WO2009104257A1 - Antifouling coating film free from attachment of aquatic organisms, method for obtaining the antifouling coating film and utilization of the same - Google Patents

Antifouling coating film free from attachment of aquatic organisms, method for obtaining the antifouling coating film and utilization of the same Download PDF

Info

Publication number
WO2009104257A1
WO2009104257A1 PCT/JP2008/052878 JP2008052878W WO2009104257A1 WO 2009104257 A1 WO2009104257 A1 WO 2009104257A1 JP 2008052878 W JP2008052878 W JP 2008052878W WO 2009104257 A1 WO2009104257 A1 WO 2009104257A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifouling
group
mol
monomer
polymer hydrogel
Prior art date
Application number
PCT/JP2008/052878
Other languages
French (fr)
Japanese (ja)
Inventor
龍文 沖野
靖行 野方
克和 北野
薫 岩井
洋治 平沢
Original Assignee
国立大学法人北海道大学
財団法人電力中央研究所
国立大学法人奈良女子大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 財団法人電力中央研究所, 国立大学法人奈良女子大学 filed Critical 国立大学法人北海道大学
Priority to PCT/JP2008/052878 priority Critical patent/WO2009104257A1/en
Priority to JP2009554163A priority patent/JP5569677B2/en
Publication of WO2009104257A1 publication Critical patent/WO2009104257A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B59/00Hull protection specially adapted for vessels; Cleaning devices specially adapted for vessels
    • B63B59/04Preventing hull fouling
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance
    • C09D5/1668Vinyl-type polymers

Definitions

  • the present invention relates to an antifouling film to which aquatic organisms do not adhere, an antifouling paint for obtaining the antifouling film, a method for forming the antifouling film, and an antifouling object having the antifouling film on the surface.
  • Patent Document 1 JP-A-2005-34770
  • a polymer hydrogel is a water molecule that is fluidly incorporated into an antifouling coating. From the viewpoint of aquatic organisms, it creates a so-called “bad scaffolding” state so that aquatic organisms do not adhere. is there.
  • This method using a polymer hydrogel has few conventional drawbacks and is highly effective.
  • Patent Document 2 JP-A-2002-380907
  • Patent Document 3 JP-A-2002-380907
  • an object of the present invention is to provide an antifouling film in which an antifouling agent is monomerized and introduced into a matrix of a polymer hydrogel.
  • the present invention relates to an antifouling coating to which aquatic organisms composed of a polymer hydrogel do not adhere, wherein the polymer hydrogel has an antifouling monomer as one of its constituent components, and prevents aquatic organisms from adhering.
  • the object is achieved by providing a dirty coating.
  • the antifouling monomer has the following chemical formula (1) (Wherein R 1 is hydrogen or a methyl group, R 2 and R 3 each independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms, p represents 0 or 1, and X represents O represents oxygen or —NH—, and Y is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, and is an ether group, carbonyl group, ester group, amino group, amide group, imide group, sulfide A group, a sulfoxide group or a sulfone group may be interposed.) The thing represented by these is preferable.
  • Y is preferably a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may interpose an ether group.
  • Y is preferably a linear, branched or cyclic alkyl group having 5 to 12 carbon atoms.
  • the polymer hydrogel of the present invention is a vinyl polymer obtained from a vinyl monomer mixture containing 50 to 90 mol% of a hydrophilic monomer, 1 to 20 mol% of an antifouling monomer and 9 to 49 mol% of another copolymerizable monomer. May be obtained by three-dimensionally cross-linking.
  • the antifouling coating of the present invention may contain an antifouling agent in addition to the polymer hydrogel.
  • the present invention also provides a vinyl polymer obtained from a vinyl monomer mixture containing 50 to 90 mol% of a hydrophilic monomer, 1 to 20 mol% of an antifouling monomer and 9 to 49 mol% of another copolymerizable monomer,
  • a vinyl polymer obtained from a vinyl monomer mixture containing 50 to 90 mol% of a hydrophilic monomer, 1 to 20 mol% of an antifouling monomer and 9 to 49 mol% of another copolymerizable monomer.
  • an antifouling paint for forming an antifouling film containing a crosslinking agent, a catalyst and a solvent.
  • the present invention further provides a vinyl polymer obtained from a vinyl monomer mixture containing 50 to 90 mol% of a hydrophilic monomer, 1 to 20 mol% of an antifouling monomer and 9 to 49 mol% of another copolymerizable monomer,
  • a method for forming an antifouling film characterized in that an antifouling paint containing a crosslinking agent, a catalyst and a solvent is applied to form a film and then immersed in water.
  • the present invention is also an antifouling object composed of a base material and an antifouling film provided on the outermost surface of the base material, wherein the antifouling film is the specific antifouling film described above.
  • an antifouling object to which characteristic aquatic organisms do not adhere is also an antifouling object composed of a base material and an antifouling film provided on the outermost surface of the base material, wherein the antifouling film is the specific antifouling film described above.
  • the base material may be a ship, an underwater structure, a seawater introduction pipe, a fish net, or a submarine cable.
  • an antifouling monomer that is, a monomer capable of exhibiting antifouling properties is synthesized as one of the monomer components at the time of the synthesis of the polymer hydrogel, and the antifouling component is contained in the matrix of the obtained polymer hydrogel.
  • the antifouling film is introduced to keep the antifouling property, and the antifouling component is securely fixed in the antifouling film, so it does not elute into the water and there is an antifouling film As long as the antifouling property is maintained. Further, since the antifouling component is firmly held in the matrix, it does not elute in water, does not contaminate water, and hardly reaches the human body.
  • the antifouling coating of the present invention comprises a polymer hydrogel.
  • the polymer hydrogel of the present invention is considered to have a structure in which highly hydrophilic polymer molecules are three-dimensionally cross-linked and water molecules can be retained or trapped therein.
  • a highly hydrophilic polymer has a predetermined amount of hydrophilic groups in a general polymer skeleton (specifically, a vinyl polymer), and the vinyl polymer is three-dimensionally crosslinked by a crosslinking reaction.
  • an antifouling monomer is blended during the synthesis of the polymer, and an antifouling part is introduced into the matrix of the resulting polymer hydrogel.
  • the polymer hydrogel film is mainly formed from a vinyl polymer that can swell with water to form a hydrogel.
  • a vinyl polymer is preferable because it can be formed by polymerization of various vinyl monomers and various physical quantities (for example, molecular weight, hydrophilic group amount, etc.) can be easily controlled.
  • the vinyl polymer constituting the polymer hydrogel of the present invention comprises a hydrophilic vinyl monomer in an amount of 50 to 90 mol% (preferably 60 to 80 mol%), and an antifouling monomer 1 to 20 mol% (preferably 1 to 10 mol%). Mol%) and other copolymerizable monomers are formed from a vinyl monomer mixture containing 9 to 49 mol% (preferably 20 to 40 mol%). In addition, a vinyl monomer mixture is 100 mol% in total.
  • the hydrophilic vinyl monomer When the hydrophilic vinyl monomer is less than 50 mol%, the obtained vinyl polymer does not exhibit the performance as a hydrogel. On the other hand, when the amount of the hydrophilic vinyl monomer is more than 90 mol%, the water-resistant physical properties (physical properties such as Young's modulus, breaking strength, and elongation rate of the coating film swollen in seawater) of the obtained polymer hydrogel film are lowered. When the amount of the antifouling monomer is less than 1 mol%, the antifouling performance is not exhibited, and the effect of the antifouling coating of the present invention cannot be obtained. When there are more antifouling monomers than 20 mol%, the hydrophilic property of a coating film will fall and the swelling degree will be suppressed.
  • hydrophilic vinyl monomers include cationic vinyl monomers such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, allylamine, N-methylallylamine, dimethylaminoethyl (meth) acrylamide, diethylaminoethyl ( (Meth) acrylamide, dimethylaminopropyl (meth) acrylamide, N-hydroxy (meth) acrylamide and vinylpyridine, vinylimidazole, vinylpyrrolidone, etc .; anionic vinyl monomers such as (meth) acrylic acid and its salts, fumaric acid, maleic acid Citraconic acid, itaconic acid, crotonic acid, aconitic acid, 4-pentenoic acid, ⁇ -undecenoic acid and their salts, vinyl sulfonic acid, vinyl benzyl sulfonic acid, 2-acetic acid Rumido 2-methylpropanesulfonic
  • the polymer hydrogel of the present invention contains an antifouling monomer as an essential component of the monomer mixture in addition to the hydrophilic monomer.
  • the antifouling monomer may be various, but preferably the following chemical formula (1): (Wherein R 1 is hydrogen or a methyl group, R 2 and R 3 each independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms, p represents 0 or 1, and X represents O represents oxygen or —NH—, and Y is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, and is an ether group, carbonyl group, ester group, amino group, amide group, imide group, sulfide A group, a sulfoxide group or a sulfone group may be interposed.) Is mentioned.
  • R 2 and R 3 are preferably each independently hydrogen or an alkyl group having 1 to 5 carbon atoms, and more specifically, a methyl group, an ethyl group, or a propyl group. Butyl group, pentyl group and hexyl group.
  • Y is preferably a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may intervene with an ether group, and more preferably a linear, branched or cyclic group having 5 to 12 carbon atoms.
  • antifouling monomer examples include 4-isocyanocyclohexyl acrylate, 11-isocyano-11-methyldodecyl acrylate, N- (11-isocyano-11-methyl) dodecylacrylamide, N- (4-isocyanocyclohexyl) Acrylamide, 4-isocyano-4-methylcyclohexyl acrylate, N- (4-isocyano-4-methylcyclohexyl) acrylamide, 10-isocyano-10-methylundecyl acrylate, N- (10-isocyano-10-methyl) undecyl Acrylamide, 8-isocyano-8-methylnonyl acrylate, N- (8-isocyano-8-methyl) nonyl acrylamide, 6-isocyano-6-methylheptyl acrylate, N- (6-isocyano-6-methyl) heptyl Acrylamide, 4-isocyano-4-methyl-hexyl acrylate, N-(
  • More preferred antifouling monomers are 4-isocyanocyclohexyl acrylate, 11-isocyano-11-methyldodecyl acrylate, and N- (11-cyano-11-methyl) dodecyl acrylamide.
  • the hydrophilic vinyl monomer and the antifouling monomer may be copolymerized with other copolymerizable monomers that are copolymerized therewith.
  • other copolymerizable monomers include N-alkyl substituted (meth) acrylamides: eg (meth) acrylamide, (meth) N-acrylol-L-alanine, (meth) aminopropylacrylamide, (meth) N-amino Propylacrylamide, (meth) N-isopropylacrylamide, t-butyl (meth) acrylamide, dimethyl (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, (meth) isobutylacrylamide , (Meth) t-butylaminoethyl acrylate, (meth) diacetone acrylamide, etc .; or (meth) acrylic acid ester: for
  • the monomer copolymerized with the hydrophilic vinyl monomer for forming the polymer hydrogel is not limited to those described above, but a vinyl monomer for introducing a crosslinkable functional group into the obtained vinyl polymer (referred to as “crosslinkable monomer”). .) Is also necessary.
  • Examples of such monomers include two polymerizable vinyl monomers that introduce crosslinkable unsaturated groups into the resulting vinyl polymer, such as vinyl (meth) acrylate, allyl (meth) acrylate, and (meth) acrylic. Examples include, but are not limited to, 2-butenyl acid and 3-methyl-2-butenyl (meth) acrylate.
  • a polymerizable unsaturated group is introduced into the obtained vinyl polymer and is cured at room temperature due to the presence of a curable catalyst called a so-called dryer.
  • crosslinkable monomer is glycidyl (meth) acrylate: for example, glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, 4-hydroxybutyl (meth) acrylate glycidyl ether, etc. It is done.
  • These monomers are intended for crosslinking reaction with glycidyl groups.
  • a crosslinkable monomer having a glycidyl group a monomer having a carboxyl group as a group capable of reacting with a glycidyl group (that is, an epoxy group) must be used as a part of the hydrophilic monomer.
  • crosslinkable monomers include hydroxyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2- (2-hydroxyethoxy) ethoxy (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, N- (hydroxymethyl) acrylamide, N- (2-hydroxyethyl) acrylamide, and these monomers are intended for crosslinking reaction with hydroxyl groups.
  • hydroxyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2- (2-hydroxyethoxy) ethoxy (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, N- (hydroxymethyl) acrylamide, N- (2-hydroxyethyl) acrylamide, and these monomers are intended for crosslink
  • the other copolymerizable monomer may be a hydrophobic monomer or a water-repellent monomer in order to adjust the water swelling degree and water content of the film.
  • monomers include (meth) alkylalkoxy acrylates: for example, ethyl-3-ethoxy (meth) acrylate, (meth) 2-ethoxyethyl acrylate, 2-methoxyethyl (meth) acrylate, methoxyethylene glycol (meta ) Acrylate, (meth) ethylene glycol methyl ether acrylate, etc .; polyethylene glycol (meth) acrylate: For example, polyethylene glycol mono (meth) with a degree of polymerization (n) of ethylene glycol of about 1 to 10, preferably 1 to 3.
  • the polymer hydrogel is prepared by polymerizing at least one monomer among the vinyl monomers by a conventional method, using a solvent or a polymerization initiator (such as azoisobutyronitrile) as necessary. Can be done. However, the hydrophilic monomer and the antifouling monomer must be present in specific amounts as described above.
  • the vinyl polymer thus prepared (sometimes referred to as “polymer hydrogel prepolymer”) is applied to the surface of the object to be coated when one having two double bonds in the crosslinkable monomer constituting the polymer is used. And dried at room temperature. As a result, cross-linking occurs due to oxidative polymerization or the like of the incorporated vinyl group, and a cross-linked polymer resin coating film having a highly hydrophilic polymer matrix formed therein is obtained.
  • the polymer matrix contains the solvent used during preparation. In this case, a curing catalyst called a so-called dryer is necessary. Specific examples thereof include cobalt, lead, titanium, and nickel-based catalysts.
  • crosslinkable monomers when using a monomer having a glycidyl group, a monomer incorporating an amino group or a monomer having a hydroxyl group, a crosslinking agent (for example, an amine compound, an aldehyde, a polyisocyanate compound) is added at the time of coating. You may mix uniformly. In this case, a three-dimensional crosslinked structure is formed by the action of the crosslinking agent.
  • a crosslinking agent for example, an amine compound, an aldehyde, a polyisocyanate compound
  • amine compounds include alkylamines such as triethylamine, diethylamine, aromatic diamine compounds such as amine methylene bis (2-chloroaniline), trimethylene bis (4-aminobenzoate) 4-aminophenyl sulfone; aliphatic diamine compounds, Examples thereof include dimethylaminopropylamine and 1,2-diaminopropane.
  • aldehydes include glutaraldehyde, phthalaldehyde, and 1,3-bis- (4-formylphenoxy) propane.
  • the polyisocyanate compound includes known ones, but when water is contained as a solvent, measures to avoid reactivity with water are necessary.
  • the former (that is, a system in which a crosslinking agent is not added) is more preferable because good paint workability can be provided.
  • the polymer hydrogel may be mixed with a silicone resin (SiR).
  • SiR silicone resin
  • moisture reaction curable methylsiloxane rubber generator name “RTV silicone rubber”
  • RTV silicone rubber moisture reaction curable methylsiloxane rubber
  • the polymer matrix has very little solvent remaining in the three-dimensional bridge structure after drying, the three-dimensional bridge structure is covered with water or seawater when immersed in water or seawater.
  • the polymer hydrogel membrane of the present invention in which water or seawater is included in the three-dimensional crosslinked structure (that is, swollen with water or seawater) is obtained.
  • the antifouling coating film of the present invention may contain another antifouling agent in the three-dimensional crosslinked structure of the polymer hydrogel.
  • an antifouling monomer is used, an additional antifouling agent is not necessarily required, but the addition of the antifouling agent is not hindered.
