WO2009104487A1 - Inkjet head - Google Patents

Inkjet head Download PDF

Info

Publication number
WO2009104487A1
WO2009104487A1 PCT/JP2009/052146 JP2009052146W WO2009104487A1 WO 2009104487 A1 WO2009104487 A1 WO 2009104487A1 JP 2009052146 W JP2009052146 W JP 2009052146W WO 2009104487 A1 WO2009104487 A1 WO 2009104487A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
pressure chamber
ink
diameter
meniscus
Prior art date
Application number
PCT/JP2009/052146
Other languages
French (fr)
Japanese (ja)
Inventor
奈帆美 久保
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2009554271A priority Critical patent/JPWO2009104487A1/en
Publication of WO2009104487A1 publication Critical patent/WO2009104487A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics

Definitions

  • the present invention relates to an inkjet head.
  • a general inkjet head has a nozzle having a discharge port for discharging droplets, a pressure chamber communicating with the nozzle, an inlet for introducing ink into the pressure chamber, and a volume of the pressure chamber is changed. And a piezoelectric element as an actuator for generating pressure on the ink.
  • a part of the pressure chamber is formed so as to be easily deformed and used as a diaphragm, and this is elastically displaced by a piezoelectric element to generate a pressure for ejecting ink droplets from the nozzle ejection port.
  • extra droplets called satellites may be formed in addition to the main droplets, which causes a reduction in image quality.
  • a surface wave having a wavelength smaller than the droplet diameter is generated and grows on the surface of the liquid column, resulting in a break of the liquid column and separation of satellites.
  • the inventor conducted intensive research on the relationship between the behavior of the meniscus in the nozzle and the occurrence of satellite in the above (2), and as a result, the following was found.
  • the inkjet head has multiple fluid vibration modes.
  • One of them is the natural vibration of the pressure chamber, conventionally called Helmholtz vibration.
  • Helmholtz vibration there is a natural vibration caused by the free surface of the meniscus in the nozzle (hereinafter referred to as a meniscus natural vibration).
  • the vibration excited in a plurality of modes is superimposed on the meniscus, so that it grows as a surface wave of the liquid column and becomes a break of the liquid column, resulting in satellite generation.
  • the meniscus natural vibration is greatly related to the generation of satellites, and when the natural vibration of the meniscus with a higher frequency occurs due to the natural vibration of the pressure chamber excited by the actuator, the natural vibration of the pressure chamber The meniscus's natural vibration is superimposed during the half cycle, which causes the generation of satellites during ejection.
  • the diameter of the discharge port in the nozzle is larger than 10 ⁇ m.
  • the impedance of the nozzle becomes small and the frequency of the natural vibration of the meniscus is reduced. Becomes lower.
  • the frequency of the natural vibration of the meniscus tends to be lower than the frequency of the natural vibration of the pressure chamber, so that satellites due to the above (2) are unlikely to occur.
  • Patent Document 1 suppresses the growth and separation of the liquid column more than necessary by limiting the droplet discharge speed, and prevents the occurrence of satellites due to the above (1). It is thought that.
  • Patent Document 1 since the liquid discharge speed is limited by the resonance frequency of the discharge unit, for example, in a head having a low resonance frequency, there is also a problem that the liquid drop discharge speed is reduced and image quality is deteriorated.
  • the impedance of the nozzle increases rapidly and the frequency of the natural vibration of the meniscus increases.
  • the frequency of the natural vibration of the meniscus tends to be higher than the frequency of the natural vibration of the pressure chamber, so that satellites due to (2) are likely to occur.
  • This graph is as shown in FIG. FIG. 8 shows that the difference decreases as the diameter of the discharge port decreases from around 10 ⁇ m, and the kinetic energy and the surface energy are reversed around 6 ⁇ m.
  • An object of the present invention is to solve these problems in the prior art, and to provide an ink jet head capable of suppressing the generation of satellites even when a nozzle having a discharge port having a diameter of 10 ⁇ m or less is used.
  • a nozzle having a discharge port having a diameter of 10 ⁇ m or less, a pressure chamber communicating with the nozzle, an inlet for introducing ink into the pressure chamber, and generating a pressure in the ink by changing the volume of the pressure chamber
  • An ink jet head including an actuator, wherein the frequency of the natural vibration of the meniscus in the nozzle is f1, and the frequency of the natural vibration of the pressure chamber is f2, so that f1 ⁇ f2.
  • An ink jet head in which the shape of a nozzle, the pressure chamber, and the inlet is set.
  • the frequency of the meniscus natural vibration (mode 1 vibration) in the nozzle is f1
  • the frequency of the pressure chamber natural vibration (mode 2 vibration) is f2
  • f1 ⁇ f2 Since the shapes of the nozzle, the pressure chamber, and the inlet are set, the meniscus rises due to the natural vibration of the pressure chamber excited by the actuator, but the vibration period of mode 1 is higher than the vibration period of mode 2. Therefore, the generation of satellites can be suppressed even when a nozzle having a discharge port with a diameter of 10 ⁇ m or less is used without getting on the vibration node of mode 2. Thereby, a high-quality recorded matter can be obtained.
  • FIG. 1 is a diagram schematically illustrating an example of an ink jet head according to an embodiment of the present invention, disassembled for each component. It is a figure which shows the joining process of a nozzle plate and a body plate. It is a figure which shows the adhesion process of a piezoelectric element. It is a graph which shows the relationship between the diameter of a discharge outlet, and energy.
  • the inkjet head includes a nozzle having a discharge port for discharging droplets, a pressure chamber communicating with the nozzle, an inlet for introducing ink into the pressure chamber, A piezoelectric element as an actuator that generates pressure on the ink by changing the volume of the pressure chamber, and a common ink chamber for storing ink introduced into each channel are provided.
  • the ejection port means an opening at the tip of the ink ejection side of the nozzle, and the diameter of the ejection port refers to the diameter when the opening is circular.
  • the opening shape is not limited to a circular shape, and may be a polygonal shape or a star shape instead of the circular shape. When the shape is not a circle, the diameter when the area is replaced with a circle having the same area is defined as the diameter of the discharge port.
  • a plurality of vibration modes and resonance points thereof that is, the frequency f1 of the natural vibration of the meniscus in the nozzle and the frequency f2 of the natural vibration of the pressure chamber can be obtained by numerical calculation or experiment.
  • analysis can be performed using general-purpose numerical analysis software, or if it can be approximated to a simple model, it can be easily calculated without using software.
  • L is an inertance component [kg / m 4 ]
  • La is an inertance component in the actuator
  • Ln is an inertance component in the nozzle
  • Li is an inertance component in the inlet
  • Lc is an inertance component in the pressure chamber.
  • R is a resistance component [N ⁇ s / m 5 ]
  • Ra is a resistance component in the actuator
  • Rn is a resistance component in the nozzle
  • Ri is a resistance component in the inlet
  • Rc is a resistance component in the pressure chamber.
  • C is a capacitive component [m 5 / N]
  • Ca is a capacitive component in the actuator
  • Cn is a capacitive component in the nozzle
  • Ci is a capacitive component in the inlet
  • Cc is a capacitive component in the pressure chamber.
  • the inertance component L in each part is given by equation (2), where S [m 2 ] is the cross-sectional area of the flow path, l [m] is the flow path length, and ⁇ [kg / m 3 ] is the ink density. It is done.
  • is a shape factor determined by the cross-sectional shape of the flow path, and is about 1.3 when the cross-section is circular or rectangular.
  • the resistance component R in each part is given by the equation (3) when the ink viscosity is ⁇ [Pa ⁇ s] and the diameter is d [m] when the flow path cross section is circular.
  • Cc and Ca which are terms related to the compression inside the fluid, are V [m 3 ] for the pressure chamber volume, ⁇ [kg / m 3 ] for the ink density, and c [m / s] for the sound velocity of the ink. It is given by equation (4).
  • Cn which is a term related to the fluid free surface, is given by equation (5) where the surface tension ⁇ [N / m] of the ink and the diameter of the ejection port are d [m].
  • the elements Ci, Ra, and La that have little influence on the characteristics are approximately set to 0, and the remaining elements are synthesized to obtain a circuit as shown in FIG.
  • the vibration mode is separated into two of FIGS. 4 (a) and 4 (b).
  • the vibration mode (a) is mode 1
  • the resonance point is f1
  • the vibration mode (b) is mode 2
  • the resonance point is f2.
  • Vibration mode 1 is the natural vibration of the meniscus that occurs on the surface of the meniscus.
  • the vibration mode 2 is a natural vibration of the pressure chamber caused by pressure fluctuation in the pressure chamber, and the meniscus rises when this is transmitted to the nozzle. This is conventionally called Helmholtz vibration.
  • the natural frequency f1 of the meniscus is expressed by the following equation (6).
  • the natural frequency f2 of the pressure chamber is expressed by the following equation (7).
  • the parameters governing f1 and f2 are only the inertance component and the capacitance component of each part. That is, f1 and f2 are determined by the combination of the inertance component and the capacitance component of each part.
  • f1 ⁇ f2 is satisfied with respect to the ink used, that is, the expression (1) It is important to set the shape of each part so as to satisfy the above.
  • FIG. 5 schematically shows an example of the ink jet head according to the embodiment of the present invention disassembled for each component, and the ink jet head HD has a nozzle plate 1, a body plate 2 and a piezoelectric element 3.
  • the nozzle plate 1 has a plurality of nozzles 101 for discharging ink.
  • the body plate 2 is joined by covering the nozzle plate 1 with the pressure plate groove 204 serving as a pressure chamber, an inlet groove 203 serving as an inlet, a common ink chamber groove 202 serving as a common ink chamber, and an ink supply port. 201 is formed.
  • the nozzle plate 1 and the body plate 2 are joined so that the nozzle 101 of the nozzle plate 1 and the pressure chamber groove 204 of the body plate 2 correspond one-to-one.
  • the piezoelectric element 3 is bonded to a position corresponding to each pressure chamber 204 on the surface opposite to the surface to be joined to the nozzle plate 1 of the body plate 2.
  • the piezoelectric element 3 is an actuator made of PZT (lead zirconate titanate), and is deformed when a drive voltage is applied through drive electrodes provided on both sides, thereby generating pressure by changing the volume of the pressure chamber.
  • the ink in the pressure chamber is ejected from the nozzle 101.
  • a chamber formed by the pressure chamber groove 204 and the nozzle plate 1 is referred to as a pressure chamber 204
  • a chamber formed by the inlet groove 203 and the nozzle plate 1 is referred to as an inlet 203
  • a common ink chamber is referred to as A chamber formed by the groove 202 and the nozzle plate 1.
  • the manufacturing method of the nozzle plate 1 is performed by a procedure of forming the nozzle 101 by using a silicon substrate as a base material and using, for example, a known photolithography technique (resist coating, exposure, development) and an etching technique. .
  • the diameter of the discharge port of the nozzle 101 is 10 ⁇ m or less.
  • the body plate 2 uses a silicon substrate having a thickness of about 200 to 500 ⁇ m as a base material in the same way as the nozzle plate 1 is manufactured.
  • a known photolithography technique resist application, exposure, development
  • an etching technique etc.
  • Is used to form a pressure chamber groove 204 which is a plurality of pressure chambers which communicate with the nozzle 101 included in the nozzle plate 1 and which is formed with the nozzle plate 1 described above, and a plurality of inlets which respectively communicate with the pressure chamber.
  • An inlet groove 203, a common ink chamber groove 202 serving as a common ink chamber communicating with the inlet, and an ink supply port 201 are formed.
  • the size of the groove formed here may be determined as appropriate as long as the shape of each part after completion of the head satisfies the above-described formula (1).
  • the pressure chamber groove 204 has a width of about 50 ⁇ m to 350 ⁇ m, a height of about 10 ⁇ m to 200 ⁇ m, a length of about 50 ⁇ m to 3000 ⁇ m, and the inlet groove 203 has a width of about 10 ⁇ m to 150 ⁇ m.
  • the common ink chamber groove 202 is a through-hole having a diameter of about 400 ⁇ m to 1500 ⁇ m and a common ink chamber groove 202 having a width of about 400 ⁇ m to 1000 ⁇ m, a depth of about 50 ⁇ m to 200 ⁇ m, and a diameter ⁇ of about 400 ⁇ m to 1500 ⁇ m.
  • the diameter of the ink discharge port is 1 ⁇ m to 10 ⁇ m
  • the length of the nozzle is about 1 ⁇ m to 100 ⁇ m.
  • the etching method for the silicon substrate is preferably a silicon (Si) anisotropic dry etching method that can perform an etching process perpendicular to the surface of the body plate.
  • silicon (Si) anisotropic dry etching method Sangyo Tosho Co., Ltd. “Semiconductor dry etching technology” can be referred to.
  • FIG. 6 is a diagram showing a joining process between the nozzle plate 1 and the body plate 2.
  • FIG. 6A shows a nozzle plate 1 in which nozzles (not shown) are processed using a silicon substrate as a base material.
  • the body plate 2 in which the grooves such as the pressure chamber grooves 204 are formed by the processing described above is shown.
  • the nozzle plate 1 and the body plate 2 are joined by anodic bonding.
  • silicon is used as a material constituting one of the substrates, and the other is silicon with a glass material containing mobile ions, typically sodium ions (Na + ). It is preferable to use a material having a linear expansion coefficient relatively similar to (Si) (the linear expansion coefficient of silicon is about 4.2 ⁇ 10 ⁇ 6 / ° C.), for example, borosilicate glass is used. .
  • borosilicate glass containing mobile ions hereinafter referred to as borosilicate glass
  • Pyrex registered trademark
  • Corning USA
  • Tempax Float registered trademark
  • BOROFLOAT registered trademark
  • Shot Japan Co., Ltd. from the viewpoint of these linear expansion coefficients (both Pyrex (registered trademark) and Tempax Float (registered trademark) have a linear expansion coefficient of about 3.2 ⁇ 10 ⁇ 6 / ° C.). More preferred.
  • a silicon substrate is used instead of borosilicate glass as a base material. Then, a borosilicate glass film is formed on the bonding surface of the silicon substrate as the base material to form a borosilicate glass surface.
  • the film thickness in this case may be a film thickness that can be strongly bonded by anodic bonding, and is 0.5 ⁇ m from the viewpoint of the density and uniformity of the film and the heating and applied voltage of the bonding surface required during anodic bonding described later.
  • the range of ⁇ 3 ⁇ m is preferable, and the range of 1 ⁇ m to 2 ⁇ m is more preferable.
  • the borosilicate glass film may be formed by any one of a vacuum deposition method, a radio frequency (RF) magnetron sputtering method, and an ion plating method, and the substrate temperature is easily formed at the time of film formation. It is preferable to heat to 250 ° C. or higher.
  • the upper limit of the temperature is not particularly defined, but is preferably about 400 ° C. from the viewpoint of a substrate mounting jig, a substrate temperature control device during film formation, and the like.
  • the base material of the nozzle plate 1 and the body plate 2 are both silicon substrates because of the ease of fine processing. Therefore, it is necessary to make one of the joint surfaces of the nozzle plate 1 and the body plate 2 the surface of the borosilicate glass described above.
  • the surface side of the nozzle plate 1 shown in FIG. 6B covering the body plate is a borosilicate glass surface
  • the nozzle plate 1 is a substrate
  • the surface side of the substrate covering the body plate is 0.5 ⁇ m to 3 ⁇ m.
  • a borosilicate glass thick film 110 having a relatively thick film thickness in the range of is provided.
  • FIG. 1 the nozzle plate 1 and the body plate 2 formed with the borosilicate glass film described above are overlapped and fixed in an appropriate positional relationship as shown in FIG. Is subjected to anodic bonding by applying a voltage using a DC high voltage power source 4.
  • FIG. 1 it demonstrates concretely regarding anodic bonding of the nozzle plate 1 and the body plate 2.
  • the polarity of the voltage applied when anodic bonding is performed is positive (+) on the silicon substrate side and negative (-) on the borosilicate glass substrate side. If it does in this way, an electric current will flow at the same time that a joining interface closely_contact
  • the recording head which is an example of the present embodiment, it is sufficient to apply a voltage that is positive (+) for the body plate 2 and negative ( ⁇ ) for the nozzle plate 1 having the borosilicate glass thick film 110.
  • the high temperature state at the time of joining is in the range of 300 ° C. to 550 ° C.
  • a constant temperature bath capable of maintaining such an atmospheric temperature or a simple method using a hot plate having good insulation with a built-in ceramic heater or the like. What is necessary is just to heat the junction part of the nozzle plate 1 and the body plate 2.
  • the electric field strength of the DC voltage applied between the nozzle plate 1 and the body plate 2 by the DC high voltage power source 4 is preferably in the range of 30 kV / mm to 200 kV / mm.
  • the applied voltage range is 15 to 100 V, and if it is 3 ⁇ m, it is 90 to 600 V.
  • the piezoelectric element 3 is bonded to the combined body A of the nozzle plate 1 and the body plate 2 joined by anodic bonding in this way.
  • FIG. 7 shows a process of bonding the piezoelectric element 3 made of PZT to the body plate 2.
  • the piezoelectric element 3 is bonded to the body plate 2 by transfer bonding as described below.
  • a dry film 33 is laminated on a glass plate 30 having a foam release sheet 31 and a PZT bulk plate 32 adhered in this order (shown in FIG. 7a), and foamed by a known photolithography technique.
  • the release sheet 31, the PZT bulk plate 32, and the dry film 33 are patterned to form the piezoelectric element group 300 (FIG. 7c). After the surface of the piezoelectric element group 300 is sandblasted, the dry film 33 is peeled off (FIG. 7d).
  • the resin sheet 34 having the adhesive layer 35 is bonded to the piezoelectric element group 300 (FIGS. 7e and 7f), the resin sheet 34 is isolated (FIG. 7g), and the piezoelectric element group 300 is attached from the adhesive layer 35 side. It adheres to the body plate 2 held by the jig 40, and the glass plate 30 and the piezoelectric element group 300 are heated by a hot plate (FIG. 7h).
  • the foam release sheet 31 is melted and removed by heating, the glass plate 30 is separated from the body plate 2 and the piezoelectric element group 300, and the ink jet head is completed.
  • the present invention is applied to a Kaiser-type inkjet head.
  • the pressure of the ink is generated by changing the volume of the pressure chamber by the actuator, and ink droplets are ejected from the nozzles.
  • it is an inkjet head, it is not limited to a Kaiser type inkjet head.
  • the inkjet head provided with several pressure chambers, nozzles, and inlets was used, even when the inkjet head provided with one pressure chamber, nozzles, and inlets is used, this invention does not impair the effect. .
  • an inkjet head similar to the inkjet head HD shown in the above embodiment was manufactured according to the above manufacturing method, and the occurrence of satellites was observed when ink droplets were discharged from the discharge ports of the inkjet head. .
  • both the nozzle plate and the body plate were made of silicon, and a plurality of ink jet heads with variously changed pressure chambers, inlets, and nozzle shapes were produced.
  • the pressure chamber and the inlet were formed in a rectangular parallelepiped shape, and the width, length, and height were changed as shown in Table 1.
  • the nozzle was cylindrical, and the diameter of the discharge port and the length of the nozzle were changed as shown in Tables 2 and 3.
  • the shape of the pressure chamber, inlet, and nozzle between the channels in one inkjet head was the same.
  • Tables 2 and 3 below show the relationship between discharge port diameter, nozzle length, flow path shape, and satellite generation.
  • the frequency f1 of the natural vibration of the meniscus in the nozzle and the frequency f2 of the natural vibration of the pressure chamber were calculated from the equations (6) and (7), respectively, as described above.

