WO2009104354A1 - Process for producing water-resistant flexible polyurethane foam - Google Patents

Process for producing water-resistant flexible polyurethane foam Download PDF

Info

Publication number
WO2009104354A1
WO2009104354A1 PCT/JP2009/000276 JP2009000276W WO2009104354A1 WO 2009104354 A1 WO2009104354 A1 WO 2009104354A1 JP 2009000276 W JP2009000276 W JP 2009000276W WO 2009104354 A1 WO2009104354 A1 WO 2009104354A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
polyurethane foam
flexible polyurethane
groups
water
Prior art date
Application number
PCT/JP2009/000276
Other languages
French (fr)
Japanese (ja)
Inventor
園田健太郎
伊東浩幸
吉井直哉
Original Assignee
日本ポリウレタン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリウレタン工業株式会社 filed Critical 日本ポリウレタン工業株式会社
Publication of WO2009104354A1 publication Critical patent/WO2009104354A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3218Polyhydroxy compounds containing cyclic groups having at least one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/485Polyethers containing oxyethylene units and other oxyalkylene units containing mixed oxyethylene-oxypropylene or oxyethylene-higher oxyalkylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • C08G18/6677Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • C08G18/698Mixtures with compounds of group C08G18/40
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7607Compounds of C08G18/7614 and of C08G18/7657
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the present invention relates to a method for producing a water-resistant flexible polyurethane foam.
  • a flexible polyurethane foam obtained by reacting and foaming a polyol and a polyisocyanate is used in various applications including automobile sheets and bedding, and usually requires water resistance.
  • the water resistance here means the strength and durability of the flexible polyurethane foam when immersed in water.
  • polycarbonate polyol is relatively expensive and has a high melting point, and is not necessarily suitable for foam molding.
  • a method for producing a flexible polyurethane foam using a polyether polyol as a polyol is widely adopted.
  • the water resistance of the flexible polyurethane foam using the polyether polyol is slightly inferior to that using the polycarbonate polyol, but is superior to that using the polyester polyol (see Non-Patent Document 1).
  • Examples of a method for producing a flexible polyurethane foam using a polyether polyol include, for example, (a) a polyisocyanate, (b) (1) a terminal OH group having a functionality of 2 to 4 and an OH number of 25 to 60 (B) (2) an alcohol having a functionality of at least 6 and an OH value of from 150 to 200, having a functionality of at least 6 and a total alkylene oxide; A mixture of 5 to 25% by weight of a polyether polyol which is a reactive product with propylene oxide modified to have 5 to 50% by weight of terminal ethylene oxide groups, and (c) a blowing agent and optionally (D) an elastic, open-cell, flexible polyurethane foam with substantially increased compression hardness that is reacted in the presence of known catalysts, stabilizers and / or other known additives.
  • Patent Document 1 JP-A 63-69820 Asahi Kasei Technical Data Polyurethane properties of each polyol ⁇ Searched on December 26, 2007 ⁇ , Internet ⁇ URL: http://www.asahi-kasei.co.jp/pcdlhp/jp/technical/index.html>
  • the present invention has been made in view of the above problems, and an object thereof is to provide a method for producing a water-resistant flexible polyurethane foam having high water resistance.
  • the method for producing a water-resistant flexible polyurethane foam according to the present invention comprises a polyol mixture containing 0.5% by mass or more of a low molecular polyol having an average number of OH groups of 5 or more, and a polycrystal having an average NCO group number of 2.1 to 2.5. It is characterized by reacting isocyanate.
  • the method for producing a water-resistant flexible polyurethane foam according to the present invention is preferably characterized by containing 6% by mass or less of the low molecular polyol.
  • the method for producing a water-resistant flexible polyurethane foam according to the present invention is preferably characterized in that the number average molecular weight of the low molecular polyol is 600 to 1,500.
  • the low-molecular polyol adds one or both of propylene oxide and ethylene oxide to a sugar alcohol having 5 or more OH groups. It is obtained by reacting.
  • the method for producing a water-resistant flexible polyurethane foam according to the present invention is preferably characterized in that the remaining polyol other than the low-molecular polyol in the polyol mixture is a polyether polyol.
  • the polyether polyol has an average OH group number of 1.7 to 4.5 and a number average molecular weight of 2,000 to 8,000. It is characterized by that.
  • the method for producing a water-resistant flexible polyurethane foam according to the present invention comprises a polyol mixture containing 0.5% by mass or more of a low molecular polyol having an average number of OH groups of 5 or more, and a polymer having an average NCO group number of 2.1 to 2.5 Since isocyanate is reacted, a water-resistant flexible polyurethane foam having high water resistance can be obtained.
  • the method for producing a water-resistant flexible polyurethane foam according to the present embodiment comprises a polyol mixture containing 0.5% by mass or more of a low molecular polyol having an average OH group number of 5 or more, and an average NCO group number of 2.1 to 2.5.
  • the polyisocyanate possessed is reacted.
  • auxiliary materials such as an appropriate chain extender, catalyst, foaming agent and foam stabilizer are used as necessary.
  • the molding method for foam molding is not particularly limited, but a molding method is preferred.
  • the low molecular polyol has an average number of OH groups of 5 or more, and there is no particular upper limit on the average number of OH groups, but it is practically about 8 at maximum.
  • the kind of the low molecular polyol having an average number of OH groups of 5 or more is not particularly limited.
  • the low molecular polyol having a number of OH groups of 5 or more may be a single product or a mixed product, and the average number of OH groups is 5 or more. As long as it is, a part of low molecular polyol having 4 or less OH groups may be included.
  • the low-molecular polyol is more preferably obtained by addition reaction of either or both of propylene oxide and ethylene oxide with a sugar alcohol having 5 or more OH groups.
  • sugar alcohols having 5 or more OH groups include, for example, xylitol having 5 OH groups derived from xylose, mannitol having 6 OH groups derived from mannose, and 8 OH groups derived from glucose (glucose) and fructose (fructose).
  • sugar (saccharose, sucrose) etc. may be sufficient, sorbitol with 6 OH groups derived from glucose (dextrose) can be used more suitably.
  • the low molecular weight polyol has a number average molecular weight of 2,000 or less, and more preferably has a number average molecular weight of 600 to 1,500.
  • the content of the low-molecular polyol is less than 0.5% by mass, the effect of the present invention that the water-resistant flexible polyurethane foam has high water resistance may not be sufficiently obtained.
  • there is no particular upper limit for the content of the low molecular polyol but from the viewpoint of ensuring sufficient C hardness and EB (elongation) of the water-resistant flexible polyurethane foam, it is 10% by mass or less, preferably 6% by mass or less.
  • the remaining polyol other than the low-molecular-weight polyol in the polyol mixture is not particularly limited, and may be any of, for example, polycarbonate polyol, polyester polyol, and polyether polyol. One of them may be used alone, or two or more may be used in combination. Considering the balance between the raw material price and the physical properties and characteristics of the water-resistant flexible polyurethane foam, it is preferable that the polyether polyol is the main component, and it is more preferable to use the polyether polyol alone.
  • polyether polyol polyhydric alcohols, saccharides, alkylamines, alkanolamines, and polyether polyols obtained by adding cyclic ethers, particularly alkylene oxides such as propylene oxide and ethylene oxide, to other initiators are suitable. Further, from the viewpoint of increasing the hardness, it is preferable that 10 to 30% by mass of a so-called polymer polyol (complex composed of an addition polymer of the polyether polyol and the unsaturated monomer) is included in the total polyol component.