  • antifouling agents organic and inorganic. In the present invention, either one or both may be used in combination.
  • the organic antifouling agent suitably used in the present invention may be a known one, and is selected from, for example, nitrile, pyridine, haloalkylthio, organic iodo, thiazole and benzimidazole antibacterial agents. Two or more types may be included. Specific examples of preferable antibacterial agents are listed below.
  • Nitrile antibacterial agents Nitrile antibacterial agents; haloisophthalonitrile compounds (for example, 2,4,5,6-tetrachloroisophthalonitrile, 5-chloro-2,4,6-trifluorophthalonitrile) and haloaryl nitrile compounds ,
  • (B) Pyridine antibacterial agents Halogenated pyridine derivatives (for example, 2-chloro-6-trichloromethylpyridine, 2-chloro-4-trichloromethyl-6-methoxypyridine, 2-chloro-4-trichloromethyl- 6- (2-furylmethoxy) pyridine, di (4-chlorophenyl) pyridinemethanol, sulfonylhalopyridine compounds (2,3,5,6-tetrachloro-4-methylsulfonylpyridine, 2,3,5-trichloro-4 -(n-propylsulfonyl) pyridine) and pyridinethiol-1-oxide compounds (eg, 2-pyridinethiol-1-oxide sodium, 2-pyridinethiol-1-oxide zinc, di (2-pyridinethiol-1-oxide) )),
  • pyridinethiol-1-oxide compounds eg, 2-pyridinethiol-1-oxide sodium, 2-pyridinethiol-1-oxid
  • haloalkylthio antibacterial agents haloalkylthiophthalimide compounds (for example, N-fluorodichloromethylthiophthalimide, N-trichloromethylthiophthalimide), haloalkylthiotetrahydrophthalimide compounds (for example, N-1,1,2,2-tetrachloroethylthio) Tetrahydrophthalimide, N-trichloromethylthiotetrahydrophthalimide), haloalkylthiosulfamide compounds (eg, N-trichlorothio-N- (phenyl) methylsulfamide, N-trichloromethylthio-N- (4-chlorophenyl) methylsulfami N- (1-fluoro-1,1,2,2-tetrachloroethylthio) -N- (phenyl) methylsulfamide, N- (1,1-difluoro-1,2,2-trichloroethy
  • (E) thiazole antibacterial agents ; isothiazolin-3-one compounds (for example, 1,2-benzisothiazolin-3-one, 2- (n-octyl) -4-isothiazolin-3-one, 5-chloro-2- Methyl-4-isothiazolin-3-one, 2-methyl-4-isothiazolin-3-one, 4,5-dichloro-2-cyclohexyl-4-isothiazolin-3-one), benzthiazole compounds (for example, 2- ( 4-thiocyanomethylthio) -benzthiazole, 2-mercaptobenzthiazole sodium, 2-mercaptobenzthiazole zinc), and isothiazolin-3-one compounds, and
  • benzimidazole antibacterial agents benzimidazole carbamate compounds (for example, methyl 1-H-2-benzimidazole carbamate, methyl butylcarbamoyl-2-benzimidazole carbamate, 6-benzoyl-1H-2-benzimidazole) Methyl carbamate), sulfur-containing benzimidazole compounds (eg, 1H-2-thiocyanomethylthiobenzimidazole, 1-dimethylaminosulfonyl-2-cyano-3-bromo-6-trifluoromethylbenzimidazole), cyclic benzimidazole Compound derivatives (eg, 2- (4-thiazolyl) -1H-benzimidazole, 2- (4-thiazolyl) -1H-benzimidazole, 2- (2-chlorophenyl) -1H-benzimidazole, 2- (1- ( 3,5-dimethylpyrazolyl) -1H-benzimidazole, 2- (2-furyl)
  • the metal-containing antifouling agent examples include, for example, cuprous oxide, rhodan copper, copper naphthenate, copper stearate, zinc oxide, titanium oxide, iron oxide, Examples include zinc bis- (dimethyldithiocarbamate), ethylene-bis- (dithiocarbamate) zinc, ethylene-bis- (dithiocarbamate) manganese, and ethylene-bis- (dithiocarbamate) copper. The most commonly used is cuprous oxide.
  • a part of the antifouling agent may be ionically bonded in the three-dimensional cross-linked structure of the polymer hydrogel membrane of the present invention.
  • the polymer hydrogel film of the present invention may further contain various additives such as a solvent, a plasticizer, a color pigment, an extender pigment, and an elution aid.
  • the solvent preferably used in the present invention may be water or an organic water-soluble solvent.
  • solvents include alcohols such as methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol and propylene glycol; ketones such as acetone and methyl ethyl ketone; tetrahydrofuran, 1,4-dioxane, diethyl ether and ethylene glycol diethyl ether And ethers such as dimethylformamide, dimethyl sulfoxide and N-methylpyrrolidone are preferably used.
  • Plasticizers include phthalic acids such as dioctyl phthalate, dimethyl phthalate and dicyclohexyl phthalate, aliphatic dibasic acid esters such as diisobutyl adipate and dibutyl sebacate, glycol esters such as diethylene glycol dibenzoate and pentaerythritol alkyl ester, Examples thereof include phosphate esters such as tricresyl phosphate and trichloroethyl phosphate, and epoxy systems such as epoxidized soybean oil and octyl epoxy stearate.
  • phthalic acids such as dioctyl phthalate, dimethyl phthalate and dicyclohexyl phthalate
  • aliphatic dibasic acid esters such as diisobutyl adipate and dibutyl sebacate
  • glycol esters such as diethylene glycol dibenzoate and pentaerythritol alkyl ester
  • titanium oxide, zircon oxide, carbon black, bengara, phthalocyanine green, quinacridone, emerald green, and phthalocyanine blue can be used.
  • the extender pigments include talc, clay, silica white, alumina white, titanium white, bentonite, barite, precipitated barium sulfate, and the like.
  • ⁇ ⁇ Paraffin can be used as an elution aid.
  • the present invention also provides an object to which the polymer hydrogel film of the present invention is applied as a second embodiment.
  • an object to which the polymer hydrogel membrane of the present invention is applied is an object that comes into contact with water or seawater, and its function, performance, or operability, particularly when aquatic organisms adhere to its surface. It can be greatly influenced by such.
  • Such objects specifically include ships (especially ship bottoms), seawater introduction pipes, for example, bay facilities, offshore excavation facilities, bridges, pipelines, offshore structures such as submarine bases, and fishnets.
  • Antifouling paint Another aspect of the present invention is an antifouling paint containing a hydrophilic vinyl polymer as a main component and containing a solvent and an additive. If necessary, an antifouling agent or a crosslinking agent may be added to the antifouling paint.
  • the antifouling paint of the present invention is used to form the polymer hydrogel film of the present invention.
  • the hydrophilic vinyl polymer as the main component of the antifouling paint of the present invention may be blended in an amount of 1 to 50% by weight, preferably 5 to 35% by weight, based on the total weight of the antifouling paint.
  • an additional antifouling agent is added in an amount of 0 to 40% by weight, preferably 2% with respect to the total weight of the antifouling coating composition.
  • an amount of ⁇ 30% by weight and the total amount of solvent and various additives is 35 to 99% by weight relative to the total weight of the antifouling coating composition, preferably 45 to 90% by weight relative to the total weight of the antifouling coating composition % May be included.
  • the antifouling agent When blending the antifouling agent, the solvent and various additives, they are added to the polymer resin and mixed using a mixer such as a ball mill, roll mill, sand grind mill, etc. A dirty paint composition is obtained.
  • the antifouling paint composition of the present invention may be appropriately diluted after preparation with a water-soluble solvent up to an appropriate use viscosity for application.
  • the antifouling paint of the present invention is applied to the surface of a ship, which is an object to be coated, and then dried at room temperature and crosslinked to form a crosslinked polymer resin coating film.
  • the obtained crosslinked polymer resin coating film contains a very small amount of the solvent used during preparation or preparation of the coating composition in the three-dimensional crosslinked structure inside.
  • the crosslinked polymer resin coating film is immersed in water or sea water (for example, for 0.5 to 7 days) (with the object coated with this film). High polymer resin coating.
  • the polymer hydrogel membrane of the present invention in which water or seawater is included in the three-dimensional crosslinked structure (that is, swollen with water or seawater) is obtained.
  • the polymer hydrogel membrane of the present invention is unlikely to become a foothold for attachment of aquatic organisms (also referred to as “poor scaffold” for aquatic organisms), and as a result, aquatic organisms are difficult to attach.
  • the antifouling monomer is contained in the matrix of the polymer hydrogel film, the polymer hydrogel alone exhibits sufficient antifouling performance without adding an additional antifouling agent. And attachment of aquatic organisms can be more effectively prevented.
  • the antifouling monomer is a matrix of the polymer hydrogel
  • the antifouling agent is not eluted into the water, and the antifouling performance can be continued as long as the antifouling coating exists. Contamination due to elution of antifouling agent into water does not occur. Of course, this does not prevent the addition of a separate antifouling agent to the polymer hydrogel.
  • the performance improves and at the same time the sustainability may increase.
  • the polymer hydrogel film of the present invention is also poor in hydrolyzability, so that the film is difficult to collapse. If antifouling agents are optionally included, they are retained within the three-dimensional cross-linked structure within the membrane and are optionally ionically fixed and cannot be released into water unless the membrane is disrupted. . Therefore, the polymer hydrogel membrane of the present invention not only extends the useful life of the membrane itself but also prevents water contamination.
  • the polymer hydrogel film of the present invention can be used for a long period of time, for example, for at least 2 years, particularly for at least 3 years. It is possible to effectively prevent the attachment of marine organisms.
  • trans-acetic acid-4-formaminocyclohexyl ester (2.32 g, 12.6 mmol) was dissolved in pyridine (10 mL), paratoluenesulfonyl chloride (2.87 g, 15.1 mmol) was added, and the mixture was stirred at room temperature for 18 hours. .
  • To the reaction solution was added saturated brine (50 mL), and the mixture was extracted with ethyl acetate (200 mL). The organic layer was washed with 1M hydrochloric acid aqueous solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over anhydrous magnesium sulfate.
  • Trans-acetic acid 4-isocyanocyclohexyl ester (8.15 g, 48.7 mmol) was dissolved in methanol (100 mL), potassium carbonate (10.57 g, 76.4 mmol) was added, and the mixture was stirred at room temperature for 12 hours. The reaction mixture was filtered under reduced pressure, concentrated, and ethyl acetate (200 mL) was added. The organic phase was washed with water and saturated brine, and then dried over sodium sulfate.
  • the obtained 11-bromoundecanoic acid methyl ester (79.93 g, 286 mmol) was added dropwise to a stirred 3M-diethyl ether solution of methylmagnesium bromide (200 mL, 600 mmol) over 2 hours under ice cooling. After further stirring for 12 hours, an aqueous hydrochloric acid solution (200 mL) was added to the reaction mixture, and the mixture was stirred for 5 minutes, and then extracted with ethyl acetate (400 mL). The organic phase was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated aqueous carbonate, and then dried over sodium sulfate. After filtration, the solvent was distilled off to obtain 12-bromo-2-methyl-2-dodecanol (76 g, 272 mmol) in a yield of 95%.
  • the obtained 12-bromo-2-methyl-2-dodecanol (15.06 g, 53.9 mmol) was dissolved in methylene chloride (15 mL), TMSCN (8 mL, 60.0 mmol) was added, and methanesulfonic acid ( 4.5 mL, 69.3 mmol) was added, and the mixture was stirred at room temperature for 2 hours. Then, methanesulfonic acid (5 mL, 77.0 mmol) was further added, and the mixture was further stirred for 1 hour.
  • Production Example 3 Production of Antifouling Monomer (N- (11-Isocyano-11methyldodecyl) -acrylamide) 12-Bromo-2-methyl-2-dodecanol obtained in the same manner as in the synthesis of Production Example 2 ( 73.78 g, 264 mmol) was dissolved in DMF (200 mL), potassium phthalimide (59.05 g, 319 mmol) was added, and the mixture was heated to reflux for 6 hours. The reaction mixture was filtered, and further washed with ethyl acetate (400 mL). The organic phase was washed with 5% aqueous potassium hydroxide solution and saturated brine, and then dried over sodium sulfate.
  • Production Example 9 Production of polymer hydrogel prepolymers F-1 and F-2 (Production of F-1) Acrylic monomers (22.38 g of acrylic acid, 22.02 g of t-butyl methacrylate, 24.21 g of acrylamide, 11.89 g of glycidyl methacrylate, Examples Antifouling monomer C (11-isocyano-11-methyldodecyl acrylate) 8.65 g prepared in 2 and 0.304 g of isobutyronitrile as an initiator, 52.81 g of 2-propanol, 53.4 g of methanol and 26.79 g of water as a stirrer In a 500 ml glass reaction vessel equipped with a condenser and a thermometer, the mixture was heated at 60 ° C. for 73 minutes with stirring under nitrogen gas to obtain 222 g of a polymer hydrogel prepolymer F-1.
  • Acrylic monomers 22.38 g of acrylic acid, 22.02 g of t-
  • Example 1 Preparation of polymer hydrogel membrane and evaluation of immersion in seawater
  • Example 1 Preparation of polymer hydrogel membrane A and evaluation of immersion in seawater Transfer 20 g of polymer hydrogel prepolymer A to a metal stirring vessel, add a cobalt-based reaction catalyst, and rotate about 2000 times. (Rpm) and mixed for 5 minutes.
  • the obtained coating liquid was applied to a test piece made of vinyl chloride with a brush and dried overnight at room temperature to obtain a polymer hydrogel film A.
  • the obtained polymer hydrogel film A coated plate was immersed in actual seawater for about 1 month, no adhesion of aquatic organisms was observed.
  • Example 2 Preparation of polymer hydrogel membrane B and evaluation of immersion in seawater
  • Polymer hydrogel prepolymer B (20 g) was transferred to a metal stirring vessel, an amine-based reaction catalyst was added, and the mixture was mixed at about 2000 rpm (rpm) for 5 minutes.
  • the obtained coating liquid was applied to a vinyl chloride test piece with a brush and dried overnight at room temperature.
  • the obtained polymer hydrogel membrane B-coated plate was immersed in actual seawater for about 1 month, no adhesion of aquatic organisms was observed.
  • Example 3 Preparation of polymer hydrogel membrane C and evaluation of immersion in seawater
  • Polymer hydrogel prepolymer C 20 g, was transferred to a metal stirring vessel, an amine-based reaction catalyst was added, and the mixture was mixed at about 2000 rpm (rpm) for 5 minutes. .
  • the obtained coating liquid was applied to a vinyl chloride test piece with a brush and dried overnight at room temperature.
  • the obtained polymer hydrogel film-coated plate was immersed in actual seawater for about 1 month, no adhesion of aquatic organisms was observed.
  • Example 4 Preparation of polymer hydrogel membrane D and evaluation of immersion in seawater
  • Polymer hydrogel prepolymer D (20 g) was transferred to a metal stirring vessel, a cobalt-based reaction catalyst was added, and the mixture was mixed at about 2000 rpm (rpm) for 5 minutes. .
  • the obtained coating liquid was applied to a vinyl chloride test piece with a brush and dried overnight at room temperature.
  • the obtained polymer hydrogel membrane D-coated plate was immersed in actual seawater for about 1 month, no adhesion of aquatic organisms was observed.
  • Example 5 Preparation of polymer hydrogel membrane E and evaluation of immersion in seawater
  • Polymer hydrogel prepolymer E-1, 10 g, polymer hydrogel prepolymer E-2, 10 g were transferred to a metal stirring vessel, and amine-based and cobalt-based
  • the reaction catalyst was added and mixed for 5 minutes at about 2000 revolutions (rpm).
  • the obtained coating liquid was applied to a vinyl chloride test piece with a brush and dried overnight at room temperature.
  • the obtained polymer hydrogel-coated plate was immersed in actual seawater for about 1 month, no adhesion of aquatic organisms was observed.
  • Example 6 Preparation of polymer hydrogel membrane F and evaluation of immersion in seawater
  • Polymer hydrogel prepolymer F-1, 10 g, polymer hydrogel prepolymer F-2, 10 g were transferred to a metal stirring vessel, and amine-based and cobalt-based
  • the reaction catalyst was added and mixed for 5 minutes at about 2000 revolutions (rpm).
  • the obtained coating liquid was applied to a vinyl chloride test piece with a brush and dried overnight at room temperature.
  • the obtained polymer hydrogel-coated plate was immersed in the appropriate water for about 1 month, no adhesion of aquatic organisms was observed.
  • the antifouling coating of the present invention can be applied to any underwater structure and can suppress the adhesion of aquatic organisms for a long time.
  • the method for forming the antifouling coating, the antifouling paint used for forming the antifouling coating, and the antifouling object having the antifouling coating have the same applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Paints Or Removers (AREA)