Abstract

Provided is an inkjet head which suppresses generation of satellite droplets even when a nozzle having a jetting port having a diameter of 10μm or less is used. The inkjet head is provided with a nozzle having a jetting port having a diameter of 10μm or less, a pressure chamber connected to the nozzle, an inlet for introducing an ink into the pressure chamber, and an actuator for generating pressure to the ink by changing the volume of the pressure chamber. The shapes of the nozzle, the pressure chamber and the inlet are set so that an inequality of f1≤f2 is satisfied, where, f1 is a number of characteristic frequency of a meniscus in the nozzle, and f2 is a number of characteristic frequency of the pressure chamber.

Description

インクジェットヘッドInkjet head
 本発明は、インクジェットヘッドに関する。 The present invention relates to an inkjet head.
 一般的なインクジェットヘッドは、液滴を吐出する吐出口を有するノズルと、前記ノズルに連通する圧力室と、前記圧力室にインクを導入するためのインレットと、前記圧力室の容積を変化させることによりインクに圧力を発生させるアクチュエータとしての圧電素子と、を備えている。 A general inkjet head has a nozzle having a discharge port for discharging droplets, a pressure chamber communicating with the nozzle, an inlet for introducing ink into the pressure chamber, and a volume of the pressure chamber is changed. And a piezoelectric element as an actuator for generating pressure on the ink.
 そして、例えば、圧力室の一部を変形しやすく形成してダイヤフラムとして用い、これを圧電素子によって弾性変位させることによってノズルの吐出口からインク滴を吐出する圧力を発生させている。 Then, for example, a part of the pressure chamber is formed so as to be easily deformed and used as a diaphragm, and this is elastically displaced by a piezoelectric element to generate a pressure for ejecting ink droplets from the nozzle ejection port.
 このようなインクジェットヘッドの圧電素子に駆動電圧を印加すると、圧電効果によりダイヤフラムがたわみ変形を起こし流路内の流体に圧力波を励起する。圧力波がノズルまで伝わると液柱(メニスカス)を形成し、この液柱が分離することにより液滴が吐出する。 When a driving voltage is applied to the piezoelectric element of such an ink jet head, the diaphragm is flexed and deformed by the piezoelectric effect to excite a pressure wave in the fluid in the flow path. When the pressure wave is transmitted to the nozzle, a liquid column (meniscus) is formed, and the liquid column is separated to discharge a droplet.
 このとき、メイン液滴のほかにサテライトと呼ばれる余分な液滴が形成されることがあり、画質低下の原因となっている。 At this time, extra droplets called satellites may be formed in addition to the main droplets, which causes a reduction in image quality.
 このような問題に対する対策として、特許文献1では、吐出ユニットの共振周波数f[kHz]と液体吐出速度v[m/s]が、f>31×v+80の関係を満たすことを特徴とする液体吐出ヘッドが提案されている。
特開2007-223231号公報
As a countermeasure against such a problem, in Japanese Patent Application Laid-Open No. H10-228707, the liquid discharge is characterized in that the resonance frequency f [kHz] of the discharge unit and the liquid discharge speed v [m / s] satisfy the relationship f> 31 × v + 80. A head has been proposed.
JP 2007-223231 A
 サテライトの発生メカニズムは、以下の2つが考えられる。 There are two possible satellite generation mechanisms.
 (1)入力エネルギーの超過により液柱が必要以上に成長した状態で液滴が分離されると、液滴の後尾の部分でサテライトが分離する。 (1) When the droplet is separated while the liquid column has grown more than necessary due to excess of input energy, the satellite is separated at the tail portion of the droplet.
 (2)液柱表面に波長が液滴径より小さい表面波が発生、成長して、液柱の切れ目となり、サテライトが分離する。 (2) A surface wave having a wavelength smaller than the droplet diameter is generated and grows on the surface of the liquid column, resulting in a break of the liquid column and separation of satellites.
 発明者は、上記(2)についてノズル内のメニスカスの挙動とサテライトの発生との関連性について鋭意研究した結果、以下のことが判明した。 The inventor conducted intensive research on the relationship between the behavior of the meniscus in the nozzle and the occurrence of satellite in the above (2), and as a result, the following was found.
 インクジェットヘッドには複数の流体振動モードがある。そのうちの1つは、従来よりヘルムホルツ振動と呼ばれている圧力室の固有振動である。その他には、ノズル内のメニスカス自由表面に起因する固有振動(以下、メニスカスの固有振動と称する。)である。 The inkjet head has multiple fluid vibration modes. One of them is the natural vibration of the pressure chamber, conventionally called Helmholtz vibration. In addition, there is a natural vibration caused by the free surface of the meniscus in the nozzle (hereinafter referred to as a meniscus natural vibration).
 複数のモードに励起された振動がメニスカスに重畳することにより、液柱の表面波として成長し液柱の切れ目となり、その結果サテライトが発生する。特にメニスカスの固有振動がサテライトの発生に大きく関係しており、アクチュエータに励起された圧力室の固有振動に伴い、より高い振動数のメニスカスの固有振動が生じた場合に、圧力室の固有振動の半周期中にメニスカスの固有振動が重畳し、これが吐出の際のサテライト発生の原因になる。 The vibration excited in a plurality of modes is superimposed on the meniscus, so that it grows as a surface wave of the liquid column and becomes a break of the liquid column, resulting in satellite generation. In particular, the meniscus natural vibration is greatly related to the generation of satellites, and when the natural vibration of the meniscus with a higher frequency occurs due to the natural vibration of the pressure chamber excited by the actuator, the natural vibration of the pressure chamber The meniscus's natural vibration is superimposed during the half cycle, which causes the generation of satellites during ejection.
 特許文献1のように従来のヘッドでは、ノズルにおける吐出口の径が10μmより大きいものであり、このようにノズル径が大きい場合には、ノズルのインピーダンスが小さくなり、メニスカスの固有振動の振動数が低くなる。これにより、メニスカスの固有振動の振動数が、圧力室の固有振動の振動数に比べて低くなる傾向になるため、上記(2)に起因するサテライトが発生しにくい。 In the conventional head as in Patent Document 1, the diameter of the discharge port in the nozzle is larger than 10 μm. When the nozzle diameter is large in this way, the impedance of the nozzle becomes small and the frequency of the natural vibration of the meniscus is reduced. Becomes lower. As a result, the frequency of the natural vibration of the meniscus tends to be lower than the frequency of the natural vibration of the pressure chamber, so that satellites due to the above (2) are unlikely to occur.
 すなわち、特許文献1に開示された技術は、液滴吐出速度を制限することにより液柱が必要以上に成長し分離することを抑制し、上記(1)に起因するサテライトの発生を防止するものであると考えられる。特許文献1では、液体吐出速度が吐出ユニットの共振周波数により制限されるため、例えば、共振周波数が低いヘッドでは液滴吐出速度が低下して画質低下の原因となる等の問題もある。 That is, the technique disclosed in Patent Document 1 suppresses the growth and separation of the liquid column more than necessary by limiting the droplet discharge speed, and prevents the occurrence of satellites due to the above (1). It is thought that. In Patent Document 1, since the liquid discharge speed is limited by the resonance frequency of the discharge unit, for example, in a head having a low resonance frequency, there is also a problem that the liquid drop discharge speed is reduced and image quality is deteriorated.
 これに対して、吐出口の径が小さい場合には、ノズルのインピーダンスが急激に増大し、メニスカスの固有振動の振動数が高くなる。これにより、メニスカスの固有振動の振動数が、圧力室の固有振動の振動数に比べて高くなる傾向になるため、上記(2)に起因するサテライトが発生しやすくなる。 On the other hand, when the diameter of the discharge port is small, the impedance of the nozzle increases rapidly and the frequency of the natural vibration of the meniscus increases. As a result, the frequency of the natural vibration of the meniscus tends to be higher than the frequency of the natural vibration of the pressure chamber, so that satellites due to (2) are likely to occur.
 また、エネルギーの収支を見た場合、吐出口の径が大きい場合には、液滴の運動エネルギーが表面エネルギーを大きく上回り支配的となる。それ故、メニスカスの運動エネルギーはほとんど液滴の運動エネルギーに変換され、液柱から液滴を分離し易かった。 Also, when looking at the energy balance, when the diameter of the discharge port is large, the kinetic energy of the droplets becomes much more dominant than the surface energy. Therefore, the kinetic energy of the meniscus was almost converted into the kinetic energy of the droplet, and it was easy to separate the droplet from the liquid column.
 これに対し、吐出口の径が小さくなってくると、エネルギーのバランスは逆転し、液滴を形成するための運動エネルギーよりも余分にメニスカスの運動エネルギーを供給する必要がある。例えば、表面張力50×10―3[N/m]、粘度3×10-3[Pa・s]のインクを用いて液滴初速度10m/sで吐出口径相当のインクを吐出したときのエネルギーのグラフは、図8に示すようになる。図8より、吐出口の直径が10μm付近から小さくなるにしたがって差が小さくなり、6μm付近で運動エネルギーと表面エネルギーが逆転しているのが判る。 On the other hand, when the diameter of the discharge port is reduced, the energy balance is reversed, and it is necessary to supply the kinetic energy of the meniscus more than the kinetic energy for forming the droplet. For example, the energy when ejecting ink corresponding to the ejection orifice diameter at an initial droplet velocity of 10 m / s using ink having a surface tension of 50 × 10 −3 [N / m] and a viscosity of 3 × 10 −3 [Pa · s]. This graph is as shown in FIG. FIG. 8 shows that the difference decreases as the diameter of the discharge port decreases from around 10 μm, and the kinetic energy and the surface energy are reversed around 6 μm.
 この場合、液滴を形成、吐出するにはメニスカスに余分にエネルギーを供給しなければならない。それには、メニスカスの流速度を増加させねばならず、結果として吐出口径に対して液柱を大きく成長させることになり、サテライトが発生しやすくなる。 In this case, extra energy must be supplied to the meniscus to form and discharge droplets. For this purpose, the flow velocity of the meniscus must be increased. As a result, the liquid column grows greatly with respect to the discharge port diameter, and satellites are likely to be generated.
 近年、高画質化のためインク滴により形成されるドットの径を小さくする要求が高まっている、ドットの微少化には、ノズルにおける吐出口の径を小さくする事が有効であり、このようなヘッドにおいてサテライトの発生を抑制する対策が必要になった。 In recent years, there has been an increasing demand for reducing the diameter of dots formed by ink droplets in order to improve image quality. To reduce the size of dots, it is effective to reduce the diameter of the discharge port in the nozzle. It is necessary to take measures to suppress the generation of satellites in the head.