  • polymer polyol complex composed of an addition polymer of the polyether polyol and the unsaturated monomer
  • the polyether polyol When the polyether polyol is used, it is preferable to use a low molecular polyol obtained by addition reaction of propylene oxide and ethylene oxide with the above-described sorbitol.
  • the polyether polyol preferably has an average OH group number of 1.7 to 4.5 and a number average molecular weight of 2,000 to 8,000. If the average number of OH groups is less than 1.7, the water resistance may be reduced. On the other hand, if the average number of OH groups exceeds 4.5, the mechanical properties (particularly elongation) may be reduced. If the number average molecular weight is less than 2,000, the elongation may decrease.
  • the polyether polyol having an average OH group number of 1.7 to 4.5 and a number average molecular weight of 2,000 to 8,000 has a nominal average OH group number of 2 to 4 and a number average molecular weight of 2,000 to 8,000.
  • the above-mentioned commercially available polyether polyol can be suitably used, and the polyether polyol having the above number average molecular weight produced using an initiator having an average number of OH groups of 2 to 4 can be suitably used. It is not limited.
  • the polyisocyanate to be reacted with the above polyol mixture has an average number of NCO (isocyanate) groups of 2.1 to 2.5.
  • the type of polyisocyanate having an average number of NCO groups of 2.1 to 2.5 is not particularly limited. For example, it may be a single product or a mixture of polyisocyanates having an average number of NCO groups of 2.1 to 2.5.
  • the average number of NCO groups is within the range of 2.1 to 2.5, a part of the polyisocyanate having an NCO group number outside this range may be included, and the average number of NCO groups is less than 2.1.
  • the polyisocyanate may be blended with a polyisocyanate having an average NCO group number of 2.5 or more so as to have the above average NCO group number.
  • Isocyanate (hereinafter abbreviated as TDI), hexamethylene diisocyanate, xylylene diisocyanate, nitrodiphenyl diisocyanate, diphenylpropane diisocyanate, dimethyldiphenylmethane diisocyanate, phenylene diisocyanate, naphthylene diisocyanate, dimethoxydiphenyl diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, methyl Pentane diisocyanate, lysine diisocyanate, isophorone diisocyanate, hydrogenated T I, hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate (MDI), and a mixture of two or
  • examples of polyisocyanates having an NCO group slightly exceeding 2.5 include polymethylene polyphenylene.
  • examples thereof include polyisocyanate and polymeric diphenylmethane diisocyanate (hereinafter abbreviated as P-MDI).
  • P-MDI polymeric diphenylmethane diisocyanate
  • the proportion of the polyol mixture and the polyisocyanate used may be a proportion employed in the production of a normal flexible polyurethane foam.
  • isocyanate INDEX ⁇ (isocyanate group) / (isocyanate reactive group) ⁇ ⁇ 100: equivalent ratio
  • a chain extender for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butane Diol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1 , 9-nonanediol, decamethylene glycol, diethylene glycol, dipropylene glycol, 2,2-diethyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2, 4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexane
  • metal compound catalysts such as an organotin compound, triethylenediamine (TEDA), tetramethylhexamethylenediamine (TMHMDA), pentamethyldiethylenetriamine (PMDETA), dimethylcyclohexyl
  • TMHMDA triethylenediamine
  • TMHMDA tetramethylhexamethylenediamine
  • PMDETA pentamethyldiethylenetriamine
  • DMCHA dimethylcyclohexyl
  • BDMAEA bisdimethylaminoethyl ether
  • the type of the foaming agent is not particularly limited, and for example, water, hydrofluorocarbon or the like can be used.
  • a foam stabilizer when using a foam stabilizer, the kind is not specifically limited, for example, a silicone type foam stabilizer, a fluorine-containing compound type foam stabilizer, etc. can be used.
  • the water-resistant flexible polyurethane foam obtained by the method for producing a water-resistant flexible polyurethane foam according to the present embodiment has high water resistance, specifically, tensile strength and elongation after the flexible polyurethane foam is immersed in hot water for a predetermined time. Excellent retention rate.
  • the water-resistant flexible polyurethane foam is suitably used for applications such as equipment and members that come into contact with water or a water vapor atmosphere under high temperature conditions, for example, soundproofing materials such as washing machines and dryers, and wipes for sauna rooms. be able to.
  • a flexible polyurethane foam (water resistant flexible polyurethane foam) was prepared using the following raw materials.
  • the nominal average functional group number of each raw material is the number of NCO groups for the isocyanate component and the number of OH groups for the polyol component.
  • Table 1 summarizes the types and amounts of raw materials used in Examples 1 to 4 and Comparative Examples 1 to 5. Each numerical value in Table 1 indicates mass% for the isocyanate component, and indicates parts by mass for the other components.
  • a flexible polyurethane foam was prepared as follows. That is, each of the polyisocyanate composition and the polyol premix were mixed at a temperature of 25 ⁇ 2 ° C. at a ratio shown in Table 2, and the mold (400 mm ⁇ 400 mm) of a Canon non-high pressure foaming machine maintained at 50 ° C. ⁇ 10 mm). After 7 minutes, the mold was removed to obtain flexible polyurethane foams (polyurethane mold foams) of Examples 1 to 4 and Comparative Examples 1 to 5.
  • INDEX represents the molar ratio of the polyisocyanate composition and the polyol component 1
  • the blending ratio represents the number of parts by mass of the polyisocyanate composition and the polyol component 1.
  • Cs (t0-t1) / (t0-t2) ⁇ 100 : Cs compression residual strain (%) : T0: Original thickness of specimen (mm) : T1 Remove the test specimen from the compression plate, thickness after 30 minutes (mm) : T2 spacer thickness (mm) TB retention and EB retention are JIS Put the K6400-5 TB measurement dumbbell in a pressure vessel and hold it at 100 ° C for a predetermined time, and then quickly remove it. Wipe the surface with a force that does not ooze out and comply with JIS K6400-5. I went. Each retention rate was calculated by the following formula.
  • TB retention (unit:%) ⁇ (TB measurement value after storage for a predetermined time (unit: kPa)) / (TB measurement value at the start of measurement (unit: kPa))) ⁇ 100
  • EB retention rate (unit:%) ⁇ (EB measured value after storage for a predetermined time (unit:%)) / (EB measured value at the start of measurement (unit:%)) ⁇ ⁇ 100
  • Example 4 comprising 7.0 parts by mass of low molecular polyol
  • Comparative Example 5 since the shrinkage was remarkable and an appropriate molded product could not be obtained, each test was not performed.
  • the comparative examples 1 to 4 all have a TB retention rate of 0% when nearly 400 hours have elapsed, but those of Examples 1 to 4 In both cases, TB retention exceeding 20% was obtained even when nearly 400 hours passed.
  • all of Comparative Examples 1 to 4 have a TB retention rate of 0% when nearly 400 hours have elapsed. Each of these samples has an EB retention rate exceeding 30% even when nearly 400 hours have passed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Provided is a process for producing a water-resistant flexible polyurethane foam having high water resistance. A polyol mixture including a low-molecular polyol having five or more OH groups on the average in an amount of 0.5 mass% or larger is reacted with a polyisocyanate having 2.1-2.5 NCO groups on the average. The low-molecular polyol has a number-average molecular weight of 600-1,500. The low-molecular polyol is a polyol obtained by causing either or both of propylene oxide and ethylene oxide to undergo addition reaction with a sugar alcohol having five or more OH groups. The remaining polyol of the polyol mixture is a polyether polyol. The polyether polyol has 1.7-4.5 OH groups on the average and a number-average molecular weight of 2,000-8,000.

