JP2006193672A - Paint for preventing adhesion of aquatic life - Google Patents

Paint for preventing adhesion of aquatic life Download PDF

Info

Publication number
JP2006193672A
JP2006193672A JP2005008498A JP2005008498A JP2006193672A JP 2006193672 A JP2006193672 A JP 2006193672A JP 2005008498 A JP2005008498 A JP 2005008498A JP 2005008498 A JP2005008498 A JP 2005008498A JP 2006193672 A JP2006193672 A JP 2006193672A
Authority
JP
Japan
Prior art keywords
paint
adhesion
functional group
reactive functional
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005008498A
Other languages
Japanese (ja)
Inventor
Hiroo Iwata
博夫 岩田
Masa Miyake
雅 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Stent Technology Co Ltd
Original Assignee
Japan Stent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Stent Technology Co Ltd filed Critical Japan Stent Technology Co Ltd
Priority to JP2005008498A priority Critical patent/JP2006193672A/en
Publication of JP2006193672A publication Critical patent/JP2006193672A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a paint for preventing adhesion of aquatic life, effective for steadily preventing the adhesion of aquatic life such as alga, shellfish and crustaceans adhering to the bottom of ships, water supplying facilities of power plants and factories and fishing gears contacting with water of rivers, lakes and ocean to cause the increase of water flow resistance and the staining of the surface and releasing little chemical substances supposed to give adverse effect on nature such as environmental pollution. <P>SOLUTION: The paint for preventing the adhesion of aquatic life is composed mainly of a gelatinous polymer of a polyacrylic acid derivative obtained by the copolymerization of a monomer containing a reactive functional group. The paint chemically inhibits the adhesion of proteins derived from organisms, and changes the surface structure of the polymer at the micro level within the variation range of outdoor water temperature (about -5°C to +40°C) to physically prevent the adhesion and solidification of alga, shellfish and crustacean by so-called shake-off effect. Furthermore, the paint exhibits high peeling resistance by reacting with a reactive functional group on the surface to be coated with the paint. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、河川、湖沼、海洋等の水に接する面に対して藻類や貝類、甲殻類等の水中生物が付着・固定化することを防止する塗料に関する。 The present invention relates to a coating material that prevents aquatic organisms such as algae, shellfish, and crustaceans from adhering to and fixing on surfaces in contact with water such as rivers, lakes, and the ocean.

船舶等の船底、原子力・火力発電所や臨海コンビナート等の冷却水を取り込む送水設備、養殖網、漁具、桟橋、ドック等(以下、水中構造物と称する)の河川、湖沼、海洋の水に接する面には、藻類、貝類、甲殻類等が時の経過と共に付着、徐々に成長・固着し、その増加と共に水流抵抗増大および汚損の原因となる。船舶の場合には航行時の水に対する摩擦抵抗のため、航行速度の低下、燃料費の増加という状況に至り、発電所の送水設備の場合には、冷却水流の不具合による発電効率の低下を招くことになり、最悪の場合重大な事故の原因となり得る。しかしながら、水中構造物の水に接する面に一旦付着〜固着した水中生物を定期的に物理的に除去することは一般に容易ではない。 In contact with rivers, lakes, and marine water of ship bottoms, water supply facilities that take in cooling water such as nuclear and thermal power plants and seaside complexes, aquaculture nets, fishing gear, piers, docks, etc. (hereinafter referred to as underwater structures) On the surface, algae, shellfish, crustaceans, etc. adhere, gradually grow and stick with the passage of time, and as they increase, they cause increased water resistance and fouling. In the case of ships, the frictional resistance against water during navigation leads to a decrease in navigation speed and an increase in fuel costs. In the case of water transmission equipment at power plants, the power generation efficiency is reduced due to a malfunction of the cooling water flow. In the worst case, it can cause a serious accident. However, it is generally not easy to periodically physically remove the aquatic organisms that have once adhered to the surface of the underwater structure that contacts the water.

そこでこの清掃作業を軽減するため、忌避化学物質の溶出や塗料成分の一部水溶化等により、それら水中生物の付着を防止する塗料が開発され、市場に提供されてきた。 Therefore, in order to reduce this cleaning work, paints that prevent adhesion of these underwater organisms have been developed and provided to the market by elution of repellent chemical substances and partial water-solubilization of paint components.

水中生物の付着防止のため、従来用いられていた塗料は、水銀化合物や銅化合物、ヒ素化合物、有機スズ系化合物などの生理活性成分を添加したものであった。しかし、これらの化合物は本来的に生態系に対して毒性を有するものであり、また環境ホルモンとしての作用を疑われているものもあって、微量とは言え、将来の地球環境への悪影響が少なからず懸念されるものである。加えて、その水中生物の付着防止効果は充分な長期耐用性のあるものとは言えず、より安全で効果が長期間継続する水中生物付着防止塗料の提供が望まれていた。 In order to prevent the adhesion of aquatic organisms, conventionally used paints are those to which physiologically active components such as mercury compounds, copper compounds, arsenic compounds and organotin compounds are added. However, these compounds are inherently toxic to ecosystems, and some of them are suspected of acting as environmental hormones. There are some concerns. In addition, the effect of preventing the adhesion of underwater organisms cannot be said to have sufficient long-term durability, and it has been desired to provide an underwater organism adhesion prevention coating that is safer and has a long-lasting effect.