 本発明は従来技術におけるこれらの問題を解決することを目的とし、直径が10μm以下の吐出口を有するノズルを用いた場合においてもサテライトの発生を抑制することができるインクジェットヘッドを提供することを目的とする。 An object of the present invention is to solve these problems in the prior art, and to provide an ink jet head capable of suppressing the generation of satellites even when a nozzle having a discharge port having a diameter of 10 μm or less is used. And
 前記目的は下記の発明により達成される。 The above object is achieved by the following invention.
 1.
直径が10μm以下の吐出口を有するノズルと、前記ノズルに連通する圧力室と、前記圧力室にインクを導入するためのインレットと、前記圧力室の容積を変化させることによりインクに圧力を発生させるアクチュエータと、を備えたインクジェットヘッドであって、前記ノズル内のメニスカスの固有振動の振動数をf1、前記圧力室の固有振動の振動数をf2としたとき、f1≦f2となるように、前記ノズル、前記圧力室、及び前記インレットの形状が設定されていることを特徴とするインクジェットヘッド。
1.
A nozzle having a discharge port having a diameter of 10 μm or less, a pressure chamber communicating with the nozzle, an inlet for introducing ink into the pressure chamber, and generating a pressure in the ink by changing the volume of the pressure chamber An ink jet head including an actuator, wherein the frequency of the natural vibration of the meniscus in the nozzle is f1, and the frequency of the natural vibration of the pressure chamber is f2, so that f1 ≦ f2. An ink jet head in which the shape of a nozzle, the pressure chamber, and the inlet is set.
 2.
前記ノズルのイナータンス成分をLn、容量成分をCn、前記圧力室のイナータンス成分をLc、容量成分をCc、前記インレットのイナータンス成分をLi、前記アクチュエータの容量成分をCaとしたとき、式(1)を満足することを特徴とする1記載のインクジェットヘッド。
2.
When the inertance component of the nozzle is Ln, the capacitive component is Cn, the inertance component of the pressure chamber is Lc, the capacitive component is Cc, the inertance component of the inlet is Li, and the capacitive component of the actuator is Ca, formula (1) 2. The ink jet head according to 1, wherein:
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 本発明では、ノズル内のメニスカスの固有振動(モード1の振動)の振動数をf1、圧力室の固有振動(モード2の振動)の振動数をf2としたとき、f1≦f2となるように、前記ノズル、前記圧力室、及び前記インレットの形状が設定されているので、アクチュエータによって励起された圧力室の固有振動に伴いメニスカスが隆起するが、モード1の振動周期がモード2の振動周期よりも長くなるため、モード2の振動の節に乗ることが無く、直径が10μm以下の吐出口を有するノズルを用いた場合においてもサテライトの発生を抑制することができる。これにより高画質の記録物を得ることができる。 In the present invention, when the frequency of the meniscus natural vibration (mode 1 vibration) in the nozzle is f1, and the frequency of the pressure chamber natural vibration (mode 2 vibration) is f2, f1 ≦ f2. Since the shapes of the nozzle, the pressure chamber, and the inlet are set, the meniscus rises due to the natural vibration of the pressure chamber excited by the actuator, but the vibration period of mode 1 is higher than the vibration period of mode 2. Therefore, the generation of satellites can be suppressed even when a nozzle having a discharge port with a diameter of 10 μm or less is used without getting on the vibration node of mode 2. Thereby, a high-quality recorded matter can be obtained.
本発明の実施の形態に係るインクジェットヘッドの一例を模式的に示す図である。It is a figure which shows typically an example of the inkjet head which concerns on embodiment of this invention. インクジェットヘッドの等価回路である。It is an equivalent circuit of an inkjet head. 特性に影響を及ぼさない要素を省略した等価回路である。This is an equivalent circuit in which elements that do not affect the characteristics are omitted. 2つの振動モードに分離した等価回路である。It is an equivalent circuit separated into two vibration modes. 本発明の実施の形態に係るインクジェットヘッドの一例を構成要素毎に分解して模式的に示す図である。1 is a diagram schematically illustrating an example of an ink jet head according to an embodiment of the present invention, disassembled for each component. ノズルプレートとボディプレートとの接合工程を示す図である。It is a figure which shows the joining process of a nozzle plate and a body plate. 圧電素子の接着工程を示す図である。It is a figure which shows the adhesion process of a piezoelectric element. 吐出口の直径とエネルギーの関係を示すグラフである。It is a graph which shows the relationship between the diameter of a discharge outlet, and energy.
符号の説明Explanation of symbols
 1 ノズルプレート
 101 ノズル
 110 硼珪酸ガラス厚膜
 2 ボディプレート
 201 インク供給口
 202 共通インク室
 203 インレット
 204 圧力室
 3 圧電素子
 4 直流高圧電源
DESCRIPTION OF SYMBOLS 1 Nozzle plate 101 Nozzle 110 Borosilicate glass thick film 2 Body plate 201 Ink supply port 202 Common ink chamber 203 Inlet 204 Pressure chamber 3 Piezoelectric element 4 DC high voltage power supply
 以下、図示の実施の形態により本発明を説明するが、本発明は該実施の形態に限られない。 Hereinafter, the present invention will be described with reference to the illustrated embodiment, but the present invention is not limited to the embodiment.
 本実施形態に係るインクジェットヘッドは、図1に示すように液滴を吐出する吐出口を有するノズルと、前記ノズルに連通する圧力室と、前記圧力室にインクを導入するためのインレットと、前記圧力室の容積を変化させることによりインクに圧力を発生させるアクチュエータとしての圧電素子と、各チャネルに導入されるインクを蓄えておく共通インク室と、を備える。 As shown in FIG. 1, the inkjet head according to the present embodiment includes a nozzle having a discharge port for discharging droplets, a pressure chamber communicating with the nozzle, an inlet for introducing ink into the pressure chamber, A piezoelectric element as an actuator that generates pressure on the ink by changing the volume of the pressure chamber, and a common ink chamber for storing ink introduced into each channel are provided.
 吐出口とは、ノズルにおけるインク吐出側の先端の開口を意味し、吐出口の直径は、開口が円形の場合は、その直径をさす。なお、開口形状は円形形状に限定されることはなく、円形形状の代わりに、多角形状や星形状等としてもよい。尚、形状が円でない場合、その面積を同じ面積の円形に置き換えた場合の直径を吐出口の直径とする。 The ejection port means an opening at the tip of the ink ejection side of the nozzle, and the diameter of the ejection port refers to the diameter when the opening is circular. The opening shape is not limited to a circular shape, and may be a polygonal shape or a star shape instead of the circular shape. When the shape is not a circle, the diameter when the area is replaced with a circle having the same area is defined as the diameter of the discharge port.
 複数の振動モード及びその共振点、即ち、本発明におけるノズル内のメニスカスの固有振動の振動数f1、圧力室の固有振動の振動数f2は、数値計算または実験により求めることができる。 A plurality of vibration modes and resonance points thereof, that is, the frequency f1 of the natural vibration of the meniscus in the nozzle and the frequency f2 of the natural vibration of the pressure chamber can be obtained by numerical calculation or experiment.
 実験により求める場合は、圧力発生装置(アクチュエータ)に正弦波の駆動電圧波形をスイープさせて入力し、そのときのメニスカス隆起量から算出できる。正弦波の振動数対隆起量(もしくは流量)をプロットしたときに、隆起量が極大値をとる振動数が共振点となり、固有振動の振動数となる。 When it is determined by experiment, it can be calculated from the meniscus bulge amount at that time by sweeping and inputting a sinusoidal drive voltage waveform to the pressure generator (actuator). When the frequency of the sine wave versus the amount of uplift (or flow rate) is plotted, the frequency at which the amount of uplift reaches the maximum value becomes the resonance point, which is the frequency of the natural vibration.
 数値計算の場合には、汎用の数値解析ソフトで解析を行うか、簡単なモデルに近似できる場合はソフトを用いずに容易に計算できる。 In the case of numerical calculation, analysis can be performed using general-purpose numerical analysis software, or if it can be approximated to a simple model, it can be easily calculated without using software.
 ここで、等価回路法を用いた計算方法を説明する。 Here, a calculation method using the equivalent circuit method will be described.
 図1に示すインクジェットヘッドにおける1チャネルを、等価回路に置き換えると図2のようになる。図2において、記号Lはイナータンス成分〔kg/m4〕であり、Laはアクチュエータにおけるイナータンス成分、Lnはノズルにおけるイナータンス成分、Liはインレットにおけるイナータンス成分、Lcは圧力室におけるイナータンス成分である。記号Rは抵抗成分〔N・s/m5〕であり、Raはアクチュエータにおける抵抗成分、Rnはノズルにおける抵抗成分、Riはインレットにおける抵抗成分、Rcは圧力室における抵抗成分である。記号Cは容量成分〔m5/N〕であり、Caはアクチュエータにおける容量成分、Cnはノズルにおける容量成分、Ciはインレットにおける容量成分、Ccは圧力室における容量成分である。 When one channel in the inkjet head shown in FIG. 1 is replaced with an equivalent circuit, the result is as shown in FIG. In FIG. 2, symbol L is an inertance component [kg / m 4 ], La is an inertance component in the actuator, Ln is an inertance component in the nozzle, Li is an inertance component in the inlet, and Lc is an inertance component in the pressure chamber. Symbol R is a resistance component [N · s / m 5 ], Ra is a resistance component in the actuator, Rn is a resistance component in the nozzle, Ri is a resistance component in the inlet, and Rc is a resistance component in the pressure chamber. Symbol C is a capacitive component [m 5 / N], Ca is a capacitive component in the actuator, Cn is a capacitive component in the nozzle, Ci is a capacitive component in the inlet, and Cc is a capacitive component in the pressure chamber.
 ここで、各部におけるイナータンス成分Lは、流路断面積をS[m2]、流路長さをl[m]、インク密度をρ[kg/m3]とすると、式(2)で与えられる。ここで、αは、流路の断面形状により決まる形状係数で、断面が円形または長方形の場合は約1.3になる。 Here, the inertance component L in each part is given by equation (2), where S [m 2 ] is the cross-sectional area of the flow path, l [m] is the flow path length, and ρ [kg / m 3 ] is the ink density. It is done. Here, α is a shape factor determined by the cross-sectional shape of the flow path, and is about 1.3 when the cross-section is circular or rectangular.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、各部における抵抗成分Rは、流路断面が円形の場合は、インク粘度をη[Pa・s]、直径をd[m]とすると、式(3)で与えられる。 Further, the resistance component R in each part is given by the equation (3) when the ink viscosity is η [Pa · s] and the diameter is d [m] when the flow path cross section is circular.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 そして、各部における容量成分Cは以下のようになる。 And the capacity component C in each part is as follows.