Description

耐水性軟質ポリウレタンフォームの製造方法Method for producing water-resistant flexible polyurethane foam
 本発明は、耐水性軟質ポリウレタンフォームの製造方法に関する。 The present invention relates to a method for producing a water-resistant flexible polyurethane foam.
 ポリオールとポリイソシアネートを反応、発泡させて得られる軟質ポリウレタンフォームは、自動車シートや寝具をはじめとして様々な用途に使用されており、通常、耐水性が求められる。ここでいう耐水性は、水に浸漬等したときの軟質ポリウレタンフォームの強度や耐久性等の意味である。 A flexible polyurethane foam obtained by reacting and foaming a polyol and a polyisocyanate is used in various applications including automobile sheets and bedding, and usually requires water resistance. The water resistance here means the strength and durability of the flexible polyurethane foam when immersed in water.
 このような耐水性を有する軟質ポリウレタンフォームを得るためには、ポリオールとしてポリカーボネートポリオールを用いることが考えられる。
 しかしながら、ポリカーボネートポリオールは、比較的高価であり、また、融点が高いため発泡成形するうえで必ずしも好適ではない。
In order to obtain such a flexible polyurethane foam having water resistance, it is conceivable to use a polycarbonate polyol as the polyol.
However, polycarbonate polyol is relatively expensive and has a high melting point, and is not necessarily suitable for foam molding.
 これに対して、ポリオールとしてポリエーテルポリオールを用いた軟質ポリウレタンフォームの製造方法が広く採用されている。ポリエーテルポリオールを用いた軟質ポリウレタンフォームの耐水性は、ポリカーボネートポリオールを用いたものよりはやや劣るがポリエステルポリオールを用いたものよりは優れる(非特許文献1参照)。 On the other hand, a method for producing a flexible polyurethane foam using a polyether polyol as a polyol is widely adopted. The water resistance of the flexible polyurethane foam using the polyether polyol is slightly inferior to that using the polycarbonate polyol, but is superior to that using the polyester polyol (see Non-Patent Document 1).
 ポリエーテルポリオールを用いた軟質ポリウレタンフォームの製造方法の例として、例えば、(a)ポリイソシアネートと、(b)(1)2~4の官能価と25~60のOH価とを有する末端OH基を持った75~95重量%のポリエーテルポリオールと、(b)(2)少なくとも6の官能価と150~200のOH値とを有し、少なくとも6の官能価を有するアルコールと全酸化アルキレンに対し5~50重量%の末端酸化エチレン基を有するように改質した酸化プロピレンとの反応性生物である5~25重量%のポリエーテルポリオールとの混合物と、(c)発泡剤および必要に応じ(d)公知の触媒、安定剤および/またはその他の公知添加物の存在下に反応させる圧縮硬さの実質的に増大した弾性かつ連続気泡の軟質ポリウレタンフォームの製造方法が開示されている(特許文献1参照)。
特開昭63-69820公報 旭化成 技術資料 各ポリオールのポリウレタン物性{平成19年12月26日検索}、インターネット<URL : http://www.asahi-kasei.co.jp/pcdlhp/jp/technical/index.html>
Examples of a method for producing a flexible polyurethane foam using a polyether polyol include, for example, (a) a polyisocyanate, (b) (1) a terminal OH group having a functionality of 2 to 4 and an OH number of 25 to 60 (B) (2) an alcohol having a functionality of at least 6 and an OH value of from 150 to 200, having a functionality of at least 6 and a total alkylene oxide; A mixture of 5 to 25% by weight of a polyether polyol which is a reactive product with propylene oxide modified to have 5 to 50% by weight of terminal ethylene oxide groups, and (c) a blowing agent and optionally (D) an elastic, open-cell, flexible polyurethane foam with substantially increased compression hardness that is reacted in the presence of known catalysts, stabilizers and / or other known additives. Method of manufacturing over arm has been disclosed (see Patent Document 1).
JP-A 63-69820 Asahi Kasei Technical Data Polyurethane properties of each polyol {Searched on December 26, 2007}, Internet <URL: http://www.asahi-kasei.co.jp/pcdlhp/jp/technical/index.html>
 しかしながら、例えば、高温条件下で水あるいは水蒸気雰囲気に接する機器や部材等の用途においては、より高い耐水性が求められる。具体的には、軟質ポリウレタンフォームを熱水に所定時間浸漬した後の引張強度の保持率および伸びの保持率に優れる軟質ポリウレタンフォームが望ましいが、特許文献1のものを含めた従来のものは必ずしもこの点で満足の得られるものではない。 However, for example, higher water resistance is required in applications such as equipment and members that come into contact with water or a steam atmosphere under high temperature conditions. Specifically, a flexible polyurethane foam excellent in tensile strength retention and elongation retention after dipping the flexible polyurethane foam in hot water for a predetermined time is desirable, but conventional ones including those of Patent Document 1 are not necessarily Satisfaction is not obtained at this point.
 本発明は、上記の課題に鑑みてなされたものであり、高い耐水性を有する耐水性軟質ポリウレタンフォームの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a method for producing a water-resistant flexible polyurethane foam having high water resistance.
 本発明に係る耐水性軟質ポリウレタンフォームの製造方法は、平均OH基数を5以上有する低分子ポリオールを0.5質量%以上含有するポリオール混合物と、平均NCO基数を2.1~2.5有するポリイソシアネートを反応させることを特徴とする。 The method for producing a water-resistant flexible polyurethane foam according to the present invention comprises a polyol mixture containing 0.5% by mass or more of a low molecular polyol having an average number of OH groups of 5 or more, and a polycrystal having an average NCO group number of 2.1 to 2.5. It is characterized by reacting isocyanate.
 また、本発明に係る耐水性軟質ポリウレタンフォームの製造方法は、好ましくは、前記低分子ポリオールを6質量%以下含有することを特徴とする。 In addition, the method for producing a water-resistant flexible polyurethane foam according to the present invention is preferably characterized by containing 6% by mass or less of the low molecular polyol.
 また、本発明に係る耐水性軟質ポリウレタンフォームの製造方法は、好ましくは、前記低分子ポリオールの数平均分子量が600~1,500であることを特徴とする。 Also, the method for producing a water-resistant flexible polyurethane foam according to the present invention is preferably characterized in that the number average molecular weight of the low molecular polyol is 600 to 1,500.
 また、本発明に係る耐水性軟質ポリウレタンフォームの製造方法は、好ましくは、前記低分子ポリオールが、OH基を5つ以上有する糖アルコールに酸化プロピレンおよび酸化エチレンのうちのいずれか一方または双方を付加反応させて得られるものであることを特徴とする。 In the method for producing a water-resistant flexible polyurethane foam according to the present invention, preferably, the low-molecular polyol adds one or both of propylene oxide and ethylene oxide to a sugar alcohol having 5 or more OH groups. It is obtained by reacting.
 また、本発明に係る耐水性軟質ポリウレタンフォームの製造方法は、好ましくは、前記ポリオール混合物の前記低分子ポリオール以外の残余のポリオールがポリエーテルポリオールであることを特徴とする。 Further, the method for producing a water-resistant flexible polyurethane foam according to the present invention is preferably characterized in that the remaining polyol other than the low-molecular polyol in the polyol mixture is a polyether polyol.
 また、本発明に係る耐水性軟質ポリウレタンフォームの製造方法は、好ましくは、前記ポリエーテルポリオールが平均OH基数を1.7~4.5有し、数平均分子量2,000~8,000であることを特徴とする。 In the method for producing a water-resistant flexible polyurethane foam according to the present invention, preferably, the polyether polyol has an average OH group number of 1.7 to 4.5 and a number average molecular weight of 2,000 to 8,000. It is characterized by that.
 本発明に係る耐水性軟質ポリウレタンフォームの製造方法は、平均OH基数を5以上有する低分子ポリオールを0.5質量%以上含有するポリオール混合物と、平均NCO基数を2.1~2.5有するポリイソシアネートを反応させるため、高い耐水性を有する耐水性軟質ポリウレタンフォームを得ることができる。 The method for producing a water-resistant flexible polyurethane foam according to the present invention comprises a polyol mixture containing 0.5% by mass or more of a low molecular polyol having an average number of OH groups of 5 or more, and a polymer having an average NCO group number of 2.1 to 2.5 Since isocyanate is reacted, a water-resistant flexible polyurethane foam having high water resistance can be obtained.
TB保持率と時間の関係を示すグラフ図である。It is a graph which shows the relationship between TB retention and time. EB保持率と時間の関係を示すグラフ図である。It is a graph which shows the relationship between EB retention and time.
 本発明の実施の形態について、以下に説明する。 Embodiments of the present invention will be described below.
 本実施の形態に係る耐水性軟質ポリウレタンフォームの製造方法は、平均OH基数を5以上有する低分子ポリオールを0.5質量%以上含有するポリオール混合物と、平均NCO基数を2.1~2.5有するポリイソシアネートを反応させるものである。
 反応および発泡に際しては、適宜の鎖延長剤、触媒、発泡剤および整泡剤等の副資材を必要に応じて用いる。また、発泡成形する成形法は特に限定するものではないが、モールディング法が好適である。
The method for producing a water-resistant flexible polyurethane foam according to the present embodiment comprises a polyol mixture containing 0.5% by mass or more of a low molecular polyol having an average OH group number of 5 or more, and an average NCO group number of 2.1 to 2.5. The polyisocyanate possessed is reacted.
In the reaction and foaming, auxiliary materials such as an appropriate chain extender, catalyst, foaming agent and foam stabilizer are used as necessary. The molding method for foam molding is not particularly limited, but a molding method is preferred.
 低分子ポリオールは、平均OH基数を5以上有するものであり、平均OH基数の上限は特にないが、実用上は最大8程度である。平均OH基数は、GPC(ゲルパーミエーションクロマトグラフィー)により数平均分子量(Mn)を測定し、フタル化法により水酸基価を測定して下記式より算出される値である。
 平均OH基数={(水酸基価)×(Mn)}/(56.11×1000)
 平均OH基数を5以上有する低分子ポリオールの種類は特に限定するものではなく、例えば、OH基数を5以上有する低分子ポリオールの単品または混合品であってもよく、また、平均OH基数が5以上である限りOH基数が4以下の低分子ポリオールを一部含んでいてもよい。
The low molecular polyol has an average number of OH groups of 5 or more, and there is no particular upper limit on the average number of OH groups, but it is practically about 8 at maximum. The average OH group number is a value calculated from the following formula by measuring the number average molecular weight (Mn) by GPC (gel permeation chromatography) and measuring the hydroxyl value by the phthalation method.
Average number of OH groups = {(hydroxyl value) × (Mn)} / (56.11 × 1000)
The kind of the low molecular polyol having an average number of OH groups of 5 or more is not particularly limited. For example, the low molecular polyol having a number of OH groups of 5 or more may be a single product or a mixed product, and the average number of OH groups is 5 or more. As long as it is, a part of low molecular polyol having 4 or less OH groups may be included.
 低分子ポリオールは、OH基を5つ以上有する糖アルコールに酸化プロピレンおよび酸化エチレンのうちのいずれか一方または双方を付加反応させて得られるものであると、より好ましい。ここで、OH基を5つ以上有する糖アルコールは、例えば、キシロース由来のOH基数5つのキシリトール、マンノース由来のOH基数6つのマンニトール、グルコース(ブドウ糖)とフルクトース(果糖)由来のOH基数8つのショ糖(サッカロース、スクロース)等であってもよいが、グルコース(ブドウ糖)由来のOH基数6つのソルビトールをより好適に用いることができる。 The low-molecular polyol is more preferably obtained by addition reaction of either or both of propylene oxide and ethylene oxide with a sugar alcohol having 5 or more OH groups. Here, sugar alcohols having 5 or more OH groups include, for example, xylitol having 5 OH groups derived from xylose, mannitol having 6 OH groups derived from mannose, and 8 OH groups derived from glucose (glucose) and fructose (fructose). Although saccharide | sugar (saccharose, sucrose) etc. may be sufficient, sorbitol with 6 OH groups derived from glucose (dextrose) can be used more suitably.
 低分子ポリオールは、数平均分子量が2,000以下のものをいい、より好ましくは、数平均分子量が600~1500のものをいう。 The low molecular weight polyol has a number average molecular weight of 2,000 or less, and more preferably has a number average molecular weight of 600 to 1,500.
 使用するポリオール混合物中、低分子ポリオールを0.5質量%以上含有する。低分子ポリオールの含有量が0.5質量%未満の場合は、耐水性軟質ポリウレタンフォームが高い耐水性を有するという本発明の効果が十分に得られないおそれがある。一方、低分子ポリオールの含有量の上限は特にないが、耐水性軟質ポリウレタンフォームの十分なC硬度やEB(伸び)を確保する観点からは10質量%以下、好ましくは6質量%以下とする。 In the polyol mixture to be used, 0.5% by mass or more of low molecular polyol is contained. When the content of the low-molecular polyol is less than 0.5% by mass, the effect of the present invention that the water-resistant flexible polyurethane foam has high water resistance may not be sufficiently obtained. On the other hand, there is no particular upper limit for the content of the low molecular polyol, but from the viewpoint of ensuring sufficient C hardness and EB (elongation) of the water-resistant flexible polyurethane foam, it is 10% by mass or less, preferably 6% by mass or less.
 ポリオール混合物の低分子ポリオール以外の残余のポリオールは、特に限定するものではなく、例えば、ポリカーボネートポリオール、ポリエステルポリオールおよびポリエーテルポリオールのうちのいずれであってもよく、この場合、これらのポリオールは、いずれか1つを単独で用いてもよく、また、2つ以上を配合して用いてもよい。原料価格や耐水性軟質ポリウレタンフォームの物性、特性のバランスを考慮すると、ポリエーテルポリオールを主成分とすることが好ましく、さらにまた、ポリエーテルポリオール単独とすることがより好ましい。
 ポリエーテルポリオールとしては、多価アルコール、糖類、アルキルアミン、アルカノールアミン、その他のイニシエーターに環状エーテル、特にプロピレンオキシドやエチレンオキシドなどのアルキレンオキシドを付加して得られるポリエーテル系ポリオールが好適である。
 また、硬度アップの観点からは、いわゆるポリマーポリオール(前記ポリエーテルポリオールと不飽和モノマーの付加重合体からなる複合体)を全ポリオール成分中10~30質量%含むものであることが好ましい。
The remaining polyol other than the low-molecular-weight polyol in the polyol mixture is not particularly limited, and may be any of, for example, polycarbonate polyol, polyester polyol, and polyether polyol. One of them may be used alone, or two or more may be used in combination. Considering the balance between the raw material price and the physical properties and characteristics of the water-resistant flexible polyurethane foam, it is preferable that the polyether polyol is the main component, and it is more preferable to use the polyether polyol alone.
As the polyether polyol, polyhydric alcohols, saccharides, alkylamines, alkanolamines, and polyether polyols obtained by adding cyclic ethers, particularly alkylene oxides such as propylene oxide and ethylene oxide, to other initiators are suitable.
Further, from the viewpoint of increasing the hardness, it is preferable that 10 to 30% by mass of a so-called polymer polyol (complex composed of an addition polymer of the polyether polyol and the unsaturated monomer) is included in the total polyol component.
 ポリエーテルポリオールを用いるとき、低分子ポリオールは、上記したソルビトールに酸化プロピレンおよび酸化エチレンを付加反応させたものを用いることが好適である。
 また、ポリエーテルポリオールは、平均OH基数1.7~4.5を有し、数平均分子量2,000~8,000のものを用いることが好ましい。平均OH基数が1.7未満の場合は、耐水性が低下するおそれがあり、一方、平均OH基数が4.5を超える場合は、機械物性(特に伸び)が低下するおそれがある。数平均分子量が2,000未満の場合は、伸びが低下するおそれがあり、一方、数平均分子量が8,000を超える場合は、フォームが柔らかくなってしまい機械物性が悪化してしまう等のおそれがある。
 平均OH基数1.7~4.5を有し、数平均分子量2,000~8,000のポリエーテルポリオールとしては、公称平均OH基数が2~4で数平均分子量2,000~8,000の市販のポリエーテルポリオールを好適に用いることができ、また、平均OH基数が2~4の開始剤を用いて生成した上記数平均分子量のポリエーテルポリオールを好適に用いることができるが、これらに限定されるものではない。
When the polyether polyol is used, it is preferable to use a low molecular polyol obtained by addition reaction of propylene oxide and ethylene oxide with the above-described sorbitol.
The polyether polyol preferably has an average OH group number of 1.7 to 4.5 and a number average molecular weight of 2,000 to 8,000. If the average number of OH groups is less than 1.7, the water resistance may be reduced. On the other hand, if the average number of OH groups exceeds 4.5, the mechanical properties (particularly elongation) may be reduced. If the number average molecular weight is less than 2,000, the elongation may decrease. On the other hand, if the number average molecular weight exceeds 8,000, the foam may become soft and mechanical properties may deteriorate. There is.
The polyether polyol having an average OH group number of 1.7 to 4.5 and a number average molecular weight of 2,000 to 8,000 has a nominal average OH group number of 2 to 4 and a number average molecular weight of 2,000 to 8,000. The above-mentioned commercially available polyether polyol can be suitably used, and the polyether polyol having the above number average molecular weight produced using an initiator having an average number of OH groups of 2 to 4 can be suitably used. It is not limited.
 上記のポリオール混合物と反応させる、ポリイソシアネートは、平均NCO(イソシアネート)基数を2.1~2.5有するものである。平均NCO基数は、GPCにより数平均分子量(Mn)を測定して、ジブチルアミン法によりNCO含量(%)を測定して下記式より算出される値である。
 平均NCO基数= {(NCO含量) × (Mn)}/(42 × 100)
 平均NCO基数を2.1~2.5有するポリイソシアネートの種類は特に限定するものではなく、例えば、平均NCO基数を2.1~2.5有するポリイソシアネートの単品または混合品であってもよく、また、平均NCO基数が2.1~2.5の範囲内である限りNCO基数がこの範囲を外れるポリイソシアネートを一部含んでいてもよく、さらにまた、平均NCO基数が2.1未満のポリイソシアネートに、平均NCO基数が2.5以上のポリイソシアネートを配合して上記の平均NCO基数となるように調整してもよい。
 例えば、NCO基数が2.1をわずかに下回るポリイソシアネートとCO基数が2.5をわずかに上回るポリイソシアネートとを配合する場合、NCO基数が2.1をわずかに下回るポリイソシアネートとしては、トリレンジイソシアネート(以下、TDIと略す。)、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ニトロジフェニルジイソシアネート、ジフェニルプロパンジイソシアネート、ジメチルジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフチレンジイソシアネート、ジメトキシジフェニルジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチルペンタンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、水素添加TDI、水素添加キシレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート(MDI)、さらにこれらの2種以上の混合物を挙げることができ、一方、NCO基数が2.5をわずかに上回るポリイソシアネートとしては、例えばポリメチレンポリフェニレンポリイソシアネート、ポリメリックジフェニルメタンジイソシアネート(以下、これをP-MDIと略す。)を挙げることができる。
