出された節、及び、前記かしめた後の前記芯線モデルの輪郭上の節のうち前記抽出された節に隣接する一対の節の他方、間の第2の距離を求める工程と、
前記コンピュータが、前記第1の距離、及び、前記第2の距離、の和の1/2を前記抽出された節の接触長さとして求める工程と、
前記コンピュータが、前記抽出された全ての節について求めた前記接触長さと前記抽出された節が前記かしめ片モデルに作用する力とを乗じた値の総和を求めて、当該総和の逆数を前記接触性能係数として求める工程と、
を順次行うことを特徴とする接触性能係数算出方法。
A contact performance coefficient calculation method for calculating a contact performance coefficient according to the contact resistance between the crimped piece provided on the terminal fitting and the core wire crimped to the crimped piece using a computer that performs various processes according to the processing program. There,
The computer obtains a core wire model obtained by dividing the cross section of the core wire into a plurality of elements, and a caulking piece model obtained by dividing the cross section of the caulking piece into a plurality of elements;
The finite element is a displacement of each core constituting the core wire model and the caulking piece model after the core wire is caulked by the caulking piece with the computer sandwiched between the upper die and the lower die, and the force acting on each node. A step of calculating by law,
A step of extracting the section of the computer, contacts the crimping pieces model of sections on the contour of the core wire model after the caulking from the displacement of each node of the calculated,
The computer obtains a first distance between one of a pair of nodes adjacent to the extracted node among the extracted nodes and the nodes on the contour of the core model after the caulking. When,
The computer obtains a second distance between the extracted node and the other of the pair of nodes adjacent to the extracted node among the nodes on the outline of the core model after the caulking. When,
The computer determining 1/2 of the sum of the first distance and the second distance as a contact length of the extracted node;
The computer obtains a sum of values obtained by multiplying the contact length obtained for all the extracted nodes by a force acting on the caulking piece model by the extracted nodes, and calculates the reciprocal of the sum as the contact. A process to obtain as a performance factor;
The contact performance coefficient calculation method characterized by performing sequentially.
JP2008038209A 2008-02-20 2008-02-20 Contact performance coefficient calculation device and contact performance coefficient calculation method Expired - Fee Related JP5123001B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008038209A JP5123001B2 (en) 2008-02-20 2008-02-20 Contact performance coefficient calculation device and contact performance coefficient calculation method
PCT/JP2009/053085 WO2009104762A1 (en) 2008-02-20 2009-02-20 Compression performance coefficient calculating apparatus, contact performance coefficient calculating apparatus, compression performance coefficient calculating method, and contact performance coefficient calculating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038209A JP5123001B2 (en) 2008-02-20 2008-02-20 Contact performance coefficient calculation device and contact performance coefficient calculation method

Publications (2)

Publication Number Publication Date
JP2009199792A JP2009199792A (en) 2009-09-03
JP5123001B2 true JP5123001B2 (en) 2013-01-16

Family

ID=41143104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038209A Expired - Fee Related JP5123001B2 (en) 2008-02-20 2008-02-20 Contact performance coefficient calculation device and contact performance coefficient calculation method

Country Status (1)

Country Link
JP (1) JP5123001B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524279A (en) * 2013-05-13 2016-08-12 シュンク・ソノシステムズ・ゲーエムベーハー Method for determining the degree of compressibility of a node according to ultrasonic welding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917254B2 (en) * 2012-04-16 2016-05-11 アスモ株式会社 Caulking characteristic estimation device and terminal forming method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190868A (en) * 1993-12-24 1995-07-28 Yazaki Corp Measuring method for repulsive force of electric wire at compression-bonded part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524279A (en) * 2013-05-13 2016-08-12 シュンク・ソノシステムズ・ゲーエムベーハー Method for determining the degree of compressibility of a node according to ultrasonic welding

Also Published As

Publication number Publication date
JP2009199792A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4964988B2 (en) Molding simulation method, molding simulation apparatus, program, recording medium, and molding method based on simulation results
JP5988419B2 (en) Prediction method, prediction system, and program
JP5123001B2 (en) Contact performance coefficient calculation device and contact performance coefficient calculation method
JP5834698B2 (en) Springback factor analysis method and apparatus in press molding
Kang et al. Determination of elastic and viscoplastic material properties obtained from indentation tests using a combined finite element analysis and optimization approach
WO2009104762A1 (en) Compression performance coefficient calculating apparatus, contact performance coefficient calculating apparatus, compression performance coefficient calculating method, and contact performance coefficient calculating method
CN111487384B (en) Method and system for processing lipid content simulation training samples and predicting blend formulations
JP2008273796A (en) Method, apparatus and program for press-forming simulation of optical element
JP6339969B2 (en) Deformation resistance identification method for thin inspection materials
JP5123000B2 (en) Crimping performance coefficient calculation device and crimping performance coefficient calculation method
JP2018132431A (en) Strength evaluation method, method for producing structure, strength evaluation device, and strength evaluation program
JP6528656B2 (en) Analysis method for hot stamp forming process, determination method, analysis apparatus and program
JP5655394B2 (en) Drawing bead test method and press forming analysis method using physical property values obtained by the test method
Ogihara et al. Mechanical analysis of the crimping connection
Stoyanov et al. Optimisation modelling for thermal fatigue reliability of lead‐free interconnects in fine‐pitch flip‐chip packaging
JP6850168B2 (en) Estimator of resistance value of crimping part of electric wire with terminal
CA2349824C (en) A method of modeling the forming of anisotropic sheet
CN101975795B (en) Contact thermal resistance test method applied to GH4169/GH4169 high temperature alloy
JP5088265B2 (en) Stress analysis apparatus and method
Sivaprasad et al. An assessment of the interface friction factor using the geometry of upset specimens
Palumbo et al. Numerical-experimental analysis of thin magnesium alloy stripes subjected to stretch-bending
Collin Correction factor for contact radius in spherical indentation measurements
Brezmes et al. Mechanical analysis of wafer testing with FEM simulations
US20070244664A1 (en) Resistance calculating method
JP2009119522A (en) Method of predicting stress-strain relationship of material, method of working material, and device for predicting stress-strain relationship of material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees