WO2009101737A1 - メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター - Google Patents
メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター Download PDFInfo
- Publication number
- WO2009101737A1 WO2009101737A1 PCT/JP2008/071053 JP2008071053W WO2009101737A1 WO 2009101737 A1 WO2009101737 A1 WO 2009101737A1 JP 2008071053 W JP2008071053 W JP 2008071053W WO 2009101737 A1 WO2009101737 A1 WO 2009101737A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base sequence
- sequence encoding
- peptide
- tag
- protein
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- the present invention provides a protein expression vector with a peptide tag containing a methionine residue, a peptide tag vector containing a methionine residue, an expression vector in which a base sequence encoding a desired protein is introduced into the tag vector, and the expression vector introduced therein It relates to a transformant.
- the present invention also relates to a methionine residue-containing peptide-tagged protein obtained by using the transformant, a method for producing the protein, and a method for recovering and purifying the protein.
- a vector containing a base sequence encoding a protein is introduced into a host cell such as Escherichia coli, yeast, animal cell, etc., the protein is expressed in the obtained transformant, and then the desired protein is separated and purified.
- a host cell such as Escherichia coli, yeast, animal cell, etc.
- the protein is expressed in the obtained transformant, and then the desired protein is separated and purified.
- methods for separating and purifying proteins ion exchange chromatography, reverse phase chromatography, affinity chromatography, etc. are known, but there is still a demand for means for recovering proteins with higher purity and efficiency. .
- a method for separating and purifying a desired protein using a tag peptide is known, and examples of the tag peptide include a histidine tag and a cysteine tag.
- the tag peptide include a histidine tag and a cysteine tag.
- An object of the present invention is to efficiently recover and purify a desired protein using a tag peptide. Another object of the present invention is to obtain a protein to which a peptide tag that can be efficiently recovered and purified is added.
- the present inventors have studied the above problems and found that a desired protein can be efficiently recovered and purified by adding a peptide tag containing a methionine residue to the desired protein. It was also found that the desired protein can be recovered and purified more efficiently by adding a peptide tag containing a methionine residue to the desired protein via a linker.
- the present invention has been completed as a result of further studies based on this finding, and is described below. Item 1.
- a methionine residue-containing peptide-tagged protein expression vector comprising the following (A) to (C): (A) a base sequence encoding a peptide tag containing at least one methionine residue, (B) a promoter sequence (wherein the promoter sequence is connected upstream of the base sequence encoding the peptide tag), and (C) a base sequence encoding a desired protein (where the base sequence encoding the desired protein is connected downstream of the promoter sequence and upstream or downstream of the base sequence encoding the peptide tag) It is connected to the).
- Item 2 A methionine residue-containing peptide-tagged protein expression vector comprising the following (A) to (C): (A) a base sequence encoding a peptide tag containing at least one methionine residue, (B) a promoter sequence (wherein the promoter sequence is connected upstream of the base sequence encoding the peptide tag), and (C) a base sequence encoding a desired protein (where
- a base sequence encoding a protease cleavage recognition site (wherein the base sequence encoding the protease cleavage recognition site is connected between the base sequence encoding the peptide tag and the base sequence encoding the desired protein)
- the expression vector according to Item 1 comprising Item 3.
- a base sequence encoding a linker peptide (wherein the base sequence encoding the linker peptide is connected between the base sequence encoding the peptide tag and the base sequence encoding the desired protein), Item 4.
- a base sequence encoding a protease cleavage recognition site (wherein the base sequence encoding the protease cleavage recognition site is connected between the base sequence encoding the desired protein and the base sequence encoding the linker peptide.
- Item 6. Item 6. The expression vector according to any one of Items 1 to 5, wherein the base sequence encoding the peptide tag contains a base sequence encoding a glycine residue.
- a methionine residue-containing peptide tag vector comprising the following (D) to (F): (D) a base sequence encoding a peptide tag containing at least one methionine residue; (E) a promoter sequence (wherein the promoter sequence is connected upstream of the base sequence encoding the peptide tag), and (F) a cloning site for introducing a base sequence encoding a desired protein (where the cloning site is connected downstream of the promoter sequence and upstream of the base sequence encoding the peptide tag and (Or connected downstream).
- a base sequence encoding a protease cleavage recognition site wherein the base sequence encoding the protease cleavage recognition site is connected between the base sequence encoding the peptide tag and the cloning site;
- the tag vector according to 7. Item 9.
- Item 8. The tag according to Item 7, comprising a base sequence encoding a linker peptide (wherein the base sequence encoding the linker peptide is connected between the base sequence encoding the peptide tag and the cloning site). vector.
- a nucleotide sequence encoding a protease cleavage recognition site (wherein the nucleotide sequence encoding the protease cleavage recognition site is connected between the cloning site and the nucleotide sequence encoding the linker peptide) 9.
- the tag vector according to 9. Item 11.
- a protein expression vector with a methionine residue-containing peptide tag wherein a base sequence encoding a desired protein is introduced into a cloning site connected to the vector according to any one of Items 7 to 12.
- Item 14. Item 14.
- a transformant obtained by introducing the vector according to any one of Items 1 to 6 and 13 into a host cell and transforming it.
- Item 15. Item 15.
- Item 17. A method for recovering a methionine residue-containing peptide-tagged protein comprising a step of recovering the methionine residue-containing peptide-tagged protein obtained in Item 15 using gold magnetic particles.
- a desired protein to which a methionine residue-containing peptide tag is added can be easily obtained in a transformant obtained by introducing this into a host cell. Can be expressed.
- a desired protein to which the methionine residue-containing peptide tag is added is expressed by inserting a base sequence encoding the desired protein into the vector. Can be easily produced.
- the desired protein can be efficiently recovered and used by using gold or even gold magnetic particles. Can be purified.
- the desired protein to which the peptide tag is added further has a linker peptide, whereby the desired protein can be recovered more efficiently.
- the peptide tag and the linker can be easily cleaved and removed from the desired protein by allowing the protease to act. .
- Methionine residue-containing peptide-tagged protein expression vector of the present invention contains (A) at least one methionine residue. At least a base sequence encoding a peptide tag, (B) a promoter sequence, and (C) a base sequence encoding a desired protein.
- the number of amino acid residues of the peptide tag containing at least one methionine residue encoded by the base sequence described in the above (A) is the activity of the expressed desired protein without impairing the expression of the desired protein. It is not limited as long as it has a binding ability with gold without affecting the above.
- the peptide tag consists of 1 to 20 amino acid residues, preferably amino acid residues 2 to 15, more preferably amino acid residues 3 to 9, and still more preferably amino acid residues 5 to 9. Become.
- the methionine residue-containing peptide-tagged protein expression vector includes a base sequence encoding a protease recognition site described later or a base sequence encoding a linker, the peptide tag does not affect the expression thereof.
- the amino acid sequence of the peptide tag has at least one methionine residue, does not impair the expression of the desired protein, does not affect the activity of the expressed desired protein, and has a binding ability with gold. As long as it is a thing, it may be comprised from arbitrary amino acid residues.
- the amino acid sequence of the peptide tag is preferably composed of a methionine residue and a cysteine residue and / or a glycine residue, and more preferably a methionine residue from the viewpoint that the direction of the sulfide group of the methionine residue can be fixed in a certain direction. And a glycine residue.
- the amino acid sequence of the peptide tag is composed of a methionine residue and a cysteine residue
- the amino acid sequence is not limited.
- the number of cysteine residues is preferably less than the number of methionine residues.
- the amino acid sequence of the peptide tag is composed of a methionine residue and a glycine residue
- the amino acid sequence is not limited.
- the methionine residue and the glycine residue may be random.
- Residues may be regularly arranged.
- one or more methionine residues and one or more glycine residues may be alternately arranged in the same number, and one methionine residue and two glycine residues may be present.
- one methionine residue and three glycine residues may be arranged alternately, and the arrangement relationship between the methionine residue and the glycine residue is reversed. May be.
- amino acid sequence of the peptide tag is composed of a methionine residue and a glycine residue
- MMGGM SEQ ID NO: 1 tag 1
- MGGMGGM SEQ ID NO: 2 tag 2
- MGGMGMGGM SEQ ID NO: 3 tag 3
- MMGGMMGGMM SEQ ID NO: 4 tag 4
- MMMGGGMMMGGGMMM SEQ ID NO: 5: tag 5
- amino acid sequence of the peptide tag is appropriately determined by those skilled in the art according to the binding ability between the peptide tag and gold.
- the base sequence described in (A) above consists of a base sequence encoding an amino acid having the aforementioned amino acid residue number and amino acid sequence.
- the peptide tag is composed of 3 to 5 consecutive methionine residues out of the number of amino acid residues and the amino acid sequence. It is limited to other than. That is, when the expression vector does not include a base sequence encoding a linker peptide, the base sequence described in (A) is a base sequence encoding a peptide tag having the number of amino acid residues and the amino acid sequence described above. Of these, those consisting of a base sequence encoding 3 to 5 consecutive methionine residues are not included.
- the base sequence encoding the peptide tag is included in advance in a vector used to construct the expression vector (hereinafter sometimes referred to as a basic vector), this is encoded with the peptide tag. It can be used as a part or all of the base sequence.
- the base sequence encoding the peptide tag previously contained in the basic vector includes a base sequence corresponding to the starting methionine.
- the base sequence encoding the peptide tag contained in the expression vector may be (i) obtained by introducing the base sequence encoding the peptide tag into the basic vector, and (ii) It may be a base sequence encoding the peptide tag previously contained in the basic vector (may include a base sequence encoding the starting methionine), or (iii) a base introduced into the basic vector It may be a base sequence encoding the peptide tag obtained by combining the sequence and a base sequence previously contained in the basic vector.
- the peptide tag expressed by using the expression vector is expressed only from the base sequence introduced into the basic vector, or expressed only from the base sequence previously contained in the basic vector. Alternatively, it is expressed from a base sequence obtained by combining a base sequence introduced into the basic vector and a base sequence previously contained in the basic vector.
- connection position of the promoter sequence in the expression vector is not limited as long as the desired protein to which the peptide tag is added is expressed in the transformant obtained by introducing the expression vector.
- the promoter sequence is connected upstream of the base sequence encoding the peptide tag.
- the base sequence encoding the peptide tag is under the control of the promoter sequence.
- the promoter used here is not limited as long as it is a conventionally known promoter in this field.
- T7lac, T7, araBAD promoters and the like can be mentioned as promoters, which are used when, for example, proteins are expressed in E. coli.
- SV40, CMV, RSV, TK, EF-1 ⁇ promoter and the like can be mentioned, and this is used, for example, when protein is expressed in animal cells.
- Other promoters that can be used include yeast promoters, insect cell promoters, and viral promoters.
- connection position of the base sequence encoding the desired protein in the expression vector is not limited as long as the desired protein to which the peptide tag is added is expressed in the transformant obtained by introducing the expression vector.
- the base sequence encoding the desired protein is connected downstream from the promoter sequence and connected upstream or downstream of the base sequence encoding the methionine tag. Whether the base sequence encoding the desired protein is connected upstream or downstream of the base sequence encoding the peptide tag depends on the nature of the desired protein used, the nature of the host cell, etc. The change is made within a range generally considered in the field.
- a base sequence encoding the desired protein when a base sequence encoding the desired protein is connected downstream of the base sequence encoding the peptide tag, a signal sequence or the like is present at the N-terminal part of the base sequence encoding the desired protein. May be cleaved by the action of an enzyme such as a signal peptidase.
- the base sequence encoding the desired protein is preferably connected downstream from the promoter sequence and connected upstream from the base sequence encoding the peptide tag.
- the base sequence encoding the desired protein is connected under the control of the promoter.
- the type of the desired protein is not limited, and any protein can be used.
- a base sequence encoding a protease cleavage recognition site can be further connected to the expression vector.
- the connecting position of the base sequence encoding the protease cleavage recognition site in the expression vector is, for example, the base sequence encoding the peptide tag and the desired protein in the transformant obtained by introducing the expression vector. Connected between base sequences.
- a base sequence encoding the protease cleavage recognition site is also connected under the control of the promoter.
- the amino acid sequences of the protease cleavage recognition sites include LEVLFQGPG recognized by PreScission (registered trademark) Protease (GE Healthcare Biosciences), DDDDL recognized by enterokinase (Merck), Factor Xa (Promega, Merck) ENLYFQG [EXXYQ (G / S)] recognized by IEGR recognized by Thrombin (Merck, Inc., GE Healthcare Biosciences, etc.), Pro TEV Protease (Promega) Is exemplified.
- the base sequence encoding the protease cleavage recognition site is composed of the base sequence encoding the protease cleavage recognition site described above.
- the base sequence encoding the protease cleavage recognition site introduced into the expression vector may be (i) obtained by introducing the base sequence encoding the protease cleavage recognition site into the basic vector. Or (ii) a base sequence encoding the protease cleavage recognition site previously contained in the basic vector, or (iii) a base sequence introduced into the basic vector and pre-included in the basic vector. It may also be a base sequence encoding the protease cleavage recognition site obtained by combining with a base sequence already prepared.
- a protease When a base sequence encoding a protease cleavage recognition site is introduced into the expression vector, a protease is allowed to act on a desired protein to which a peptide tag to be expressed is added, whereby the added peptide tag is removed from the desired protein. It can be easily cut and removed.
- a base sequence encoding a linker peptide can be further introduced into the expression vector.
- the base sequence encoding the linker peptide is arranged upstream or downstream of the base sequence encoding the peptide tag.
- the base sequence encoding the linker peptide is connected between the base sequence encoding the peptide tag and the base sequence encoding the desired protein.
- the base sequence encoding the linker peptide particularly encodes the base sequence encoding the peptide tag and the protease cleavage recognition site. Connected between base sequences.
- the base sequence encoding the linker peptide is connected under the control of the promoter.
- the number of amino acid residues of the linker peptide does not impair the expression of the peptide tag and the desired protein, does not affect the properties such as the activity of the expressed desired protein, and binds the peptide tag to gold.
- the base sequence encoding the protease cleavage recognition site is further introduced into the expression vector, there is no limitation as long as the expression of the protease cleavage recognition site is not impaired.
- the linker peptide consists of 1 to 50 amino acid residues, preferably consists of amino acid residues 1 to 30, more preferably consists of amino acid residues 12 to 30.
- the amino acid sequence of the linker peptide is not limited as long as it does not hinder the bond between the peptide tag and gold.
- the linker peptide preferably has a rod-like structure, and more preferably forms an ⁇ helix structure or a polyproline helix.
- Examples of the polyproline helix include those described in J. AM. CHEM. SOC. 2007, 129, 873-880.
- the linker peptide still more preferably forms an ⁇ helix structure.
- linker peptide that forms an ⁇ -helix structure examples include general formulas (EAAAK) n, (AAKAA) n, KAAAAKAAAAKAAAAK (SEQ ID NO: 6 linker 1), YGG (KAAAA) nG, Y ((AEAAKA) ⁇ 8 ) F (SEQ ID NO: 7: linker 2) and the like are exemplified.
- (EAAAK) n means that the EAAAK sequence is repeated n times in succession, and n is an arbitrary integer, but n is 2 to 5, preferably 3 to 5, and more preferably 4 To 5, particularly preferably 5.
- the (EAAAK) n is disclosed in, for example, Arai R. et al., Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering, PROTEINS: Structure, Function, and Bioinformatics 57: 829-838 (2004) Has been.
- (AAKAA) n means that the AAKAA sequence is repeated n times continuously, and n is an arbitrary integer, but n is 2 or more, preferably 3 or more, more preferably 4 More preferably, it is 4 to 10, particularly preferably 4 to 7.
- Y ((AEAAKA) ⁇ 8) F means that the AEAAKA sequence is repeated 8 times in succession.
- the base sequence encoding the linker peptide consists of the base sequence encoding the linker peptide described above.
- the base sequence encoding the linker peptide when the base sequence encoding the linker peptide is previously contained in the basic vector used for constructing the expression vector, this is used as the linker sequence. It can be used as a part or all of the base sequence encoding the peptide.
- the base sequence encoding the linker peptide introduced into the expression vector may be (i) obtained by introducing a base sequence encoding the linker peptide into the basic vector, or (ii) ) May be a base sequence encoding the linker peptide previously contained in the basic vector, and (iii) a base sequence introduced into the basic vector, a base sequence previously contained in the basic vector, May be a base sequence encoding the linker peptide obtained by combining.
- the ratio of binding of the peptide tag and gold can be improved, and thus the desired protein can be efficiently recovered and purified.
- the expression vector may be connected to a nucleotide sequence encoding a replication origin, a ribosome binding site generally required for protein expression, and the Green Fluorescent Protein (GFP) gene, luciferase gene, chloram Nucleotide sequences such as phenicol acetyltransferase (CAT) gene, ⁇ -glucuronidase gene, drug resistance gene, etc., and a nucleotide sequence encoding ⁇ -galactosidase (LacZ gene) may be connected. These base sequences are arranged at an arbitrary position of the expression vector according to the purpose.
- GFP Green Fluorescent Protein
- CAT phenicol acetyltransferase
- LacZ gene a nucleotide sequence encoding ⁇ -galactosidase
- the production method of the expression vector is not limited as long as a conventionally known method can be used in the field and a desired expression vector can be obtained.
- the introduction of the base sequence encoding the desired protein into the basic vector is performed by placing a cloning site together with the base sequence encoding the peptide tag on the basic vector and using a restriction enzyme or the like at the cloning site. It may be carried out by introducing a base sequence encoding the protein.
- the introduction of the base sequence encoding the peptide tag into the basic vector is performed by placing a cloning site together with the base sequence encoding the desired protein on the basic vector, and adding a restriction enzyme or the like to the cloning site portion. It may be performed by introducing a base sequence encoding a peptide tag.
- the introduction of the base sequence encoding the peptide tag and the base sequence encoding the desired protein into the basic vector includes the base sequence encoding the peptide tag and the base sequence encoding the desired protein. It may be performed by connecting in advance and introducing this into a basic vector. In this case, introduction of a base sequence encoding a protease cleavage recognition site into a vector and introduction of a base sequence encoding a linker peptide into a vector may be appropriately performed according to a conventionally known method in the art as described above.
- a base sequence encoding the peptide tag, a base sequence encoding a desired protein, a base sequence encoding a protease cleavage recognition site, and a base sequence encoding a linker peptide are connected in advance. May be carried out by introducing into a basic vector.
- the vector (basic vector) used for constructing the expression vector is not limited as long as a desired expression vector can be obtained.
- Examples of the basic vector include vectors that do not contain a promoter such as pUC18 / 19, pBR322, and pBluescript, and vectors that already contain a promoter for protein expression such as pETvector, pCruz expression vector, and pcDNA vector. These vectors may be appropriately selected depending on the intended use within the range generally considered in the field.
- the methionine residue-containing peptide tag vector of the present invention encodes a peptide tag containing (D) at least one methionine residue. It has at least a cloning site for introducing a base sequence, (E) a promoter sequence, and (F) a base sequence encoding a desired protein.
- the base sequence encoding a peptide tag containing at least one methionine residue described as (D) is the same as that described in (A) above.
- connection position of the promoter sequence in the tag vector is not limited as long as a vector having a desired effect is obtained.
- the promoter sequence is connected upstream of the base sequence encoding the peptide tag.
- the base sequence encoding the peptide tag is under the control of the promoter.
- the promoter used here is not limited as long as it is a promoter known in the art, and examples thereof are those described above.
- connection position of the cloning site in the tag vector is not limited as long as a vector having a desired effect is obtained.
- the cloning site is connected downstream of the promoter sequence and upstream and / or downstream of a base sequence encoding the peptide tag.
- the cloning site is connected upstream or downstream of the base sequence encoding the peptide tag will be described later on the protein that can be introduced into the cloning site or the tag vector described later.
- the protease cleavage recognition site, the property of the linker peptide, the properties of the host cell, and the like are appropriately changed, and the change is made within a range generally considered in the art.
- the cloning site when the cloning site is connected downstream of the base sequence encoding the peptide tag and there is a signal sequence or the like at the N-terminal part of the base sequence encoding a protein that can be subsequently introduced into the cloning site, May be cleaved at the N-terminal by the action of an enzyme such as methionine signal peptidase.
- the cloning site is preferably connected upstream of the base sequence encoding the peptide tag.
- the base sequence encoding the protein that can be introduced thereafter is either upstream or downstream, or both It may be introduced into the cloning site.
- the nature of the protein that can be introduced into the cloning site as described above, and further the host cell It is determined appropriately according to the properties and the like.
- the cloning site is connected mainly to introduce a base sequence encoding a desired protein into the tag vector, and this includes, but is not limited to, a multi-cloning site. Therefore, when a base sequence encoding a desired protein is introduced into the cloning site, the base sequence encoding the desired protein is connected under the control of the promoter sequence.
- the type of the desired protein introduced into the cloning site is not limited, and any protein can be used.
- a base sequence encoding a protease cleavage recognition site described later and a base sequence encoding a linker peptide can be introduced into the tag vector.
- a base sequence encoding a protease cleavage recognition site can be further connected to the tag vector.
- the connection position of the base sequence encoding the protease cleavage recognition site in the expression vector is not limited as long as a vector having a desired effect is obtained.
- the base sequence encoding the peptide tag and the cloning site are encoded. Connected between base sequences.
- the base sequence encoding the protease cleavage recognition site is connected under the control of the promoter, and the amino acid sequence encoded by this sequence is as described above. Therefore, the base sequence encoding the protease cleavage recognition site is also as described above.
- a base sequence encoding a linker peptide can be further connected to the tag vector.
- the connection position of the base sequence encoding the linker peptide in the expression vector is not limited as long as a vector having a desired effect is obtained.
- the base sequence encoding the linker peptide is connected between the base sequence encoding the peptide tag and the base sequence encoding the cloning site.
- the tag vector has a base sequence encoding the protease cleavage recognition site
- the base sequence encoding the linker peptide particularly encodes the base sequence encoding the peptide tag and the protease cleavage recognition site. Connected between base sequences.
- the base sequence encoding the linker peptide is under the control of the promoter. Further, the base sequence encoding the linker peptide encodes the amino acid sequence constituting the above-mentioned linker peptide.
- a base sequence generally required for plasmid amplification and protein expression is connected to the tag vector.
- a base sequence encoding a gene such as a GFP gene, a luciferase gene, or a drug resistance gene may be connected, and the base sequence and the introduction site thereof are exemplified as described above.
- These base sequences are connected to any position of the tag vector as long as they do not interfere with suitable expression of a peptide tag, a desired protein to be introduced, a protease cleavage recognition site or a linker peptide.
- a method for producing the tag vector a method known in the art can be used, and it is not limited as long as a desired expression vector is obtained, and can be produced according to a method known in the art.
- examples of the vector (basic vector) used for constructing the tag vector include those described above.
- a base sequence encoding a desired protein can be introduced into the tag vector.
- the nucleotide sequence encoding the desired protein is not limited as long as it is connected under the control of the promoter, but is preferably introduced into the cloning site connected to a tag vector.
- the desired protein is not limited.
- the introduction of the base sequence encoding the desired protein into the tag vector is performed according to a method known in the art. For example, when a base sequence encoding the desired protein is introduced into a cloning site, the base sequence can be introduced at a target position by using a restriction enzyme recognition site contained in the cloning site. .
- a base sequence encoding a peptide tag is added to the N-terminal side or C-terminal side of the base sequence encoding the desired protein.
- the tag vector further has a base sequence encoding a protease cleavage recognition site and / or a base sequence encoding a linker peptide
- the protease cleavage recognition is similarly performed on the base sequence encoding the desired protein.
- a base sequence encoding a peptide tag can be added via a base sequence encoding a site and / or a base sequence encoding a linker peptide.
- a methionine residue-containing protein-tagged protein expression vector can also be obtained by introducing a base sequence encoding a desired protein into the tag vector.
- the transformant of the present invention is introduced into the host cell by introducing the expression vector into a host cell, or after introducing a base sequence encoding a desired protein into the tag vector. Can be obtained.
- the host cell is not limited, and various cells such as bacteria such as E. coli, yeast, insect cells, plant cells, and animal cells can be used. Bacteria and animal cells are preferred.
- introduction of the expression vector or a tag vector into which a base sequence encoding a desired protein has been introduced into a host cell can be performed according to a conventionally known method in this field.
- these vectors can be introduced into Escherichia coli by introducing the heat shock method into a competent cell prepared by the calcium chloride method or rubidium chloride method, or by electroporation by introducing a hole in the cell membrane.
- the method etc. can be used.
- an injection method, a microinjection method, a particle gun method, and a virus method for example, an injection method, a microinjection method, a particle gun method, and a virus method.
- a protein having at least a peptide tag added to the N-terminus or C-terminus can be expressed in the transformant.
- the vector introduced into the host cell further contains a base sequence encoding a protease cleavage recognition site and / or a base sequence encoding a linker peptide
- a protein to which a peptide tag is added can be expressed via a protease cleavage recognition site and / or a linker peptide.
- Method for producing methionine residue-containing peptide-tagged protein comprises the step of expressing a methionine residue-containing peptide-tagged protein in the transformant. It is manufactured by going through. Expression of the methionine residue-containing peptide-tagged protein in the transformant is carried out by culturing the transformant obtained as described above in a medium in which the transformant can grow, and then expressing it as necessary. It is implemented by guiding. For example, when a eukaryotic cell is used as a host, a desired protein can be expressed simply by introducing a vector plasmid into the eukaryotic cell.
- the medium used here and the conditions such as culture time and culture temperature are not limited, and are appropriately determined according to a conventionally known procedure in this field.
- an antibiotic or the like may be added to the medium.
- the expression inducer used, action time, and action temperature are suitably determined according to the conventionally well-known procedure in the said field
- the protein to which the peptide tag is added can be expressed and obtained by the method described in the following examples.
- the peptide tag can also be added by protein splicing using intein (Chembiochem. 2008 Sep 22; 9 (14): 2317-25, Angew Chem Int Ed Engl. 2007; 46 (27): 5234-7), etc. Obtained protein can be obtained. (6) Method for recovering and purifying protein-tagged proteins containing methionine residues
- the transformant in which the tagged protein is expressed is collected using a technique such as centrifugation, and extracted and dissolved using a buffer capable of dissolving the expressed tagged protein.
- a method such as ultrasonic crushing is used as necessary.
- the protein to which the peptide tag is added can be recovered and purified using a substance having an affinity for the peptide tag.
- the peptide tag added to the protein and the gold particles can be combined.
- the obtained binding product between the peptide tag added to the protein and the gold particle is separated and recovered using a substance having a high affinity with the gold particle, for example.
- the gold particles are previously made into a complex with a magnetic metal (hereinafter sometimes referred to as gold magnetic particles).
- gold magnetic particles a magnetic metal
- the peptide-tagged protein expressed as described above becomes a conjugate with gold magnetic particles. Then, the magnetic metal in the combined material is attracted to a magnet or the like, and as a result, the obtained composite can be easily separated and recovered using magnetic force.
- the binding of the peptide tag added to the protein and the gold magnetic particles is performed in a tube, and by bringing a magnet or the like close to the outside of the tube, the gold magnetic particles can be collected around the magnet. it can.
- the combined material can be collected around the magnet. After that, by removing the solution from the tube, the bound product can be easily separated and collected from the solution.
- the solution used when the peptide tag and the gold particle are bonded is not limited as long as the peptide tag and the gold particle added to the protein are bonded and the desired protein is dissolved, for example, Buffers are exemplified.
- the buffer solution include a phosphate buffer solution and a Tris buffer solution.
- the pH of the buffer solution is not limited as long as the peptide tag and the gold particle are bound, and preferably around pH 7 is exemplified.
- the stirring temperature is not limited as long as the peptide tag and the gold particle are bonded to each other and the desired protein is not decomposed, and examples thereof include 4 to 25 ° C.
- the stirring time is not limited in the same manner, and examples thereof include 1 minute or more, preferably 5 to 60 minutes.
- magnetic metal used here is limited as long as it has magnetism, can form a complex with the gold particles, and can exhibit the effect that the combined substance is collected by a magnet or the like by magnetic force.
- magnetic metal oxide fine particles can be exemplified.
- magnetic metal oxide fine particles include fine particles of iron oxide (particularly magnetic oxides mainly composed of Fe 2 O 3 such as magnetite, maghemite, and ferrite), oxide fine particles such as cobalt and nickel, and those metals.
- Preferred examples of the magnetic metal oxide fine particles include ⁇ -Fe 2 O 3 and Fe 3 O 4 .
- the average particle size of the gold particles is not limited as long as the binding between the gold particles and the peptide tag is not hindered, and further the collection by the magnetic force is not hindered.
- the average particle size is preferably 1 to 500 nm. Is about 1-100 nm in average particle size.
- the average particle diameter of the magnetic metal is not limited as long as the gold particles can be bonded or supported without being hindered from binding with the peptide tag, and can be collected by the magnetic force, but the average particle diameter is 1 nm. -1 ⁇ m, preferably an average particle size of about 1-500 nm, more preferably about 1-200 nm, and still more preferably about 1-100 nm.
- the relationship between the size of the gold particles and the magnetic metal is not limited as long as the desired effect can be exhibited.
- the average particle size of the gold particles is A and the average particle size of the magnetic metal is B, 0.01 ⁇ It is desirable that A / B ⁇ 1000, preferably 0.1 ⁇ A / B ⁇ 10.
- the gold particles and magnetic metal can be obtained based on WO 2004/083124, and a composite of gold particles and magnetic metal, that is, gold magnetic particles can be produced according to the above publication.
- the separation of the gold magnetic particles in the combined product separated and collected as described above can be performed using a solution such as a buffer solution.
- a buffer solution is added to the tube from which the solution has been removed, and the peptide tag and the gold magnetic particles are separated in the bound product. Thereafter, as described above, only the magnetic gold particles are collected in the vicinity of the magnet using the magnetic force, and then the solution is recovered. Thereby, only the protein with a peptide tag can be easily separated.
- the buffer solution used here is not limited as long as the peptide tag added to the protein and the gold particles can be separated and the desired protein is not decomposed or insolubilized.
- the solution examples include mercaptoethanol, dithiothreitol, a buffer containing methionine and cysteine, and the like.
- the pH of the solution is not limited in the same manner, and an example is around pH 7.
- the mixing temperature of the bound substance and the buffer is not limited in the same manner, and examples thereof include 4 to 25 ° C., preferably 4 ° C.
- the mixing time is not limited in the same manner, and examples thereof include 5 minutes or more, preferably 15 minutes or more.
- separation of the peptide tag from the desired protein in the recovered peptide-tagged protein can be performed according to a conventionally known method in the field, but the protease cleavage recognition site is easily separated. It is preferably introduced in advance into a vector, a protease is allowed to act on the expressed protease cleavage recognition site and cleaved at the cleavage site.
- the protease cleavage recognition site is as described above.
- Test example 1 A method for constructing a methionine residue-containing peptide-tagged protein expression vector will be described separately for each type of tag region.
- the expression vector constructed in this test has a promoter sequence.
- the vector pET-15b (MERCK / Novagen) capable of protein expression in E. coli was used as the basic vector
- the promoter provided in the basic vector pET-15b was used as the promoter sequence.
- the expression vector constructed in this test has a base sequence encoding a desired protein.
- EGFP Enhanced Green Fluorescent Protein
- restriction enzyme ScaI Toyobo Co., Ltd. 25 U for 16 hours at 37 ° C in 100 °C ⁇ l using the attached buffer conditions, and then part of the treatment solution The complete cleavage was confirmed by electrophoresis. Further, restriction enzyme BglII (manufactured by Toyobo Co., Ltd.) 25 U was added to the obtained treatment solution, and the mixture was treated at 37 ° C for 3 hours, and then complete cleavage was confirmed by electrophoresis using a part of the treatment solution.
- TE buffer aqueous solution containing 10 M Tris-HCl (pH 7.5), 1 mM EDTA
- phenol / chloroform volume ratio is phenol:
- An equal amount of a mixed solution of chloroform: isoamyl alcohol 25: 24: 1 was added and mixed with a vortex mixer to deactivate the enzyme
- oligonucleotides (5'-CATGATGATGTA-3 'and 5'-GATCTACATCATCATG-3') containing sequences for introducing peptide tags were annealed (by combining sequences having complementary strands into double strands).
- the former primer is represented by sequence 1 and is represented by SEQ ID NO: 8.
- the latter primer is represented as sequence 2 and represented by SEQ ID NO: 9.
- the oligonucleotides of each sequence were dissolved in TE buffer so that the concentration was 100 ⁇ pmol / ⁇ l, and 5 ⁇ l of each and 25 ⁇ l of 5 ⁇ M NaCl aqueous solution were made up to 500 ⁇ l with TE buffer, and 95 ° C. for 5 minutes. After the heat treatment, it was gradually cooled for about one and a half hours (the solution concentration after the annealing reaction was 10 pmol / ⁇ l).
- the resulting solution was made up to 200 ⁇ l with TE buffer and treated with phenol / chloroform to deactivate the enzyme. Further, the mixture was centrifuged at 15,000 rpm for 5 minutes at room temperature, and the supernatant was collected. To the supernatant, 1 ⁇ l of 10 ⁇ g / ⁇ l glycogen aqueous solution was added, and the ligation-reacted plasmid was collected after ethanol precipitation and dried in vacuum. This was dissolved in 5 ⁇ l of TE buffer, and then treated with restriction enzyme ScaI-5 U in 50 ⁇ L at 37 ° C. for 30 minutes under the attached buffer conditions.
- the volume was made up to 200 ⁇ l with TE buffer and treated with phenol / chloroform to inactivate the enzyme. Next, centrifugation was performed at 15,000 rpm for 5 minutes at room temperature, and the supernatant was collected. The supernatant plasmid was recovered after ethanol precipitation, vacuum-dried, and dissolved in 5 ⁇ l of TE buffer.
- LB plate containing 50 ⁇ g / ml ampicillin (LB medium containing 1.5% (w / v) Agar, powder (Wako) (1% (w / v) Tripton, 0.5% (w / v) Yeast (extract, aqueous solution containing 1% (w / v) NaCl) is sterilized by autoclaving at 121 ° C for 20 minutes, and then aseptically put 20 ml in a sterile 10 cm plastic petri dish before the agar solidifies. Applied).
- a plasmid was prepared from the obtained colonies using QuickLyse® Miniprep® Kit® (QIAGEN), and the nucleotide sequence was confirmed. Thereby, a plasmid containing a base sequence encoding the introduced peptide tag was obtained.
- PCR was performed using the obtained plasmid as a template and primers (5'-TAATACGACTCACTATAGGG-3 ', 5'-TAGAAGGCACAGTCGAGG-3').
- the former primer is represented by sequence 3 and represented by SEQ ID NO: 10.
- the latter primer is represented by sequence 4 and represented by SEQ ID NO: 11.
- the EGFP part containing the amplified peptide tag is treated with restriction enzymes NcoI and BglII, and the resulting fragment (a sequence in which the base sequence encoding the peptide tag is introduced on the C-terminal side of EGFP) is the NcoI and BamHI sites of pET-15b.
- PCR reaction was performed according to the protocol.
- the PCR cycle was 95 ° C. for 30 seconds, (95 ° C. for 10 seconds, 55 ° C. for 20 seconds, 72 ° C. for 60 seconds) ⁇ 30 cycles, 72 ° C. for 4 minutes, and 15 ° C. holding.
- the obtained PCR product was purified using Wizard (registered trademark) SV Gel and PCR Clean-Up System (Promega) according to the attached protocol.
- the entire amount of the obtained solution was treated with restriction enzymes NcoI (NEB) and 20clU each of BclII (NEB) in 100 ⁇ l at 37 ° C for 2 hours using the attached buffer conditions.
- the whole amount was subjected to electrophoresis for 30 minutes in a TAB buffer at 100 ° V constant pressure using 7% (w / v) SEAKEM® GTG® Agarose® (CAMBREX) gel.
- the confirmed electrophoresis band at a predetermined position was cut out and purified from the gel using Wizard (registered trademark) SV Gel and PCR Clean-Up System (Promega).
- the obtained fragment solution was partially electrophoresed, and the concentration was estimated from the size marker.
- the obtained solution was centrifuged at 15000 rpm for 5 minutes at room temperature, and the lower layer phenol was collected, and then again treated with phenol / chloroform to completely deactivate the enzyme.
- the supernatant was collected, and the restriction enzyme-treated and BAP-treated plasmid pET-15b was collected after ethanol precipitation, vacuum-dried, and dissolved in 30 ⁇ l of TE buffer. A portion was electrophoresed and the concentration was estimated using molecular weight markers.
- the thus treated plasmid pET-15b 50 fmol and the previously recovered fragment solution 50 fmol are reacted at 16 ° C for 30 minutes according to the attached protocol of the ligation kit (Takara Bio Inc.), and a portion thereof is competent. After a transformation reaction using 30 ⁇ l of DH5 ⁇ ⁇ , the entire amount was applied to an LB plate containing 50 ⁇ g / ml ampicillin.
- a plasmid was prepared from the obtained colonies using QuickLyse Miniprep Kit (QIAGEN) to obtain a plasmid having a base sequence encoding a peptide tag on the C-terminal side of the base sequence encoding EGFP in pET-15b. In order to confirm whether the base sequence encoding the methionine tag consisting of MMM exists on the C-terminal side of the base sequence encoding EGFP, the entire base sequence of the introduced sequence was confirmed.
- the vector was subjected to (iii) a nucleotide sequence encoding a protease cleavage recognition site, or (iv) protease cleavage.
- a restriction enzyme site for introducing a base sequence encoding a recognition site and a base sequence encoding a linker peptide was additionally introduced.
- the obtained PCR product was introduced into pGEM-T vector using a TA cloning method, and (iii) a base sequence encoding a protease cleavage recognition site, or (iv) a protease cleavage recognition site and A nucleotide sequence encoding a linker peptide was introduced.
- the obtained PCR product was purified according to the attached protocol using Wizard (registered trademark) SV Gel and PCR Clean-Up System (Promega). In the production of an expression vector having no base sequence encoding the peptide tag described later, 5'- CAGCCAGATCTATACGTAGAATTCCTT -3 '(SEQ ID NO: 17: sequence 10) was used as a 3'-side primer.
- Ligation reaction was performed according to the attached protocol of pGEM (registered trademark) -T Vector System (Promega), and 3 ⁇ l of the ligation solution was added to 30 ⁇ l of competent cells DH5 ⁇ , As a transfer reaction, after leaving the competent cell DH5 ⁇ on ice for 30 minutes, heat shock for 42 seconds at 42 ° C, quickly return to ice and let stand for 2 minutes, and then warm to 37 ° C in advance.
- pGEM registered trademark
- T Vector System Promega
- SOC medium 2% (w / v) tryptone, 0.5% (w / v) yeast extract, aqueous solution containing 10 mM sodium chloride, 10 mM magnesium sulfate, 20 mM glucose in an autoclave at 121 ° C for 20 minutes Applied and stored at -80 ° C.) and incubated at 37 ° C. for 1 hour.), And then an LB plate containing 50 ⁇ g / ml ampicillin (1.5%).
- the remaining treatment solution was diluted to 200 ⁇ l with TE buffer and treated with phenol / chloroform to inactivate the enzyme. Thereafter, the mixture was centrifuged at 15000 rpm for 5 minutes at room temperature using a centrifuge, and the supernatant was collected.
- the plasmid treated with the restriction enzyme was collected after ethanol precipitation and vacuum-dried. This was dissolved in 43.5 ⁇ l of sterilized purified water tank, and 1.5 ⁇ l of alkaline phosphatase (BAPC75, Takara Bio Inc.) and 5 ⁇ l of 10X BAP buffer were treated at 65 ° C. for 30 minutes (BAP treatment). After the treatment, the volume was made up to 200 ⁇ l with TE buffer and treated with phenol / chloroform to inactivate the enzyme. The resulting solution was centrifuged at 15,000 rpm for 5 minutes at room temperature, and the lower layer phenol was removed, followed by treatment with phenol / chloroform again to completely inactivate the enzyme.
- alkaline phosphatase BAPC75, Takara Bio Inc.
- the supernatant was separated, and the restriction enzyme-treated and BAP-treated plasmid was collected after ethanol precipitation, vacuum-dried, and dissolved in 10 ⁇ l of TE buffer. Take a part and perform agarose electrophoresis, estimate the concentration using a molecular weight marker (about 20 fmol / ⁇ l), (iii) a nucleotide sequence encoding a protease cleavage recognition site, or (iv) a protease cleavage recognition site and A vector for introducing a base sequence encoding a linker peptide was used.
- a molecular weight marker about 20 fmol / ⁇ l
- a nucleotide sequence encoding a protease cleavage recognition site or (iv) a protease cleavage recognition site and A vector for introducing a base sequence encoding a linker peptide was used.
- the base sequence to be introduced is T4 PNK 1 ⁇ l (attached reagent), 10X PNK buffer 10 ⁇ l (attached reagent), 100 mM ATP 1 ⁇ l (Roche) using 50 pmol of each oligonucleotide according to the attached protocol of T4 PNK (NEB), Make the total volume to 100 ⁇ l using sterilized purified water, and phosphorylate the 5 ′ side by reacting at 37 ° C. for 30 minutes, and then use 50 ⁇ l of the resulting solution to anneal with an equal amount of complementary strand (95 ° C. After heat treatment for 3 minutes, it was gradually cooled to room temperature over 2 hours).
- the oligonucleotides used are as follows. (iii) a nucleotide sequence encoding a protease cleavage recognition site: 5′-AATTTCTGGAAGTTCTGTTCCAGGGGCCC-3 ′ (SEQ ID NO: 18: sequence 11) and 5′-GGGCCCCTGGAACAGAACTTCCAGA-3 ′ (SEQ ID NO: 19: sequence 12), (iv) a nucleotide sequence encoding a protease cleavage recognition site and a nucleotide sequence encoding a linker peptide [(EAAAK) ⁇ 2]: (I) 5′-AATTTCTGGAAGTTCTGTT CCAGGGGCCCGGGG -3 (SEQ ID NO: 20: sequence 13) ′ and 5 ′ -CTGAAGCTGCTGCAAAAGAGGCGGCCGCTAAGGCC -3 '(SEQ ID NO: 21: sequence 14) and (II) 5'-GG CCTTAGCG
- Protease cleavage recognition site is encoded in 50 fmol of the base sequence encoding the nucleotide sequence encoding the protease cleavage recognition site or (iv) Protease cleavage recognition site and linker peptide previously prepared ⁇ ⁇ (iii) Add 0.5 ⁇ l of the annealed sequence of the base sequence, or 0.5 ⁇ l of each of the annealed sequences of the base sequence encoding ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (iv) protease cleavage recognition site and linker peptide I (I and II), and ligation kit (Takara Bio Inc.) ) was used at 16 ° C.
- the ligated plasmid was collected after ethanol precipitation and vacuum-dried. This was dissolved in 2 ⁇ l of TE buffer, subjected to a transformation reaction with 30 ⁇ l of the total amount of competent cells DH5 ⁇ , and then coated on a LB plate containing 50 ⁇ g / ml ampicillin.
- a plasmid was prepared from the obtained colonies using QuickLyse Miniprep Kit (QIAGEN), and (iii) a nucleotide sequence encoding a protease cleavage recognition site, or (iv) a nucleotide sequence encoding a protease cleavage recognition site and a linker peptide was introduced. The base sequence was decoded and confirmed.
- 5 ⁇ g of vector pET-15b to be introduced is treated with restriction enzymes NcoI (Takara Bio Inc.), BamHI (Takara Bio Inc.) 25 ⁇ U each in a total volume of 100 ⁇ l at 37 ° C. for 16 hours using the attached buffer conditions. did. After confirming by electrophoresis using a part, the volume was made up to 200 ⁇ l with TE buffer and treated with phenol / chloroform to inactivate the enzyme. Centrifugation was performed at 15000 rpm for 5 minutes at room temperature, and the supernatant was collected.
- the supernatant was collected, and BAP-treated and restriction enzyme-treated pET-15b was collected after ethanol precipitation, vacuum-dried, and dissolved in 30 ⁇ l of TE buffer. A portion was electrophoresed and the concentration was estimated using a molecular weight marker (20 fmol / ⁇ l).
- This BAP-treated / restricted enzyme-treated pET-15b-40 fmol and the previously recovered plasmid fragment solution 40 fmol were reacted at 16 ° C for 30 minutes according to the protocol attached to the ligation kit (Takara Bio Inc.). The recognition sequence was deleted), and this reaction solution was reacted at 37 ° C. for 30 minutes in a total volume of 50 ⁇ l using BamHI 10 ⁇ U using the attached buffer system. This solution was diluted to 200 ⁇ l with TE buffer and treated with phenol / chloroform to inactivate the enzyme. Thereafter, the mixture was centrifuged at 15,000 rpm for 5 minutes at room temperature, and the supernatant was collected.
- the ligated plasmid was collected after ethanol precipitation and vacuum-dried. This was dissolved in 2 ⁇ l of TE buffer, subjected to a transformation reaction with 30 ⁇ l of the total amount of competent cells DH5 ⁇ , and then coated on a LB plate containing 50 ⁇ g / ml ampicillin. A plasmid was prepared from the obtained colonies using QuickLyse Miniprep Kit (QIAGEN), and the base sequence of the inserted sequence was confirmed.
- QIAGEN QuickLyse Miniprep Kit
- the base sequence encoding the protease cleavage recognition site on the region controlled by the E. coli expression promoter on the pET-15b vector and the C-terminal side of EGFP, or the protease cleavage recognition site and linker peptide [(EAAAK) ⁇ 2] is encoded.
- a peptide tag MMM consisting of a methionine residue, or a plasmid into which a base sequence encoding MMMMM was introduced that is, a protein expression vector with a peptide tag consisting of a methionine residue.
- an expression vector having no base sequence encoding a peptide tag was obtained. Specifically, the following expression vectors were obtained.
- Example 1 An expression vector comprising a base sequence encoding a peptide tag consisting of three methionine residues MMM, a promoter sequence, a base sequence encoding EGFP, and a base sequence encoding a protease cleavage recognition site.
- Example 2 Base sequence encoding a peptide tag comprising MMM, promoter sequence, base sequence encoding EGFP, base sequence encoding protease cleavage recognition site, and base sequence encoding linker peptide [(EAAAK) ⁇ 2]
- An expression vector comprising
- Example 3 An expression vector comprising a base sequence encoding a peptide tag consisting of five methionine residues MMMMM, a promoter sequence, a base sequence encoding EGFP, and a base sequence encoding a protease cleavage recognition site.
- Example 4 A base sequence encoding a peptide tag comprising MMMMM, a promoter sequence, a base sequence encoding EGFP, a base sequence encoding a protease cleavage recognition site, and a base sequence encoding linker peptide [(EAAAK) ⁇ 2]
- An expression vector comprising
- Comparative Example 1 An expression vector comprising a promoter sequence, a base sequence encoding EGFP, and a base sequence encoding a protease cleavage recognition site. However, it does not have a base sequence encoding a peptide tag.
- Comparative Example 2 An expression vector comprising a promoter sequence, a base sequence encoding EGFP, a base sequence encoding a protease cleavage recognition site, and a base sequence encoding a linker peptide [(EAAAK) ⁇ 2]. However, it does not have a base sequence encoding a peptide tag.
- the supernatant was collected, and the plasmids treated with restriction enzymes and BAP were collected after ethanol precipitation, vacuum-dried, and dissolved in 30 ⁇ l of TE buffer. A portion was electrophoresed to confirm whether the desired base sequence was recovered, and the concentration was estimated using a molecular weight marker (20 fmol / ⁇ l).
- the insert uses oligonucleotides 5'- AAGAGGCGGCCGCTAAGGAAGCGGCTGCAAAAGAGGCCGCTGCTA -3 (SEQ ID NO: 24) 'and 5'- CAGCGGCCTCTTTTGCAGCCGCTTCCTTAGCGGCCGCCTCTTTAG -3' (SEQ ID NO: 25: sequence 18), respectively, in the same manner as described above. After phosphorylating 50 pmol, annealing was performed.
- This insert 150 fmol and the previously prepared plasmid 50 fmol described in Example 2 were reacted at 16 ° C for 30 minutes according to the protocol attached to the ligation kit (Takara Bio Inc.) (this resulted in deletion of the restriction enzyme SfiI recognition sequence). ), And the restriction enzyme SfiI-10 U was used for 30 minutes at 50 ° C. under the attached buffer conditions.
- the reaction solution was made up to 200 ⁇ l with TE buffer and treated with phenol / chloroform to inactivate the enzyme. Thereafter, centrifugation was performed at room temperature for 15,000 rpm for 5 minutes, and the supernatant was collected. The supernatant was collected after ethanol precipitation and vacuum-dried.
- the protease cleavage recognition site, linker peptide [(() is located in the region controlled by the E. coli expression promoter on the pET-15b vector and on the C-terminal side of EGFP. EAAAK) ⁇ 5] and a plasmid in which a base sequence encoding a peptide tag MMM consisting of three methionine residues was introduced, ie, a protein expression vector with a peptide tag consisting of three methionine residues .
- a protease cleavage recognition site a linker peptide [(EAAAK) is located in the region controlled by the E. coli expression promoter on the pET-15b vector and on the C-terminal side of EGFP. ) ⁇ 5] and a plasmid into which a peptide tag MMMMM consisting of 5 methionine residues was introduced, ie, a peptide-tagged protein expression vector consisting of 5 methionine residues.
- Example 5 Base sequence encoding a peptide tag consisting of three methionine residues MMM, promoter sequence, base sequence encoding EGFP, base sequence encoding protease cleavage recognition site, and linker peptide [(EAAAK) ⁇ 5]
- An expression vector comprising a nucleotide sequence encoding
- Example 6 Base sequence encoding a peptide tag consisting of five methionine residues MMMMM, promoter sequence, base sequence encoding EGFP, base sequence encoding protease cleavage recognition site, and linker peptide [(EAAAK) ⁇ 5]
- An expression vector comprising a nucleotide sequence encoding
- Comparative Example 3 An expression vector comprising a promoter sequence, a base sequence encoding EGFP, a base sequence encoding a protease cleavage recognition site, and a base sequence encoding linker peptide [(EAAAK) ⁇ 5]. However, it does not have a base sequence encoding a peptide tag.
- MMMM a base sequence encoding four methionines
- PCR amplification was performed on the 3′-terminal side of 80 bp from the stop codon portion immediately after the peptide tag region MMM (with a restriction enzyme BglII recognition sequence), Purify.
- the obtained purified DNA fragment was introduced into a pCR (registered trademark) 4-TOPO (registered trademark) vector by the TA cloning method. Thereby, a plasmid for tag region site mutation was obtained.
- the obtained plasmid was treated with restriction enzymes NotI and BglII, and a suitable base sequence was introduced so that the peptide tag had an amino acid sequence in which glycine was sandwiched between methionine.
- the product amplified by PCR was treated with restriction enzymes NotI and Bpu1102I, purified after agarose gel, and then treated with the restriction enzymes NotI and Bpu1102I. Then, a peptide-tagged protein expression vector consisting of a methionine residue and a glycine residue was prepared.
- primers 5′-GT AGATCT GGCTGCTAACAAAGCCCG-3 ′ (SEQ ID NO: 26: sequence 19) (underlined part: restriction enzyme BglII recognition sequence) and 5 '-AGGGTTATGCTACTTATTGCTCAGCGGT -3' (SEQ ID NO: 27: sequence 20) 0.25 ⁇ l of each 1 mM solution in a 50 ⁇ l system, TaKaRa Ex Taq (registered trademark) Hot Start Version (Takara Bio Inc.) 0.25 ⁇ l and attached buffer PCR reaction (95 ° C. for 30 seconds, (95 ° C. for 10 seconds, 58 ° C.
- PCR product was purified using Wizard (registered trademark) SV Gel and PCR Clean-Up System (Promega) according to the attached protocol.
- 3 ⁇ g of the mutation plasmid was treated with restriction enzymes NotI (Takara Bio Inc.) and BglII (Takara Bio Inc.) at 37 ° C for 2 hours under the attached buffer conditions.
- the treated solution was treated with phenol / chloroform to inactivate the enzyme, and then the plasmid treated with the restriction enzyme was collected from the obtained supernatant after ethanol precipitation, vacuum-dried, and dissolved in 15 ⁇ l of TE buffer. A portion was electrophoresed to confirm whether the desired fragment was recovered, and the concentration was estimated using a molecular weight marker (10 fmol / ⁇ l).
- the annealed sample (90 fmol) was added to the restriction enzyme-treated mutation plasmid (30 ⁇ fmol) prepared in advance, and reacted at 16 ° C for 30 minutes using a ligation kit.
- a transformation reaction was carried out using the total amount of the cells and Competent cells Top10 50 ⁇ l, and the cells were applied to an LB plate containing 50 ⁇ g / ml ampicillin.
- a plasmid was prepared from the obtained colonies using QuickLyse Miniprep Kit (QIAGEN), and the nucleotide sequence was confirmed. As a result, a plasmid into which a peptide tag MMMM consisting of four methionines was introduced was obtained.
- the PCR product obtained after the reaction was purified using Wizard (registered trademark) SV Gel and PCR Clean-Up System (Promega) according to the attached protocol.
- the purified DNA fragment obtained was treated with the reaction restriction enzyme NotI (Takara Bio Inc.) 20 U under the attached buffer conditions at 37 ° C for 4 hours, and confirmed to be completely cleaved using electrophoresis. .
- the reaction solution was made up to 200 ⁇ l with TE buffer, the enzyme was inactivated by treatment with phenol / chloroform, and the plasmid treated with the restriction enzyme was collected from the resulting supernatant after ethanol precipitation and vacuum-dried. , Dissolved in 20 ⁇ l of TE buffer.
- the total amount of the solution was treated with the restriction enzyme Bpu1102I (Takara Bio Inc.) 10 U under the attached buffer conditions at 37 ° C. for 16 hours, and the whole amount was used for agarose gel purification to obtain an introduced fragment.
- the expression vector described in Example 5 was used as a plasmid for introducing the introduced fragment. 5 ⁇ g of the plasmid was treated in the same manner as the above introduced fragment using restriction enzymes NotINot20 U and Bpu1102I 10 U.
- the introduced fragment and the plasmid into which it was introduced were partially electrophoresed to confirm whether they were recovered, and the concentration was estimated using molecular weight markers (fragment: 181.8 fmol / ⁇ l, vector: 30 fmol / ⁇ l).
- the plasmid (30 fmol) and the introduced fragment (90 fmol) were combined and reacted using a ligation kit, and after the transformation reaction using 100 ⁇ l of the total amount and competent cells DH5 ⁇ , it was applied to an LB plate containing 50 ⁇ g / ml carbenicillin.
- a plasmid was prepared from the obtained colonies using QuickLyse Miniprep Kit (QIAGEN), and the nucleotide sequence was confirmed.
- QIAGEN QuickLyse Miniprep Kit
- an EGFP expression vector with a peptide tag MMMM tag consisting of four methionines could be obtained. Specifically, the following expression vectors were obtained.
- Example 7 Base sequence encoding a peptide tag consisting of four methionine residues MMMM, promoter sequence, base sequence encoding EGFP, base sequence encoding protease cleavage recognition site, and linker peptide [(EAAAK) ⁇ 5]
- An expression vector comprising a nucleotide sequence encoding
- Example 5 Using the expression vector described in Example 5 obtained in (1) above as a template, 80 ′ bp at the 3 ′ end from the stop codon immediately after the peptide tag region MMM was PCR-amplified (with a restriction enzyme BglII recognition sequence) Purified). The obtained purified DNA fragment was introduced into pCR (registered trademark) 4-TOPO (registered trademark) vector (Invitrogen) by the TA cloning method. Thereby, a plasmid for tag region site mutation was obtained.
- pCR registered trademark
- 4-TOPO registered trademark
- the obtained plasmid was treated with restriction enzymes NotI and BglII, and a suitable base sequence was introduced so that the peptide tag had an amino acid sequence in which glycine was sandwiched between methionine.
- the product amplified by PCR was treated with restriction enzymes NotI and Bpu1102I, purified after agarose gel, and then treated with the restriction enzymes NotI and Bpu1102I. Then, a peptide-tagged protein expression vector consisting of a methionine residue and a glycine residue was prepared.
- primers 5′-GT AGATCT GGCTGCTAACAAAGCCCG-3 ′ (SEQ ID NO: 26: sequence 19) (underlined part: restriction enzyme BglII recognition sequence) and 5 '-AGGGTTATGCTACTTATTGCTCAGCGGT -3' (SEQ ID NO: 27: sequence 20) 0.25 ⁇ l of each 1 mM solution in a 50 ⁇ l system, TaKaRa Ex Taq (registered trademark) Hot Start Version (Takara Bio Inc.) 0.25 ⁇ l and attached buffer PCR reaction (95 ° C. for 30 seconds, (95 ° C. for 10 seconds, 58 ° C.
- PCR product was purified using Wizard (registered trademark) SV Gel and PCR Clean-Up System (Promega) according to the attached protocol.
- a plasmid was prepared from the obtained colony using QuickLyse Miniprep Kit (QIAGEN), the base sequence was confirmed, and the restriction enzyme of the introduced fragment on the restriction enzyme NotI recognition sequence side of pCR (registered trademark) 4-TOPO (registered trademark) A plasmid to which the BglII recognition sequence was bound was obtained. This plasmid was used as a tag region site mutation plasmid.
- 3 ⁇ g of the mutation plasmid was treated with restriction enzymes NotI (Takara Bio Inc.) and BglII (Takara Bio Inc.) at 37 ° C. for 2 hours under the attached buffer conditions.
- the treated solution was treated with phenol / chloroform to inactivate the enzyme, and then the plasmid treated with the restriction enzyme was collected from the obtained supernatant after ethanol precipitation, vacuum-dried, and dissolved in 15 ⁇ l of TE buffer. A portion was electrophoresed to confirm whether the desired fragment was recovered, and the concentration was estimated using a molecular weight marker (10 fmol / ⁇ l).
- the base sequences encoding the three types of peptide tag are (a), (b), (c), (d), (e), (e) described in Table 1 below.
- the six oligonucleotides shown in f) were used for introduction.
- Each oligonucleotide 50 ⁇ pmol was phosphorylated by the method described above, and 20 ⁇ l of each of the 6 phosphorylated oligonucleotides (total 120 ⁇ l) was annealed. 150 fmol of the annealed sample was added to 50 fmol of the restriction enzyme-treated mutation plasmid prepared earlier, and a reaction was performed at 16 ° C for 30 minutes using a ligation kit. A transformation reaction was carried out using the total amount and competent cell DH5 ⁇ DH50 ⁇ l, and the mixture was applied to an LB plate containing 50 ⁇ g / ml ampicillin.
- a plasmid was prepared from the obtained colonies using QuickLyse Miniprep Kit (QIAGEN), and the nucleotide sequence was confirmed. As a result, a plasmid into which the peptide tag MMGGM, MGGMGGM or MGGGMGGGM consisting of a methionine residue and a glycine residue was introduced was obtained.
- 25 ⁇ g of this plasmid was treated with the restriction enzyme NotI (Takara Bio Inc.) 10 under the attached buffer conditions at 37 ° C. for 2 hours, and confirmed to be completely cleaved by electrophoresis.
- the total volume of the reaction solution was 250 ⁇ l using TE buffer, the enzyme was inactivated by treatment with phenol / chloroform, and the plasmid treated with the restriction enzyme was collected from the obtained supernatant after ethanol precipitation and vacuum-dried. And dissolved in 50 ⁇ l of TE buffer.
- the total amount of the solution was treated with the restriction enzyme Bpu1102I (Takara Bio Inc.) 10 U under the attached buffer conditions at 37 ° C. for 16 hours, and the whole amount was used for agarose gel purification to obtain an introduced fragment.
- the expression vector described in Example 5 was used as a plasmid for introducing the introduced fragment.
- 5 ⁇ g of the plasmid was treated in the same manner as the introduced fragment using restriction enzymes NotI 10 U and Bpu1102I ⁇ 10 U.
- the introduced fragment and the plasmid into which it was introduced were partially electrophoresed to confirm whether they were recovered, and the concentration was estimated using molecular weight markers (fragment: 70 fmol / ⁇ l, vector: 7.5 fmol / ⁇ l). 50 ⁇ mol of the plasmid and 150 ⁇ fmol of the introduced fragment were combined and reacted using a ligation kit.
- Example 8 Base sequence encoding a peptide tag comprising MMGGM, promoter sequence, base sequence encoding EGFP, base sequence encoding protease cleavage recognition site, and base sequence encoding linker peptide [(EAAAK) ⁇ 5]
- An expression vector comprising
- Example 9 Base sequence encoding peptide tag consisting of MGGMGGM, promoter sequence, base sequence encoding EGFP, base sequence encoding protease cleavage recognition site, and base sequence encoding linker peptide [(EAAAK) ⁇ 5]
- An expression vector comprising
- Example 10 Base sequence encoding a peptide tag consisting of MGGGGMGGGGM, promoter sequence, base sequence encoding EGFP, base sequence encoding protease cleavage recognition site, and base sequence encoding linker peptide [(EAAAK) ⁇ 5]
- An expression vector comprising
- the obtained plasmid was treated with restriction enzymes NotI and BglII, and a suitable base sequence was introduced so that the peptide tag had an amino acid sequence in which glycine was sandwiched between methionine.
- the product amplified by PCR was treated with restriction enzymes NotI and Bpu1102I, purified after agarose gel, and then treated with the restriction enzymes NotI and Bpu1102I. Then, a peptide-tagged protein expression vector consisting of a methionine residue and a glycine residue was prepared.
- primers 5′-GT AGATCT GGCTGCTAACAAAGCCCG-3 ′ (SEQ ID NO: 26: sequence 19) (underlined part: restriction enzyme BglII recognition sequence) and 5 '-AGGGTTATGCTACTTATTGCTCAGCGGT -3' (SEQ ID NO: 27: sequence 20) 0.25 ⁇ l of each 1 mM solution in a 50 ⁇ l system, TaKaRa Ex Taq (registered trademark) Hot Start Version (Takara Bio Inc.) 0.25 ⁇ l and attached buffer PCR reaction (95 ° C. for 30 seconds, (95 ° C. for 10 seconds, 58 ° C.
- PCR product was purified using Wizard (registered trademark) SV Gel and PCR Clean-Up System (Promega) according to the attached protocol.
- a plasmid was prepared from the obtained colony using QuickLyse Miniprep Kit (QIAGEN), the base sequence was confirmed, and the restriction enzyme of the introduced fragment on the restriction enzyme NotI recognition sequence side of pCR (registered trademark) 4-TOPO (registered trademark) A plasmid to which the BglII recognition sequence was bound was obtained. This plasmid was used as a tag region site mutation plasmid.
- 3 ⁇ g of the mutation plasmid was treated with restriction enzymes NotI (Takara Bio Inc.) and BglII (Takara Bio Inc.) at 37 ° C. for 2 hours under the attached buffer conditions.
- the treated solution was treated with phenol / chloroform to inactivate the enzyme, and then the plasmid treated with the restriction enzyme was collected from the obtained supernatant after ethanol precipitation, vacuum-dried, and dissolved in 15 ⁇ l of TE buffer. A portion was electrophoresed to confirm whether the desired fragment was recovered, and the concentration was estimated using a molecular weight marker (10 fmol / ⁇ l).
- the base sequences encoding the two types of peptide tag are 5 sequences shown in (a), (b), (c), (d), and (e) described in Table 2 below.
- the oligonucleotides were introduced.
- Each oligonucleotide 50 ⁇ pmol was phosphorylated by the method described above, and 20 ⁇ l of each of the 5 phosphorylated oligonucleotides was combined for an annealing reaction (total amount 100 ⁇ l).
- the annealed sample (90 fmol) was added to the restriction enzyme-treated mutation plasmid (30 ⁇ fmol) prepared in advance, and reacted at 16 ° C for 30 minutes using a ligation kit.
- a transformation reaction was performed using the total amount of the cells and competent cells Top10 50 ⁇ l, and the cells were applied to an LB plate containing 50 ⁇ g / ml ampicillin.
- a plasmid was prepared from the obtained colonies using QuickLyse Miniprep Kit (QIAGEN), and the nucleotide sequence was confirmed. Thereby, plasmids into which the peptide tags CMM and MMC were respectively introduced were obtained.
- the PCR product obtained after the reaction was purified using Wizard (registered trademark) SV Gel and PCR Clean-Up System (Promega) according to the attached protocol.
- the resulting purified DNA fragment was treated with the reaction restriction enzyme NotI ⁇ (Takara Bio Inc.) 20 U under the attached buffer conditions at 37 ° C for 4 hours, and confirmed to be completely cleaved using electrophoresis. .
- the reaction solution was made up to 200 ⁇ l with TE buffer, the enzyme was inactivated by treatment with phenol / chloroform, and the plasmid treated with the restriction enzyme was collected from the resulting supernatant after ethanol precipitation and vacuum-dried. , Dissolved in 20 ⁇ l of TE buffer.
- the total amount of the solution was treated with the restriction enzyme Bpu1102I (Takara Bio Inc.) 10 U under the attached buffer conditions at 37 ° C. for 16 hours, and the whole amount was used for agarose gel purification to obtain an introduced fragment.
- the expression vector described in Example 5 was used as a plasmid for introducing the introduced fragment.
- 5 ⁇ g of the plasmid was treated in the same manner as the above introduced fragment using restriction enzymes NotINot20 U and Bpu1102I 10 U.
- the introduced fragment and the plasmid into which it was introduced were partially electrophoresed to confirm whether they were recovered, and the concentration was estimated using molecular weight markers (fragment: 180 fmol / ⁇ l, vector: 30 fmol / ⁇ l).
- the plasmid 30 ⁇ fmol and the introduced fragment 90 ⁇ fmol were combined and subjected to a reaction using a ligation kit, and after the transformation reaction using 100 ⁇ l of the total amount and competent cell DH5 ⁇ ⁇ , it was applied to an LB plate containing 50 ⁇ g / ml carbenicillin.
- a plasmid was prepared from the obtained colonies using QuickLyse Miniprep Kit (QIAGEN), and the nucleotide sequence was confirmed.
- QIAGEN QuickLyse Miniprep Kit
- an EGFP expression vector with a peptide tag CMM tag and an EGFP expression vector with a peptide tag MMC tag could be obtained. Specifically, the following expression vectors were obtained.
- Example 11 Including base sequence encoding peptide tag CMM, promoter sequence, base sequence encoding EGFP, base sequence encoding protease cleavage recognition site, and base sequence encoding linker peptide [(EAAAK) ⁇ 5] Expression vector.
- Example 12 Including a base sequence encoding a peptide tag MMC, a promoter sequence, a base sequence encoding EGFP, a base sequence encoding a protease cleavage recognition site, and a base sequence encoding a linker peptide [(EAAAK) ⁇ 5] Expression vector.
- Test example 2 A methionine residue-containing peptide-tagged protein can be expressed and recovered by a known method.
- Test Example 2 an experiment was performed using recombinant E. coli obtained by transforming E. coli with the methionine residue-containing peptide-tagged EGFP expression vector prepared in Test Example 1. The following operations were performed for all the tagged EGFP expression vectors shown in Test Example 1.
- the transformation was performed as follows. Add about 10 ng of the methionine residue-containing peptide-tagged EGFP expression vector plasmid prepared in Test Example 1 to 100 ⁇ l of competent cell BL21 (DE3), leave it on ice for 30 minutes, heat-treat at 42 ° C for 60 seconds, and quickly on ice Return to rest for 3 minutes. Thereafter, 1 ⁇ l of SOC medium was added, incubated at 37 ° C., applied to an LB plate containing 50 ⁇ g / ml carbenicillin, and incubated at 37 ° C. for 16 hours to give a colony obtained as a transformant.
- E. coli was recovered after 3 hours. From this, all the following operations were performed at 4 ° C.
- the collected Escherichia coli was washed twice with 1 mM DTT-containing Tris buffer (20 mM Tris-HCl (pH 8.0), 50 mM NaCl aqueous solution), and then 1 mM DTT and protease inhibitor-containing Tris buffer (100 ⁇ protease inhibitor cocktail) (Nacalai Tesque Co., Ltd.) Suspended with an aqueous solution added to Tris buffer to 1x) and sonicated on ice (BRANSON SONIFIER 250 for 20-30 sec, duty cycle 10%, output 40-60% )did.
- 1 mM DTT-containing Tris buffer (20 mM Tris-HCl (pH 8.0), 50 mM NaCl aqueous solution), and then 1 mM DTT and protease inhibitor-containing Tris buffer (100 ⁇ protease inhibitor cocktail) (Nacalai Tesque Co., Ltd.) Suspended with an aqueous solution added to Tris buffer to
- the resulting suspension is centrifuged, and the supernatant is filtered through a 0.45 ⁇ m filter and then purified using the Econo gradient pump system (Bio-Rad) and the EconoEpack ion exchange cartridge High Q (Bio-Rad). did.
- EGFP was bound to the column using a 1 mM DTT-containing Tris buffer, and proteins other than EGFP were removed by increasing the NaCl concentration to 80 mM.
- a fraction containing EGFP was collected at a concentration gradient from about 80 to 110 mM and a concentration of EGFP was collected at around 110 to mM, and the peptide-tagged protein containing a methionine residue was purified.
- Test example 3 A methionine residue-containing peptide-tagged protein is produced specifically and efficiently by a method using gold-attached magnetic metal oxide particles (provided by the laboratory of Professor Takao Yamamoto, Faculty of Engineering, Osaka University; hereinafter referred to as gold magnetic particles). Attempts were made to separate and purify.
- ⁇ -Fe 3 O 4 was used as the magnetic metal oxide particles, and the gold magnetic particles were produced according to the method described in WO 2004/083124.
- this test was carried out for all EGFP proteins with peptide tags containing all methionine residues obtained in Test Example 2.
- Each methionine residue-containing peptide-tagged protein or untagged protein prepared in Test Example 2 was concentrated using an ultrafiltration system to obtain a peptide-tagged protein solution and an untagged protein solution. Further, the gold magnetic particles were washed in advance with Tris buffer. The amount of each EGFP protein was measured by measuring the fluorescence intensity (no unit), and then diluted with Tris buffer so as to be 500 (fluorescence intensity) / ⁇ l.
- the residue containing the conjugate of the gold magnetic particles and protein recovered by the magnetic separation is suspended in a buffer, and after the magnetic separation, the supernatant is removed twice, so that the non-removal to the gold magnetic particles is performed.
- the specific adsorbate was removed, and then suspended in 400 ⁇ l of a buffer containing 24 ⁇ mM mercaptoethanol, and then the protein was eluted for 30 minutes at 4 ° C. while mixing with a rotary shaker. Then, the amount of fluorescence after magnetic separation can be measured, and this can be used to determine the amount of EGFP protein eluted from the bound product.
- the amount of fluorescence was measured by using 250 ⁇ l of a measurement sample in a 96-well plate, and measured using a fluorescence plate reader Gemini® XPS (Molecular® Devices). After subtracting the background, the amount of binding was determined by converting to the actual amount of liquid.
- the results for the peptide-tagged protein obtained by using the expression vector described in Example 1 or 5 are shown in FIG.
- the amount of binding to gold magnetic particles is significantly greater when the vector described in Example 5 is used than when the vector described in Example 1 is used, that is, when the linker peptide is introduced into the vector. Became clear. (P ⁇ 0.05). Similarly, it became clear that the amount of elution was higher when the vector described in Example 5 was used.
- Example 7 the results for the peptide-tagged protein obtained by using the expression vector described in Example 5 or 7 are shown in FIG.
- the vector described in Example 7 it became clear that the amount of binding to the gold magnetic particles was equal to or greater than when the vector described in Example 5 was used. That is, when a peptide tag consisting of four methionine residues MMMM is added, it becomes clear that the amount of binding to gold magnetic particles is equal to or more than that when a peptide tag consisting of three methionine residues MMM is added. It was.
- the vector described in Example 7 it was also clarified that the amount of elution was the same as or higher than that when the vector described in Example 5 was used.
- FIG. 4 shows the results for peptide-tagged proteins obtained by using the expression vectors described in Examples 5 and 7-9.
- FIG. 5 shows the results for the peptide-tagged protein obtained by using the expression vectors described in Examples 5 and 11-12.
- Test example 4 Each of the methionine residue-containing peptide-tagged protein solutions or untagged protein solutions prepared in Test Example 2 was added with the separately prepared Escherichia coli extract as follows to increase the amount of contaminants in the protein solution. Under such circumstances, an attempt was made to separate and purify the tagged protein specifically and efficiently using gold magnetic particles in the same manner as in Test Example 3.
- the recovered Escherichia coli was washed twice with a 1 mM mM Tris buffer (20 mM mM Tris-HCl (pH 8.0), an aqueous solution containing 50 mM NaCl), and then protease-inhibitor-containing Tris buffer (100 ⁇ protease inhibitor cocktail (Nacalai Tesque, Inc.). ) Aqueous solution suspended in Tris buffer to 1x) and sonicated on ice (BRANSON SONIFIER 250 for 20-30 sec, duty 10 10%, output 40-60%). The resulting suspension is centrifuged, the supernatant is filtered through a 0.45 ⁇ m filter, and the protein weight is measured using a BCA-Protein-assay kit (Thermo-SCIENTIFIC). Mixed.