 流体内部の圧縮に関わる項であるCc、Caは、圧力室の容積をV[m3]、インク密度をρ[kg/m3]、インクの音速度をc[m/s]とすると、式(4)で与えられる。 Cc and Ca, which are terms related to the compression inside the fluid, are V [m 3 ] for the pressure chamber volume, ρ [kg / m 3 ] for the ink density, and c [m / s] for the sound velocity of the ink. It is given by equation (4).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 流体自由表面に関わる項であるCnは、インクの表面張力σ[N/m]、吐出口の直径をd[m]とすると、式(5)で与えられる。 Cn, which is a term related to the fluid free surface, is given by equation (5) where the surface tension σ [N / m] of the ink and the diameter of the ejection port are d [m].
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 通常の設計範囲においては、特性にほとんど影響を及ぼさない要素Ci、Ra、Laを近似的に0とし、残った要素を合成することにより図3に示すような回路となる。 In the normal design range, the elements Ci, Ra, and La that have little influence on the characteristics are approximately set to 0, and the remaining elements are synthesized to obtain a circuit as shown in FIG.
 図3の回路から振動モードを分離すると図4(a)、(b)の2つに分離される。
(a)の振動モードをモード1、共振点をf1、(b)の振動モードをモード2、共振点をf2とする。
When the vibration mode is separated from the circuit of FIG. 3, the vibration mode is separated into two of FIGS. 4 (a) and 4 (b).
The vibration mode (a) is mode 1, the resonance point is f1, the vibration mode (b) is mode 2, and the resonance point is f2.
 振動モード1は、メニスカスの表面に起こるメニスカスの固有振動である。振動モード2は、圧力室内の圧力変動に起因する圧力室の固有振動であり、これがノズルまで伝わることによってメニスカスが隆起する。従来よりヘルムホルツ振動と呼ばれているものである。 Vibration mode 1 is the natural vibration of the meniscus that occurs on the surface of the meniscus. The vibration mode 2 is a natural vibration of the pressure chamber caused by pressure fluctuation in the pressure chamber, and the meniscus rises when this is transmitted to the nozzle. This is conventionally called Helmholtz vibration.
 メニスカスの固有振動の振動数f1は、以下の(6)式により表される。 The natural frequency f1 of the meniscus is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 圧力室の固有振動の振動数f2は、以下の(7)式により表される。 The natural frequency f2 of the pressure chamber is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 このとき、f1とf2の大小関係により液滴吐出時の挙動が異なってくる。 At this time, the behavior at the time of droplet discharge differs depending on the magnitude relationship between f1 and f2.
 f1>f2のときは、アクチュエータに励起されたモード2の圧力室の固有振動に伴い、より高い振動数のモード1のメニスカスの固有振動が生じる。そして、圧力室の固有振動の半周期中にメニスカスの固有振動が重畳し、これが吐出の際のサテライト発生の原因になる。 When f1> f2, the natural vibration of the mode 1 meniscus having a higher frequency is generated along with the natural vibration of the mode 2 pressure chamber excited by the actuator. Then, the natural vibration of the meniscus is superimposed on the half cycle of the natural vibration of the pressure chamber, which causes satellite generation during discharge.
 特に、ノズルの吐出口の径が小さくなると、式(2)、式(3)から明らかなようにノズルのイナータンス成分Ln及び抵抗成分Rnが増大するため、ノズルのインピーダンスが増大し、また、メニスカスの固有振動の振動数f1が高くなる。これにより、f1>f2となる傾向にあるため、サテライトが発生しやすくなる。 In particular, when the diameter of the discharge port of the nozzle is reduced, the inertance component Ln and the resistance component Rn of the nozzle increase as is apparent from the equations (2) and (3), so that the impedance of the nozzle increases and the meniscus is increased. The frequency f1 of the natural vibration becomes higher. This tends to satisfy f1> f2, so satellites are likely to occur.
 f1≦f2のときは、アクチュエータによって励起された圧力室の固有振動に伴いメニスカスが隆起するが、モード1の振動周期がモード2の振動周期よりも長くなるため、モード2の振動の節に乗ることが無く、直径が10μm以下の吐出口を有するノズルを用いた場合においてもサテライトの発生を抑制することができる。これにより高画質の記録物を得ることができる。 When f1 ≦ f2, the meniscus rises with the natural vibration of the pressure chamber excited by the actuator, but because the vibration period of mode 1 is longer than the vibration period of mode 2, it rides on the vibration node of mode 2. Even when a nozzle having a discharge port with a diameter of 10 μm or less is used, the generation of satellites can be suppressed. Thereby, a high-quality recorded matter can be obtained.
 式(6)、式(7)からわかるように、f1、f2を支配するパラメータは、各部のイナータンス成分、容量成分だけとなる。すなわち、各部のイナータンス成分、容量成分の組み合わせによって、f1、f2が決まることになる。 As can be seen from the equations (6) and (7), the parameters governing f1 and f2 are only the inertance component and the capacitance component of each part. That is, f1 and f2 are determined by the combination of the inertance component and the capacitance component of each part.
 ここで、式(2)、式(4)、式(5)からわかるように、使用するインクの密度ρ及びインクの音速度c及び表面張力σが決まると、f1、f2を支配するパラメータは、各部の形状だけとなる。 Here, as can be seen from the equations (2), (4), and (5), when the density ρ of the ink to be used, the sound velocity c of the ink, and the surface tension σ are determined, the parameters governing f1 and f2 are , Only the shape of each part.
 つまり、直径が10μm以下の吐出口を有するノズルを用いたヘッドに対してサテライトの発生を抑制するためには、使用するインクに対して、f1≦f2となるように、すなわち、式(1)を満足するように、各部の形状を設定することが重要なポイントとなる。 That is, in order to suppress the occurrence of satellites with respect to a head using a nozzle having a discharge port having a diameter of 10 μm or less, f1 ≦ f2 is satisfied with respect to the ink used, that is, the expression (1) It is important to set the shape of each part so as to satisfy the above.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ところが、従来では、f1とf2とのバランスを最適化するという観点に立脚した設計思想が知られていなかったため、この出願に係る発明者の分析結果によれば、直径が10μm以下の吐出口を有するノズルを用いたヘッドに対して、f1≦f2となるように設計されているヘッドは存在しない。 However, conventionally, since the design concept based on the viewpoint of optimizing the balance between f1 and f2 has not been known, according to the analysis result of the inventor according to this application, a discharge port having a diameter of 10 μm or less is provided. There is no head designed to satisfy f1 ≦ f2 with respect to the head using the nozzle having the nozzle.
 図5は本発明の実施の形態に係るインクジェットヘッドの一例を構成要素毎に分解して模式的に示し、インクジェットヘッドHDはノズルプレート1、ボディプレート2及び圧電素子3を有する。 FIG. 5 schematically shows an example of the ink jet head according to the embodiment of the present invention disassembled for each component, and the ink jet head HD has a nozzle plate 1, a body plate 2 and a piezoelectric element 3.
 ノズルプレート1には、インク吐出のためのノズル101を複数配列してある。 The nozzle plate 1 has a plurality of nozzles 101 for discharging ink.
 ボディプレート2には、これにノズルプレート1を被せて接合することで、圧力室となる圧力室溝204、インレットとなるインレット溝203、共通インク室となる共通インク室溝202、及びインク供給口201が形成されている。 The body plate 2 is joined by covering the nozzle plate 1 with the pressure plate groove 204 serving as a pressure chamber, an inlet groove 203 serving as an inlet, a common ink chamber groove 202 serving as a common ink chamber, and an ink supply port. 201 is formed.
 そして、ノズルプレート1のノズル101とボディプレート2の圧力室溝204とが一対一で対応するようにノズルプレート1とボディプレート2とが接合される。 Then, the nozzle plate 1 and the body plate 2 are joined so that the nozzle 101 of the nozzle plate 1 and the pressure chamber groove 204 of the body plate 2 correspond one-to-one.
 更に、ボディプレート2のノズルプレート1と接合する面と反対側の面の各圧力室204に対応した位置に圧電素子3が接着される。圧電素子3はPZT(チタン酸ジルコン酸鉛)からなるアクチュエータであり、両面に設けられた駆動電極を介して駆動電圧の印加を受けると変形して圧力室の容積を変化させることにより圧力を発生させ、圧力室内部のインクをノズル101から吐出させるようになっている。 Furthermore, the piezoelectric element 3 is bonded to a position corresponding to each pressure chamber 204 on the surface opposite to the surface to be joined to the nozzle plate 1 of the body plate 2. The piezoelectric element 3 is an actuator made of PZT (lead zirconate titanate), and is deformed when a drive voltage is applied through drive electrodes provided on both sides, thereby generating pressure by changing the volume of the pressure chamber. The ink in the pressure chamber is ejected from the nozzle 101.
 なお、以下の説明において、圧力室溝204とノズルプレート1とにより形成された部屋を圧力室204と言い、インレット溝203とノズルプレート1とにより形成された部屋をインレット203と言い、共通インク室溝202とノズルプレート1とにより形成された部屋を共通インク室202と言う。 In the following description, a chamber formed by the pressure chamber groove 204 and the nozzle plate 1 is referred to as a pressure chamber 204, a chamber formed by the inlet groove 203 and the nozzle plate 1 is referred to as an inlet 203, and a common ink chamber. A chamber formed by the groove 202 and the nozzle plate 1 is referred to as a common ink chamber 202.
 次に、インクジェットヘッドHDの作成について説明する。 Next, creation of the inkjet head HD will be described.
 ノズルプレート1の作製方法は、基材としてシリコン基板を用いて、例えば、公知のフォトリソグラフィー技術(レジスト塗布、露光、現像)とエッチング技術等を用いることでノズル101を形成するという手順により行われる。このノズル101の吐出口の直径は、10μm以下である。 The manufacturing method of the nozzle plate 1 is performed by a procedure of forming the nozzle 101 by using a silicon substrate as a base material and using, for example, a known photolithography technique (resist coating, exposure, development) and an etching technique. . The diameter of the discharge port of the nozzle 101 is 10 μm or less.