Abstract

It is intended to provide an antifouling coating film wherein an antifouling agent, which is in the form of a monomer, is introduced into a high-molecule hydrogel matrix. Namely, an antifouling coating film that is made of a high-molecule hydrogel and free from the attachment of aquatic organisms, which is an antifouling coating film free from the attachment of aquatic organisms characterized in that the high-molecule hydrogel comprises an antifouling monomer as one of the constituents of the same.

Description

水棲生物が付着しない防汚被膜、防汚被膜を得るための手段およびその使用Antifouling film to which aquatic organisms do not adhere, means for obtaining antifouling film and use thereof
 本発明は水棲生物が付着しない防汚被膜、該防汚被膜を得るための防汚塗料およびその防汚被膜を形成する方法、更に該防汚被膜を表面に有する防汚物体に関する。 The present invention relates to an antifouling film to which aquatic organisms do not adhere, an antifouling paint for obtaining the antifouling film, a method for forming the antifouling film, and an antifouling object having the antifouling film on the surface.
 海や湖などに存在する人工物には、種々の水棲生物が付着する。この水棲生物の付着は、様々な不具合を引き起こす。例えば、船舶の場合、水に接している部分に貝類や海藻類などが付着して、水との抵抗を増大し、船の走行を著しく妨げる事態を引き起こす。また、火力発電所などの海水を利用する場所では、海水を導入する海水導入管が海中に出ているが、ここに貝類、ヒドロ虫などの腔腸動物、多毛類、海藻類、軟体動物などの海棲生物が付着すると海水の取水量に大きく変動が生じ、時には取水できない事態をも引き起こすことがある。また、洋上構造物では、水棲生物の付着により美観を害するだけでなく、構造物自体の劣化を招くこともある。 人工 Various aquatic organisms adhere to artifacts that exist in the sea and lakes. The attachment of aquatic organisms causes various problems. For example, in the case of a ship, shells, seaweeds, and the like adhere to a portion that is in contact with water, thereby increasing the resistance to water and causing a situation that significantly impedes the traveling of the ship. Also, in places where seawater is used such as thermal power plants, seawater introduction pipes that introduce seawater are found in the sea, where shellfish, hydrozoa and other coelenterates, polychaetes, seaweeds, mollusks, etc. If the marine organisms adhere, there will be a large fluctuation in the amount of water taken in the seawater, and sometimes it may not be possible to take in the water. In addition, the offshore structure not only harms aesthetics due to the attachment of aquatic organisms, but may also cause deterioration of the structure itself.
 従って、そのような水棲生物が人工物に付着することを防止する技術が多数提案されてきている。例えば、セルフポリッシング性を有する被膜を用いて、水棲生物が付着しても自ら分解して剥がれ落ちるもの、あるいは水棲生物に対して忌避効果を有する化合物を用いる方法等が一般的である。 Therefore, many techniques for preventing such aquatic organisms from adhering to artifacts have been proposed. For example, it is common to use a film having a self-polishing property and using a compound that decomposes and peels off itself even if aquatic organisms adhere thereto, or a compound having a repellent effect on aquatic organisms.
 しかし、これら従来の方法は、効果持続期間が短かったり、海洋汚染の可能性があったり、製造コストが高い等の問題があった。このような状況下において、本発明者は、特開2005―34770号公報(特許文献1)において、高分子ヒドロゲルを用いた防汚被膜を提案した。高分子ヒドロゲルは、防汚被膜内に水分子を流動的に取り込んだものであって、水棲生物からみると、いわゆる「足場が悪い」状態を作り出して、水棲生物が付着しないようにしたものである。この高分子ヒドロゲルを用いる方法は、従来の欠点が少なく、有効性が高いものであった。 However, these conventional methods have problems such as short effect duration, possibility of marine pollution, and high production cost. Under such circumstances, the present inventor proposed an antifouling coating using a polymer hydrogel in JP-A-2005-34770 (Patent Document 1). A polymer hydrogel is a water molecule that is fluidly incorporated into an antifouling coating. From the viewpoint of aquatic organisms, it creates a so-called “bad scaffolding” state so that aquatic organisms do not adhere. is there. This method using a polymer hydrogel has few conventional drawbacks and is highly effective.
 一方、WO2006/035891号公報(特許文献2)および特開2002-380907号公報(特許文献3)には、魚介類または人体にも安全性が高くかつ比較的容易に化学合成可能な防汚剤が提案されている。これらの防汚剤は、防汚剤の性能としては有効性があるものの、やはり海洋汚染の問題は避けて通ることができない。 On the other hand, WO2006 / 035891 (Patent Document 2) and JP-A-2002-380907 (Patent Document 3) describe antifouling agents that are highly safe for fish and shellfish and that can be chemically synthesized relatively easily. Has been proposed. Although these antifouling agents are effective as antifouling agents, they still cannot avoid the problem of marine pollution.
特開2005―34770号公報JP 2005-34770 A WO2006/035891号公報WO2006 / 035891 特開2002-380907号公報JP 2002-380907 A
 本発明は、上記の現状に鑑み、防汚剤をモノマー化して高分子ヒドロゲルのマトリックス内に導入した防汚被膜を提供することを目的とする。 In view of the above situation, an object of the present invention is to provide an antifouling film in which an antifouling agent is monomerized and introduced into a matrix of a polymer hydrogel.
 本発明は、高分子ヒドロゲルから構成される水棲生物が付着しない防汚被膜であって、該高分子ヒドロゲルが防汚性モノマーを構成成分の1つとすることを特徴とする水棲生物が付着しない防汚被膜を提供するものであり、これにより上記目的が達成される。 The present invention relates to an antifouling coating to which aquatic organisms composed of a polymer hydrogel do not adhere, wherein the polymer hydrogel has an antifouling monomer as one of its constituent components, and prevents aquatic organisms from adhering. The object is achieved by providing a dirty coating.
 上記防汚性モノマーは以下の化学式(1)
Figure JPOXMLDOC01-appb-C000002
 (式中、Rは水素またはメチル基であり、RおよびRは、それぞれ独立して、水素または炭素数1~10を有するアルキル基を示し、pは0または1を示し、Xは酸素または-NH-を示し、Yは炭素数1~30を有する直鎖、分岐鎖または環状のアルキル基であって、エーテル基、カルボニル基、エステル基、アミノ基、アミド基、イミド基、スルフィド基、スルホキシド基、スルホン基を介在してもよい。)
で表されるものが好ましい。
The antifouling monomer has the following chemical formula (1)
Figure JPOXMLDOC01-appb-C000002
(Wherein R 1 is hydrogen or a methyl group, R 2 and R 3 each independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms, p represents 0 or 1, and X represents O represents oxygen or —NH—, and Y is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, and is an ether group, carbonyl group, ester group, amino group, amide group, imide group, sulfide A group, a sulfoxide group or a sulfone group may be interposed.)
The thing represented by these is preferable.
 上記防汚性モノマーの化学式(1)中、Yはエーテル基を介在してもよい炭素数1~30を有する直鎖、分岐鎖または環状のアルキル基であるのが好ましい。 In the chemical formula (1) of the antifouling monomer, Y is preferably a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may interpose an ether group.
 上記式(1)中、Yは炭素数5~12を有する直鎖、分岐鎖または環状のアルキル基であるのが好ましい。 In the above formula (1), Y is preferably a linear, branched or cyclic alkyl group having 5 to 12 carbon atoms.
 本発明の高分子ヒドロゲルは親水性モノマーを50~90モル%、防汚性モノマーを1~20モル%およびその他の共重合性モノマーを9~49モル%含むビニルモノマー混合物から得られたビニルポリマーを3次元架橋したものであってもよい。 The polymer hydrogel of the present invention is a vinyl polymer obtained from a vinyl monomer mixture containing 50 to 90 mol% of a hydrophilic monomer, 1 to 20 mol% of an antifouling monomer and 9 to 49 mol% of another copolymerizable monomer. May be obtained by three-dimensionally cross-linking.
 本発明の防汚被膜は、高分子ヒドロゲルの他に防汚剤を含有してもよい。 The antifouling coating of the present invention may contain an antifouling agent in addition to the polymer hydrogel.
 本発明は、また、親水性モノマーを50~90モル%、防汚性モノマーを1~20モル%およびその他の共重合性モノマーを9~49モル%含むビニルモノマー混合物から得られたビニルポリマー、架橋剤、触媒および溶媒を含有する防汚被膜を形成するための防汚塗料を提供する。 The present invention also provides a vinyl polymer obtained from a vinyl monomer mixture containing 50 to 90 mol% of a hydrophilic monomer, 1 to 20 mol% of an antifouling monomer and 9 to 49 mol% of another copolymerizable monomer, Provided is an antifouling paint for forming an antifouling film containing a crosslinking agent, a catalyst and a solvent.
 本発明は、更に、親水性モノマーを50~90モル%、防汚性モノマーを1~20モル%およびその他の共重合性モノマーを9~49モル%含むビニルモノマー混合物から得られたビニルポリマー、架橋剤、触媒および溶媒を含有する防汚塗料を塗布して被膜を形成後、水中に浸漬することを特徴とする防汚被膜を形成する方法を提供する。 The present invention further provides a vinyl polymer obtained from a vinyl monomer mixture containing 50 to 90 mol% of a hydrophilic monomer, 1 to 20 mol% of an antifouling monomer and 9 to 49 mol% of another copolymerizable monomer, Provided is a method for forming an antifouling film characterized in that an antifouling paint containing a crosslinking agent, a catalyst and a solvent is applied to form a film and then immersed in water.
 本発明は、また、基材および該基材の表面最外層に設けられた防汚被膜から構成される防汚物体であって、その防汚被膜が上述の特定の防汚被膜であることを特徴とする水棲生物が付着しない防汚物体を提供する。 The present invention is also an antifouling object composed of a base material and an antifouling film provided on the outermost surface of the base material, wherein the antifouling film is the specific antifouling film described above. Provided is an antifouling object to which characteristic aquatic organisms do not adhere.
 基材は、船舶、水中構造物、海水導入管、魚網または海底ケーブルであってもよい。 The base material may be a ship, an underwater structure, a seawater introduction pipe, a fish net, or a submarine cable.
 本発明では、防汚性モノマー、即ち防汚性を発現しうるモノマーを高分子ヒドロゲルの合成時におけるモノマー成分の1つとして合成し、得られた高分子ヒドロゲルのマトリックス内に防汚性成分を導入して防汚被膜に防汚性を保持するようにしたものであり、防汚成分が防汚被膜中に確実に固定されているので水中に溶出することが無く、防汚被膜が存在する限り防汚性を持続する効果を有する。また、防汚成分がマトリックス内に強固に保持されているので、水中に溶出するようなことはなく、水を汚染することが無く、人体にその成分が到達することも殆んど無い。 In the present invention, an antifouling monomer, that is, a monomer capable of exhibiting antifouling properties is synthesized as one of the monomer components at the time of the synthesis of the polymer hydrogel, and the antifouling component is contained in the matrix of the obtained polymer hydrogel. The antifouling film is introduced to keep the antifouling property, and the antifouling component is securely fixed in the antifouling film, so it does not elute into the water and there is an antifouling film As long as the antifouling property is maintained. Further, since the antifouling component is firmly held in the matrix, it does not elute in water, does not contaminate water, and hardly reaches the human body.
 一般に、防汚剤をモノマー化して、高分子のマトリックス内に導入することは、防汚性(あるいは忌避性)が発現しないか、あるいはそれらの性能が大きく低下するものと考えられていた。それは、防汚性モノマーをその効果を十分に発現できるほどの多くの量で導入すると、高分子のマトリックスを膜性能が悪くなり、逆にその量が少なくなると、防汚性が十分に発現されないからである。しかし、本発明者等の今回の実験結果は、上記当業者の予測を覆すものであり、膜性能が損なわれずに、防汚性が確保できることが確認できた。 In general, it has been considered that when an antifouling agent is monomerized and introduced into a polymer matrix, the antifouling property (or repellency) does not appear or the performance of the antifouling agent is greatly reduced. If the antifouling monomer is introduced in such a large amount that the effect can be fully expressed, the membrane performance of the polymer matrix deteriorates. On the contrary, if the amount decreases, the antifouling property is not sufficiently expressed. Because. However, the present experimental results of the present inventors reverse the predictions of those skilled in the art, and it was confirmed that the antifouling property can be secured without impairing the membrane performance.
 高分子ヒドロゲル自体は、本発明者が既に提案した特許文献1の出願に明記されかつ効果が確認されているように、高分子ヒドロゲルマトリックス部分は、架橋していて強靱であるが、水分子がトラップされている部分が存在しており、水分子が流動することがあるので、水棲生物はいわゆる「足場が悪い」状態になって、付着することが激減する。 As the polymer hydrogel itself is clearly described in the application of Patent Document 1 already proposed by the present inventor and the effect is confirmed, the polymer hydrogel matrix portion is cross-linked and tough, Since trapped portions exist and water molecules may flow, aquatic organisms become so-called “poor scaffolding”, and adherence is drastically reduced.
 高分子ヒドロゲル膜
 本発明の防汚被膜は高分子ヒドロゲルから構成される。本発明の高分子ヒドロゲルは、親水性の高いポリマー分子が3次元的に架橋しており、しかもその内部に水分子が保持あるいはトラップされ得る構造を有すると考えられる。親水性の高いポリマーは、一般のポリマー骨格(具体的には、ビニルポリマー)に親水性基を所定量有するものであり、そのビニルポリマーを架橋反応により3次元架橋する。本発明では、このポリマー合成時に防汚性モノマーを配合して、得られる高分子ヒドロゲルのマトリックス中に防汚性部分を導入したものである。
Polymer hydrogel membrane The antifouling coating of the present invention comprises a polymer hydrogel. The polymer hydrogel of the present invention is considered to have a structure in which highly hydrophilic polymer molecules are three-dimensionally cross-linked and water molecules can be retained or trapped therein. A highly hydrophilic polymer has a predetermined amount of hydrophilic groups in a general polymer skeleton (specifically, a vinyl polymer), and the vinyl polymer is three-dimensionally crosslinked by a crosslinking reaction. In the present invention, an antifouling monomer is blended during the synthesis of the polymer, and an antifouling part is introduced into the matrix of the resulting polymer hydrogel.
(1)ビニルポリマー
 本発明において、高分子ヒドロゲル膜は、主に、水で膨潤してヒドロゲルとなり得るビニルポリマーから形成される。ビニルポリマーは、種々のビニルモノマーの重合により形成することができ、種々の物理量(例えば、分子量、親水性基量など)のコントロールが容易であるので、好適である。
(1) Vinyl Polymer In the present invention, the polymer hydrogel film is mainly formed from a vinyl polymer that can swell with water to form a hydrogel. A vinyl polymer is preferable because it can be formed by polymerization of various vinyl monomers and various physical quantities (for example, molecular weight, hydrophilic group amount, etc.) can be easily controlled.
 本発明の高分子ヒドロゲルを構成するビニルポリマーは、親水性ビニルモノマーを50~90モル%(好ましくは、60~80モル%)、防汚性モノマー1~20モル%(好ましくは、1~10モル%)およびその他の共重合性モノマーを9~49モル%(好ましくは、20~40モル%)含まれるビニルモノマー混合物から形成される。尚、ビニルモノマー混合物は、合計で100モル%である。 The vinyl polymer constituting the polymer hydrogel of the present invention comprises a hydrophilic vinyl monomer in an amount of 50 to 90 mol% (preferably 60 to 80 mol%), and an antifouling monomer 1 to 20 mol% (preferably 1 to 10 mol%). Mol%) and other copolymerizable monomers are formed from a vinyl monomer mixture containing 9 to 49 mol% (preferably 20 to 40 mol%). In addition, a vinyl monomer mixture is 100 mol% in total.
 親水性ビニルモノマーが50モル%より少ないと、得られたビニルポリマーがヒドロゲルとしての性能を発現しない。逆に、親水性ビニルモノマーが90モル%より多いと、得られた高分子ヒドロゲル膜の耐水物性(海水中で膨潤した塗膜のヤング率、破断強度、伸び率などの物性)が低くなる。防汚性モノマーが、1モル%より少ない場合は、防汚性能が発現されず、本発明の防汚被膜の効果が得られない。防汚性モノマーが、20モル%より多いと、塗膜の親水性が低下し、膨潤度が抑えられる。 When the hydrophilic vinyl monomer is less than 50 mol%, the obtained vinyl polymer does not exhibit the performance as a hydrogel. On the other hand, when the amount of the hydrophilic vinyl monomer is more than 90 mol%, the water-resistant physical properties (physical properties such as Young's modulus, breaking strength, and elongation rate of the coating film swollen in seawater) of the obtained polymer hydrogel film are lowered. When the amount of the antifouling monomer is less than 1 mol%, the antifouling performance is not exhibited, and the effect of the antifouling coating of the present invention cannot be obtained. When there are more antifouling monomers than 20 mol%, the hydrophilic property of a coating film will fall and the swelling degree will be suppressed.
 好適な親水性ビニルモノマーの例としては、カチオン性ビニルモノマー、例えばジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、アリルアミン、N-メチルアリルアミン、ジメチルアミノエチル(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、N-ヒドロキシ(メタ)アクリルアミドおよびビニルピリジン、ビニルイミダゾール、ビニルピロリドン等;アニオン性ビニルモノマー、例えば(メタ)アクリル酸およびその塩、フマル酸、マレイン酸、シトラコン酸、イタコン酸、クロトン酸、アコニット酸、4-ペンテン酸、ω―ウンデセン酸およびこれらの塩、ビニルスルホン酸、ビニルベンジルスルホン酸、2-アクリルミド-2-メチルプロパンスルホン酸、2-アクリロイルエタンスルホン酸、2-アクリロイルプロパンスルホン酸、2-メタクリロイルエタンスルホン酸およびこれらの塩、更には、リン酸基およびその塩;等があげられる。 Examples of suitable hydrophilic vinyl monomers include cationic vinyl monomers such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, allylamine, N-methylallylamine, dimethylaminoethyl (meth) acrylamide, diethylaminoethyl ( (Meth) acrylamide, dimethylaminopropyl (meth) acrylamide, N-hydroxy (meth) acrylamide and vinylpyridine, vinylimidazole, vinylpyrrolidone, etc .; anionic vinyl monomers such as (meth) acrylic acid and its salts, fumaric acid, maleic acid Citraconic acid, itaconic acid, crotonic acid, aconitic acid, 4-pentenoic acid, ω-undecenoic acid and their salts, vinyl sulfonic acid, vinyl benzyl sulfonic acid, 2-acetic acid Rumido 2-methylpropanesulfonic acid, 2-acryloyl ethanesulfonic acid, 2-acryloyl propane sulfonic acid, 2-methacryloyloxy ethane sulfonic acid and salts thereof, furthermore, phosphoric acid and salts thereof; and the like.