 平均NCO基数が2.1を下回る場合、ポリマーの架橋点が少なくなって耐水性や圧縮永久歪みが悪化するおそれがある。一方、平均NCO基数が2.5を上回る場合、
伸び等の機械物性が低下し、また、シュリンク等により軟質フォームとしての成形性を保てずにウレタンフォームを得ることができなくなる等のおそれがある。 
The polyisocyanate to be reacted with the above polyol mixture has an average number of NCO (isocyanate) groups of 2.1 to 2.5. The average number of NCO groups is a value calculated from the following formula by measuring the number average molecular weight (Mn) by GPC and measuring the NCO content (%) by the dibutylamine method.
Average number of NCO groups = {(NCO content) × (Mn)} / (42 × 100)
The type of polyisocyanate having an average number of NCO groups of 2.1 to 2.5 is not particularly limited. For example, it may be a single product or a mixture of polyisocyanates having an average number of NCO groups of 2.1 to 2.5. Further, as long as the average number of NCO groups is within the range of 2.1 to 2.5, a part of the polyisocyanate having an NCO group number outside this range may be included, and the average number of NCO groups is less than 2.1. The polyisocyanate may be blended with a polyisocyanate having an average NCO group number of 2.5 or more so as to have the above average NCO group number.
For example, when a polyisocyanate having an NCO group number slightly less than 2.1 and a polyisocyanate having a CO group number slightly more than 2.5 are blended, Isocyanate (hereinafter abbreviated as TDI), hexamethylene diisocyanate, xylylene diisocyanate, nitrodiphenyl diisocyanate, diphenylpropane diisocyanate, dimethyldiphenylmethane diisocyanate, phenylene diisocyanate, naphthylene diisocyanate, dimethoxydiphenyl diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, methyl Pentane diisocyanate, lysine diisocyanate, isophorone diisocyanate, hydrogenated T I, hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate (MDI), and a mixture of two or more thereof. On the other hand, examples of polyisocyanates having an NCO group slightly exceeding 2.5 include polymethylene polyphenylene. Examples thereof include polyisocyanate and polymeric diphenylmethane diisocyanate (hereinafter abbreviated as P-MDI).
When the average number of NCO groups is less than 2.1, the crosslinking point of the polymer is decreased and the water resistance and compression set may be deteriorated. On the other hand, if the average NCO number exceeds 2.5,
Mechanical properties such as elongation may decrease, and shrinkage or the like may prevent urethane foam from being obtained without maintaining moldability as a flexible foam.
 上記ポリオール混合物と上記ポリイソシアネートの使用割合は、通常の軟質ポリウレタンフォームの製造において採用される割合でよく、例えばイソシアネートINDEX({(イソシアネート基)/(イソシアネート反応性基)}×100:当量比)が、60~130、好ましくは80~120となるように配合する。イソシアネートINDEXが極端に低いと、得られるポリウレタンフォームの表面にべとつき感が生じやすくなるおそれがあり、一方、イソシアネートINDEXが極端に高いと、得られるポリウレタンフォームが硬くなりすぎるおそれがある。 The proportion of the polyol mixture and the polyisocyanate used may be a proportion employed in the production of a normal flexible polyurethane foam. For example, isocyanate INDEX ({(isocyanate group) / (isocyanate reactive group)} × 100: equivalent ratio) Is 60 to 130, preferably 80 to 120. If the isocyanate INDEX is extremely low, the surface of the resulting polyurethane foam tends to be sticky, whereas if the isocyanate INDEX is extremely high, the resulting polyurethane foam may be too hard.
 上記の反応において、鎖延長剤を用いる場合、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、デカメチレングリコール、ジエチレングリコール、ジプロピレングリコール、2,2-ジエチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-n-ヘキサデカン-1,2-エチレングリコール、2-n-エイコサン-1,2-エチレングリコール、2-n-オクタコサン-1,2-エチレングリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、3-ヒドロキシ-2,2-ジメチルプロピル-3-ヒドロキシ-2,2-ジメチルプロピオネート、ダイマー酸ジオール、ビスフェノールA、水素添加ビスフェノールA等を用いることができる。 In the above reaction, when a chain extender is used, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butane Diol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1 , 9-nonanediol, decamethylene glycol, diethylene glycol, dipropylene glycol, 2,2-diethyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2, 4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2-n-hex Decane-1,2-ethylene glycol, 2-n-eicosane-1,2-ethylene glycol, 2-n-octacosane-1,2-ethylene glycol, cyclohexane-1,4-diol, cyclohexane-1,4-di Methanol, 3-hydroxy-2,2-dimethylpropyl-3-hydroxy-2,2-dimethylpropionate, dimer acid diol, bisphenol A, hydrogenated bisphenol A, and the like can be used.
 また、ポリウレタン化反応を促進するために、触媒として、例えば、有機スズ化合物などの金属化合物系触媒やトリエチレンジアミン(TEDA)、テトラメチルヘキサメチレンジアミン(TMHMDA)、ペンタメチルジエチレントリアミン(PMDETA)、ジメチルシクロヘキシルアミン(DMCHA)、ビスジメチルアミノエチルエーテル(BDMAEA)などの3級アミン触媒を用いることができる。 Moreover, in order to accelerate | stimulate a polyurethane-ized reaction, as a catalyst, for example, metal compound catalysts, such as an organotin compound, triethylenediamine (TEDA), tetramethylhexamethylenediamine (TMHMDA), pentamethyldiethylenetriamine (PMDETA), dimethylcyclohexyl A tertiary amine catalyst such as amine (DMCHA) or bisdimethylaminoethyl ether (BDMAEA) can be used.
 また、発泡剤は、その種類を特に限定するものではなく、例えば、水やハイドロフルオロカーボン等を用いることができる。 Further, the type of the foaming agent is not particularly limited, and for example, water, hydrofluorocarbon or the like can be used.
 また、整泡剤を用いる場合、その種類を特に限定するものではなく、例えば、シリコーン系整泡剤や含フッ素化合物系整泡剤等を用いることができる。 Moreover, when using a foam stabilizer, the kind is not specifically limited, For example, a silicone type foam stabilizer, a fluorine-containing compound type foam stabilizer, etc. can be used.
 本実施の形態に係る耐水性軟質ポリウレタンフォームの製造方法によって得られる耐水性軟質ポリウレタンフォームは、高い耐水性、具体的には、軟質ポリウレタンフォームを熱水に所定時間浸漬した後の引張強度および伸びの保持率に優れる。
 このため、耐水性軟質ポリウレタンフォームを、高温条件下で水あるいは水蒸気雰囲気に接する機器や部材等の用途、例えば洗濯機や乾燥機等の防音材、サウナ室の足拭き等の用途に好適に用いることができる。
The water-resistant flexible polyurethane foam obtained by the method for producing a water-resistant flexible polyurethane foam according to the present embodiment has high water resistance, specifically, tensile strength and elongation after the flexible polyurethane foam is immersed in hot water for a predetermined time. Excellent retention rate.
For this reason, the water-resistant flexible polyurethane foam is suitably used for applications such as equipment and members that come into contact with water or a water vapor atmosphere under high temperature conditions, for example, soundproofing materials such as washing machines and dryers, and wipes for sauna rooms. be able to.
 実施例および比較例を挙げて、本発明をさらに説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。 The present invention will be further described with reference to examples and comparative examples. In addition, this invention is not limited to the Example demonstrated below.
(使用原料)
 以下の原料を使用して軟質ポリウレタンフォーム(耐水性軟質ポリウレタンフォーム)を調製した。各原料の公称平均官能基数は、イソシアネート成分についてはNCO基の数であり、ポリオール成分についてはOH基の数である。各実施例1~4および各比較例1~5おいて使用した原料の種類および使用量を表1にまとめて示す。表1中の各数値は、イソシアネート成分については質量%を、他の成分については質量部数を、それぞれ示す。
 <イソシアネート成分>
 ○PMD1:ポリエーテルポリオール変性プレポリマー(商品名CEF-300日本ポリウレタン工業社製):公称平均官能基数f=2.27、NCO含有量:28.8%、粘度:100mPa・s
 ○PMD2: (商品名CEF-301日本ポリウレタン工業社製):TDI/p-MDI比率=80/20、公称平均官能基数f=2.05、NCO含有量:44.6%、粘度:5mPa・s
 ○PMD3:p-MDI(商品名CEF-302日本ポリウレタン工業社製)公称平均官能基数f=約2.70、NCO含有量:30.7%、粘度:240mPa・s
<ポリオール成分1(高分子ポリオール)>
 ○ポリオールA:ポリエーテルポリオール(商品名 EL-510 旭硝子ウレタン社製):公称平均官能基数:2,数平均分子量:4,000
 ○ポリオールB:ポリマーポリオール
(商品名 EL-937 旭硝子ウレタン社製) 
<ポリオール成分2(低分子ポリオール)>
 ○ポリオールC:ソルビトール系ポリエーテルポリオール(商品名 SP-750 三洋化成工業社製):公称平均官能基数:6,数平均分子量:約700
 ○1,4-BG:1,4-ブタンジオール(三菱化学社製)
 ○ポリブタジエンジオール(商品名 R-45HT 出光社製):公称平均官能基数:2,数平均分子量:2800
<その他添加剤>
 連通化剤:ポリオキシエチレンポリオキシプロピレンポリオール(商品名 QB-8000 東邦化学社製):公称平均官能基数4、平均ヒドロキシル当量:2000、数平均分子量:8000
 発泡剤:水(水道水)