 ボディプレート2は、ノズルプレート1の作製方法と同様に、基材として厚みが200~500μm程度のシリコン基板を用いて、例えば、公知のフォトリソグラフィー技術(レジスト塗布、露光、現像)とエッチング技術等を用いることで、先に述べたノズルプレート1とで形成する、ノズルプレート1に有するノズル101にそれぞれ連通する複数の圧力室となる圧力室溝204、圧力室にそれぞれ連通する複数のインレットとなるインレット溝203、及びインレットに連通する共通インク室となる共通インク室溝202、インク供給口201を形成する。 The body plate 2 uses a silicon substrate having a thickness of about 200 to 500 μm as a base material in the same way as the nozzle plate 1 is manufactured. For example, a known photolithography technique (resist application, exposure, development), an etching technique, etc. Is used to form a pressure chamber groove 204 which is a plurality of pressure chambers which communicate with the nozzle 101 included in the nozzle plate 1 and which is formed with the nozzle plate 1 described above, and a plurality of inlets which respectively communicate with the pressure chamber. An inlet groove 203, a common ink chamber groove 202 serving as a common ink chamber communicating with the inlet, and an ink supply port 201 are formed.
 ここで形成する溝の大きさは、ヘッド完成後の各部の形状が前述の式(1)を満足する範囲内で適宜に決めれば良い。本実施の形態の一例であるヘッドでは、例えば、圧力室溝204は幅50μm~350μm程度、高さ10μm~200μm程度、長さ50μm~3000μm程度、インレット溝203は幅10μm~150μm程度、高さ10μm~200μm程度、長さ10μm~300μm程度、共通インク室溝202は幅400μm~1000μm程度、深さ50μm~200μm程度、インク供給口201は直径φ400μm~1500μm程度の貫通した穴である。また、ノズルについても同様に、例えば、インク吐出口の直径は1μm~10μm、ノズルの長さは1μm~100μm程度とされる。 The size of the groove formed here may be determined as appropriate as long as the shape of each part after completion of the head satisfies the above-described formula (1). In the head as an example of the present embodiment, for example, the pressure chamber groove 204 has a width of about 50 μm to 350 μm, a height of about 10 μm to 200 μm, a length of about 50 μm to 3000 μm, and the inlet groove 203 has a width of about 10 μm to 150 μm. The common ink chamber groove 202 is a through-hole having a diameter of about 400 μm to 1500 μm and a common ink chamber groove 202 having a width of about 400 μm to 1000 μm, a depth of about 50 μm to 200 μm, and a diameter φ of about 400 μm to 1500 μm. Similarly, for the nozzle, for example, the diameter of the ink discharge port is 1 μm to 10 μm, and the length of the nozzle is about 1 μm to 100 μm.
 シリコン基板に対するエッチング加工方法は、ボディプレートの面に対して垂直にエッチング加工ができるシリコン(Si)異方性ドライエッチング法が好ましい。シリコン(Si)異方性ドライエッチング法に関しては、産業図書株式会社「半導体ドライエッチング技術」等を参照することが出来る。 The etching method for the silicon substrate is preferably a silicon (Si) anisotropic dry etching method that can perform an etching process perpendicular to the surface of the body plate. Regarding the silicon (Si) anisotropic dry etching method, Sangyo Tosho Co., Ltd. “Semiconductor dry etching technology” can be referred to.
 次に、これまで説明した方法で加工されているノズルプレート1とボディプレート2とを陽極接合技術を用いて接合する。以下に、これに関して説明する。 Next, the nozzle plate 1 and the body plate 2 processed by the method described so far are bonded using an anodic bonding technique. This will be described below.
 図6は、ノズルプレート1とボディプレート2との接合工程を示す図であり、図6(a)は、シリコン基板を基材として、ノズル(図示してない。)が加工されたノズルプレート1及び圧力室溝204等の溝が前記に説明した加工により形成されたボディプレート2を示している。 FIG. 6 is a diagram showing a joining process between the nozzle plate 1 and the body plate 2. FIG. 6A shows a nozzle plate 1 in which nozzles (not shown) are processed using a silicon substrate as a base material. In addition, the body plate 2 in which the grooves such as the pressure chamber grooves 204 are formed by the processing described above is shown.
 ノズルプレート1とボディプレート2とは陽極接合により結合される。陽極接合技術を用いて2つの基材を接合する場合、基材の一方を構成する材料としてシリコンを用い、他方を可動イオン、例えば代表的にはナトリウムイオン(Na+)を含むガラス材でシリコン(Si)と比較的類似した線膨張係数(シリコンの線膨張係数は、4.2×10-6/℃程度である。)を有するものを用いることが好ましく、例えば、硼珪酸ガラスが用いられる。 The nozzle plate 1 and the body plate 2 are joined by anodic bonding. When two substrates are bonded using an anodic bonding technique, silicon is used as a material constituting one of the substrates, and the other is silicon with a glass material containing mobile ions, typically sodium ions (Na + ). It is preferable to use a material having a linear expansion coefficient relatively similar to (Si) (the linear expansion coefficient of silicon is about 4.2 × 10 −6 / ° C.), for example, borosilicate glass is used. .
 ここで、可動イオンを含む硼珪酸ガラス(以下、硼珪酸ガラスと称する。)としては、パイレックス(登録商標)、コーニング社(米国)またはテンパックス フロート(登録商標)、日本以外はBOROFLOAT(登録商標)、ショット日本(株)がこれらの線膨張係数(パイレックス(登録商標)及びテンパックス フロート(登録商標)の線膨張係数は共に3.2×10-6/℃程度である。)の観点からより好ましい。 Here, as borosilicate glass containing mobile ions (hereinafter referred to as borosilicate glass), Pyrex (registered trademark), Corning (USA) or Tempax Float (registered trademark), except for Japan, BOROFLOAT (registered trademark) ) And Shot Japan Co., Ltd. from the viewpoint of these linear expansion coefficients (both Pyrex (registered trademark) and Tempax Float (registered trademark) have a linear expansion coefficient of about 3.2 × 10 −6 / ° C.). More preferred.
 また、硼珪酸ガラスよりシリコンの方が微細な加工が容易であることから、基材として硼珪酸ガラスではなく、シリコン基板を用いるようにする。そして、基材であるシリコン基板の接合面に硼珪酸ガラスを成膜して硼珪酸ガラス面とする。この場合の膜厚は、陽極接合にて強固に接合される膜厚であれば良く、膜の密度や均一性及び後述する陽極接合時に必要な接合面の加熱や印加電圧の観点から0.5μm~3μmの範囲が好ましく、更には1μm~2μmの範囲がより好ましい。 Also, since silicon is finer and easier to process than borosilicate glass, a silicon substrate is used instead of borosilicate glass as a base material. Then, a borosilicate glass film is formed on the bonding surface of the silicon substrate as the base material to form a borosilicate glass surface. The film thickness in this case may be a film thickness that can be strongly bonded by anodic bonding, and is 0.5 μm from the viewpoint of the density and uniformity of the film and the heating and applied voltage of the bonding surface required during anodic bonding described later. The range of ˜3 μm is preferable, and the range of 1 μm to 2 μm is more preferable.
 更に、この場合硼珪酸ガラスの成膜方法は、真空蒸着法や高周波(RF)マグネトロンスパッタ法、イオンプレーティング法のいずれでも良く、また成膜時に基板の温度を緻密な膜が形成しやすいように250℃以上となるように加熱することが好ましい。この温度の上限は特に定めないが、基板の取り付け治具や成膜時の基板の温度制御装置等の観点から400℃程度が好ましい。 Further, in this case, the borosilicate glass film may be formed by any one of a vacuum deposition method, a radio frequency (RF) magnetron sputtering method, and an ion plating method, and the substrate temperature is easily formed at the time of film formation. It is preferable to heat to 250 ° C. or higher. The upper limit of the temperature is not particularly defined, but is preferably about 400 ° C. from the viewpoint of a substrate mounting jig, a substrate temperature control device during film formation, and the like.
 本実施の形態の一例であるインクジェットヘッドでは、微細な加工の容易さからノズルプレート1とボディプレート2の基材はいずれもシリコン基板としている。よって、ノズルプレート1とボディプレート2との接合面のいずれか一方を上記で示した硼珪酸ガラスの面にする必要がある。 In the ink jet head which is an example of the present embodiment, the base material of the nozzle plate 1 and the body plate 2 are both silicon substrates because of the ease of fine processing. Therefore, it is necessary to make one of the joint surfaces of the nozzle plate 1 and the body plate 2 the surface of the borosilicate glass described above.
 仮に、ボディプレート2側に硼珪酸ガラス膜を設けた場合、その硼珪酸ガラスの面を成す膜厚により、既に形成されている微細形状に膜の堆積による変形が発生することが予測される。また、この膜により圧力室204の底が厚くなることで圧力室204自体の構造が強固になり圧電素子3による歪みが十分発生できなくなり、その結果、インクの吐出が十分できない又は圧電素子3の駆動電力を大きくしなければならいといった問題が発生する恐れがある。 Temporarily, when a borosilicate glass film is provided on the body plate 2 side, it is predicted that deformation due to deposition of the film will occur in the already formed fine shape due to the film thickness forming the surface of the borosilicate glass. Also, the bottom of the pressure chamber 204 is thickened by this film, so that the structure of the pressure chamber 204 itself is strengthened and distortion due to the piezoelectric element 3 cannot be sufficiently generated. As a result, ink cannot be discharged sufficiently or the piezoelectric element 3 There is a risk that a problem arises that the drive power must be increased.
 従って、図6(b)に示すノズルプレート1のボディプレートに被さる面側を硼珪酸ガラスの面としており、ノズルプレート1を基板とし、この基板のボディプレートに被さる面側に0.5μm~3μmの範囲の比較的厚い膜厚の硼珪酸ガラス厚膜110を設ける。 Accordingly, the surface side of the nozzle plate 1 shown in FIG. 6B covering the body plate is a borosilicate glass surface, and the nozzle plate 1 is a substrate, and the surface side of the substrate covering the body plate is 0.5 μm to 3 μm. A borosilicate glass thick film 110 having a relatively thick film thickness in the range of is provided.
 次に、上記で説明した硼珪酸ガラス成膜されたノズルプレート1とボディプレート2とを、図6(c)で示す通りに、適切な位置関係にして重ね合わせて固定し、接合部の温度を高温状態にして、直流高圧電源4を用いて電圧を印加して陽極接合する。以下に、ノズルプレート1とボディプレート2を陽極接合することに関して具体的に説明する。 Next, the nozzle plate 1 and the body plate 2 formed with the borosilicate glass film described above are overlapped and fixed in an appropriate positional relationship as shown in FIG. Is subjected to anodic bonding by applying a voltage using a DC high voltage power source 4. Below, it demonstrates concretely regarding anodic bonding of the nozzle plate 1 and the body plate 2. FIG.
 陽極接合を行う場合に印加する電圧の極性は、シリコンの基材側をプラス(+)、硼珪酸ガラスの基材側をマイナス(-)とする。このようにすると、静電引力によって接合界面が密着すると同時に電流が流れ、両基板が強固に陽極接合される。 The polarity of the voltage applied when anodic bonding is performed is positive (+) on the silicon substrate side and negative (-) on the borosilicate glass substrate side. If it does in this way, an electric current will flow at the same time that a joining interface closely_contact | adheres by electrostatic attraction, and both board | substrates will be strongly anodically bonded.
 本実施の形態の一例である記録ヘッドにおいては、ボディプレート2はプラス(+)、硼珪酸ガラス厚膜110を有するノズルプレート1はマイナス(-)とする電圧を印加すれば良い。 In the recording head which is an example of the present embodiment, it is sufficient to apply a voltage that is positive (+) for the body plate 2 and negative (−) for the nozzle plate 1 having the borosilicate glass thick film 110.
 接合時の高温状態とは、300℃~550℃の範囲であって、このような雰囲気温度を維持できる恒温漕や簡便な方法ではセラミックヒーター等を内蔵する絶縁性の良いホットプレート等を用いてノズルプレート1とボディプレート2との接合部を加熱すれば良い。 The high temperature state at the time of joining is in the range of 300 ° C. to 550 ° C. Using a constant temperature bath capable of maintaining such an atmospheric temperature or a simple method using a hot plate having good insulation with a built-in ceramic heater or the like. What is necessary is just to heat the junction part of the nozzle plate 1 and the body plate 2.
 上記の温度範囲を超えて接合を行う場合、接合ができない又は接合が十分でないといった不都合が生じやすくなる。例えば、550℃以上では、印加電圧にもよるが、可動イオンが一気に流れ出して、硼珪酸ガラス膜が白濁したり膜密度が粗くなったりといった劣化が生じ、結果的に強固な接合ができない場合がある。また、300℃以下では、可動イオンが移動しにくい状態であり、これを移動しやすくするためには、印加電圧を大きくすることが必要である。印加電圧を大きくする結果、ノズルプレート1とボディプレート2との間での短絡が発生し、結果として陽極接合が十分できない場合がある。 When the bonding is performed beyond the above temperature range, there is a tendency that the bonding cannot be performed or the bonding is not sufficient. For example, at 550 ° C. or more, although depending on the applied voltage, mobile ions may flow out at a stretch, resulting in deterioration such as the borosilicate glass film becoming cloudy or the film density becoming rough, and as a result, strong bonding may not be possible. is there. At 300 ° C. or lower, the movable ions are difficult to move, and in order to make it easier to move, it is necessary to increase the applied voltage. As a result of increasing the applied voltage, a short circuit occurs between the nozzle plate 1 and the body plate 2, and as a result, anodic bonding may not be sufficient.
 また、直流高圧電源4にてノズルプレート1とボディプレート2との間に印加する直流電圧の電界強度は、30kV/mm~200kV/mmの範囲が好ましい。例えば、硼珪酸ガラスの膜厚が0.5μmであれば、印加電圧の範囲は、15V~100V、また、3μmであれば90V~600Vとなる。 Further, the electric field strength of the DC voltage applied between the nozzle plate 1 and the body plate 2 by the DC high voltage power source 4 is preferably in the range of 30 kV / mm to 200 kV / mm. For example, if the thickness of the borosilicate glass is 0.5 μm, the applied voltage range is 15 to 100 V, and if it is 3 μm, it is 90 to 600 V.
 通常、1kVを超える電圧を使用する場合、電圧を発生する直流高圧電源4の容量や電圧印加に関連する附帯装置の絶縁耐圧を確保することが必要となるなどから、直流高圧電源4を含めた装置が高価かつ煩雑になる。従って、適当な膜厚を設定することで陽極接合時に印加する電圧を扱いやすい1kV未満とするのが好ましい。 Normally, when a voltage exceeding 1 kV is used, it is necessary to ensure the capacity of the DC high-voltage power supply 4 that generates the voltage and the insulation withstand voltage of the auxiliary device related to voltage application. The device becomes expensive and cumbersome. Therefore, it is preferable to set the appropriate film thickness so that the voltage applied during anodic bonding is less than 1 kV, which is easy to handle.
 このように陽極接合により接合されたノズルプレート1及びボディプレート2の結合体Aに圧電素子3が接着される。 The piezoelectric element 3 is bonded to the combined body A of the nozzle plate 1 and the body plate 2 joined by anodic bonding in this way.
 図7はPZTからなる圧電素子3をボディプレート2に接着する工程を示す。 FIG. 7 shows a process of bonding the piezoelectric element 3 made of PZT to the body plate 2.
 圧電素子3はボディプレート2に次に説明するように転写接着により接着される。 The piezoelectric element 3 is bonded to the body plate 2 by transfer bonding as described below.
 ガラスプレート30に発泡剥離シート31及びPZTバルクプレート32がこの順に接着されたもの(図7aに示す)に、図7bに示すように、ドライフィルム33をラミネートし、公知のフォトリソグラフィー技術により、発泡剥離シート31、PZTバルクプレート32及びドライフィルム33をパターンニングして、圧電素子群300を形成する(図7c)。圧電素子群300の表面をサンドブラスト処理した後に、ドライフィルム33を剥離する(図7d)。 As shown in FIG. 7b, a dry film 33 is laminated on a glass plate 30 having a foam release sheet 31 and a PZT bulk plate 32 adhered in this order (shown in FIG. 7a), and foamed by a known photolithography technique. The release sheet 31, the PZT bulk plate 32, and the dry film 33 are patterned to form the piezoelectric element group 300 (FIG. 7c). After the surface of the piezoelectric element group 300 is sandblasted, the dry film 33 is peeled off (FIG. 7d).
 次に、接着剤層35を有する樹脂シート34を圧電素子群300に接着し(図7e、7f)、樹脂シート34を隔離し(図7g)、接着剤層35の側から圧電素子群300を治具40に保持されたボディプレート2に接着し、ガラスプレート30及び圧電素子群300をホットプレートで加熱する(図7h)。 Next, the resin sheet 34 having the adhesive layer 35 is bonded to the piezoelectric element group 300 (FIGS. 7e and 7f), the resin sheet 34 is isolated (FIG. 7g), and the piezoelectric element group 300 is attached from the adhesive layer 35 side. It adheres to the body plate 2 held by the jig 40, and the glass plate 30 and the piezoelectric element group 300 are heated by a hot plate (FIG. 7h).
 加熱により発泡剥離シート31が溶融して除去され、ガラスプレート30がボディプレート2及び圧電素子群300から離れ、インクジェットヘッドができあがる。 The foam release sheet 31 is melted and removed by heating, the glass plate 30 is separated from the body plate 2 and the piezoelectric element group 300, and the ink jet head is completed.
 以上の実施形態例では、本発明を、カイザー型インクジェットヘッドに適用した場合について述べたが、アクチュエータによって圧力室の容積を変化させることによりインクに圧力を発生させて、ノズルからインク滴を吐出させるインクジェットヘッドである限り、カイザー型インクジェットヘッドに限定されない。 In the above embodiment examples, the case where the present invention is applied to a Kaiser-type inkjet head has been described. However, the pressure of the ink is generated by changing the volume of the pressure chamber by the actuator, and ink droplets are ejected from the nozzles. As long as it is an inkjet head, it is not limited to a Kaiser type inkjet head.
 また、複数の圧力室、ノズル、インレットを備えたインクジェットヘッドを用いたが、1個の圧力室、ノズル、インレットを備えたインクジェットヘッドを用いた場合でも,本発明はその効果を損なうものではない。 Moreover, although the inkjet head provided with several pressure chambers, nozzles, and inlets was used, even when the inkjet head provided with one pressure chamber, nozzles, and inlets is used, this invention does not impair the effect. .
 本実施例では、上記実施形態中で示したインクジェットヘッドHDと同様のインクジェットヘッドを上記製造方法に従いながら製造し、当該インクジェットヘッドの吐出口からインク滴を吐出した際のサテライトの発生状況を観察した。 In this example, an inkjet head similar to the inkjet head HD shown in the above embodiment was manufactured according to the above manufacturing method, and the occurrence of satellites was observed when ink droplets were discharged from the discharge ports of the inkjet head. .
 まず、ノズルプレートとボディプレートとをともにシリコンで構成し、圧力室、インレット、ノズルの形状を種々変更した複数のインクジェットヘッドを作製した。具体的には、圧力室、インレットは、直方体状とし、表1に示すように幅、長さ、高さを変更した。ノズルは、円筒状とし、表2,表3に示すように吐出口の直径、ノズルの長さを変更した。なお、1つのインクジェットヘッドにおける各チャネル間の圧力室、インレット、ノズルの形状は同一とした。 First, both the nozzle plate and the body plate were made of silicon, and a plurality of ink jet heads with variously changed pressure chambers, inlets, and nozzle shapes were produced. Specifically, the pressure chamber and the inlet were formed in a rectangular parallelepiped shape, and the width, length, and height were changed as shown in Table 1. The nozzle was cylindrical, and the diameter of the discharge port and the length of the nozzle were changed as shown in Tables 2 and 3. The shape of the pressure chamber, inlet, and nozzle between the channels in one inkjet head was the same.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 その後、圧電素子に駆動電圧を印加して下記表2、表3に示す表面張力が異なる2種類のインクをそれぞれ吐出した。なお、各インクの密度ρは103[kg/m3]、粘度ηは3×10-3[Pa・s]であった。吐出の際のサテライトの発生状況を顕微鏡で観察し、サテライトがない場合を○、サテライトがある場合を×として評価した。 Thereafter, a driving voltage was applied to the piezoelectric element, and two types of inks having different surface tensions shown in Tables 2 and 3 below were discharged. The density ρ of each ink was 10 3 [kg / m 3 ] and the viscosity η was 3 × 10 −3 [Pa · s]. The state of satellite generation at the time of discharge was observed with a microscope, and the case where there was no satellite was evaluated as ◯, and the case where there was a satellite was evaluated as ×.
 吐出口の直径、ノズルの長さ、流路形状とサテライトの発生との関係を下記表2、表3に示す。表2、表3における、ノズル内のメニスカスの固有振動の振動数f1、前記圧力室の固有振動の振動数f2はそれぞれ前述のように式(6)、式(7)より算出した。 Tables 2 and 3 below show the relationship between discharge port diameter, nozzle length, flow path shape, and satellite generation. In Tables 2 and 3, the frequency f1 of the natural vibration of the meniscus in the nozzle and the frequency f2 of the natural vibration of the pressure chamber were calculated from the equations (6) and (7), respectively, as described above.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2と表3に示す通り、f1≦f2であると、いずれのインクでもサテライトの発生は見られなかった。以上から、直径が10μm以下の吐出口を有するノズルを用いた場合においてサテライトの発生を抑制する上では、f1≦f2となるように、ノズル、圧力室、及びインレットの形状を設定することが有用であることがわかる。 As shown in Tables 2 and 3, when f1 ≦ f2, no satellite was observed in any ink. From the above, it is useful to set the shape of the nozzle, the pressure chamber, and the inlet so that f1 ≦ f2 in order to suppress the generation of satellites when a nozzle having a discharge port having a diameter of 10 μm or less is used. It can be seen that it is.