 本発明の高分子ヒドロゲルは、上記親水性モノマーの他に、防汚性モノマーをモノマー混合物の必須成分として含む。防汚性モノマーは、種々のものが挙げられるが、好ましくは以下の化学式(1):
Figure JPOXMLDOC01-appb-C000003
 (式中、Rは水素またはメチル基であり、RおよびRは、それぞれ独立して、水素または炭素数1~10を有するアルキル基を示し、pは0または1を示し、Xは酸素または-NH-を示し、Yは炭素数1~30を有する直鎖、分岐鎖または環状のアルキル基であって、エーテル基、カルボニル基、エステル基、アミノ基、アミド基、イミド基、スルフィド基、スルホキシド基、スルホン基を介在してもよい。)
が挙げられる。上記化学式(1)中、RおよびRは、好ましくは、それぞれ独立して、水素または炭素数1~5のアルキル基であって、より具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基である。また、Yは好ましくは、エーテル基を介在してもよい炭素数1~30の直鎖、分岐鎖または環状のアルキル基であり、より好ましくは炭素数5~12を有する直鎖、分岐鎖または環状のアルキル基であり、更に好ましくは炭素数6~11を有する直鎖、分岐鎖または環状のアルキル基である。
The polymer hydrogel of the present invention contains an antifouling monomer as an essential component of the monomer mixture in addition to the hydrophilic monomer. The antifouling monomer may be various, but preferably the following chemical formula (1):
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 is hydrogen or a methyl group, R 2 and R 3 each independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms, p represents 0 or 1, and X represents O represents oxygen or —NH—, and Y is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, and is an ether group, carbonyl group, ester group, amino group, amide group, imide group, sulfide A group, a sulfoxide group or a sulfone group may be interposed.)
Is mentioned. In the chemical formula (1), R 2 and R 3 are preferably each independently hydrogen or an alkyl group having 1 to 5 carbon atoms, and more specifically, a methyl group, an ethyl group, or a propyl group. Butyl group, pentyl group and hexyl group. Y is preferably a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may intervene with an ether group, and more preferably a linear, branched or cyclic group having 5 to 12 carbon atoms. A cyclic alkyl group, more preferably a linear, branched or cyclic alkyl group having 6 to 11 carbon atoms.
 防汚性モノマーの具体例としては、4-イソシアノシクロヘキシルアクリレート、11-イソシアノ-11-メチルドデシルアクリレート、N-(11-イソシアノ-11-メチル)ドデシルアクリルアミド、N-(4-イソシアノシクロヘキシル)アクルアミド、4-イソシアノ-4-メチルシクロヘキシルアクリレート、N-(4-イソシアノ-4-メチルシクロヘキシル)アクリルアミド、10-イソシアノ-10-メチルウンデシルアクリレート、N-(10-イソシアノ-10-メチル)ウンデシルアクリルアミド、8-イソシアノ-8-メチルノニルアクリレート、N-(8-イソシアノ-8-メチル)ノニルアクリルアミド、6-イソシアノ-6-メチルヘプチルアクリレート、N-(6-イソシアノ-6-メチル)ヘプチルアクリルアミド、4-イソシアノ-4-メチルヘキシルアクリレート、N-(4-イソシアノ-4-メチル)ヘキシルアクリルアミド等が挙げられる。より好ましい防汚性モノマーは、4-イソシアノシクロヘキシルアクリレート、11-イソシアノ-11-メチルドデシルアクリレート、N-(11-シアノ-11-メチル)ドデシルアクリルアミドである。 Specific examples of the antifouling monomer include 4-isocyanocyclohexyl acrylate, 11-isocyano-11-methyldodecyl acrylate, N- (11-isocyano-11-methyl) dodecylacrylamide, N- (4-isocyanocyclohexyl) Acrylamide, 4-isocyano-4-methylcyclohexyl acrylate, N- (4-isocyano-4-methylcyclohexyl) acrylamide, 10-isocyano-10-methylundecyl acrylate, N- (10-isocyano-10-methyl) undecyl Acrylamide, 8-isocyano-8-methylnonyl acrylate, N- (8-isocyano-8-methyl) nonyl acrylamide, 6-isocyano-6-methylheptyl acrylate, N- (6-isocyano-6-methyl) heptyl Acrylamide, 4-isocyano-4-methyl-hexyl acrylate, N-(4-isocyano-4-methyl) hexyl acrylamide. More preferred antifouling monomers are 4-isocyanocyclohexyl acrylate, 11-isocyano-11-methyldodecyl acrylate, and N- (11-cyano-11-methyl) dodecyl acrylamide.
 上記親水性ビニルモノマーと防汚性モノマーは、それらと共重合する他の共重合性モノマーと共重合してもよい。他の共重合性モノマーの例としては、N-アルキル置換(メタ)アクリルアミド:例えば、(メタ)アクリルアミド、(メタ)N-アクリロールーL-アラニン、(メタ)アミノプロピルアクリルアミド、(メタ)N-アミノプロピルアクリルアミド、(メタ)N-イソプロピルアクリルアミド、t-ブチル(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、(メタ)イソブチルアクリルアミド、(メタ)t-ブチルアミノエチルアクリレート、(メタ)ダイアセトンアクリルアミド等;あるいは(メタ)アクリル酸エステル:例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸i-オクチル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル;等があげられる。 The hydrophilic vinyl monomer and the antifouling monomer may be copolymerized with other copolymerizable monomers that are copolymerized therewith. Examples of other copolymerizable monomers include N-alkyl substituted (meth) acrylamides: eg (meth) acrylamide, (meth) N-acrylol-L-alanine, (meth) aminopropylacrylamide, (meth) N-amino Propylacrylamide, (meth) N-isopropylacrylamide, t-butyl (meth) acrylamide, dimethyl (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, (meth) isobutylacrylamide , (Meth) t-butylaminoethyl acrylate, (meth) diacetone acrylamide, etc .; or (meth) acrylic acid ester: for example, methyl (meth) acrylate, ethyl (meth) acrylate, i- (meth) acrylate Propyl, ( T) i-butyl acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, lauryl (meth) acrylate, i-octyl (meth) acrylate, stearyl (meth) acrylate, ( Hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, phenyl (meth) acrylate, cyclohexyl (meth) acrylate, dodecyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate; Etc.
 高分子ヒドロゲルを形成するための親水性ビニルモノマーと共重合するモノマーは、上述のものの他に、得られたビニルポリマーに架橋性官能基を導入するためのビニルモノマー(「架橋性モノマー」と呼ぶ。)も必要である。 The monomer copolymerized with the hydrophilic vinyl monomer for forming the polymer hydrogel is not limited to those described above, but a vinyl monomer for introducing a crosslinkable functional group into the obtained vinyl polymer (referred to as “crosslinkable monomer”). .) Is also necessary.
 そのようなモノマーの例としては、得られたビニルポリマーに架橋性不飽和基を導入する2つの重合性を有するビニルモノマー、例えばビニル(メタ)アクリレート、(メタ)アクリル酸アリル、(メタ)アクリル酸2-ブテニル、(メタ)アクリル酸3-メチル-2-ブテニル等があげられるが、この限りではない。このモノマーを用いた場合、得られたビニルポリマーには重合性の不飽和基が導入され、いわゆるドライヤーと呼ばれる硬化性触媒の存在により常温硬化する。 Examples of such monomers include two polymerizable vinyl monomers that introduce crosslinkable unsaturated groups into the resulting vinyl polymer, such as vinyl (meth) acrylate, allyl (meth) acrylate, and (meth) acrylic. Examples include, but are not limited to, 2-butenyl acid and 3-methyl-2-butenyl (meth) acrylate. When this monomer is used, a polymerizable unsaturated group is introduced into the obtained vinyl polymer and is cured at room temperature due to the presence of a curable catalyst called a so-called dryer.
 架橋性モノマーの別の例としては、グリシジル(メタ)アクリレート:例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等、等が挙げられる。これらのモノマーはグリシジル基による架橋反応を目的とする。グリシジル基を有する架橋性モノマーを用いる場合は、グリシジル基(即ち、エポキシ基)と反応しうる基として、カルボキシル基を有するモノマーが親水性モノマーの一部として利用されなければならない。 Another example of the crosslinkable monomer is glycidyl (meth) acrylate: for example, glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, 4-hydroxybutyl (meth) acrylate glycidyl ether, etc. It is done. These monomers are intended for crosslinking reaction with glycidyl groups. When a crosslinkable monomer having a glycidyl group is used, a monomer having a carboxyl group as a group capable of reacting with a glycidyl group (that is, an epoxy group) must be used as a part of the hydrophilic monomer.
 架橋性モノマーの更に別の例としては、ヒドロキシル(メタ)アクリレート:例えば2-ヒドロキシエチル(メタ)アクリレート、2-(2-ヒドロキシエトキシ)エトキシ(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、N-(ヒドロキシメチル)アクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、これらのモノマーはヒドロキシル基による架橋反応を目的とする。 Still other examples of crosslinkable monomers include hydroxyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2- (2-hydroxyethoxy) ethoxy (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, N- (hydroxymethyl) acrylamide, N- (2-hydroxyethyl) acrylamide, and these monomers are intended for crosslinking reaction with hydroxyl groups.
 また、他の共重合性モノマーは被膜の水膨潤度や含水性を調節するために、疎水性のモノマーや、撥水性のモノマーであってよい。そのようなモノマーの例としては(メタ)アルキルアルコキシアクリレート:例えば、エチル-3-エトキシ(メタ)アクリレート、(メタ)2-エトキシエチルアクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、(メタ)エチレングリコールメチルエーテルアクリレート等;ポリエチレングリコール(メタ)アクリレート:例えば、エチレングリコールの重合度(n)が1~10程度、好ましくは重合度が1~3のポリエチレングリコールモノ(メタ)アクリレート;フッ素を含む(メタ)アルキルアクリレート:例えば、(メタ)-2,2,2-トリフルオロエチルアクリレート、(メタ)-2,2,3,3-テトラフルオロプロピルアクリレート、(メタ)-2,2,3,3,4,4,5,5-オクタフルオロペンチルアクリレート等;およびシリコーン含有アクリル系モノマー:例えば、ポリジメチルシロキサンのアルキル(メタ)アクリレート、(メタ)ポリジメチルシロキサンーグラフトーポリアクリレート等;あるいは、スチレン、α―メチルスチレン、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、ビニルトルエン、アクリロニトリル、不飽和二塩基酸ジステル類(例えば、クロトン酸エステル、マレイン酸ジエステル類、イタコン酸ジエステル等)、および酸/塩基の両者を分子内に含む単量体モノマー(例えば、(メタ)アクリルアミドプロピルスルホン酸、(メタ)アクリルアミドプロピルスルホン酸ナトリウム)などのノニオン性ビニルモノマーも使用され得る。 Further, the other copolymerizable monomer may be a hydrophobic monomer or a water-repellent monomer in order to adjust the water swelling degree and water content of the film. Examples of such monomers include (meth) alkylalkoxy acrylates: for example, ethyl-3-ethoxy (meth) acrylate, (meth) 2-ethoxyethyl acrylate, 2-methoxyethyl (meth) acrylate, methoxyethylene glycol (meta ) Acrylate, (meth) ethylene glycol methyl ether acrylate, etc .; polyethylene glycol (meth) acrylate: For example, polyethylene glycol mono (meth) with a degree of polymerization (n) of ethylene glycol of about 1 to 10, preferably 1 to 3. ) Acrylate; (meth) alkyl acrylate containing fluorine: for example, (meth) -2,2,2-trifluoroethyl acrylate, (meth) -2,2,3,3-tetrafluoropropyl acrylate, (meth)- 2,2,3,3,4,4,5,5-octafluoropentyl acrylate And silicone-containing acrylic monomers: for example, polydimethylsiloxane alkyl (meth) acrylate, (meth) polydimethylsiloxane-graft polyacrylate, etc .; or styrene, α-methylstyrene, vinyl acetate, vinyl propionate, benzoate Monomeric monomers containing both acid / base in the molecule (for example, crotonic acid ester, maleic acid diesters, itaconic acid diester, etc.) Nonionic vinyl monomers such as (meth) acrylamidopropyl sulfonic acid, sodium (meth) acrylamidopropyl sulfonate) can also be used.
 高分子ヒドロゲルは、前記ビニルモノマーのうち少なくとも1種のモノマーを常套の方法で、必要に応じて溶剤や重合開始剤(アゾイソブチロニトリル等)などを適宜使用して重合することにより、調製され得る。ただし、親水性モノマーと防汚性モノマーは前述のように特定量存在しなければならない。 The polymer hydrogel is prepared by polymerizing at least one monomer among the vinyl monomers by a conventional method, using a solvent or a polymerization initiator (such as azoisobutyronitrile) as necessary. Can be done. However, the hydrophilic monomer and the antifouling monomer must be present in specific amounts as described above.
 こうして調製されたビニルポリマー(「高分子ヒドロゲルプレポリマー」と呼ぶこともある。)は、ポリマーを構成する架橋性モノマーに2重結合を2つ有するものを用いた場合、被塗物表面へ塗布されて、常温乾燥される。これにより、組み込まれたビニル基の酸化重合等によって架橋が生じて、内部に親水性の高いポリマーマトリックスが形成された架橋高分子樹脂塗膜が得られる。このポリマーマトリックス内には、調製時に使用された溶剤が包含されている。この場合は、いわゆるドライヤーと呼ばれる硬化触媒が必要である。その例としては具体的にはコバルト、鉛、チタン、ニッケル系触媒などが挙げられる。 The vinyl polymer thus prepared (sometimes referred to as “polymer hydrogel prepolymer”) is applied to the surface of the object to be coated when one having two double bonds in the crosslinkable monomer constituting the polymer is used. And dried at room temperature. As a result, cross-linking occurs due to oxidative polymerization or the like of the incorporated vinyl group, and a cross-linked polymer resin coating film having a highly hydrophilic polymer matrix formed therein is obtained. The polymer matrix contains the solvent used during preparation. In this case, a curing catalyst called a so-called dryer is necessary. Specific examples thereof include cobalt, lead, titanium, and nickel-based catalysts.
 前記架橋性モノマーのうち、グリシジル基を有するモノマー、アミノ基を組み込んだモノマーまたはヒドロキシル基を有するモノマーを使用する場合、塗布時に架橋剤(例えば、アミン化合物、アルデヒド類、ポリイソシアネート化合物)を加えて均一に混合してよい。この場合は、架橋剤の作用によって三次元架橋構造が形成される。アミン化合物の例としてはアルキルアミン、例えばトリエチルアミン、ジエチルアミン、芳香族ジアミン化合物、例えばアミンメチレンビス(2-クロロアニリン)、トリメチレンビス(4-アミノベンゾエート)4-アミノフェニルスルホン;脂肪族ジアミン化合物、例えばジメチルアミノプロピルアミン、1,2-ジアミノプロパンが挙げられる。またアルデヒド類の例としてはグルタルアルデヒド、フタルアルデヒド、1,3-ビス-(4-フォミルフェノキシ)プロパンが挙げられる。ポリイソシアネート化合物は公知のものが挙げられるが、溶媒として水が含まれている時には、水との反応性を回避する措置が必要である。 Among the crosslinkable monomers, when using a monomer having a glycidyl group, a monomer incorporating an amino group or a monomer having a hydroxyl group, a crosslinking agent (for example, an amine compound, an aldehyde, a polyisocyanate compound) is added at the time of coating. You may mix uniformly. In this case, a three-dimensional crosslinked structure is formed by the action of the crosslinking agent. Examples of amine compounds include alkylamines such as triethylamine, diethylamine, aromatic diamine compounds such as amine methylene bis (2-chloroaniline), trimethylene bis (4-aminobenzoate) 4-aminophenyl sulfone; aliphatic diamine compounds, Examples thereof include dimethylaminopropylamine and 1,2-diaminopropane. Examples of aldehydes include glutaraldehyde, phthalaldehyde, and 1,3-bis- (4-formylphenoxy) propane. The polyisocyanate compound includes known ones, but when water is contained as a solvent, measures to avoid reactivity with water are necessary.
 良好な塗装作業性が提供され得ることから、前者(すなわち、架橋剤を添加しない系)がより好ましい。 The former (that is, a system in which a crosslinking agent is not added) is more preferable because good paint workability can be provided.
 本発明において、高分子ヒドロゲルは、シリコーン樹脂(SiR)系を混ぜて使用してもよい。例えば、湿気反応硬化性のメチルシロキサンゴム(一般名「RTVシリコーンゴム」)等、があげられる。 In the present invention, the polymer hydrogel may be mixed with a silicone resin (SiR). For example, moisture reaction curable methylsiloxane rubber (generic name “RTV silicone rubber”) and the like can be mentioned.
 ポリマーマトリックスは乾燥後、三次元袈橋構造内に残存している溶剤はごく僅かですので、水中または海水中に浸漬すると三次元袈橋構造内は水または海水で包含される。その結果、前記三次元架橋構造内に水または海水が包含された(すなわち、水または海水で膨潤された)本発明の高分子ヒドロゲル膜が得られる。 Since the polymer matrix has very little solvent remaining in the three-dimensional bridge structure after drying, the three-dimensional bridge structure is covered with water or seawater when immersed in water or seawater. As a result, the polymer hydrogel membrane of the present invention in which water or seawater is included in the three-dimensional crosslinked structure (that is, swollen with water or seawater) is obtained.
(2)防汚剤(抗菌剤)
 本発明の防汚塗膜は、前記高分子ヒドロゲルの三次元架橋構造内に別の防汚剤を含有していてよい。本発明では、防汚性モノマーを使用しているので、別添の防汚剤は必ずしも必要ではないが、防汚剤を添加することは妨げない。防汚剤には、有機系と無機系の2種類があるが、本発明ではどちらか一方又は両者を併用してもよい。
(2) Antifouling agent (antibacterial agent)
The antifouling coating film of the present invention may contain another antifouling agent in the three-dimensional crosslinked structure of the polymer hydrogel. In the present invention, since an antifouling monomer is used, an additional antifouling agent is not necessarily required, but the addition of the antifouling agent is not hindered. There are two types of antifouling agents, organic and inorganic. In the present invention, either one or both may be used in combination.
 本発明において好適に用いられる有機系防汚剤は、公知のものであってよく、例えば、ニトリル系、ピリジン系、ハロアルキルチオ系、有機ヨード系、チアゾール系およびベンズイミダゾール系抗菌剤から選択される2種以上を包含していてよい。好ましい抗菌剤の具体例を以下に列挙する。 The organic antifouling agent suitably used in the present invention may be a known one, and is selected from, for example, nitrile, pyridine, haloalkylthio, organic iodo, thiazole and benzimidazole antibacterial agents. Two or more types may be included. Specific examples of preferable antibacterial agents are listed below.
 (a)ニトリル系抗菌剤;ハロイソフタロニトリル化合物(例えば、2,4,5,6-テトラクロロイソフタロニトリル、5-クロロ-2,4,6-トリフロロフタロニトリル)およびハロアリールニトリル化合物、 (A) Nitrile antibacterial agents; haloisophthalonitrile compounds (for example, 2,4,5,6-tetrachloroisophthalonitrile, 5-chloro-2,4,6-trifluorophthalonitrile) and haloaryl nitrile compounds ,