 樹脂化触媒:トリエチレンジアミン33%DPG溶液(商品名 TEDA-L33東ソー社製) 
 泡化触媒:70%ビス(ジメチルアミノエチル)エーテル,30%ジプロピレングリコール(商品名 TOYOCAT-ET 東ソー社製)
(Raw materials used)
A flexible polyurethane foam (water resistant flexible polyurethane foam) was prepared using the following raw materials. The nominal average functional group number of each raw material is the number of NCO groups for the isocyanate component and the number of OH groups for the polyol component. Table 1 summarizes the types and amounts of raw materials used in Examples 1 to 4 and Comparative Examples 1 to 5. Each numerical value in Table 1 indicates mass% for the isocyanate component, and indicates parts by mass for the other components.
<Isocyanate component>
PMD1: Polyether polyol-modified prepolymer (trade name CEF-300 manufactured by Nippon Polyurethane Industry Co., Ltd.): Nominal average functional group number f = 2.27, NCO content: 28.8%, Viscosity: 100 mPa · s
○ PMD2: (trade name CEF-301 manufactured by Nippon Polyurethane Industry Co., Ltd.): TDI / p-MDI ratio = 80/20, nominal average functional group number f = 2.05, NCO content: 44.6%, viscosity: 5 mPa · s
○ PMD3: p-MDI (trade name CEF-302 manufactured by Nippon Polyurethane Industry Co., Ltd.) Nominal average functional group number f = about 2.70, NCO content: 30.7%, viscosity: 240 mPa · s
<Polyol component 1 (polymer polyol)>
○ Polyol A: Polyether polyol (trade name EL-510 manufactured by Asahi Glass Urethane Co., Ltd.): Nominal average functional group number: 2, Number average molecular weight: 4,000
○ Polyol B: Polymer polyol (Brand name EL-937 Asahi Glass Urethane Co., Ltd.)
<Polyol component 2 (low molecular polyol)>
○ Polyol C: Sorbitol-based polyether polyol (trade name: SP-750, manufactured by Sanyo Kasei Kogyo Co., Ltd.): Nominal average functional group number: 6, Number average molecular weight: about 700
○ 1,4-BG: 1,4-butanediol (Mitsubishi Chemical Corporation)
○ Polybutadienediol (trade name: R-45HT, manufactured by Idemitsu): Nominal average functional group number: 2, Number average molecular weight: 2800
<Other additives>
Communicating agent: polyoxyethylene polyoxypropylene polyol (trade name: QB-8000, manufactured by Toho Chemical Co., Ltd.): Nominal average functional group number 4, average hydroxyl equivalent: 2000, number average molecular weight: 8000
Foaming agent: water (tap water)
Resinization catalyst: Triethylenediamine 33% DPG solution (trade name: TEDA-L33 manufactured by Tosoh Corporation)
Foaming catalyst: 70% bis (dimethylaminoethyl) ether, 30% dipropylene glycol (trade name TOYOCAT-ET manufactured by Tosoh Corporation)
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
(ポリオールプレミックスの調整)
 イソシアネート成分を除く表1に記載の各原料を仕込み,混合攪拌してポリオールプレミックスを得た。
(Polyol premix adjustment)
Each raw material shown in Table 1 excluding the isocyanate component was charged, mixed and stirred to obtain a polyol premix.
(軟質ポリウレタンフォームの製造)
 上記イソシアネート基末端プレポリマーポリイソシアネート組成物(イソシアネート成分)と,上記のポリオールプレミックスとを用いて以下のようにして軟質ポリウレタンフォームを調製した。
 すなわち、表2に示す割合で各ポリイソシアネート組成物とポリオールプレミックスを、温度25±2℃に温調して混合し,50℃に保持されたCannon製高圧発泡機の金型(400mm×400mm×10mm)に注入した。7分後脱型し、実施例1~4および比較例1~5の軟質ポリウレタンフォーム(ポリウレタンモールドフォーム)を得た。なお、表2中、INDEXはポリイソシアネート組成物とポリオール成分1のモル比を、配合比はポリイソシアネート組成物とポリオール成分1の質量部数を、それぞれ示す。
(Manufacture of flexible polyurethane foam)
Using the isocyanate group-terminated prepolymer polyisocyanate composition (isocyanate component) and the polyol premix, a flexible polyurethane foam was prepared as follows.
That is, each of the polyisocyanate composition and the polyol premix were mixed at a temperature of 25 ± 2 ° C. at a ratio shown in Table 2, and the mold (400 mm × 400 mm) of a Canon non-high pressure foaming machine maintained at 50 ° C. × 10 mm). After 7 minutes, the mold was removed to obtain flexible polyurethane foams (polyurethane mold foams) of Examples 1 to 4 and Comparative Examples 1 to 5. In Table 2, INDEX represents the molar ratio of the polyisocyanate composition and the polyol component 1, and the blending ratio represents the number of parts by mass of the polyisocyanate composition and the polyol component 1.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
(試験・測定)
 上記の各軟質ポリウレタンフォームを一昼夜静置した後、以下の各試験による評価および物性測定を行った。結果を表3および図1、図2に示す。
 C硬度はJIS
K7312(硬さ試験)に、TB(引張強度)、EB(伸び)およびTR(引裂強度)はJIS K6400-5に、それぞれ準拠して行った。
 また、CS(圧縮残留歪)はJIS-K6400-4に準じ、50%圧縮,22時間,70℃の各条件で、また、サンプルサイズは10mm×10mm×10mm,n=4で行ない、下記式を用いて算出した。
 Cs=(t0-t1)/(t0-t2)×100
  :Cs 圧縮残留歪(%)
  :t0 :試験片の元の厚さ(mm)
  :t1 試験片を圧縮板から取り出し,30分後の厚さ(mm)
  :t2 スペーサーの厚さ(mm)
 TB保持率およびEB保持率は、JIS
K6400-5のTB測定用のダンベルを耐圧容器に入れて100℃で所定の時間保持した後に速やかに取り出し、水分が染み出さない程度の力で表面の水分をふき取り、JIS K6400-5に準拠して行った。各保持率は以下の式により算出した。
 TB保持率(単位:%)={(所定時間保管後のTB測定値(単位:kPa))/(測定開始時のTB測定値(単位:kPa)))×100
 EB保持率(単位:%)={(所定時間保管後のEB測定値(単位:%))/(測定開始時のEB測定値(単位:%))}×100
(Test and measurement)
Each of the above flexible polyurethane foams was allowed to stand for a whole day and night, and then evaluated and measured for physical properties by the following tests. The results are shown in Table 3 and FIGS.
C hardness is JIS
K7312 (hardness test), TB (tensile strength), EB (elongation), and TR (tear strength) were performed in accordance with JIS K6400-5, respectively.
Also, CS (compression residual strain) is 50% compression, 22 hours, 70 ° C according to JIS-K6400-4, and sample size is 10mm × 10mm × 10mm, n = 4. It calculated using.
Cs = (t0-t1) / (t0-t2) × 100
: Cs compression residual strain (%)
: T0: Original thickness of specimen (mm)
: T1 Remove the test specimen from the compression plate, thickness after 30 minutes (mm)
: T2 spacer thickness (mm)
TB retention and EB retention are JIS
Put the K6400-5 TB measurement dumbbell in a pressure vessel and hold it at 100 ° C for a predetermined time, and then quickly remove it. Wipe the surface with a force that does not ooze out and comply with JIS K6400-5. I went. Each retention rate was calculated by the following formula.
TB retention (unit:%) = {(TB measurement value after storage for a predetermined time (unit: kPa)) / (TB measurement value at the start of measurement (unit: kPa))) × 100
EB retention rate (unit:%) = {(EB measured value after storage for a predetermined time (unit:%)) / (EB measured value at the start of measurement (unit:%))} × 100
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表3によれば、実施例1~3に比べて、実施例4(低分子ポリオール7.0質量部配合)のものは、C硬度およびEBがやや不足していることがわかる。また、比較例5については、収縮が顕著で適当な成形体が得られなかったため、各試験等は行わなかった。 According to Table 3, it can be seen that C hardness and EB are slightly insufficient in Example 4 (comprising 7.0 parts by mass of low molecular polyol) as compared with Examples 1 to 3. In Comparative Example 5, since the shrinkage was remarkable and an appropriate molded product could not be obtained, each test was not performed.
 図1のTB保持率と時間の関係を見ると、比較例1~4のものは、いずれも400時間近く経過した時点ではTB保持率が0%になるが、各実施例1~4のものは、いずれも400時間近く経過した時点においても20%を超えるTB保持率が得られている。
 また、図2のEB保持率と時間の関係を見ると、比較例1~4のものは、いずれも400時間近く経過した時点でTB保持率が0%になるが、各実施例1~4のものは、いずれも400時間近く経過した時点においても30%を超えるEB保持率が得られている。
Looking at the relationship between the TB retention rate and the time in FIG. 1, the comparative examples 1 to 4 all have a TB retention rate of 0% when nearly 400 hours have elapsed, but those of Examples 1 to 4 In both cases, TB retention exceeding 20% was obtained even when nearly 400 hours passed.
In addition, when the relationship between the EB retention rate and the time in FIG. 2 is seen, all of Comparative Examples 1 to 4 have a TB retention rate of 0% when nearly 400 hours have elapsed. Each of these samples has an EB retention rate exceeding 30% even when nearly 400 hours have passed.