Claims (2)

  1. 直径が10μm以下の吐出口を有するノズルと、前記ノズルに連通する圧力室と、前記圧力室にインクを導入するためのインレットと、前記圧力室の容積を変化させることによりインクに圧力を発生させるアクチュエータと、を備えたインクジェットヘッドであって、前記ノズル内のメニスカスの固有振動の振動数をf1、前記圧力室の固有振動の振動数をf2としたとき、f1≦f2となるように、前記ノズル、前記圧力室、及び前記インレットの形状が設定されていることを特徴とするインクジェットヘッド。 A nozzle having a discharge port having a diameter of 10 μm or less, a pressure chamber communicating with the nozzle, an inlet for introducing ink into the pressure chamber, and generating a pressure in the ink by changing the volume of the pressure chamber An ink jet head including an actuator, wherein the frequency of the natural vibration of the meniscus in the nozzle is f1, and the frequency of the natural vibration of the pressure chamber is f2, so that f1 ≦ f2. An ink jet head in which the shape of a nozzle, the pressure chamber, and the inlet is set.
  2. 前記ノズルのイナータンス成分をLn、容量成分をCn、前記圧力室のイナータンス成分をLc、容量成分をCc、前記インレットのイナータンス成分をLi、前記アクチュエータの容量成分をCaとしたとき、式(1)を満足することを特徴とする請求の範囲第1項記載のインクジェットヘッド。
    Figure JPOXMLDOC01-appb-M000001
    When the inertance component of the nozzle is Ln, the capacitive component is Cn, the inertance component of the pressure chamber is Lc, the capacitive component is Cc, the inertance component of the inlet is Li, and the capacitive component of the actuator is Ca, formula (1) The inkjet head according to claim 1, wherein:
    Figure JPOXMLDOC01-appb-M000001
PCT/JP2009/052146 2008-02-19 2009-02-09 Inkjet head WO2009104487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009554271A JPWO2009104487A1 (en) 2008-02-19 2009-02-09 Inkjet head