 (b)ピリジン系抗菌剤:ハロゲン化されたピリジン誘導体(例えば、2-クロロ-6-トリクロロメチルピリジン、2-クロロ-4-トリクロロメチル-6-メトキシピリジン、2-クロロ-4-トリクロロメチル-6-(2-フリルメトキシ)ピリジン、ジ(4-クロロフェニル)ピリジンメタノール、スルホニルハロピリジン化合物(2,3,5,6-テトラクロロ-4-メチルスルホニルピリジン、2,3,5-トリクロロ-4-(n-プロピルスルホニル)ピリジン)およびピリジンチオール-1-オキシド化合物(例えば、2-ピリジンチオール-1-オキシドナトリウム、2-ピリジンチオール-1-オキシド亜鉛、ジ(2-ピリジンチオール-1-オキシド))、 (B) Pyridine antibacterial agents: Halogenated pyridine derivatives (for example, 2-chloro-6-trichloromethylpyridine, 2-chloro-4-trichloromethyl-6-methoxypyridine, 2-chloro-4-trichloromethyl- 6- (2-furylmethoxy) pyridine, di (4-chlorophenyl) pyridinemethanol, sulfonylhalopyridine compounds (2,3,5,6-tetrachloro-4-methylsulfonylpyridine, 2,3,5-trichloro-4 -(n-propylsulfonyl) pyridine) and pyridinethiol-1-oxide compounds (eg, 2-pyridinethiol-1-oxide sodium, 2-pyridinethiol-1-oxide zinc, di (2-pyridinethiol-1-oxide) )),
 (c)ハロアルキルチオ系抗菌剤;ハロアルキルチオフタルイミド化合物(例えば、N-フルオロジクロロメチルチオフタルイミド、N-トリクロロメチルチオフタルイミド)、ハロアルキルチオテトラヒドロフタルイミド化合物(例えば、N-1,1,2,2-テトラクロロエチルチオテトラヒドロフタルイミド、N-トリクロロメチルチオテトラヒドロフタルイミド)、ハロアルキルチオスルファミド化合物(例えば、N-トリクロロチオ-N-(フェニル)メチルスルファミド、N-トリクロロメチルチオ-N-(4-クロロフェニル)メチルスルファミド、N-(1-フルオロ-1,1,2,2-テトラクロロエチルチオ)-N-(フェニル)メチルスルファミド、N-(1,1-ジフルオロ-1,2,2-トリクロロエチルチオ)-N-(フェニル)メチルスルファミド)、およびハロアルキルチオスルフィミド化合物(例えば、N,N-ジメチル-N'-フェニル-N'-(フルオロジクロロチオ)スルフィミド、N,N-ジクロロフルオロメチルチオ-N'-フェニルスルフィミド、N,N-ジメチル-N'-(p-トリル)-N'-(フルオロジクロロメチルチオ)スルフィミド)、 (C) haloalkylthio antibacterial agents; haloalkylthiophthalimide compounds (for example, N-fluorodichloromethylthiophthalimide, N-trichloromethylthiophthalimide), haloalkylthiotetrahydrophthalimide compounds (for example, N-1,1,2,2-tetrachloroethylthio) Tetrahydrophthalimide, N-trichloromethylthiotetrahydrophthalimide), haloalkylthiosulfamide compounds (eg, N-trichlorothio-N- (phenyl) methylsulfamide, N-trichloromethylthio-N- (4-chlorophenyl) methylsulfami N- (1-fluoro-1,1,2,2-tetrachloroethylthio) -N- (phenyl) methylsulfamide, N- (1,1-difluoro-1,2,2-trichloroethylthio) -N- (phenyl) methylsulfamide), and haloalkylthiosulfimide compounds (eg, N, N-di Methyl-N'-phenyl-N '-(fluorodichlorothio) sulfimide, N, N-dichlorofluoromethylthio-N'-phenylsulfimide, N, N-dimethyl-N'-(p-tolyl) -N ' -(Fluorodichloromethylthio) sulfimide),
 (d)有機ヨード系抗菌剤;ヨードスルホン化合物、ヨウ化不飽和脂肪族化合物(例えば、3-ヨード-2-プロパルギルブチルカルバミン酸、4-クロロフェニル-3-ヨードプロパルギルホルマール、3-エトキシカルボニルオキシ-ブロモ-1,2-ジヨード-1-プロペン、2,3,3-トリヨードアリルアルコール)、ヨードスルフェニルベンゼン化合物(例えば、ジヨードメチル-p-トリスルホン、1-ジヨードメチルスルホニル-4-メチルベンゼン、1-ジヨードメチルスルホニル-4-メチルベンゼン、1-ジヨードメチルスルホニル-4-クロロベンゼン)、 (D) Organic iodine-based antibacterial agents; iodosulfone compounds, iodinated unsaturated aliphatic compounds (for example, 3-iodo-2-propargylbutylcarbamic acid, 4-chlorophenyl-3-iodopropargyl formal, 3-ethoxycarbonyloxy- Bromo-1,2-diiodo-1-propene, 2,3,3-triiodoallyl alcohol), iodosulfenylbenzene compounds (eg diiodomethyl-p-trisulfone, 1-diiodomethylsulfonyl-4-methylbenzene) 1-diiodomethylsulfonyl-4-methylbenzene, 1-diiodomethylsulfonyl-4-chlorobenzene),
 (e)チアゾール系抗菌剤;イソチアゾリン-3-オン化合物(例えば、1,2-ベンズイソチアゾリン-3-オン、2-(n-オクチル)-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン、2-メチル-4-イソチアゾリン-3-オン、4,5-ジクロロ-2-シクロヘキシル-4-イソチアゾリン-3-オン)、ベンズチアゾール化合物(例えば、2-(4-チオシアノメチルチオ)-ベンズチアゾール、2-メルカプトベンズチアゾールナトリウム、2-メルカプトベンズチアゾール亜鉛)、およびイソチアゾリン-3-オン化合物、および (E) thiazole antibacterial agents; isothiazolin-3-one compounds (for example, 1,2-benzisothiazolin-3-one, 2- (n-octyl) -4-isothiazolin-3-one, 5-chloro-2- Methyl-4-isothiazolin-3-one, 2-methyl-4-isothiazolin-3-one, 4,5-dichloro-2-cyclohexyl-4-isothiazolin-3-one), benzthiazole compounds (for example, 2- ( 4-thiocyanomethylthio) -benzthiazole, 2-mercaptobenzthiazole sodium, 2-mercaptobenzthiazole zinc), and isothiazolin-3-one compounds, and
 (f)ベンズイミダゾール系抗菌剤;ベンズイミダゾールカルバミン酸化合物(例えば、1-H-2-ベンズイミダゾールカルバミン酸メチル、ブチルカルバモイル-2-ベンズイミダゾールカルバミン酸メチル、6-ベンゾイル-1H-2-ベンズイミダゾールカルバミン酸メチル)、硫黄含有ベンズイミダゾール化合物(例えば、1H-2-チオシアノメチルチオベンズイミダゾール、1-ジメチルアミノスルホニル-2-シアノ-3-ブロモ-6-トリフルオロメチルベンズイミダゾール)、ベンズイミダゾールの環状化合物誘導体(例えば、2-(4-チアゾリル)-1H-ベンズイミダゾール、2-(4-チアゾリル)-1H-ベンズイミダゾール、2-(2-クロロフェニル)-1H-ベンズイミダゾール、2-(1-(3,5-ジメチルピラゾリル)-1H-ベンズイミダゾール、2-(2-フリル)-1H-ベンズイミダゾール)、ベンズイミダゾールカルバミン酸化合物、チアゾリルベンズイミダゾール化合物。 (F) benzimidazole antibacterial agents; benzimidazole carbamate compounds (for example, methyl 1-H-2-benzimidazole carbamate, methyl butylcarbamoyl-2-benzimidazole carbamate, 6-benzoyl-1H-2-benzimidazole) Methyl carbamate), sulfur-containing benzimidazole compounds (eg, 1H-2-thiocyanomethylthiobenzimidazole, 1-dimethylaminosulfonyl-2-cyano-3-bromo-6-trifluoromethylbenzimidazole), cyclic benzimidazole Compound derivatives (eg, 2- (4-thiazolyl) -1H-benzimidazole, 2- (4-thiazolyl) -1H-benzimidazole, 2- (2-chlorophenyl) -1H-benzimidazole, 2- (1- ( 3,5-dimethylpyrazolyl) -1H-benzimidazole, 2- (2-furyl) -1H-benzimidazole), benzimidazole Rubamin acid compound, thiazolyl benzimidazole compound.
 本発明において好適に使用される無機系の防汚剤、すなわち金属含有防汚剤としては、例えば、亜酸化銅、ロダン銅、ナフテン酸銅、ステアリン酸銅、酸化亜鉛、酸化チタン、酸化鉄、ビス-(ジメチルジチオカルバミン酸)亜鉛、エチレン-ビス-(ジチオカルバミン酸)亜鉛、エチレン-ビス-(ジチオカルバミン酸)マンガン、エチレン-ビス-(ジチオカルバミン酸)銅が挙げられる。最もよく用いられるのは亜酸化銅である。 Examples of the inorganic antifouling agent suitably used in the present invention, that is, the metal-containing antifouling agent include, for example, cuprous oxide, rhodan copper, copper naphthenate, copper stearate, zinc oxide, titanium oxide, iron oxide, Examples include zinc bis- (dimethyldithiocarbamate), ethylene-bis- (dithiocarbamate) zinc, ethylene-bis- (dithiocarbamate) manganese, and ethylene-bis- (dithiocarbamate) copper. The most commonly used is cuprous oxide.
 前記防汚剤の一部は、本発明の高分子ヒドロゲル膜の三次元架橋構造内にイオン的に結合されていてよい。 A part of the antifouling agent may be ionically bonded in the three-dimensional cross-linked structure of the polymer hydrogel membrane of the present invention.
(3)溶剤および各種添加物
 本発明の高分子ヒドロゲル膜は、溶剤や、可塑剤、着色顔料、体質顔料、溶出助剤などの各種添加剤を更に含んでいてよい。
(3) Solvent and various additives The polymer hydrogel film of the present invention may further contain various additives such as a solvent, a plasticizer, a color pigment, an extender pigment, and an elution aid.
 本発明で好適に使用される溶剤は、水および有機系の水溶性溶剤であってよい。溶剤の例としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコールなどのアルコール類;アセトンおよびメチルエチルケトンなどのケトン類;テトラヒドロフラン、1,4-ジオキサン、ジエチルエーテルおよびエチレングリコールジエチルエーテルなどのエーテル類;ジメチルホルムアミド、ジメチルスルホキシドやNーメチルピロリドン;などが好ましく使用される。 The solvent preferably used in the present invention may be water or an organic water-soluble solvent. Examples of solvents include alcohols such as methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol and propylene glycol; ketones such as acetone and methyl ethyl ketone; tetrahydrofuran, 1,4-dioxane, diethyl ether and ethylene glycol diethyl ether And ethers such as dimethylformamide, dimethyl sulfoxide and N-methylpyrrolidone are preferably used.
 可塑剤には、ジオクチルフタレート、ジメチルフタレート、ジシクロヘキシルフタレートなどのフタル酸系、アジピン酸ジイソブチル、セバシン酸ジブチル等の脂肪族二塩基酸エステル系、ジエチレングリコールジベンゾエート、ペンタエリスリトールアルキルエステル等のグリコールエステル系、トリクレジルリン酸、トリクロロエチルリン酸等のりん酸エステル系、エポキシ化大豆油、エポキシステアリン酸オクチルなどのエポキシ系、等が含まれる。 Plasticizers include phthalic acids such as dioctyl phthalate, dimethyl phthalate and dicyclohexyl phthalate, aliphatic dibasic acid esters such as diisobutyl adipate and dibutyl sebacate, glycol esters such as diethylene glycol dibenzoate and pentaerythritol alkyl ester, Examples thereof include phosphate esters such as tricresyl phosphate and trichloroethyl phosphate, and epoxy systems such as epoxidized soybean oil and octyl epoxy stearate.
 着色顔料としては、酸化チタン、酸化ジルコン、カーボンブラック、ベンガラ、フタロシアニングリーン、キナクリドン、エメラルドグリーン、フタロシアニンブルーが使用され得る。 As the color pigment, titanium oxide, zircon oxide, carbon black, bengara, phthalocyanine green, quinacridone, emerald green, and phthalocyanine blue can be used.
 体質顔料には、タルク、クレー、シリカホワイト、アルミナホワイト、チタンホワイト、ベントナイト、バライト、沈降性硫酸バリウム、等が含まれる。 The extender pigments include talc, clay, silica white, alumina white, titanium white, bentonite, barite, precipitated barium sulfate, and the like.
 溶出助剤としては、パラフイン等が使用され得る。 パ ラ Paraffin can be used as an elution aid.
 防汚対象
 本発明は、第二態様として、本発明の高分子ヒドロゲル膜が適用された物体も提供する。本発明の目的から、本発明の高分子ヒドロゲル膜が適用される物体は、水または海水と接触する物体であって、特にその表面に水棲生物が付着することにより、その機能または性能あるいは操作性などに多大な影響を受けうるものである。このような物体は、具体的には、船舶(特に船底)、海水導入管、例えば湾岸施設、海上堀削施設、橋梁、パイプライン、海底基地などの洋上構築物、および魚網を包含する。
Antifouling object The present invention also provides an object to which the polymer hydrogel film of the present invention is applied as a second embodiment. For the purpose of the present invention, an object to which the polymer hydrogel membrane of the present invention is applied is an object that comes into contact with water or seawater, and its function, performance, or operability, particularly when aquatic organisms adhere to its surface. It can be greatly influenced by such. Such objects specifically include ships (especially ship bottoms), seawater introduction pipes, for example, bay facilities, offshore excavation facilities, bridges, pipelines, offshore structures such as submarine bases, and fishnets.
 防汚塗料
 本発明の別の態様は、主成分として親水性ビニルポリマーを含有し、および溶剤および添加剤を含有する防汚塗料である。必要に応じて、防汚剤や架橋剤を防汚塗料に配合してもよい。本発明の防汚塗料は、本発明の高分子ヒドロゲル膜を形成するのに使用される。
Antifouling paint Another aspect of the present invention is an antifouling paint containing a hydrophilic vinyl polymer as a main component and containing a solvent and an additive. If necessary, an antifouling agent or a crosslinking agent may be added to the antifouling paint. The antifouling paint of the present invention is used to form the polymer hydrogel film of the present invention.
 本発明の防汚塗料の主成分である親水性ビニルポリマーは、防汚塗料全重量に対して1~50重量%、好ましくは5~35重量%で配合されていてよい。 The hydrophilic vinyl polymer as the main component of the antifouling paint of the present invention may be blended in an amount of 1 to 50% by weight, preferably 5 to 35% by weight, based on the total weight of the antifouling paint.
 本発明の防汚塗料組成物には、更に、別途添加する防汚剤が、防汚塗料組成物全重量に対して0~40重量%、好ましくは防汚塗料組成物全重量に対して2~30重量%の量で、および溶剤および各種添加剤が合計で、防汚塗料組成物全重量に対して35~99重量%、好ましくは防汚塗料組成物全重量に対して45~90重量%の量で配合されていてよい。 In the antifouling coating composition of the present invention, an additional antifouling agent is added in an amount of 0 to 40% by weight, preferably 2% with respect to the total weight of the antifouling coating composition. In an amount of ˜30% by weight, and the total amount of solvent and various additives is 35 to 99% by weight relative to the total weight of the antifouling coating composition, preferably 45 to 90% by weight relative to the total weight of the antifouling coating composition % May be included.
 前記防汚剤、溶剤および各種添加剤を配合する場合は、これらを前記高分子樹脂に添加して、ボールミル、ロールミル、サンドグラインドミル等の混合機を用いて混合することにより、本発明の防汚塗料組成物が得られる。 When blending the antifouling agent, the solvent and various additives, they are added to the polymer resin and mixed using a mixer such as a ball mill, roll mill, sand grind mill, etc. A dirty paint composition is obtained.
 本発明の防汚塗料組成物は、調製後、塗布に適当な使用粘度まで水溶性の溶剤を用いて適宜希釈されてよい。 The antifouling paint composition of the present invention may be appropriately diluted after preparation with a water-soluble solvent up to an appropriate use viscosity for application.
 本発明の防汚塗料は被塗物である船舶表面などに塗布した後、常温乾燥および架橋して、架橋高分子樹脂塗膜を形成する。得られた架橋高分子樹脂塗膜は、その内部の三次元架橋構造内に、調製時あるいは塗料組成物の調製時に使用された溶剤をごくわずかに包含している。 The antifouling paint of the present invention is applied to the surface of a ship, which is an object to be coated, and then dried at room temperature and crosslinked to form a crosslinked polymer resin coating film. The obtained crosslinked polymer resin coating film contains a very small amount of the solvent used during preparation or preparation of the coating composition in the three-dimensional crosslinked structure inside.
 次いで、前記架橋高分子樹脂塗膜を(この膜で被覆された被塗物ごと)水中または海水中に、例えば、0.5~7日間浸漬する。高分子樹脂塗膜は。その結果、三次元架橋構造内に水または海水が包含された(すなわち水または海水で膨潤された)本発明の高分子ヒドロゲル膜が得られる。 Next, the crosslinked polymer resin coating film is immersed in water or sea water (for example, for 0.5 to 7 days) (with the object coated with this film). High polymer resin coating. As a result, the polymer hydrogel membrane of the present invention in which water or seawater is included in the three-dimensional crosslinked structure (that is, swollen with water or seawater) is obtained.
 本発明の方法で形成される高分子ヒドロゲル膜内では、水または海水が自由に移動できる。そのため、本発明の高分子ヒドロゲル膜は、水棲生物の付着の足掛かりになり難く(水棲生物にとって「足場が悪い」ともいう)、結果として水棲生物が付着し難い。本発明によれば、高分子ヒドロゲル膜のマトリックス中に防汚性モノマーが含まれているので、高分子ヒドロゲルのみで、別途防汚剤を添加しなくても、十分の防汚性能を発揮することができ、水棲生物の付着が更に有効に防止され得る。防汚性モノマーが高分子ヒドロゲルのマトリックスとなっていることから、防汚剤の水中への溶出がおこらず、防汚性能が防汚被膜が存在する限り継続することが可能であると同時に、防汚剤の水中へ溶出による汚染が生じない。もちろん、別途防汚剤を高分子ヒドロゲルに添加することを妨げるものではない。場合によっては、防汚性モノマーを用いた高分子ヒドロゲルに、別途防汚剤を添加した方が、性能がよくなると同時に、持続性が増すことも起こりうる。 In the polymer hydrogel film formed by the method of the present invention, water or seawater can freely move. Therefore, the polymer hydrogel membrane of the present invention is unlikely to become a foothold for attachment of aquatic organisms (also referred to as “poor scaffold” for aquatic organisms), and as a result, aquatic organisms are difficult to attach. According to the present invention, since the antifouling monomer is contained in the matrix of the polymer hydrogel film, the polymer hydrogel alone exhibits sufficient antifouling performance without adding an additional antifouling agent. And attachment of aquatic organisms can be more effectively prevented. Since the antifouling monomer is a matrix of the polymer hydrogel, the antifouling agent is not eluted into the water, and the antifouling performance can be continued as long as the antifouling coating exists. Contamination due to elution of antifouling agent into water does not occur. Of course, this does not prevent the addition of a separate antifouling agent to the polymer hydrogel. In some cases, when a separate antifouling agent is added to the polymer hydrogel using the antifouling monomer, the performance improves and at the same time the sustainability may increase.
 本発明の高分子ヒドロゲル膜は、また、加水分解性が乏しいため、膜が崩壊し難い。任意に防汚剤などが含まれている場合、それらは膜内の三次元架橋構造内に保持され、場合によりイオン的に固定されており、膜が崩壊されない限り水中への放出が生じ得ない。従って、本発明の高分子ヒドロゲル膜は、膜自体の耐用期間が延長されるのみならず、水質汚染をも防止する。 The polymer hydrogel film of the present invention is also poor in hydrolyzability, so that the film is difficult to collapse. If antifouling agents are optionally included, they are retained within the three-dimensional cross-linked structure within the membrane and are optionally ionically fixed and cannot be released into water unless the membrane is disrupted. . Therefore, the polymer hydrogel membrane of the present invention not only extends the useful life of the membrane itself but also prevents water contamination.
 すなわち、本発明の高分子ヒドロゲル膜は、長期間例えば、少なくとも2年間、特に少なくとも3年間に亙って、これで被覆された被塗物表面への貝類、腔腸動物、管棲多毛類等の海棲生物の付着を有効に防止することができる。 That is, the polymer hydrogel film of the present invention can be used for a long period of time, for example, for at least 2 years, particularly for at least 3 years. It is possible to effectively prevent the attachment of marine organisms.
 以下に実施例をあげて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。部は重量部を示す。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples. Parts indicate parts by weight.
防汚性モノマーの製造
 製造例1 防汚性モノマー(4-イソシアノシクロヘキシルアクリレート)の製造
 trans-4-アミノシクロヘキサノール(5.0 g、43.4 mmol)をギ酸エチル(50 mL)に溶解し、パラトルエンスルホン酸一水和物(75 mg、0.43 mmol)を加え24時間加熱還流した。反応液を濃縮後、残留物をピリジン(10 mL)に溶解し、無水酢酸(10 mL)を加え、室温で18時間撹拌した。反応液に、飽和食塩水(50 mL)を加え、酢酸エチル(200 mL)で抽出した。有機層を3M-塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、残留物をヘキサン-酢酸エチルにより再結晶し、trans-酢酸-4-ホルムアミノシクロヘキシルエステル(3.92 g、21.2 mmol)を収率49%で得た。