Claims (10)

  1.  平均OH基数を5以上有する低分子ポリオールを0.5質量%以上含有するポリオール混合物と、平均NCO基数を2.1~2.5有するポリイソシアネートを反応させることを特徴とする耐水性軟質ポリウレタンフォームの製造方法。 A water resistant flexible polyurethane foam characterized by reacting a polyol mixture containing 0.5% by mass or more of a low molecular polyol having an average number of OH groups of 5 or more with a polyisocyanate having an average number of NCO groups of 2.1 to 2.5 Manufacturing method.
  2.  前記低分子ポリオールを6質量%以下含有することを特徴とする請求項1記載の耐水性軟質ポリウレタンフォームの製造方法。 The method for producing a water-resistant flexible polyurethane foam according to claim 1, wherein the low-molecular polyol is contained in an amount of 6% by mass or less.
  3.  前記低分子ポリオールの数平均分子量が600~1,500であることを特徴とする請求項1記載の耐水性軟質ポリウレタンフォームの製造方法。 The method for producing a water-resistant flexible polyurethane foam according to claim 1, wherein the low molecular polyol has a number average molecular weight of 600 to 1,500.
  4.  前記低分子ポリオールの数平均分子量が600~1,500であることを特徴とする請求項2記載の耐水性軟質ポリウレタンフォームの製造方法。 The method for producing a water-resistant flexible polyurethane foam according to claim 2, wherein the low molecular polyol has a number average molecular weight of 600 to 1,500.
  5.  前記低分子ポリオールが、OH基を5つ以上有する糖アルコールに酸化プロピレンおよび酸化エチレンのうちのいずれか一方または双方を付加反応させて得られるものであることを特徴とする請求項1記載の耐水性軟質ポリウレタンフォームの製造方法。 2. The water resistance according to claim 1, wherein the low molecular weight polyol is obtained by subjecting a sugar alcohol having 5 or more OH groups to addition reaction of one or both of propylene oxide and ethylene oxide. Of producing flexible flexible polyurethane foam.
  6.  前記低分子ポリオールが、OH基を5つ以上有する糖アルコールに酸化プロピレンおよび酸化エチレンのうちのいずれか一方または双方を付加反応させて得られるものであることを特徴とする請求項2記載の耐水性軟質ポリウレタンフォームの製造方法。 3. The water resistance according to claim 2, wherein the low molecular polyol is obtained by subjecting a sugar alcohol having 5 or more OH groups to addition reaction of either or both of propylene oxide and ethylene oxide. Of producing flexible flexible polyurethane foam.
  7.  前記低分子ポリオールが、OH基を5つ以上有する糖アルコールに酸化プロピレンおよび酸化エチレンのうちのいずれか一方または双方を付加反応させて得られるものであることを特徴とする請求項3記載の耐水性軟質ポリウレタンフォームの製造方法。 4. The water resistance according to claim 3, wherein the low molecular weight polyol is obtained by subjecting a sugar alcohol having 5 or more OH groups to addition reaction of one or both of propylene oxide and ethylene oxide. Of producing flexible flexible polyurethane foam.
  8.  前記低分子ポリオールが、OH基を5つ以上有する糖アルコールに酸化プロピレンおよび酸化エチレンのうちのいずれか一方または双方を付加反応させて得られるものであることを特徴とする請求項4記載の耐水性軟質ポリウレタンフォームの製造方法。 5. The water resistance according to claim 4, wherein the low molecular weight polyol is obtained by subjecting a sugar alcohol having 5 or more OH groups to addition reaction of either or both of propylene oxide and ethylene oxide. Of producing flexible flexible polyurethane foam.
  9.  前記ポリオール混合物の前記低分子ポリオール以外の残余のポリオールがポリエーテルポリオールであることを特徴とする請求項1記載の耐水性軟質ポリウレタンフォームの製造方法。 The method for producing a water-resistant flexible polyurethane foam according to claim 1, wherein the remaining polyol other than the low-molecular-weight polyol in the polyol mixture is a polyether polyol.
  10.  前記ポリエーテルポリオールが平均OH基数を1.7~4.5有し、数平均分子量2,000~8,000であることを特徴とする請求項9記載の耐水性軟質ポリウレタンフォームの製造方法。 10. The method for producing a water-resistant flexible polyurethane foam according to claim 9, wherein the polyether polyol has an average number of OH groups of 1.7 to 4.5 and a number average molecular weight of 2,000 to 8,000.
PCT/JP2009/000276 2008-02-18 2009-01-26 Process for producing water-resistant flexible polyurethane foam WO2009104354A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-035749 2008-02-18
JP2008035749A JP2009191223A (en) 2008-02-18 2008-02-18 Method for producing water-resistant flexible polyurethane foam