最近の科学技術文献においては、水中生物付着防止のための新しい方法として、N−イソプロピルアクリルアミド(NIPAAm)を基材表面にラジカル重合させることにより、生物皮膜(バイオフィルム)形成を防止する技術が公表されている。下記文献等(非特許文献1、非特許文献2)がそれらであり、各種生体留置基材や水中構造物、船底等への適用可能性についても記述がある。 In recent scientific and technical literature, as a new method for preventing underwater biological adhesion, a technique for preventing the formation of a biofilm (biofilm) by radical polymerization of N-isopropylacrylamide (NIPAAm) on the substrate surface is announced. Has been. The following documents (Non-Patent Document 1 and Non-Patent Document 2) are those, and there is a description about the applicability to various indwelling base materials, underwater structures, ship bottoms, and the like.

しかしながら、これら科学技術文献において記述された方法では、プラズマ重合法のような特殊な反応環境において基材が作成され、理想的な模擬生態系環境に対してデータが観測されているのみである。このような方法は小さな反応スケールの実験室的環境では実現し得ても、工業的なスケールで産業上の実用に供することは不可能である。 However, in the methods described in these scientific and technical literatures, a substrate is created in a special reaction environment such as a plasma polymerization method, and data is only observed for an ideal simulated ecosystem environment. Although such a method can be realized in a laboratory environment with a small reaction scale, it cannot be used in industrial practice on an industrial scale.

また、N−イソプロピルアクリルアミドを主成分とする重合物が、タンパク質類の付着を化学的に忌避する性質があることは、他の文献においても示されているが(非特許文献3)、ここでもプラズマ重合法のような特殊な反応条件で作成された試料について検討されたのみであり、塗料用途のような産業上の利用に適用され得る技術として提供されたものではない。 In addition, it has been shown in other literature that a polymer containing N-isopropylacrylamide as a main component has a property of chemically repelling the adhesion of proteins (Non-Patent Document 3). Samples prepared under special reaction conditions such as the plasma polymerization method have only been examined, and are not provided as techniques that can be applied to industrial applications such as paint applications.

また、特開平11−293183号公報(特許文献1)に見られるように、シリコーングラフトアクリル樹脂等の低表面エネルギー化合物を活用した水中生物付着防止塗料も提案されているが、このものは下塗り塗膜と上塗り塗膜との間に剥離現象が発生しやすい等の問題点を有していた。 In addition, as seen in Japanese Patent Application Laid-Open No. 11-293183 (Patent Document 1), an underwater organism adhesion preventing paint using a low surface energy compound such as a silicone graft acrylic resin has also been proposed. There was a problem that a peeling phenomenon easily occurred between the film and the top coat film.

特開平11−293183号公報Japanese Patent Laid-Open No. 11-293183 Lower critical solubility temperature materials as biofouling release agents. Ista, L. K.; Lopez, G. P. Departments of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM, USA. Journal of Industrial Microbiology & Biotechnology (1998), 20(2), 121-125.Lower critical solubility temperature materials as biofouling release agents.Ista, LK; Lopez, GP Departments of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM, USA.Journal of Industrial Microbiology & Biotechnology (1998), 20 (2), 121-125. Surface-grafted, environmentally sensitive polymers for biofilm release. Ista, Linnea K.; Perez-Luna, Victor H.; Lopez, Gabriel P.. Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, NM, USA. Applied and Environmental Microbiology (1999), 65(4), 1603-1609.Surface-grafted, environmentally sensitive polymers for biofilm release.Ista, Linnea K .; Perez-Luna, Victor H .; Lopez, Gabriel P..Department of Chemical and Nuclear Engineering, The University of New Mexico, Albuquerque, NM, USA. Applied and Environmental Microbiology (1999), 65 (4), 1603-1609. Hirata, Isao; Okazaki, Masayuki; Iwata, Hiroo. Department of Biomaterial Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan. Polymer (2004), 45(16), 5569-5578.Hirata, Isao; Okazaki, Masayuki; Iwata, Hiroo.Department of Biomaterial Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan. Polymer (2004), 45 (16), 5569-5578.

本発明の技術的課題は、このような問題に着目し、水中構造物の水に接する面に藻類、貝類、甲殻類などが付着するのを長期にわたって防止することが可能であり、かつ環境汚染等自然への悪影響を与える恐れのある化学物質の放出がほとんど無い、耐剥離性に優れた、産業上の実用性が高い水中生物付着防止塗料を実現することにある。 The technical problem of the present invention pays attention to such a problem, and it is possible to prevent algae, shellfish, crustaceans, etc. from adhering to the surface of the underwater structure in contact with water over a long period of time, and to prevent environmental pollution. It is to realize an underwater organism adhesion prevention coating that has almost no release of chemical substances that may adversely affect nature, such as excellent release resistance, and high industrial practicality.

本発明者らは、反応性官能基含有モノマーを共重合させたポリアクリル酸誘導体ゲル状重合物を用いることにより、上記の課題が解決されることを見出し、本発明に至った。すなわち本発明は、反応性官能基含有モノマーを共重合させたポリアクリル酸誘導体ゲル状重合物を主成分として含有することを特徴とする水中生物付着防止塗料を提供する。 The present inventors have found that the above problems can be solved by using a polyacrylic acid derivative gel polymer obtained by copolymerizing a reactive functional group-containing monomer, and have reached the present invention. That is, the present invention provides an underwater organism adhesion preventing coating characterized by containing a polyacrylic acid derivative gel polymer obtained by copolymerizing a reactive functional group-containing monomer as a main component.

水中構造物などに藻類、貝類、甲殻類が付着する仕組みの初期段階は、まず表面に水中のタンパク質等の有機物が吸着し、これにバクテリアが付着して増殖、水中の固形物と共にスライムと呼ばれる生物皮膜層(バイオフィルム)が形成されることから始まるとされる。これら水中構造物材料面の生物皮膜層を培地として、プランクトンサイズの水中生物の幼生が付着し、時間の経過と共に成長することによって水流抵抗増大および汚損が引き起こされると考えられる。本発明におけるポリアクリル酸誘導体ゲル状重合物は、タンパク質類が本来的に付着しにくい性質を有するため、その初期段階を化学的に防止することが可能である。 The initial stage of the mechanism for algae, shellfish, and crustaceans to adhere to underwater structures is first adsorbed with organic substances such as proteins in the water on the surface, and bacteria attach to them to grow, called slime together with solids in water It is said that it starts from the formation of a biofilm layer (biofilm). It is considered that plankton-sized aquatic organism larvae adhere to these biofilm layers on the surface of the underwater structure material and grow with time, resulting in increased water resistance and fouling. Since the polyacrylic acid derivative gel polymer in the present invention has the property that proteins are inherently difficult to adhere, the initial stage can be chemically prevented.

また、同ゲル状重合物は、反応性官能基含有モノマーの共重合によって導入された反応性官能基がポリマー間で3次元架橋されていることにより実用上必要かつ充分な機械的強度と同時に、ハイドロゲル構造に由来する柔軟かつ可変性の物性を保有し、このためタンパク成分の付着や水中生物の幼生付着という物理的な現象を抑制することも可能である。さらに、同ゲル状重合物は、反応性官能基含有モノマーの共重合によって導入された反応性官能基が塗布面に存在する官能基と反応して塗布面に強固に結合し、優れた耐剥離性を示すことができる。 In addition, the gel-like polymer has a mechanical strength that is practically necessary and sufficient because the reactive functional group introduced by copolymerization of the reactive functional group-containing monomer is three-dimensionally crosslinked between the polymers. It possesses flexible and variable physical properties derived from the hydrogel structure, and therefore it is also possible to suppress physical phenomena such as adhesion of protein components and larvae of aquatic organisms. Furthermore, the gel-like polymer reacts with the functional group present on the coated surface by the reactive functional group introduced by the copolymerization of the reactive functional group-containing monomer, and binds firmly to the coated surface, resulting in excellent peeling resistance. Can show gender.

本発明の塗料に用いる、反応性官能基含有モノマーを共重合させたポリアクリル酸誘導体ゲル状重合物としては、N−イソプロピルアクリルアミドを主成分(50モル%以上)とするポリアクリル酸誘導体ゲル状重合物が特に有効である。このゲル状重合物は、生物由来のタンパク質類の付着を化学的に忌避する性質が優れ(前記、非特許文献3)、水中生物付着防止塗料の主成分として用いる場合、自然環境への悪影響が懸念される徐放性生物忌避化学物質を含有させる必要が無い点からも優れた特徴を有する。 As a polyacrylic acid derivative gel polymer obtained by copolymerizing a reactive functional group-containing monomer for use in the paint of the present invention, a polyacrylic acid derivative gel containing N-isopropylacrylamide as a main component (50 mol% or more) is used. Polymers are particularly effective. This gel-like polymer has an excellent property of chemically repelling the adhesion of biological proteins (Non-Patent Document 3), and when used as a main component of an underwater biological adhesion-preventing paint, it has an adverse effect on the natural environment. It also has excellent characteristics from the point that it is not necessary to contain the sustained-release biological repellent chemical substance concerned.

また、このN−イソプロピルアクリルアミドを主成分とする重合物は、30℃近辺にゲル構造の転移点を有し、水温の変化に応じてそのミクロ構造を大きく変化させる。これにより、船舶航行時間内の水温の変化、すなわち地球上では寒帯から熱帯にかけての屋外水温の変動範囲内、あるいは昼夜間の屋外水温の変動範囲内(概ね−5℃〜40℃)においてその高分子の表面構造がミクロレベルで大きく変化して、物理的な付着固形化を防止する、いわゆる「振るい落とし」効果を有し、塗料とした場合、水中生物付着防止効果を発揮することが見出された。 Further, this polymer containing N-isopropylacrylamide as a main component has a gel structure transition point in the vicinity of 30 ° C., and changes its microstructure greatly according to the change in water temperature. As a result, the change in water temperature within the ship navigation time, that is, on the earth, within the fluctuation range of the outdoor water temperature from the cold zone to the tropics or within the fluctuation range of the outdoor water temperature during the day and night (approximately -5 ° C to 40 ° C). It has been found that the surface structure of the molecules changes greatly at the micro level and has a so-called “shaking off” effect that prevents physical adhesion solidification. It was done.