Production of antifouling monomer Production Example 1 Production of antifouling monomer (4-isocyanocyclohexyl acrylate) trans-4-aminocyclohexanol (5.0 g, 43.4 mmol) was dissolved in ethyl formate (50 mL) Sulfonic acid monohydrate (75 mg, 0.43 mmol) was added and heated to reflux for 24 hours. The reaction mixture was concentrated, the residue was dissolved in pyridine (10 mL), acetic anhydride (10 mL) was added, and the mixture was stirred at room temperature for 18 hr. To the reaction solution was added saturated brine (50 mL), and the mixture was extracted with ethyl acetate (200 mL). The organic layer was washed with 3M-hydrochloric acid aqueous solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over anhydrous magnesium sulfate. After the solvent was distilled off, the residue was recrystallized from hexane-ethyl acetate to obtain trans-acetic acid-4-formaminocyclohexyl ester (3.92 g, 21.2 mmol) in a yield of 49%.
 得られたtrans-酢酸-4-ホルムアミノシクロヘキシルエステル(2.32 g、12.6 mmol)をピリジン(10 mL)に溶解し、塩化パラトルエンスルホニル(2.87 g、15.1 mmol)を加え、室温で18時間撹拌した。反応液に、飽和食塩水(50 mL)を加え、酢酸エチル(200 mL)で抽出した。有機層を1M-塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィー(Hexane:EtOAc = 3:1)により精製し、trans-酢酸-4-イソシアノシクロヘキシルエステル(260 mg、1.56 mmol)を収率12%で得た。 The obtained trans-acetic acid-4-formaminocyclohexyl ester (2.32 g, 12.6 mmol) was dissolved in pyridine (10 mL), paratoluenesulfonyl chloride (2.87 g, 15.1 mmol) was added, and the mixture was stirred at room temperature for 18 hours. . To the reaction solution was added saturated brine (50 mL), and the mixture was extracted with ethyl acetate (200 mL). The organic layer was washed with 1M hydrochloric acid aqueous solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over anhydrous magnesium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (Hexane: EtOAc = 3: 1) to obtain trans-acetic acid-4-isocyanocyclohexyl ester (260 mg, 1.56 mmol) in a yield of 12%. Obtained.
 trans-酢酸4-イソシアノシクロヘキシルエステル(8.15 g、48.7 mmol)をメタノール(100 mL)に溶解し、炭酸カリウム(10.57 g、76.4 mmol)を加え室温で12時間撹拌した。反応液を減圧下濾過した後、濃縮して、酢酸エチル(200 mL)を加えた。有機相を水、飽和食塩水で洗浄後、硫酸ナトリウムで乾燥した。溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィー(Hexane:EtOAc = 3:1)により精製し、trans-4-イソシアノシクロヘキサノール(5.86g、46.8 mmol)を収率96%で得た。 Trans-acetic acid 4-isocyanocyclohexyl ester (8.15 g, 48.7 mmol) was dissolved in methanol (100 mL), potassium carbonate (10.57 g, 76.4 mmol) was added, and the mixture was stirred at room temperature for 12 hours. The reaction mixture was filtered under reduced pressure, concentrated, and ethyl acetate (200 mL) was added. The organic phase was washed with water and saturated brine, and then dried over sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (Hexane: EtOAc = 3: 1) to obtain trans-4-isocyanocyclohexanol (5.86 g, 46.8 mmol) in a yield of 96%. .
 trans-4-イソシアノシクロヘキサノール(548 mg、4.38 mmol)を塩化メチレン(35 mL)に溶解し、トリエチルアミン(1.46 mL、10.5 mmol)を加え、氷冷下、アクリルクロライド(0.45 mL、5.57 mmol)、DMAP(50 mg、40.9 mmol)を加え、3時間撹拌した。反応液に飽和食塩水(100 mL)を加え、酢酸エチル(250 mL)で抽出した。有機相を1M-塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥した。溶媒を留去した後、残留物をシリカゲルカラムクロマトグラフィー (Hexane:EtOAc = 10:1)により精製し、4-イソシアノシクロヘキシルアクリレート(547 mg、3.1 mmol)を収率70%で得た。 Dissolve trans-4-isocyanocyclohexanol (548 mg, 4.38 mmol) in methylene chloride (35 mL), add triethylamine (1.46 mL, 10.5 ア ク リ ル mmol), and ice-cool acrylic chloride (0.45 mL, 5.57 mmol) , DMAP (50 mg, 40.9 mmol) was added and stirred for 3 hours. To the reaction solution was added saturated brine (100 mL), and the mixture was extracted with ethyl acetate (250 mL). The organic phase was washed with 1M-hydrochloric acid aqueous solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over sodium sulfate. After the solvent was distilled off, the residue was purified by silica gel column chromatography (Hexane: EtOAc = 10: 1) to give 4-isocyanocyclohexyl acrylate (547 mg, 3.1 mmol) in a yield of 70%.
 化学式は以下の通りである:
Figure JPOXMLDOC01-appb-C000004
The chemical formula is as follows:
Figure JPOXMLDOC01-appb-C000004
 H NMRと13C NMRは以下の通りである:
 1H NMR (600 MHz, CDCl3) δ: 6.40 (dd, J = 17.2 and 1.1 Hz, 1H), 6.10 (dd, J = 17.2 and 10.6 Hz, 1H), 5.84 (dd, J = 17.2 and 10.6 Hz, 1H), 4.99-4.91 (m, 1H), 3.76-3.68 (m, 1H), 2.10-2.00 (m, 4H), 1.82-1.73 (m, 2H), 1.69-1.61 (2H, m).
 13C NMR (150.8 MHz, CDCl3) δ: 165.4, 155.3 (t, J = 6.2 Hz), 130.8, 128.5, 69.0, 50.4 (t, J = 6.2 Hz), 28.4, 26.7.
1 H NMR and 13 C NMR are as follows:
1 H NMR (600 MHz, CDCl 3 ) δ: 6.40 (dd, J = 17.2 and 1.1 Hz, 1H), 6.10 (dd, J = 17.2 and 10.6 Hz, 1H), 5.84 (dd, J = 17.2 and 10.6 Hz , 1H), 4.99-4.91 (m, 1H), 3.76-3.68 (m, 1H), 2.10-2.00 (m, 4H), 1.82-1.73 (m, 2H), 1.69-1.61 (2H, m).
13 C NMR (150.8 MHz, CDCl 3 ) δ: 165.4, 155.3 (t, J = 6.2 Hz), 130.8, 128.5, 69.0, 50.4 (t, J = 6.2 Hz), 28.4, 26.7.
 製造例2 防汚性モノマー(11-イソシアノ-11-メチルドデシルアクリレート)の製造
 11-ブロモウンデカン酸(100.7 g、380 mmol)をメタノール(200 mL)に溶解し、硫酸(2 mL)を加え、18時間加熱還流した。反応終了後、溶媒を留去し、酢酸エチル(400 mL)を加えた。有機相を、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥した。ろ過後、溶媒を留去することによって、11-ブロモウンデカン酸メチルエステル(104 g、372 mmol) を収率98%で得た。
Production Example 2 Production of antifouling monomer (11-isocyano-11-methyldodecyl acrylate) 11-Bromoundecanoic acid (100.7 g, 380 mmol) was dissolved in methanol (200 mL), sulfuric acid (2 mL) was added, Heated to reflux for 18 hours. After completion of the reaction, the solvent was distilled off and ethyl acetate (400 mL) was added. The organic phase was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over sodium sulfate. After filtration, the solvent was distilled off to obtain 11-bromoundecanoic acid methyl ester (104 g, 372 mmol) in a yield of 98%.
 得られた11-ブロモウンデカン酸メチルエステル(79.93 g、286 mmol)を、氷冷下、撹拌したメチルマグネシウムブロマイドの3M-ジエチルエーテル溶液(200 mL、600 mmol)に2時間かけて滴下した。さらに12時間撹拌した後、反応液に塩酸水溶液(200 mL)を加え、5分間撹拌した後、酢酸エチル(400 mL)で抽出した。有機相を飽和炭酸水素ナトリウム水溶液、飽和炭酸水で洗浄した後、硫酸ナトリウムで乾燥した。ろ過後、溶媒を留去することによって、12-ブロモ-2-メチル-2-ドデカノール(76 g、272 mmol)を収率95%で得た。 The obtained 11-bromoundecanoic acid methyl ester (79.93 g, 286 mmol) was added dropwise to a stirred 3M-diethyl ether solution of methylmagnesium bromide (200 mL, 600 mmol) over 2 hours under ice cooling. After further stirring for 12 hours, an aqueous hydrochloric acid solution (200 mL) was added to the reaction mixture, and the mixture was stirred for 5 minutes, and then extracted with ethyl acetate (400 mL). The organic phase was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated aqueous carbonate, and then dried over sodium sulfate. After filtration, the solvent was distilled off to obtain 12-bromo-2-methyl-2-dodecanol (76 g, 272 mmol) in a yield of 95%.
 得られた12-ブロモ-2-メチル-2-ドデカノール(15.06 g、53.9 mmol)を塩化メチレン(15 mL)に溶解し、TMSCN(8 mL、60.0 mmol)を加え、氷冷下メタンスルホン酸(4.5 mL、69.3 mmol)を加え、室温で2時間撹拌した後、更にメタンスルホン酸(5 mL、77.0 mmol)を加えさらに1時間撹拌した。TLCで原料の消失を確認後、反応液にトリエチルアミン(21 mL、151 mmol)、塩化メチレン(35 mL)、ピリジン(5 mL、62.1 mmol)を加え、10分間撹拌した後、塩化パラトルエンスルホニル(11.82 g、62.0 mmol)を加え、さらに80分撹拌した。反応液に飽和食塩水(50 mL)を加え、5分間撹拌した後、酢酸エチル(300 mL)で抽出した。有機相を、3M-塩酸水溶液、飽和炭酸水素ナトリウム、飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥して、ろ過後、溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(Hexane:EtOAc = 10:0-10:1)により精製し、1-ブロモ-11-イソシアノ-11-メチルドデカン(13.2 g、45.8 mmol)を収率85%で得た。 The obtained 12-bromo-2-methyl-2-dodecanol (15.06 g, 53.9 mmol) was dissolved in methylene chloride (15 mL), TMSCN (8 mL, 60.0 mmol) was added, and methanesulfonic acid ( 4.5 mL, 69.3 mmol) was added, and the mixture was stirred at room temperature for 2 hours. Then, methanesulfonic acid (5 mL, 77.0 mmol) was further added, and the mixture was further stirred for 1 hour. After confirming the disappearance of the raw materials by TLC, triethylamine (21 mL, 151 mL), methylene chloride (35 mL), pyridine (5 mL, 62.1 mL) were added to the reaction solution, and the mixture was stirred for 10 minutes, and then paratoluenesulfonyl chloride ( 11.82 g, 62.0 mmol) was added, and the mixture was further stirred for 80 minutes. Saturated brine (50 mL) was added to the reaction solution, and the mixture was stirred for 5 minutes, and then extracted with ethyl acetate (300 mL). The organic phase was washed with 3M-hydrochloric acid aqueous solution, saturated sodium hydrogen carbonate and saturated brine, dried over sodium sulfate, filtered, and the solvent was evaporated. The residue was purified by silica gel column chromatography (Hexane: EtOAc = 10: 0-10: 1) to give 1-bromo-11-isocyano-11-methyldodecane (13.2 g, 45.8 mmol) in 85% yield. It was.
 得られた1-ブロモ-11-イソシアノ-11-メチルドデカン(12.26 g、42.5 mmol)をDMF(100 mL)に溶解し、トリエチルアミン(12 mL、85.4 mmol)、アクリル酸(5 mL、72.9 mmol)を加え15時間撹拌した。反応液を濾過して固形物を取り除いた後、濃縮した。残留物をシリカゲルカラムクロマトグラフィー(Hexane:EtOAc = 10:0-3:1)により精製し、(11-イソシアノ-11-メチル)ドデシルアクリレート(7.65 g、27.4 mmol)を収率64%で得た。 The obtained 1-bromo-11-isocyano-11-methyldodecane (12.26 g, 42.5 mmol) is dissolved in DMF (100 mL), triethylamine (12 mL, 85.4 mmol), acrylic acid (5 mL, 72.9 mmol) And stirred for 15 hours. The reaction solution was filtered to remove solids and then concentrated. The residue was purified by silica gel column chromatography (Hexane: EtOAc = 10: 0-3: 1) to give (11-isocyano-11-methyl) dodecyl acrylate (7.65 g, 27.4 mmol) in a yield of 64% .
 化学式は以下の通りである:
Figure JPOXMLDOC01-appb-C000005
The chemical formula is as follows:
Figure JPOXMLDOC01-appb-C000005
 H NMRと13C NMRは以下の通りである:
 1H NMR (600 MHz, CDCl3) δ: 6.40 (dd, J = 17.2 and 1.1 Hz, 1H), 6.12 (dd, J = 17.2 and 10.6 Hz, 1H), 5.82 (dd, J = 10.6 and 1.1 Hz, 1H), 4.15 (t, J = 7.0 Hz, 2H), 1.67 (quint, J = 7.0 Hz, 2H), 1.57-1.52 (m, 2H), 1.49-1.40 (2H, m), 1.40 (t, J = 1.8 Hz, 6H), 1.41-1.33 (m, 2H), 1.33-1.26 (m, 10H).
 13C NMR (150.8 MHz, CDCl3) δ: 166.3, 152.8 (t, J = 5.0 Hz), 130.4, 128.6, 64.7, 57.4 (t, J = 5.0 Hz), 42.5, 29.5, 29.43, 29.42, 29.41, 29.2, 29.0, 28.6, 25.9, 24.1.
1 H NMR and 13 C NMR are as follows:
1 H NMR (600 MHz, CDCl 3 ) δ: 6.40 (dd, J = 17.2 and 1.1 Hz, 1H), 6.12 (dd, J = 17.2 and 10.6 Hz, 1H), 5.82 (dd, J = 10.6 and 1.1 Hz , 1H), 4.15 (t, J = 7.0 Hz, 2H), 1.67 (quint, J = 7.0 Hz, 2H), 1.57-1.52 (m, 2H), 1.49-1.40 (2H, m), 1.40 (t, J = 1.8 Hz, 6H), 1.41-1.33 (m, 2H), 1.33-1.26 (m, 10H).
13 C NMR (150.8 MHz, CDCl 3 ) δ: 166.3, 152.8 (t, J = 5.0 Hz), 130.4, 128.6, 64.7, 57.4 (t, J = 5.0 Hz), 42.5, 29.5, 29.43, 29.42, 29.41, 29.2, 29.0, 28.6, 25.9, 24.1.
 製造例3 防汚性モノマー(N-(11-イソシアノ-11メチルドデシル)-アクリルアミド)の製造
 製造例2の合成時と同様の方法で得た、12-ブロモ-2-メチル-2-ドデカノール(73.78 g、264 mmol)をDMF(200 mL)に溶解し、フタルイミドカリウム(59.05 g、319 mmol)を加え、6時間加熱還流した。反応液をろ過した後、さらに酢酸エチル(400 mL)で洗いこんだ。有機相を5%水酸化カリウム水溶液、飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥した。ろ過後、溶媒を留去し、残留物をシリカゲルカラムクロマトグラフィー(Hexane:EtOAc = 10:0-1:1)により精製し、2-(11-ヒドロキシ-11-メチルドデシル)イソインドリン-1,3-ジオン(85.02 g、246 mmol)を収率93%で得た。
Production Example 3 Production of Antifouling Monomer (N- (11-Isocyano-11methyldodecyl) -acrylamide) 12-Bromo-2-methyl-2-dodecanol obtained in the same manner as in the synthesis of Production Example 2 ( 73.78 g, 264 mmol) was dissolved in DMF (200 mL), potassium phthalimide (59.05 g, 319 mmol) was added, and the mixture was heated to reflux for 6 hours. The reaction mixture was filtered, and further washed with ethyl acetate (400 mL). The organic phase was washed with 5% aqueous potassium hydroxide solution and saturated brine, and then dried over sodium sulfate. After filtration, the solvent was distilled off, and the residue was purified by silica gel column chromatography (Hexane: EtOAc = 10: 0-1: 1) to give 2- (11-hydroxy-11-methyldodecyl) isoindoline-1, 3-dione (85.02 g, 246 mmol) was obtained in 93% yield.
 得られた2-(11-ヒドロキシ-11-メチルドデシル)イソインドリン-1,3-ジオン(53.24 g、154 mmol)を塩化メチレン(50 mL)に溶解し、TMSCN(25 mL、187 mmol)を加え、氷冷下メタンスルホン酸(50 mL、770 mmol)を加え、室温で2時間撹拌した。反応液に塩化メチレン(100 mL)を加え、氷冷下、トリエチルアミン(110 mL、792 mmol)、ピリジン(15 mL、186 mmol)を加え、10分間撹拌した後、塩化パラトルエンスルホニル(36.2 g、190 mmol)を加え3時間撹拌した。反応液に飽和食塩水(100 ml)を加え、5分間撹拌した後、ジエチルエーテル(600 ml)で抽出した。有機相を3M-塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥した。ろ過後、溶媒を留去し、残留物をシリカゲルカラムクロマトグラフィー(Hexane:EtOAc = 10:0-10:1)により精製し、2-(11-イソシアノ-11-メチルドデシル)イソインドリン-1,3-ジオン(46.7 g、132 mmol)を収率85%で得た。 The obtained 2- (11-hydroxy-11-methyldodecyl) isoindoline-1,3-dione (53.24 g, 154 mmol) was dissolved in methylene chloride (50 mL), and TMSCN (25 mL, 187 mmol) was dissolved. In addition, methanesulfonic acid (50 mL, 770 mmol) was added under ice cooling, and the mixture was stirred at room temperature for 2 hours. Methylene chloride (100 メ チ レ ン mL) was added to the reaction solution, and triethylamine (110 mL, 792 mmol) and pyridine (15 mL, 186 mmol) were added under ice cooling, followed by stirring for 10 minutes, and then paratoluenesulfonyl chloride (36.2 g, 190 mmol) was added and stirred for 3 hours. To the reaction mixture was added saturated brine (100 ml), and the mixture was stirred for 5 minutes, and then extracted with diethyl ether (600 ml). The organic phase was washed with 3M-hydrochloric acid aqueous solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over sodium sulfate. After filtration, the solvent was distilled off, and the residue was purified by silica gel column chromatography (Hexane: EtOAc = 10: 0-10: 1) to give 2- (11-isocyano-11-methyldodecyl) isoindoline-1, 3-dione (46.7 g, 132 mmol) was obtained in 85% yield.
 得られた2-(11-イソシアノ-11-メチルドデシル)イソインドリン-1,3-ジオン(39.80 g 、112 mmol)をメタノールに溶解し、ヒドラジン一水和物(11 mL、226 mmol)を加え、90分間加熱還流した。反応液に飽和食塩水(100 mL)を加え、しばらく撹拌した後、酢酸エチル(300 mL)で抽出し、硫酸ナトリウムで乾燥した。ろ過後、溶媒を留去し、残留物をアミノシリカゲルカラムクロマトグラフィー(EtOAc:MeOH = 10:1)により精製し、1-アミノ-11-イソシアノ-11-メチルドデカン(24.88 g、111 mmol)を収率99%で得た。 The obtained 2- (11-isocyano-11-methyldodecyl) isoindoline-1,3-dione (39.80 g, 112 mmol) was dissolved in methanol, and hydrazine monohydrate (11 mL, 226 mmol) was added. For 90 minutes. To the reaction solution was added saturated brine (100 mL), and the mixture was stirred for a while, extracted with ethyl acetate (300 mL), and dried over sodium sulfate. After filtration, the solvent was distilled off, and the residue was purified by amino silica gel column chromatography (EtOAc: MeOH = 10: 1) to give 1-amino-11-isocyano-11-methyldodecane (24.88 g, 111 mmol). The yield was 99%.
 得られた1-アミノ-11-イソシアノ-11-メチルドデカン(24.88 g、111 mmol)を塩化メチレン(200 mL)に溶解し、トリエチルアミン(15.8 mL、114 mmol)を加え撹拌した後、氷冷下、塩化アクロイル(9 mL、111 mmol)を加え、3時間撹拌した。反応液に飽和食塩水(100 mL)を加え5分間撹拌した後、酢酸エチル(200 mL)で抽出した。有機相を1M-塩酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水50 mlで洗浄した後、硫酸ナトリウムで乾燥した。ろ過後、溶媒を留去し、残留物をシリカゲルカラムクロマトグラフィー(Hexane:EtOAc = 10:0-10:1)により精製し、N-(11-イソシアノ-11メチルドデシル)-アクリルアミド(11.57 g、42 mmol)を収率37%で得た。 The obtained 1-amino-11-isocyano-11-methyldodecane (24.88 g, 111 mmol) was dissolved in methylene chloride (200 、 mL), triethylamine (15.8 mL, 114 mmol) was added and stirred, and then ice-cooled. , Acroyl chloride (9 mL, 111 mL) was added and stirred for 3 hours. To the reaction solution was added saturated brine (100 mL), and the mixture was stirred for 5 minutes, and then extracted with ethyl acetate (200 mL). The organic phase was washed with 1M-hydrochloric acid aqueous solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine 50 ml, and then dried over sodium sulfate. After filtration, the solvent was distilled off, and the residue was purified by silica gel column chromatography (Hexane: EtOAc = 10: 0-10: 1), and N- (11-isocyano-11methyldodecyl) -acrylamide (11.57 g, 42 mmol) was obtained with a yield of 37%.
 化学式は以下の通りである:

Figure JPOXMLDOC01-appb-C000006
The chemical formula is as follows:

Figure JPOXMLDOC01-appb-C000006
 H NMRと13C NMRは以下の通りである:
 1H NMR (600 MHz, CDCl3) δ: 6.27 (dd, J = 17.1 and 1.5 Hz, 1H), 6.09 (dd, J=17.1 and 10.2 Hz, 1H), 5.75 (br s, 1H), 5.62 (dd, J = 10.2 and 1.5 Hz, 1H), 3.32 (dt, J = 5.9 and 7.1 Hz, 2H), 1.59-1.49 (m, 4H), 1.48-1.37 (m, 2H), 1.40 (t, J = 1.7 Hz, 6H,), 1.36-1.22 (m, 12H).
 13C NMR (150.8 MHz, CDCl3) δ: 165.5, 152.6 (t, J = 5.0 Hz), 131.0, 126.0, 57.4 (t, J = 5.0 Hz), 42.4, 39.6, 29.5, 29.4, 29.31, 29.30, 29.2, 28.9, 26.7, 24.0.
1 H NMR and 13 C NMR are as follows:
1 H NMR (600 MHz, CDCl 3 ) δ: 6.27 (dd, J = 17.1 and 1.5 Hz, 1H), 6.09 (dd, J = 17.1 and 10.2 Hz, 1H), 5.75 (br s, 1H), 5.62 ( dd, J = 10.2 and 1.5 Hz, 1H), 3.32 (dt, J = 5.9 and 7.1 Hz, 2H), 1.59-1.49 (m, 4H), 1.48-1.37 (m, 2H), 1.40 (t, J = 1.7 Hz, 6H,), 1.36-1.22 (m, 12H).
13 C NMR (150.8 MHz, CDCl 3 ) δ: 165.5, 152.6 (t, J = 5.0 Hz), 131.0, 126.0, 57.4 (t, J = 5.0 Hz), 42.4, 39.6, 29.5, 29.4, 29.31, 29.30, 29.2, 28.9, 26.7, 24.0.
 高分子ヒドロゲルプレポリマーの製造
 製造例4 高分子ヒドロゲルプレポリマーAの製造
 アクリルモノマー(アクリル酸12.2g、t-ブチルメタクリレート12.1g、アクリルアミド9.66g、N,N‘-ジメチルアミノプロピルアクリルアミド10.6g、アリルメタクリレート5.8gおよび製造例1で製造した防汚性モノマー(4-イソシアノシクロヘキシルアクリレート)3.02g、開始剤としてイソブチロニトリル0.165g、溶剤として2-プロパノール37.6g、メタノール37.6g、水18.8gを攪拌機、コンデンサー、温度計を備えた500mlのガラス製反応容器に入れて、窒素ガス下、攪拌しながら60℃で90分加熱して、高分子ヒドロゲルプレポリマーAを得た。
Production of Polymer Hydrogel Prepolymer Production Example 4 Production of Polymer Hydrogel Prepolymer A Acrylic monomer (acrylic acid 12.2 g, t-butyl methacrylate 12.1 g, acrylamide 9.66 g, N, N′-dimethylaminopropylacrylamide 10.6 g, allyl 5.8 g of methacrylate and 3.02 g of antifouling monomer (4-isocyanocyclohexyl acrylate) produced in Production Example 1, 0.165 g of isobutyronitrile as an initiator, 37.6 g of 2-propanol, 37.6 g of methanol, and 18.8 g of water Was put into a 500 ml glass reaction vessel equipped with a stirrer, a condenser and a thermometer, and heated at 60 ° C. for 90 minutes with stirring under nitrogen gas to obtain a polymer hydrogel prepolymer A.
 製造例5 高分子ヒドロゲルプレポリマーBの製造
 アクリルモノマー(アクリル酸21.43g、t-ブチルメタクリレート21.14g、アクリルアミド16.961g、N,N‘-ジメチルアミノプロピルアクリルアミド18.58g、グリシジルメタクリレート11.45gおよび実施例2で製造した防汚性モノマー(11-イソシアノ-11-メチルドデシルアクリレート)5.7g、開始剤としてイソブチロニトリル0.288g、溶剤として2-プロパノール70.2g、メタノール70.3g、水35.10gを攪拌機、コンデンサー、温度計を備えた500mlのガラス製反応容器に入れて、窒素ガス下、攪拌しながら60℃で52分加熱して、270gの高分子ヒドロゲルプレポリマーBを得た。
Production Example 5 Production of Polymer Hydrogel Prepolymer B Acrylic monomer (acrylic acid 21.43 g, t-butyl methacrylate 21.14 g, acrylamide 16.961 g, N, N′-dimethylaminopropylacrylamide 18.58 g, glycidyl methacrylate 11.45 g and Example 2 5.7 g of antifouling monomer (11-isocyano-11-methyldodecyl acrylate) prepared in 1), 0.288 g of isobutyronitrile as an initiator, 70.2 g of 2-propanol, 70.3 g of methanol and 35.10 g of water as a stirrer, condenser Into a 500 ml glass reaction vessel equipped with a thermometer, the mixture was heated at 60 ° C. for 52 minutes with stirring under nitrogen gas to obtain 270 g of a polymer hydrogel prepolymer B.
 製造例6 高分子ヒドロゲルプレポリマーCの製造
 アクリルモノマー(アクリル酸24.02g、t-ブチルメタクリレート23.65g、アクリルアミド18.933g、N,N‘-ジメチルアミノプロピルアクリルアミド20.8g、グリシジルメタクリレート12.77gおよび製造例3で製造した防汚性モノマー(N-(11-イソシアノ-11メチルドデシル)-アクリルアミド)6.6g、開始剤としてイソブチロニトリル0.327g、溶剤として2-プロパノール78.52g、メタノール79.12g、水39.55gを攪拌機、コンデンサー、温度計を備えた500mlのガラス製反応容器に入れて、窒素ガス下、攪拌しながら60℃で54分加熱して、304gの高分子ヒドロゲルプレポリマーCを得た。
Production Example 6 Production of Polymer Hydrogel Prepolymer C Acrylic monomer (acrylic acid 24.02 g, t-butyl methacrylate 23.65 g, acrylamide 18.933 g, N, N′-dimethylaminopropylacrylamide 20.8 g, glycidyl methacrylate 12.77 g and Production Example 3 Antifouling Monomer (N- (11-Isocyano-11methyldodecyl) -acrylamide) 6.6g, 0.327g of isobutyronitrile as initiator, 78.52g of 2-propanol, 79.12g of methanol, 39.55g of water Was put into a 500 ml glass reaction vessel equipped with a stirrer, a condenser and a thermometer, and heated at 60 ° C. for 54 minutes with stirring under nitrogen gas to obtain 304 g of a polymer hydrogel prepolymer C.
 製造例7 高分子ヒドロゲルプレポリマーDの製造
 アクリルモノマー(アクリル酸23.1g、t-ブチルメタクリレート22.71g、アクリルアミド13.634g、N-イソプロピルアクリルアミド7.233g、N,N‘-ジメチルアミノプロピルアクリルアミド9.98g、ジメチルアクリルアミド6.34g、アリルメタクリレート10.9gおよび実施例2で合成した防汚性モノマー(11-イソシアノ-11-メチルドデシルアクリレート)5.37g、開始剤としてイソブチロニトリル0.315g、溶剤として2-プロパノール73.23g、メタノール73.61g、水37.42gを攪拌機、コンデンサー、温度計を備えた500mlのガラス製反応容器に入れて、窒素ガス下、攪拌しながら60℃で52分加熱して、285gの高分子ヒドロゲルプレポリマーDを得た。
Production Example 7 Production of Polymer Hydrogel Prepolymer D Acrylic monomer (acrylic acid 23.1 g, t-butyl methacrylate 22.71 g, acrylamide 13.634 g, N-isopropylacrylamide 7.233 g, N, N′-dimethylaminopropylacrylamide 9.98 g, dimethyl 6.34 g of acrylamide, 10.9 g of allyl methacrylate and 5.37 g of the antifouling monomer (11-isocyano-11-methyldodecyl acrylate) synthesized in Example 2, 0.315 g of isobutyronitrile as the initiator, and 73.23 g of 2-propanol as the solvent Then, 73.61 g of methanol and 37.42 g of water were placed in a 500 ml glass reaction vessel equipped with a stirrer, a condenser and a thermometer and heated at 60 ° C. for 52 minutes with stirring under nitrogen gas to give 285 g of a polymer hydrogel pre-polymer. Polymer D was obtained.
 製造例8 高分子ヒドロゲルプレポリマーE-1、E-2の製造
 (E-1の製造)アクリルモノマー(アクリル酸28.8g、t-ブチルメタクリレート28.4g、アクリルアミド22.721g、N-イソプロピルアクリルアミド9.05g、ヘキシルメタクリレート13.61g、グリシジルメタクリレート15.34gおよび開始剤としてイソブチロニトリル0.385g、溶剤として2-プロパノール70.78g、メタノール79.32g、水26.61gを攪拌機、コンデンサー、温度計を備えた500mlのガラス製反応容器に入れて、窒素ガス下、攪拌しながら60℃で44分加熱して、295gの高分子ヒドロゲルプレポリマーE-1を得た。
Production Example 8 Production of Polymer Hydrogel Prepolymers E-1 and E-2 (Production of E-1) Acrylic monomer (acrylic acid 28.8 g, t-butyl methacrylate 28.4 g, acrylamide 22.721 g, N-isopropylacrylamide 9.05 g, Reaction of 13.61 g of hexyl methacrylate, 15.34 g of glycidyl methacrylate, 0.385 g of isobutyronitrile as an initiator, 70.78 g of 2-propanol, 79.32 g of methanol, and 26.61 g of water, 500 ml of glass reaction equipped with a stirrer, condenser and thermometer The mixture was placed in a container and heated at 60 ° C. for 44 minutes with stirring under nitrogen gas to obtain 295 g of a polymer hydrogel prepolymer E-1.
 (E-2の製造)アクリルモノマー(アクリル酸25.93g、t-ブチルメタクリレート25.54g、アクリルアミド12.785g、N,N‘-ジメチルアミノプロピルアクリルアミド22.51g、ヘキシルメタクリレート12.24g、アリルメタクリレート12.24gおよび実施例2で製造した防汚性モノマー(11-イソシアノ-11-メチルドデシルアクリレート)10.05gおよび開始剤としてイソブチロニトリル0.345g、溶剤として2-プロパノール66.12g、メタノール67.62g、水14.96gを攪拌機、コンデンサー、温度計を備えた500mlのガラス製反応容器に入れて、窒素ガス下、攪拌しながら60℃で109分加熱して、270gの高分子ヒドロゲルプレポリマーE-2を得た (Production of E-2) Acrylic monomer (acrylic acid 25.93 g, t-butyl methacrylate 25.54 g, acrylamide 12.785 g, N, N'-dimethylaminopropylacrylamide 22.51 g, hexyl methacrylate 12.24 g, allyl methacrylate 12.24 g and Examples 10.05 g of the antifouling monomer (11-isocyano-11-methyldodecyl acrylate) prepared in 2 and 0.345 g of isobutyronitrile as an initiator, 66.12 g of 2-propanol, 67.62 g of methanol, and 14.96 g of water as a stirrer, It was put into a 500 ml glass reaction vessel equipped with a condenser and a thermometer, and heated at 60 ° C. for 109 minutes with stirring under nitrogen gas to obtain 270 g of a polymer hydrogel prepolymer E-2.
 製造例9 高分子ヒドロゲルプレポリマーF-1,F-2の製造
 (F-1の製造)アクリルモノマー(アクリル酸22.38g、t-ブチルメタクリレート22.02g、アクリルアミド24.21g、グリシジルメタクリレート11.89g、実施例2で製造した防汚性モノマーC(11-イソシアノ-11-メチルドデシルアクリレート)8.65gおよび開始剤としてイソブチロニトリル0.304g、溶剤として2-プロパノール52.81g、メタノール53.4g、水26.79gを攪拌機、コンデンサー、温度計を備えた500mlのガラス製反応容器に入れて、窒素ガス下、攪拌しながら60℃で73分加熱して、222gの高分子ヒドロゲルプレポリマーF-1を得た
Production Example 9 Production of polymer hydrogel prepolymers F-1 and F-2 (Production of F-1) Acrylic monomers (22.38 g of acrylic acid, 22.02 g of t-butyl methacrylate, 24.21 g of acrylamide, 11.89 g of glycidyl methacrylate, Examples Antifouling monomer C (11-isocyano-11-methyldodecyl acrylate) 8.65 g prepared in 2 and 0.304 g of isobutyronitrile as an initiator, 52.81 g of 2-propanol, 53.4 g of methanol and 26.79 g of water as a stirrer In a 500 ml glass reaction vessel equipped with a condenser and a thermometer, the mixture was heated at 60 ° C. for 73 minutes with stirring under nitrogen gas to obtain 222 g of a polymer hydrogel prepolymer F-1.
 (F-2の製造)アクリルモノマー(アクリル酸17.99g、t-ブチルメタクリレート17.74g、アクリルアミド7.15g、N,N‘-ジメチルアミノプロピルアクリルアミド23.42g、アリルメタクリレート8.51gおよび実施例2で製造した防汚性モノマー(11-イソシアノ-11-メチルドデシルアクリレート)13.96gおよび開始剤としてイソブチロニトリル0.247g、溶剤として2-プロパノール53.61g、メタノール60.03g、水20.03gを攪拌機、コンデンサー、温度計を備えた500mlのガラス製反応容器に入れて、窒素ガス下、攪拌しながら60℃で109分加熱して、222gの高分子ヒドロゲルプレポリマーF-2を得た (Production of F-2) Acrylic monomer (acrylic acid 17.99 g, t-butyl methacrylate 17.74 g, acrylamide 7.15 g, N, N'-dimethylaminopropylacrylamide 23.42 g, allyl methacrylate 8.51 g and the anti-protection produced in Example 2 13.96 g of soiling monomer (11-isocyano-11-methyldodecyl acrylate), 0.247 g of isobutyronitrile as an initiator, 53.61 g of 2-propanol, 60.03 g of methanol, and 20.03 g of water as a stirrer, condenser and thermometer It was placed in a 500 ml glass reaction vessel equipped and heated at 60 ° C. for 109 minutes with stirring under nitrogen gas to obtain 222 g of a polymer hydrogel prepolymer F-2.
 高分子ヒドロゲル膜の作成及び海水浸漬評価
 実施例1 高分子ヒドロゲル膜Aの作成及び海水浸漬評価
 高分子ヒドロゲルプレポリマーA20gを金属製の攪拌容器に移し、コバルト系の反応触媒を加えて約2000回転(rpm)で5分間混合した。得られた塗料液を刷毛で塩ビ製のテストピースに塗布、一晩室温で乾燥して高分子ヒドロゲル膜Aを得た。得られた高分子ヒドロゲル膜A塗装板を実際の海水中に約1ヶ月浸漬したところ、水棲生物の付着は観察されなかった。
Preparation of polymer hydrogel membrane and evaluation of immersion in seawater Example 1 Preparation of polymer hydrogel membrane A and evaluation of immersion in seawater Transfer 20 g of polymer hydrogel prepolymer A to a metal stirring vessel, add a cobalt-based reaction catalyst, and rotate about 2000 times. (Rpm) and mixed for 5 minutes. The obtained coating liquid was applied to a test piece made of vinyl chloride with a brush and dried overnight at room temperature to obtain a polymer hydrogel film A. When the obtained polymer hydrogel film A coated plate was immersed in actual seawater for about 1 month, no adhesion of aquatic organisms was observed.
 実施例2 高分子ヒドロゲル膜Bの作成及び海水浸漬評価
 高分子ヒドロゲルプレポリマーB20gを金属製の攪拌容器に移し、アミン系の反応触媒を加えて約2000回転(rpm)で5分間混合した。得られた塗料液を刷毛で塩ビ製のテストピースに塗布、一晩室温で乾燥した。得られた高分子ヒドロゲル膜B塗装板を実際の海水中に約1ヶ月浸漬したところ、水棲生物の付着は観察されなかった。
Example 2 Preparation of polymer hydrogel membrane B and evaluation of immersion in seawater Polymer hydrogel prepolymer B (20 g) was transferred to a metal stirring vessel, an amine-based reaction catalyst was added, and the mixture was mixed at about 2000 rpm (rpm) for 5 minutes. The obtained coating liquid was applied to a vinyl chloride test piece with a brush and dried overnight at room temperature. When the obtained polymer hydrogel membrane B-coated plate was immersed in actual seawater for about 1 month, no adhesion of aquatic organisms was observed.
 実施例3 高分子ヒドロゲル膜Cの作成及び海水浸漬評価
 高分子ヒドロゲルプレポリマーC、20gを金属製の攪拌容器に移し、アミン系の反応触媒を加えて約2000回転(rpm)で5分間混合した。得られた塗料液を刷毛で塩ビ製のテストピースに塗布、一晩室温で乾燥した。得られた高分子ヒドロゲル膜塗装板を実際の海水中に約1ヶ月浸漬したところ、水棲生物の付着は観察されなかった。
Example 3 Preparation of polymer hydrogel membrane C and evaluation of immersion in seawater Polymer hydrogel prepolymer C, 20 g, was transferred to a metal stirring vessel, an amine-based reaction catalyst was added, and the mixture was mixed at about 2000 rpm (rpm) for 5 minutes. . The obtained coating liquid was applied to a vinyl chloride test piece with a brush and dried overnight at room temperature. When the obtained polymer hydrogel film-coated plate was immersed in actual seawater for about 1 month, no adhesion of aquatic organisms was observed.
 実施例4 高分子ヒドロゲル膜Dの作成及び海水浸漬評価
 高分子ヒドロゲルプレポリマーD、20gを金属製の攪拌容器に移し、コバルト系の反応触媒を加えて約2000回転(rpm)で5分間混合した。得られた塗料液を刷毛で塩ビ製のテストピースに塗布、一晩室温で乾燥した。得られた高分子ヒドロゲル膜D塗装板を実際の海水中に約1ヶ月浸漬したところ、水棲生物の付着は観察されなかった。
Example 4 Preparation of polymer hydrogel membrane D and evaluation of immersion in seawater Polymer hydrogel prepolymer D (20 g) was transferred to a metal stirring vessel, a cobalt-based reaction catalyst was added, and the mixture was mixed at about 2000 rpm (rpm) for 5 minutes. . The obtained coating liquid was applied to a vinyl chloride test piece with a brush and dried overnight at room temperature. When the obtained polymer hydrogel membrane D-coated plate was immersed in actual seawater for about 1 month, no adhesion of aquatic organisms was observed.
 実施例5 高分子ヒドロゲル膜Eの作成及び海水浸漬評価
 高分子ヒドロゲルプレポリマーE-1、10g、高分子ヒドロゲルプレポリマーE-2、10gを金属製の攪拌容器に移し、アミン系およびコバルト系の反応触媒を加えて約2000回転(rpm)で5分間混合した。得られた塗料液を刷毛で塩ビ製のテストピースに塗布、一晩室温で乾燥した。得られた高分子ヒドロゲル塗装板を実際の海水中に約1ヶ月浸漬したところ、水棲生物の付着は観察されなかった。
Example 5 Preparation of polymer hydrogel membrane E and evaluation of immersion in seawater Polymer hydrogel prepolymer E-1, 10 g, polymer hydrogel prepolymer E-2, 10 g were transferred to a metal stirring vessel, and amine-based and cobalt-based The reaction catalyst was added and mixed for 5 minutes at about 2000 revolutions (rpm). The obtained coating liquid was applied to a vinyl chloride test piece with a brush and dried overnight at room temperature. When the obtained polymer hydrogel-coated plate was immersed in actual seawater for about 1 month, no adhesion of aquatic organisms was observed.
 実施例6 高分子ヒドロゲル膜Fの作成及び海水浸漬評価
 高分子ヒドロゲルプレポリマーF-1、10g、高分子ヒドロゲルプレポリマーF-2、10gを金属製の攪拌容器に移し、アミン系およびコバルト系の反応触媒を加えて約2000回転(rpm)で5分間混合した。得られた塗料液を刷毛で塩ビ製のテストピースに塗布、一晩室温で乾燥した。得られた高分子ヒドロゲル塗装板を際の水中に約1ヶ月浸漬したところ、水棲生物の付着は観察されなかった。
Example 6 Preparation of polymer hydrogel membrane F and evaluation of immersion in seawater Polymer hydrogel prepolymer F-1, 10 g, polymer hydrogel prepolymer F-2, 10 g were transferred to a metal stirring vessel, and amine-based and cobalt-based The reaction catalyst was added and mixed for 5 minutes at about 2000 revolutions (rpm). The obtained coating liquid was applied to a vinyl chloride test piece with a brush and dried overnight at room temperature. When the obtained polymer hydrogel-coated plate was immersed in the appropriate water for about 1 month, no adhesion of aquatic organisms was observed.
 本発明の防汚被膜は、あらゆる水中の構造物に適用可能であって、かつ長期間水棲生物の付着を抑制することができる。この防汚被膜を形成する方法や防汚被膜を形成するために用いる防汚塗料、更にその防汚被膜を有する防汚物体も同様の利用可能性を秘めている。 The antifouling coating of the present invention can be applied to any underwater structure and can suppress the adhesion of aquatic organisms for a long time. The method for forming the antifouling coating, the antifouling paint used for forming the antifouling coating, and the antifouling object having the antifouling coating have the same applicability.