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-037357 2008-02-19
JP2008037357 2008-02-19

Publications (1)

Publication Number Publication Date
WO2009104487A1 true WO2009104487A1 (en) 2009-08-27

Family

ID=40985371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052146 WO2009104487A1 (en) 2008-02-19 2009-02-09 Inkjet head

Country Status (2)

Country Link
JP (1) JPWO2009104487A1 (en)
WO (1) WO2009104487A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123822A (en) * 1997-10-23 1999-05-11 Seiko Epson Corp Ink-jet type recording head
WO2001042018A1 (en) * 1999-12-13 2001-06-14 Fujitsu Limited Ink-jet head and method of manufacture thereof
JP2001293865A (en) * 2000-04-13 2001-10-23 Seiko Epson Corp Ink jet recording head and image recorder
JP2007069374A (en) * 2005-09-05 2007-03-22 Fuji Xerox Co Ltd Method for driving liquid-droplet jet head, liquid-droplet jet head, and liquid-droplet jet device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123822A (en) * 1997-10-23 1999-05-11 Seiko Epson Corp Ink-jet type recording head
WO2001042018A1 (en) * 1999-12-13 2001-06-14 Fujitsu Limited Ink-jet head and method of manufacture thereof
JP2001293865A (en) * 2000-04-13 2001-10-23 Seiko Epson Corp Ink jet recording head and image recorder
JP2007069374A (en) * 2005-09-05 2007-03-22 Fuji Xerox Co Ltd Method for driving liquid-droplet jet head, liquid-droplet jet head, and liquid-droplet jet device

Also Published As

Publication number Publication date
JPWO2009104487A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
KR100471793B1 (en) Inkjet recording device and its manufacturing method
WO2009107552A1 (en) Ink jet head and method for driving same
WO2009104487A1 (en) Inkjet head
JP4363150B2 (en) Method for manufacturing droplet discharge head
US9266323B2 (en) Operating a piezoelectric actuator membrane of a pressure chamber
JP2001277505A (en) Ink jet head
JP2016150560A (en) Inkjet head, method of controlling the same, and inkjet printer
JP2006212971A (en) Inkjet head and inkjet recorder using inkjet head
CN110065305A (en) Piezoelectric nozzle structure and manufacturing method thereof
JP2006198831A (en) Liquid delivering head and recording apparatus using it
JP2009274415A (en) Nozzle plate and liquid discharge head
JP2010172819A (en) Nozzle substrate, liquid-drop discharge head and liquid drop discharge device
WO2010146945A1 (en) Inkjet head
JP2010149375A (en) Method for manufacturing nozzle substrate, and method for manufacturing liquid droplet delivering head
JP3552854B2 (en) Ink jet recording head and method of manufacturing the same
JP2008142966A (en) Inkjet recording head
WO2010134418A1 (en) Inkjet head and method for producing same
JPWO2008072518A1 (en) Inkjet device
JP2007015243A (en) Flow path forming body, method for manufacturing flow path forming body and inkjet type recording head
JP2011051199A (en) Ink-jet recorder
JP2013212592A (en) Inkjet head and method and program of driving the same
JP2008000941A (en) Inkjet recording head
JPH0920007A (en) Ink jet head
JP2002067306A (en) Ink jet recording head
JPH11227195A (en) Ink jet head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711543

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554271

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09711543

Country of ref document: EP

Kind code of ref document: A1