本発明において用いるポリアクリル酸誘導体ゲル状重合物は、少なくとも1種類の反応性官能基含有モノマーを共重合させたものであり、この反応性官能基と下塗り面等の表面化学組成の反応性官能基との間に化学的な共有結合を形成することによりすぐれた耐剥離性を発揮することができる。 The polyacrylic acid derivative gel polymer used in the present invention is obtained by copolymerizing at least one type of reactive functional group-containing monomer, and the reactive functional group has a reactive functional group having a surface chemical composition such as an undercoat surface. Excellent peeling resistance can be exhibited by forming a chemical covalent bond with the group.

本発明の塗料に用いるポリアクリル酸誘導体ゲル状重合物における反応性官能基含有モノマーとしては、イソシアナート基(またはその化学的等価体)、グリシジル基等の反応性官能基を有するアクリル系モノマーが有効であるが、中でも2−メタクリロイルオキシエチルイソシアナート(別名2−イソシアナトエチルメタクリレート)、メタクリル酸2−(0−[‘−メチルプロピリデンアミノ]カルボキシアミノ)エチル、アクリル酸グリシジル(別名2,3-エポキシ-1-プロピルアクリレート)、およびメタクリル酸グリシジル(別名2,3-エポキシ-1-プロピルメタクリレート)が特に優れた効果を有することが見出された。これら反応性官能基含有モノマーの共重合量は、ポリアクリル酸誘導体ゲル状重合物を構成するモノマー組成中の、0.1モル%から50モル%の間、より好ましくは1モル%から10モル%の間である。 As the reactive functional group-containing monomer in the polyacrylic acid derivative gel polymer used in the coating material of the present invention, an acrylic monomer having a reactive functional group such as an isocyanate group (or a chemical equivalent thereof) or a glycidyl group is used. Although effective, among them, 2-methacryloyloxyethyl isocyanate (also known as 2-isocyanatoethyl methacrylate), 2- (0-['-methylpropylideneamino] carboxyamino) ethyl methacrylate, glycidyl acrylate (also known as 2, 3-epoxy-1-propyl acrylate) and glycidyl methacrylate (also known as 2,3-epoxy-1-propyl methacrylate) have been found to have particularly good effects. The copolymerization amount of these reactive functional group-containing monomers is between 0.1 mol% and 50 mol%, more preferably 1 mol% to 10 mol, in the monomer composition constituting the polyacrylic acid derivative gel polymer. %.

本発明においては、水に接する部分に塗布される塗料、特に水中生物付着防止塗料として用いられる塗料の成分として反応性官能基含有モノマーを共重合させたポリアクリル酸誘導体ゲル状重合物を用いる。本発明の水中生物付着防止塗料を使用すれば、水中生物の付着を効果的かつ持続的に防止することが可能となり、水流抵抗増大および汚損のいずれをも有効に防止することができる。 In the present invention, a polyacrylic acid derivative gel polymer obtained by copolymerizing a reactive functional group-containing monomer is used as a component of a paint applied to a portion in contact with water, particularly a paint used as an underwater biological adhesion preventing paint. By using the underwater organism adhesion preventing paint of the present invention, it is possible to effectively and continuously prevent the adhesion of underwater organisms, and it is possible to effectively prevent both water resistance increase and fouling.

本発明の塗料の主成分である、反応性官能基含有モノマーを共重合させたポリアクリル酸誘導体ゲル状重合物において、アクリル酸誘導体モノマーと反応性官能基含有モノマーの組成比は、モル比においてアクリル酸誘導体モノマー:反応性官能基含有モノマー=50:50乃至99.9:0.1、より好ましくは、90:10乃至99:1である。 In the polyacrylic acid derivative gel polymer obtained by copolymerizing the reactive functional group-containing monomer, which is the main component of the paint of the present invention, the composition ratio of the acrylic acid derivative monomer and the reactive functional group-containing monomer is in molar ratio. Acrylic acid derivative monomer: Reactive functional group-containing monomer = 50: 50 to 99.9: 0.1, more preferably 90:10 to 99: 1.

さらに、本発明のポリアクリル酸誘導体ゲル状重合物のゲル転移温度および/または物理的性質を改善するために、ゲル状構造を発現させ得る主たるアクリル酸誘導体モノマーの他に、従たる成分のアクリル酸誘導体モノマーを共重合させ、その共重合割合を適宜変動させることも有効な場合がある。かかる目的で使用することができるモノマーは、たとえばアクリル酸、アクリル酸メチル、アクリル酸ブチル、メタクリル酸、メタクリル酸メチル、メタクリル酸2−ヒドロキシエチル、等であるが、これらに限定されるものではない。また、適宜多官能性アクリルモノマーを使用することにより、更に架橋構造を増加し、塗料成分のゲル構造の強化を図ることも可能である。 Furthermore, in order to improve the gel transition temperature and / or physical properties of the polyacrylic acid derivative gel polymer of the present invention, in addition to the main acrylic acid derivative monomer capable of developing a gel-like structure, the acrylic resin as a subordinate component is added. It may be effective to copolymerize the acid derivative monomer and to change the copolymerization ratio as appropriate. Monomers that can be used for this purpose include, but are not limited to, acrylic acid, methyl acrylate, butyl acrylate, methacrylic acid, methyl methacrylate, 2-hydroxyethyl methacrylate, and the like. . In addition, by appropriately using a polyfunctional acrylic monomer, it is possible to further increase the cross-linked structure and reinforce the gel structure of the coating component.

これらのモノマー共重合技術を水中生物付着防止塗料に応用することにより、適用環境の水温に応じた、最適物性の塗料を設計することも可能となる。即ち、平均水温の高い、熱帯、亜熱帯地域用には、ゲル転移温度が25−30℃といった高温タイプを、また平均水温の低い冷帯、寒帯地域ではゲル転移温度が5−10℃といった低温タイプを、さらに温帯地域ではその中間温度のタイプをといったように、環境や適用部位に応じた最適な所望物性を提供し、より優れた水中生物付着防止効果を実現することが可能となる。 By applying these monomer copolymerization techniques to underwater organism adhesion prevention paints, it becomes possible to design paints with optimum physical properties according to the water temperature of the application environment. That is, for tropical and subtropical areas where the average water temperature is high, a high temperature type with a gel transition temperature of 25-30 ° C., and in a cold zone with a low average water temperature, a low temperature type with a gel transition temperature of 5-10 ° C. Furthermore, in the temperate zone, it is possible to provide optimum desired physical properties according to the environment and application site, such as the intermediate temperature type, and to realize a superior effect of preventing underwater organism adhesion.

本発明の塗料は、反応性官能基含有モノマーを共重合させたポリアクリル酸誘導体ゲル状重合物をその主成分(塗膜を形成する主成分)とするが、必要に応じこれに溶剤、希釈剤、顔料、フィラー等の付加的ないし補助的な各種成分を含有させることができる。通常一般的には、アセトン、メチルエチルケトン、テトラヒドロフラン、1,4−ジオキサン、酢酸エチル等、ポリアクリル酸誘導体ゲル状重合物に対する良溶媒(但し、非プロトン系であり、かつ充分に脱水処理がなされたもの)の溶液とし、これを被処理面(すなわち水中構造物等の塗装すべき表面)に塗布する。塗布方法については、ポリマー内部に共重合によって導入された反応性官能基を有するために、塗布以前の段階では乾燥条件下に保管、操作する等の一定の注意を要するが、それ以外は通常の塗料の塗布方法と何ら変わることはない。 The coating material of the present invention has a polyacrylic acid derivative gel polymer obtained by copolymerization of a reactive functional group-containing monomer as its main component (main component for forming a coating film), and if necessary, a solvent or dilution Various additional or auxiliary components such as an agent, a pigment, and a filler can be contained. Usually, a good solvent for polyacrylic acid derivative gel polymer such as acetone, methyl ethyl ketone, tetrahydrofuran, 1,4-dioxane, ethyl acetate, etc. (however, it is aprotic and sufficiently dehydrated. The solution is applied to the surface to be treated (that is, the surface to be painted, such as an underwater structure). As for the coating method, since it has a reactive functional group introduced by copolymerization inside the polymer, certain precautions such as storage and operation under dry conditions are required in the stage before coating, but otherwise it is normal. There is no difference from the coating method.

本発明におけるポリアクリル酸誘導体ゲル状重合物は、ポリマー内部に共重合によって導入された反応性官能基を、塗布される表面に存在する水酸基やアミノ基等の反応性官能基と反応させることにより、耐剥離性に優れた強固な塗布層とすることができるように設計されている。そのため、水中構造物材料が金属等無機物である場合は、あらかじめそれらに対応する水酸基やアミノ基等の反応性官能基を含有するプライマー処理および/または下塗り塗装が施されているか、水中構造物材料が有機高分子系物質である場合には、それらの反応性官能基を有する表面材料であることを確認する必要がある。場合によっては、表面をサンドブラスト等で粗面化し、可能な限り表面積を増加して物理的な接着力を向上させるか、あるいはアルカリまたは酸処理して、化学的な反応活性点を設けておくことが良い塗装結果を生むことがある。 The polyacrylic acid derivative gel polymer in the present invention is obtained by reacting a reactive functional group introduced into the polymer by copolymerization with a reactive functional group such as a hydroxyl group or an amino group present on the surface to be coated. It is designed to be a strong coating layer with excellent peel resistance. Therefore, when the underwater structure material is an inorganic material such as a metal, the primer treatment and / or undercoat coating containing a reactive functional group such as a hydroxyl group or an amino group corresponding to them is applied in advance. When is an organic polymer material, it is necessary to confirm that it is a surface material having those reactive functional groups. In some cases, the surface is roughened by sandblasting, etc., and the surface area is increased as much as possible to improve the physical adhesion, or the reaction site is chemically treated with alkali or acid treatment. May produce good paint results.