Claims (10)

  1.  高分子ヒドロゲルから構成される水棲生物が付着しない防汚被膜であって、該高分子ヒドロゲルが防汚性モノマーを構成成分の1つとすることを特徴とする水棲生物が付着しない防汚被膜。 An antifouling film to which aquatic organisms composed of a polymer hydrogel do not adhere, wherein the polymer hydrogel has an antifouling monomer as one of its constituent components.
  2.  防汚性モノマーが以下の化学式(1)
    Figure JPOXMLDOC01-appb-C000001
     (式中、Rは水素またはメチル基であり、RおよびRは、それぞれ独立して、水素または炭素数1~10を有するアルキル基を示し、pは0または1を示し、Xは酸素または-NH-を示し、Yは炭素数1~30を有する直鎖、分岐鎖または環状のアルキル基であって、エーテル基、カルボニル基、エステル基、アミノ基、アミド基、イミド基、スルフィド基、スルホキシド基、スルホン基を介在してもよい。)
    で表される請求項1記載の防汚被膜。
    Antifouling monomer is represented by the following chemical formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 is hydrogen or a methyl group, R 2 and R 3 each independently represent hydrogen or an alkyl group having 1 to 10 carbon atoms, p represents 0 or 1, and X represents O represents oxygen or —NH—, and Y is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, and is an ether group, carbonyl group, ester group, amino group, amide group, imide group, sulfide A group, a sulfoxide group or a sulfone group may be interposed.)
    The antifouling film according to claim 1 represented by
  3.  Yがエーテル基を介在してもよい炭素数1~30を有する直鎖、分岐鎖または環状のアルキル基である請求項2記載の防汚被膜。 3. The antifouling coating according to claim 2, wherein Y is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may interpose an ether group.
  4.  Yが炭素数5~12を有する直鎖、分岐鎖または環状のアルキル基である請求項3記載の防汚被膜。 The antifouling coating according to claim 3, wherein Y is a linear, branched or cyclic alkyl group having 5 to 12 carbon atoms.
  5.  高分子ヒドロゲルが親水性モノマーを50~90モル%、防汚性モノマーを1~20モル%およびその他の共重合性モノマーを9~49モル%含むビニルモノマー混合物から得られたビニルポリマーを3次元架橋したものである請求項1記載の防汚被膜。 Polymer hydrogels are three-dimensional vinyl polymers obtained from vinyl monomer mixtures containing 50-90 mol% hydrophilic monomers, 1-20 mol% antifouling monomers and 9-49 mol% other copolymerizable monomers. The antifouling coating according to claim 1, wherein the antifouling coating is crosslinked.
  6.  高分子ヒドロゲルの他に防汚剤を含有する請求項1記載の防汚被膜。 The antifouling coating according to claim 1, further comprising an antifouling agent in addition to the polymer hydrogel.
  7.  親水性モノマーを50~90モル%、防汚性モノマーを1~20モル%およびその他の共重合性モノマーを9~49モル%含むビニルモノマー混合物から得られたビニルポリマー、架橋剤、触媒および溶媒を含有する請求項1記載の防汚被膜を形成するための防汚塗料。 Vinyl polymers, crosslinkers, catalysts and solvents obtained from vinyl monomer mixtures containing 50-90 mol% hydrophilic monomers, 1-20 mol% antifouling monomers and 9-49 mol% other copolymerizable monomers An antifouling paint for forming an antifouling film according to claim 1.
  8.  親水性モノマーを50~90モル%、防汚性モノマーを1~20モル%およびその他の共重合性モノマーを9~49モル%含むビニルモノマー混合物から得られたビニルポリマー、架橋剤、触媒および溶媒を含有する防汚塗料を塗布して被膜を形成後、水中に浸漬することを特徴とする請求項1記載の防汚被膜を形成する方法。 Vinyl polymers, crosslinkers, catalysts and solvents obtained from vinyl monomer mixtures containing 50-90 mol% hydrophilic monomers, 1-20 mol% antifouling monomers and 9-49 mol% other copolymerizable monomers The method for forming an antifouling film according to claim 1, wherein the film is formed by applying an antifouling paint containing, and then immersed in water.
  9.  基材および該基材の表面最外層に設けられた防汚被膜から構成される防汚物体であって、該防汚被膜が請求項1~8いずれかに記載の防汚被膜であることを特徴とする水棲生物が付着しない防汚物体。 An antifouling object comprising a base material and an antifouling coating provided on the outermost surface of the base material, wherein the antifouling coating is the antifouling coating according to any one of claims 1 to 8. Antifouling object that does not adhere to characteristic aquatic organisms.
  10.  基材が、船舶、水中構造物、海水導入管、魚網または海底ケーブルである請求項9記載の防汚物体。 10. The antifouling object according to claim 9, wherein the base material is a ship, an underwater structure, a seawater introduction pipe, a fish net or a submarine cable.
PCT/JP2008/052878 2008-02-20 2008-02-20 Antifouling coating film free from attachment of aquatic organisms, method for obtaining the antifouling coating film and utilization of the same WO2009104257A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/052878 WO2009104257A1 (en) 2008-02-20 2008-02-20 Antifouling coating film free from attachment of aquatic organisms, method for obtaining the antifouling coating film and utilization of the same
JP2009554163A JP5569677B2 (en) 2008-02-20 2008-02-20 Antifouling film to which aquatic organisms do not adhere, means for obtaining antifouling film and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052878 WO2009104257A1 (en) 2008-02-20 2008-02-20 Antifouling coating film free from attachment of aquatic organisms, method for obtaining the antifouling coating film and utilization of the same

Publications (1)

Publication Number Publication Date
WO2009104257A1 true WO2009104257A1 (en) 2009-08-27

Family

ID=40985152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052878 WO2009104257A1 (en) 2008-02-20 2008-02-20 Antifouling coating film free from attachment of aquatic organisms, method for obtaining the antifouling coating film and utilization of the same

Country Status (2)

Country Link
JP (1) JP5569677B2 (en)
WO (1) WO2009104257A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109855A1 (en) * 2009-03-24 2010-09-30 国立大学法人北海道大学 Antifouling agent for preventing adhesion of aquatic pests
JP2013518877A (en) * 2010-02-02 2013-05-23 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Functionalized antifouling compounds and uses thereof
WO2014142035A1 (en) * 2013-03-13 2014-09-18 株式会社エステン化学研究所 Antifouling coating film with low frictional resistance with water or seawater
JP2019048947A (en) * 2017-09-11 2019-03-28 三菱ケミカル株式会社 Polymer for antifouling coating, resin composition, antifouling coating, coated film, manufacturing method of polymer for antifouling coating, and antifouling material
CN110358006A (en) * 2019-05-24 2019-10-22 中国科学院化学研究所 A kind of hydrogel and its preparation method and application can be used for marine anti-pollution
JP2021024988A (en) * 2019-08-07 2021-02-22 日東化成株式会社 Anti-fouling coating composition
CN114014971A (en) * 2021-11-25 2022-02-08 中国海洋大学 Preparation method and application of acrylic-based hydrogel antifouling material without volatile organic compounds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370907A (en) * 2001-06-19 2002-12-24 Japan Science & Technology Corp Antifouling agent against underwater noxious attached organism
WO2003067990A1 (en) * 2002-02-18 2003-08-21 Hokkaido Technology Licensing Office Co., Ltd. Marine growth preventive agent
JP2004525935A (en) * 2001-03-27 2004-08-26 バイエル アクチェンゲゼルシャフト Alkylamine derivatives as antifouling agents
WO2006035891A1 (en) * 2004-09-30 2006-04-06 National University Corporation Tokyo University Of Agriculture And Technology Isonitriles and antifouling agents against the adhesion of aquatics
JP2006193672A (en) * 2005-01-17 2006-07-27 Hiroo Iwata Paint for preventing adhesion of aquatic life

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551424A (en) * 1991-08-28 1993-03-02 Hitachi Chem Co Ltd Production of graft copolymer, slightly water-soluble resin composition and coating using the same
JP2002348536A (en) * 2001-05-28 2002-12-04 Nippon Paint Co Ltd Antifouling coating composition and coating film of the same
JP4476579B2 (en) * 2003-07-16 2010-06-09 洋治 平沢 Antifouling coating to which aquatic organisms do not adhere, antifouling object using the same, and antifouling paint for obtaining it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525935A (en) * 2001-03-27 2004-08-26 バイエル アクチェンゲゼルシャフト Alkylamine derivatives as antifouling agents
JP2002370907A (en) * 2001-06-19 2002-12-24 Japan Science & Technology Corp Antifouling agent against underwater noxious attached organism
WO2003067990A1 (en) * 2002-02-18 2003-08-21 Hokkaido Technology Licensing Office Co., Ltd. Marine growth preventive agent
WO2006035891A1 (en) * 2004-09-30 2006-04-06 National University Corporation Tokyo University Of Agriculture And Technology Isonitriles and antifouling agents against the adhesion of aquatics
JP2006193672A (en) * 2005-01-17 2006-07-27 Hiroo Iwata Paint for preventing adhesion of aquatic life

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109855A1 (en) * 2009-03-24 2010-09-30 国立大学法人北海道大学 Antifouling agent for preventing adhesion of aquatic pests
JPWO2010109855A1 (en) * 2009-03-24 2012-09-27 国立大学法人北海道大学 Antifouling agent against underwater harmful organisms
JP2013518877A (en) * 2010-02-02 2013-05-23 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Functionalized antifouling compounds and uses thereof
WO2014142035A1 (en) * 2013-03-13 2014-09-18 株式会社エステン化学研究所 Antifouling coating film with low frictional resistance with water or seawater
CN105209562A (en) * 2013-03-13 2015-12-30 株式会社埃斯腾化学研究所 Antifouling coating film with low frictional resistance with water or seawater
JPWO2014142035A1 (en) * 2013-03-13 2017-02-16 株式会社エステン化学研究所 Antifouling coating with low frictional resistance against water or seawater
JP2019048947A (en) * 2017-09-11 2019-03-28 三菱ケミカル株式会社 Polymer for antifouling coating, resin composition, antifouling coating, coated film, manufacturing method of polymer for antifouling coating, and antifouling material
CN110358006A (en) * 2019-05-24 2019-10-22 中国科学院化学研究所 A kind of hydrogel and its preparation method and application can be used for marine anti-pollution
CN110358006B (en) * 2019-05-24 2020-10-27 中国科学院化学研究所 Hydrogel for marine antifouling and preparation method and application thereof
JP2021024988A (en) * 2019-08-07 2021-02-22 日東化成株式会社 Anti-fouling coating composition
JP7321510B2 (en) 2019-08-07 2023-08-07 日東化成株式会社 Antifouling paint composition
CN114014971A (en) * 2021-11-25 2022-02-08 中国海洋大学 Preparation method and application of acrylic-based hydrogel antifouling material without volatile organic compounds

Also Published As

Publication number Publication date
JPWO2009104257A1 (en) 2011-06-16
JP5569677B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5569677B2 (en) Antifouling film to which aquatic organisms do not adhere, means for obtaining antifouling film and use thereof
KR101030511B1 (en) Stain-proof coating composition, method for production of the composition, stain-proof coating film formed by using the composition, coated article having the coating film on the surface, and stain-proofing treatment method for forming the coating film
US7598299B2 (en) Anti-fouling compositions comprising a polymer with salt groups
JP6464509B2 (en) Antifouling coating with low frictional resistance against water or seawater
JP4695390B2 (en) Acid-capped quaternized polymers and compositions comprising such polymers
CA2467386A1 (en) Triarylsilyl(meth)acryloyl-containing polymers for marine coating compositions
TW201728698A (en) Coating composition for substrates immersed in water
KR100556016B1 (en) Antifouling coatings
JP4476579B2 (en) Antifouling coating to which aquatic organisms do not adhere, antifouling object using the same, and antifouling paint for obtaining it
US20120010342A1 (en) Antifouling coating composition, antifouling coating film formed by use of the composition, coated object having the coating film thereon, and method of antifouling treatment by forming the coating film
WO2013183637A1 (en) Resin composition for anti-fouling coating material, anti-fouling coating material, and anti-fouling film
US5332430A (en) Use of thiadiazole compounds as an antifouling active ingredient
JP4154344B2 (en) Coating composition and copolymer
JP5424575B2 (en) Coating composition and copolymer
JP4846093B2 (en) Method for producing metal-containing copolymer
JP4154345B2 (en) Coating composition and copolymer
JP2833493B2 (en) Antifouling coating material
JP5497351B2 (en) Method for producing metal-containing copolymer for antifouling paint and antifouling paint composition
JP2000290317A (en) Ammonium-tetraarylborate polymer, its production, and underwater antifouling agent containing it
JP2000297118A (en) Trial borane-heterocyclic amine compound, triaryl borane-heterocyclic amine-based (co)polymer, manufacture and application thereof
JP6354825B2 (en) Metal-containing copolymer for antifouling paint and antifouling paint composition
JP5212679B2 (en) Biofouling prevention paint
WO2022186028A1 (en) Antifouling coating material composition
JP3161005B2 (en) Resin composition for antifouling paint
WO2022215600A1 (en) Antifouling coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711684

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009554163

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08711684

Country of ref document: EP

Kind code of ref document: A1