Publications (1)

Publication Number Publication Date
WO2009104354A1 true WO2009104354A1 (en) 2009-08-27

Family

ID=40985243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000276 WO2009104354A1 (en) 2008-02-18 2009-01-26 Process for producing water-resistant flexible polyurethane foam

Country Status (2)

Country Link
JP (1) JP2009191223A (en)
WO (1) WO2009104354A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241389B2 (en) 2013-07-31 2017-12-06 三菱ケミカル株式会社 Method for producing polycarbonate diol and method for producing polyurethane
US12091550B2 (en) 2018-08-06 2024-09-17 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218968A (en) * 1997-02-07 1998-08-18 Nippon Polyurethane Ind Co Ltd Polyisocyanate for flexible polyurethane foam
JPH11255858A (en) * 1998-03-10 1999-09-21 Nippon Polyurethane Ind Co Ltd Preparation of soft polyurethane foam
JPH11255857A (en) * 1998-03-10 1999-09-21 Nippon Polyurethane Ind Co Ltd Preparation of soft polyurethane foam
JP2001122940A (en) * 1999-10-29 2001-05-08 Nippon Polyurethane Ind Co Ltd Method for producing flexible polyurethane foam for automotive cushion
JP2004115819A (en) * 2004-01-20 2004-04-15 Nippon Polyurethane Ind Co Ltd Polyisocyanate for flexible polyurethane foam
JP2004115820A (en) * 2004-01-20 2004-04-15 Nippon Polyurethane Ind Co Ltd Polyisocyanate for flexible polyurethane foam
JP2005534770A (en) * 2002-08-06 2005-11-17 ゼネラル・エレクトリック・カンパニイ Method for producing polyurethane foam

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075412B2 (en) * 1990-09-28 2000-08-14 旭硝子株式会社 Method for producing polyurethane foam
JPH09202819A (en) * 1996-01-26 1997-08-05 Dainippon Ink & Chem Inc Modification of thermoplastic polyurethane resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10218968A (en) * 1997-02-07 1998-08-18 Nippon Polyurethane Ind Co Ltd Polyisocyanate for flexible polyurethane foam
JPH11255858A (en) * 1998-03-10 1999-09-21 Nippon Polyurethane Ind Co Ltd Preparation of soft polyurethane foam
JPH11255857A (en) * 1998-03-10 1999-09-21 Nippon Polyurethane Ind Co Ltd Preparation of soft polyurethane foam
JP2001122940A (en) * 1999-10-29 2001-05-08 Nippon Polyurethane Ind Co Ltd Method for producing flexible polyurethane foam for automotive cushion
JP2005534770A (en) * 2002-08-06 2005-11-17 ゼネラル・エレクトリック・カンパニイ Method for producing polyurethane foam
JP2004115819A (en) * 2004-01-20 2004-04-15 Nippon Polyurethane Ind Co Ltd Polyisocyanate for flexible polyurethane foam
JP2004115820A (en) * 2004-01-20 2004-04-15 Nippon Polyurethane Ind Co Ltd Polyisocyanate for flexible polyurethane foam

Also Published As

Publication number Publication date
JP2009191223A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
US5670601A (en) Polyurethane elastomers having improved green strength and demold time and polyoxyalkylene polyols suitable for their preparation
RU2435795C2 (en) Method of producing viscoelastic polyurethane plasticised foam plastic with open cells
WO2003054047A1 (en) Low-resilience flexible polyurethane foam and process for producing the same
HU227871B1 (en) Polyisocyanate compositions and a process for the production of low-density flexible foams with low humid aged compression sets from these polyisocyanate compositions
CN112912412A (en) Improved viscoelastic flexible foams containing hydroxyl terminated prepolymers
WO2016031380A1 (en) Soft urethane foam and seat pad using same
JP4275686B2 (en) Method for producing polyurethane foam
US20180362702A1 (en) Soft polyurethane foam and seat pad
WO2009104354A1 (en) Process for producing water-resistant flexible polyurethane foam
JP6010608B2 (en) Polyurethane foam for seat pads
WO2009098966A1 (en) Low-resilience flexible polyurethane foam
JP3612698B2 (en) Method for producing flexible polyurethane foam
JP2023029435A (en) Foamed polyurethane resin composition, foamed polyurethane elastomer, and midsole
JP2003147057A (en) Polycarbonate diol
CN115698114A (en) Viscoelastic elastomer polyurethane foam, method for the production thereof and use thereof
JP3587051B2 (en) Method for producing flexible polyurethane foam
JP6445640B2 (en) Foamed urethane rubber and foamed urethane rubber forming composition
JP6635711B2 (en) Flexible polyurethane foam with excellent compression set, vibration damping and compression creep
JP6543595B2 (en) Composition for urethane foam member excellent in compression creep property and urethane foam member
JP2000143855A (en) Polyurethane foam
JP3893619B2 (en) Polyisocyanate for flexible polyurethane foam
JP3893618B2 (en) Polyisocyanate for flexible polyurethane foam
JP6419501B2 (en) Method for producing flexible polyurethane slab foam
JP2017197773A (en) Soft polyurethane resin, and soft polyurethane resin member having excellent vibration resistance, damping property and impact absorption property using the same
JP7296807B2 (en) Polyurethane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712032

Country of ref document: EP

Kind code of ref document: A1