塗装面の膜厚は、特に限定されないが、水中生物の付着防止効果をよりよく発現させるためには、1ミクロン以上、好ましくは10ミクロン以上であることが望まれる。ただし、これはゲル構造のミクロレベルの温度による転移現象に際して、厚みがより薄い状態の厚さ(通常は、高温側)である。また、あまり厚過ぎても不経済であるばかりでなく、機械的な摩擦等によりマクロレベルの(大きな)粗面が形成され、本発明に特徴的な化学的・物理的な水中生物付着防止機能が正常に発揮されない場合が予想されるため、避けるべきである。従ってゲル転移温度の高温側(より厚みが小さい側)において、厚さ1ミリメートル以下であることを推奨する。 The film thickness of the painted surface is not particularly limited, but it is desired to be 1 micron or more, preferably 10 microns or more in order to better exhibit the effect of preventing the adhesion of aquatic organisms. However, this is a thickness (usually on the high temperature side) where the thickness is thinner in the transition phenomenon due to the micro-level temperature of the gel structure. Moreover, not only is it too thick, it is not economical, but a macro-level (large) rough surface is formed by mechanical friction or the like, and the chemical and physical underwater biological adhesion prevention characteristic of the present invention is characteristic. Should be avoided because it is expected that it will not work properly. Therefore, it is recommended that the thickness be 1 mm or less on the high temperature side (the smaller thickness side) of the gel transition temperature.

本発明におけるポリアクリル酸誘導体ゲル状重合物の塗装効果をより確実なものとするために、塗装面の乾燥処理を兼ねて、50℃以上200℃以下の乾燥ガス(空気でも可能)を吹き付けるか、あるいは同程度の加熱効果のある遠赤外線照射等の加熱処理を行い、反応性官能基と下塗り表面上の官能基との反応による結合を促進し、接着効果を高めることも推奨される。 In order to make the coating effect of the polyacrylic acid derivative gel polymer in the present invention more reliable, a dry gas of 50 ° C. or higher and 200 ° C. or lower is blown also as a drying treatment of the coated surface. Alternatively, it is also recommended that heat treatment such as far-infrared irradiation having a similar heating effect is performed to promote the bonding by the reaction between the reactive functional group and the functional group on the surface of the undercoat, thereby enhancing the adhesion effect.

以下に本発明の具体的な実施態様を記述するが、本発明の内容はこれに限定されるものではない。 Specific embodiments of the present invention are described below, but the contents of the present invention are not limited thereto.

N−イソプロピルアクリルアミド(NIPAAm) と2−メタクリロイルエチルイソシアネート(商品名:KarenzMOI[昭和電工])(MOI)との98.1:1.9の共重合体ポリ(NIPAAm−co−MOI)をラジカル重合にて作製した。このときKarenzMOI中のイソシアネートの加水分解が起こらないように、重合時に用いる溶媒(1,4−ジオキサン)は十分脱水し、さらに加熱を必要としないレドックス系の重合開始剤(過酸化ベンゾイル−ジメチルアニリン)を用いた。 Radical polymerization of 98.1: 1.9 copolymer poly (NIPAAm-co-MOI) of N-isopropylacrylamide (NIPAAm) and 2-methacryloylethyl isocyanate (trade name: KarenzMOI [Showa Denko]) (MOI) It was produced in. At this time, in order to prevent hydrolysis of isocyanate in KarenzMOI, the solvent (1,4-dioxane) used in the polymerization is sufficiently dehydrated and a redox polymerization initiator (benzoyl peroxide-dimethylaniline) that does not require heating. ) Was used.

3×3cmの厚さ300μmのナイロンフィルムを2規定の水酸化ナトリウム水溶液に室温で3時間浸漬して、フィルム表面の加水分解を行った。この表面に10w/v%のポリ(NIPAAm−co−MOI)の1,4−ジオキサン溶液を300μl滴下し、風乾した。これを3回繰り返した後、50℃で2時間加熱することでポリ(NIPAAm−co−MOI)の架橋薄膜を形成させた。この架橋薄膜の乾燥状態での厚さは25μmであった。 A 3 × 3 cm 300 μm thick nylon film was immersed in a 2N aqueous sodium hydroxide solution at room temperature for 3 hours to hydrolyze the film surface. On this surface, 300 μl of a 10-w / v% poly (NIPAAm-co-MOI) 1,4-dioxane solution was dropped and air-dried. After repeating this three times, a crosslinked thin film of poly (NIPAAm-co-MOI) was formed by heating at 50 ° C. for 2 hours. The thickness of the crosslinked thin film in a dry state was 25 μm.

N−イソプロピルアクリルアミド(NIPAAm)とメタクリル酸2−(0−[‘−メチルプロピリデンアミノ]カルボキシアミノ)エチル(商品名:KarenzMOI−BM[昭和電工])(MOIBM)との98.4:1.6の共重合体ポリ(NIPAAm−co−MOIBM)をラジカル重合にて作製した。2.5×2.5cmのガラス基板上の金薄膜上に11−メルカプト−1−ウンデカノールの自己組織化膜を形成させ、この表面に2.0w/v%のポリ(NIPAAm−co−MOIBM)のアセトン溶液を300μl滴下し、さらに150℃で90分加熱することでポリ(NIPAAm−co−MOIBM)の架橋薄膜を形成させた。この架橋薄膜の乾燥状態での厚さは2μmであった。 98.4: 1. Of N-isopropylacrylamide (NIPAAm) and 2- (0-['-methylpropylideneamino] carboxyamino) ethyl methacrylate (trade name: KarenzMOI-BM [Showa Denko]) (MOIBM). 6 copolymer poly (NIPAAm-co-MOIBM) was prepared by radical polymerization. A self-assembled film of 11-mercapto-1-undecanol was formed on a gold thin film on a 2.5 × 2.5 cm glass substrate, and 2.0 w / v% poly (NIPAAm-co-MOIBM) was formed on this surface. 300 μl of an acetone solution was added dropwise and heated at 150 ° C. for 90 minutes to form a crosslinked thin film of poly (NIPAAm-co-MOIBM). The thickness of this crosslinked thin film in a dry state was 2 μm.

N−イソプロピルアクリルアミド(NIPAAm) とメタクリル酸グリシジル(2,3-エポキシ-1-プロピルメタクリレート)(GMA)との99:1の共重合体ポリ(NIPAAm−co−GMA)をラジカル重合にて作製した。溶媒は1,4−ジオキサン、重合触媒は過酸化ベンゾイル、反応条件は80℃、2時間であった。 A 99: 1 copolymer poly (NIPAAm-co-GMA) of N-isopropylacrylamide (NIPAAm) and glycidyl methacrylate (2,3-epoxy-1-propyl methacrylate) (GMA) was prepared by radical polymerization. . The solvent was 1,4-dioxane, the polymerization catalyst was benzoyl peroxide, and the reaction conditions were 80 ° C. and 2 hours.

3×3cmの厚さ300μmのナイロンフィルムを2規定の水酸化ナトリウム水溶液に室温で3時間浸漬して、フィルム表面の加水分解を行った。この表面に10w/v%のポリ(NIPAAm−co−GMA)の1,4−ジオキサン溶液を300μl滴下し、風乾した。これを3回繰り返した後、120℃で3時間加熱することでポリ(NIPAAm−co−GMA)の架橋薄膜を形成させた。このポリNIPAAmの架橋薄膜の乾燥状態での厚さは20μmであった。 A 3 × 3 cm 300 μm thick nylon film was immersed in a 2N aqueous sodium hydroxide solution at room temperature for 3 hours to hydrolyze the film surface. On this surface, 300 μl of a 10-w / v% poly (NIPAAm-co-GMA) 1,4-dioxane solution was dropped and air-dried. After repeating this three times, a crosslinked thin film of poly (NIPAAm-co-GMA) was formed by heating at 120 ° C. for 3 hours. The thickness of this crosslinked polyNIPAAm thin film in a dry state was 20 μm.

実施例1、実施例2、実施例3それぞれの塗装済みフィルムまたはガラス基板と、未塗装のナイロンフィルムを海水(岡山県玉野市付近にて採取)に浸漬し、その容器を気温変動のある環境(屋外簡易ビニールハウス内、日中30−35度、夜間20−25度)に放置し、経過を観察した。浸漬開始から1ヶ月経過した時点で、既に未塗装のナイロンフィルムには緑色の藻類が充分視認できるほどに付着していたが、ポリNIPAAm塗装フィルム面にはほとんど付着生物は観察されなかった。その後、6ヶ月経過した時点でも実施例1、実施例2、実施例3それぞれのフィルム及び基板には付着生物の形成は観察されなかった。
The coated film or glass substrate of Example 1, Example 2, and Example 3 and an unpainted nylon film are immersed in seawater (collected in the vicinity of Tamano City, Okayama Prefecture), and the container has an environment with temperature fluctuations. It was allowed to stand (in a simple outdoor greenhouse, 30-35 degrees during the day, 20-25 degrees at night), and the progress was observed. At the time when one month passed from the start of immersion, green algae were already attached to the uncoated nylon film so that the green algae were sufficiently visible, but hardly any attached organisms were observed on the poly-NIPAAm coated film surface. Thereafter, even when 6 months passed, formation of attached organisms was not observed on the films and substrates of Example 1, Example 2, and Example 3.

Claims (5)

反応性官能基含有モノマーを共重合させたポリアクリル酸誘導体ゲル状重合物を主成分として含有することを特徴とする水中生物付着防止塗料。 An underwater bioadhesion-preventing paint comprising, as a main component, a polyacrylic acid derivative gel polymer obtained by copolymerizing a reactive functional group-containing monomer. ポリアクリル酸誘導体ゲル状重合物が、その構成モノマー単位としてN−イソプロピルアクリルアミドを50モル%以上含有する重合物であることを特徴とする請求項1に記載の水中生物付着防止塗料。 2. The underwater organism adhesion preventing paint according to claim 1, wherein the polyacrylic acid derivative gel polymer is a polymer containing 50 mol% or more of N-isopropylacrylamide as a constituent monomer unit. 反応性官能基含有モノマーの一つが、2−メタクリロイルオキシエチルイソシアナートであることを特徴とする請求項1または請求項2に記載の水中生物付着防止塗料。 The underwater organism adhesion preventing paint according to claim 1 or 2, wherein one of the reactive functional group-containing monomers is 2-methacryloyloxyethyl isocyanate. 反応性官能基含有モノマーの一つが、メタクリル酸2−(0−[‘−メチルプロピリデンアミノ]カルボキシアミノ)エチルであることを特徴とする請求項1または請求項2に記載の水中生物付着防止塗料。 One of the reactive functional group-containing monomers is 2- (0-['-methylpropylideneamino] carboxyamino) ethyl methacrylate, and prevents the adhesion of underwater organisms according to claim 1 or 2. paint. 反応性官能基含有モノマーの一つが、アクリル酸グリシジルまたはメタクリル酸グリシジルであることを特徴とする請求項1または請求項2に記載の水中生物付着防止塗料。
The underwater organism adhesion preventing paint according to claim 1 or 2, wherein one of the reactive functional group-containing monomers is glycidyl acrylate or glycidyl methacrylate.
JP2005008498A 2005-01-17 2005-01-17 Paint for preventing adhesion of aquatic life Pending JP2006193672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008498A JP2006193672A (en) 2005-01-17 2005-01-17 Paint for preventing adhesion of aquatic life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008498A JP2006193672A (en) 2005-01-17 2005-01-17 Paint for preventing adhesion of aquatic life

Publications (1)

Publication Number Publication Date
JP2006193672A true JP2006193672A (en) 2006-07-27

Family

ID=36799997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008498A Pending JP2006193672A (en) 2005-01-17 2005-01-17 Paint for preventing adhesion of aquatic life

Country Status (1)

Country Link
JP (1) JP2006193672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104257A1 (en) * 2008-02-20 2009-08-27 国立大学法人北海道大学 Antifouling coating film free from attachment of aquatic organisms, method for obtaining the antifouling coating film and utilization of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104257A1 (en) * 2008-02-20 2009-08-27 国立大学法人北海道大学 Antifouling coating film free from attachment of aquatic organisms, method for obtaining the antifouling coating film and utilization of the same
JP5569677B2 (en) * 2008-02-20 2014-08-13 一般財団法人電力中央研究所 Antifouling film to which aquatic organisms do not adhere, means for obtaining antifouling film and use thereof

Similar Documents

Publication Publication Date Title
Ciriminna et al. Ecofriendly antifouling marine coatings
Yang et al. Polymer brush coatings for combating marine biofouling
Rosenhahn et al. The role of “inert” surface chemistry in marine biofouling prevention
US10544312B2 (en) Marine coatings
Yang et al. Contribution of charges in polyvinyl alcohol networks to marine antifouling
Liu et al. Facile preparation of structured zwitterionic polymer substrate via sub-surface initiated atom transfer radical polymerization and its synergistic marine antifouling investigation
Wan et al. Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release
JP6731500B2 (en) New adhesion prevention technology by RAFT polymerization
Zhou et al. Inhibition of marine biofouling by use of degradable and hydrolyzable silyl acrylate copolymer
Wang et al. Seawater-induced healable underwater superoleophobic antifouling coatings
Del Grosso et al. Managing redox chemistry to deter marine biological adhesion
Wang et al. Fabricating bionic ultraslippery surface on titanium alloys with excellent fouling-resistant performance
Wanka et al. Antifouling properties of dendritic polyglycerols against marine macrofouling organisms
Xu et al. Antifouling coatings of catecholamine copolymers on stainless steel
Tesler et al. Nontoxic liquid-infused slippery coating prepared on steel substrates inhibits corrosion and biofouling adhesion
Basu et al. Laboratory and field testing assessment of next generation biocide-free, fouling-resistant slippery coatings
Zhang et al. Hydrogel-anchored Fe-based amorphous coatings with integrated antifouling and anticorrosion functionality
Gnanasampanthan et al. Amphiphilic Alginate-based layer-by-layer coatings exhibiting resistance against nonspecific protein adsorption and marine biofouling
Eslami et al. Stress-localized durable anti-biofouling surfaces
Xu et al. Slippery-liquid-infused electrostatic flocking surfaces for marine antifouling application
US20120064026A1 (en) Method for preventing and controlling biofouling on marine objects
Lejars et al. Siloxy silylester methacrylate diblock copolymer-based coatings with tunable erosion and marine antifouling properties
JP2006213861A (en) Coating agent for fluid contact surface and material body equipped with coating agent for fluid contact surface
JP2006193672A (en) Paint for preventing adhesion of aquatic life
CN101260262B (en) Antifouling material capable of forming concave-convex micro-structure surface and preparation method thereof