- each protein solution and E. coli extract were determined as follows according to the degree of protein purification.
- the protein weight of the EGFP protein with MMM tag was calculated so that the fluorescence intensity (no unit) was exactly 500 (fluorescence intensity) / ⁇ l.
- an E. coli extract of equal weight was added to the MMM-tagged EGFP protein solution, and the total protein weight in this solution was calculated.
- the fluorescence intensity, total protein weight, and solution volume all match those of the previously prepared MMM-tagged EGFP protein solution. As necessary, it was adjusted using an Escherichia coli extract and a Tris buffer.
- Test Example 5 The methionine residue-containing peptide-tagged protein expressed in E. coli was directly purified from the E. coli extract.
- transformants into which the expression vector plasmids described in Examples 7 to 10 and Comparative Example 3 were introduced were cultured at 30 ° C. in an LB liquid medium containing 50 ⁇ g / ml carbenicillin, and the logarithmic growth phase (OD600 In the vicinity of 0.6, IPTG was added to a final concentration of 1 mM to induce expression, and E. coli was recovered 3 hours later. From this, the following operations were all performed at 4 ° C.
- E. coli collected as described above is washed twice with 1 mM DTT-containing Tris buffer, and then 1 mM DTT and proteaseteinhibitor-containing Tris buffer (100X protease inhibitor cocktail (Nacalai Tesque)) solution is 1X in Tris buffer.
- the mixture was suspended in ice and sonicated on ice (BRANSON SONIFIER 250 for 20-30 sec, duty cycle 10%, output 40-60%).
- the obtained suspension was centrifuged, and the supernatant was filtered through a 0.45 ⁇ m filter.
- the gold magnetic particles used for the binding experiment were washed in advance with Tris buffer.
- the amount of each EGFP protein was measured by measuring the fluorescence intensity (no unit), and then diluted with Tris buffer so as to be 500 (fluorescence intensity) / ⁇ l.
- the suspension was suspended in 300 ⁇ l of a buffer containing 24 mM mercaptoethanol, and the protein was eluted at 4 ° C. for 30 minutes while mixing with a rotary shaker. And the fluorescence amount after magnetic separation was measured. The fluorescence amount was measured by using 250 ⁇ l of a measurement sample in a 96-well plate, measured using a fluorescence plate reader Gemini XPS (Molecular Devices), subtracting the background, and then converted into the actual liquid amount.
- the model figure of the protein expressed using the protein expression vector with the peptide tag of the methionine residue containing peptide of this invention was shown.
- This figure has EGFP protein which is a desired protein on the N-terminal side, and a methionine residue-containing tag on the C-terminal side (MMM is shown as an example).
- a peptidase recognition sequence for example, a PreScission-Protease recognition sequence is shown
- a peptidase recognition sequence for example, a PreScission-Protease recognition sequence is shown
- the results of determining the binding amount of the peptide-tagged protein introduced with the linker peptide to the gold magnetic particles are shown.
- the horizontal axis represents the amount of EGFP protein bound to the gold magnetic particles by the fluorescence intensity of the EGFP protein.
- the results of determining the binding amount of methionine residue-containing peptide-tagged proteins to gold magnetic particles are shown.
- the horizontal axis indicates the amount of protein binding to the gold magnetic particles by the fluorescence intensity of the EGFP protein.
- the results of determining the binding amount of methionine residue-containing peptide-tagged protein into which glycine was introduced to gold magnetic particles are shown.
- the horizontal axis indicates the amount of protein binding to the gold magnetic particles by the fluorescence intensity of the EGFP protein.
- the horizontal axis indicates the amount of protein binding to the gold magnetic particles by the fluorescence intensity of the EGFP protein.
- the results of determining the amount of methionine residue-containing peptide-tagged protein introduced with glycine to the gold magnetic particles in the presence of the E. coli extract are shown.
- the horizontal axis indicates the amount of protein binding to the gold magnetic particles by the fluorescence intensity of the EGFP protein.
- SEQ ID NO: 1 shows the amino acid sequence of tag 1.
- SEQ ID NO: 2 shows the amino acid sequence of tag 2.
- SEQ ID NO: 3 shows the amino acid sequence of tag 3.
- SEQ ID NO: 4 shows the amino acid sequence of tag 4.
- SEQ ID NO: 5 shows the amino acid sequence of tag 5.
- SEQ ID NO: 6 shows the amino acid sequence of linker 1.
- SEQ ID NO: 7 shows the amino acid sequence of linker 2.
- SEQ ID NO: 8 shows the base sequence of sequence 1.
- SEQ ID NO: 9 shows the base sequence of sequence 2.
- SEQ ID NO: 10 shows the nucleotide sequence of sequence 3.
- SEQ ID NO: 11 shows the base sequence of sequence 4.
- SEQ ID NO: 12 shows the base sequence of sequence 5.
- SEQ ID NO: 13 shows the nucleotide sequence of sequence 6.
- SEQ ID NO: 14 shows the base sequence of sequence 7.
- SEQ ID NO: 15 shows the base sequence of sequence 8.
- SEQ ID NO: 16 shows the base sequence of sequence 9.
- SEQ ID NO: 17 shows the base sequence of sequence 10.
- SEQ ID NO: 18 shows the nucleotide sequence of sequence 11.
- SEQ ID NO: 19 shows the base sequence of sequence 12.
- SEQ ID NO: 20 shows the base sequence of sequence 13.
- SEQ ID NO: 21 shows the nucleotide sequence of sequence 14.
- SEQ ID NO: 22 shows the base sequence of sequence 15.
- SEQ ID NO: 23 shows the base sequence of sequence 16.
- SEQ ID NO: 24 shows the nucleotide sequence of sequence 17.
- SEQ ID NO: 25 shows the base sequence of sequence 18.
- SEQ ID NO: 26 shows the nucleotide sequence of sequence 19.
- SEQ ID NO: 27 shows the base sequence of sequence 20.
- SEQ ID NO: 28 shows the base sequence of sequence 21.
- SEQ ID NO: 29 shows the nucleotide sequence of sequence 22.
- SEQ ID NO: 30 shows the nucleotide sequence of sequence 23.
- SEQ ID NO: 31 shows the nucleotide sequence of sequence 24.
- SEQ ID NO: 32 shows the base sequence of sequence 25.
- SEQ ID NO: 33 shows the nucleotide sequence of sequence 26.
- SEQ ID NO: 34 is the base sequence of sequence 27.
- SEQ ID NO: 35 shows the base sequence of sequence 28.
- SEQ ID NO: 36 is the base sequence of sequence 29.
- SEQ ID NO: 37 shows the base sequence of sequence 30.
- SEQ ID NO: 38 shows the base sequence of sequence 31.
- SEQ ID NO: 39 shows the base sequence of sequence 32.
- SEQ ID NO: 40 shows the base sequence of sequence 33.
- SEQ ID NO: 41 shows the base sequence of sequence 34.
- SEQ ID NO: 42 shows the base sequence of sequence 35.
- SEQ ID NO: 43 shows the nucleotide sequence of sequence 36.
- SEQ ID NO: 44 is the base sequence of sequence 37.
- SEQ ID NO: 45 is the base sequence of sequence 38.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
タグペプチドを利用して所望のタンパク質を効率よく回収及び精製することを目的とする。
(A)少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列、(B)プロモーター配列(ここで、該プロモーター配列は、前記ペプチドタグをコードする塩基配列の上流に接続されている)、及び(C)所望のタンパク質をコードする塩基配列(ここで、該所望のタンパク質をコードする塩基配列は、前記プロモーター配列の下流に接続されており、かつ前記ペプチドタグをコードする塩基配列の上流または下流に接続されている)を含む、メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター。
Description
本発明は、メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター、メチオニン残基含有ペプチドタグベクター、前記タグベクターに所望のタンパク質をコードする塩基配列が導入された発現ベクター、ならびに前記発現ベクターが導入された形質転換体に関する。また、本発明は、該形質転換体を用いることにより得られるメチオニン残基含有ペプチドタグ付きタンパク質、該タンパク質の製造方法、ならびに該タンパク質の回収及び精製方法に関する。
従来、タンパク質をコードする塩基配列を含むベクターを大腸菌、酵母、動物細胞等の宿主細胞に導入し、得られた形質転換体においてタンパク質を発現させた後に、所望のタンパク質を分離、精製する方法が広く知られている。タンパク質を分離、精製する方法としては、特にイオン交換クロマトグラフィー、逆相クロマトグラフィー、アフィニティークロマトグラフィーなどが知られているが、いまだタンパク質をより純度高く、かつ効率良く回収する手段が求められている。
また、タグペプチドを利用して所望のタンパク質を分離、精製する方法が知られており、タグペプチドとしてはヒスチジンタグやシステインタグが例示される。例えば、これまでに、ヒスチジンタグを付加したタンパク質を亜鉛またはコバルト付加固体支持体を用いて単離する方法が報告されている(特許文献1)。また、ヒスチジンタグが融合したタンパク質を、ニッケルアフィニティーカラムを利用して取得できることが報告されている(特許文献2)。
特表2007-505134号公報
特開平10-212298号公報
本発明は、タグペプチドを利用して所望のタンパク質を効率よく回収及び精製することを目的とする。また、本発明は、効率よく回収及び精製できるペプチドタグが付加されたタンパク質を取得することを目的とする。
本発明者らは、上記課題について検討を行い、メチオニン残基を含有するペプチドタグを所望のタンパク質に付加することにより、所望のタンパク質を効率よく回収及び精製できることを見出した。また、メチオニン残基を含有するペプチドタグをリンカーを介して所望のタンパク質に付加することにより、所望のタンパク質を一層効率よく回収及び精製できることを見出した。本発明は当該知見に基づきさらに検討を重ねた結果完成されたものであり、下記に掲げるものである。
項1.以下の(A)~(C)を含む、メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター、
(A)少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列、
(B)プロモーター配列(ここで、該プロモーター配列は、前記ペプチドタグをコードする塩基配列の上流に接続されている)、及び
(C)所望のタンパク質をコードする塩基配列(ここで、該所望のタンパク質をコードする塩基配列は、前記プロモーター配列の下流に接続されており、かつ前記ペプチドタグをコードする塩基配列の上流または下流に接続されている)。
項2.プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記所望のタンパク質をコードする塩基配列との間に接続されている)を含む、項1に記載の発現ベクター。
項3.リンカーペプチドをコードする塩基配列(ここで、該リンカーペプチドをコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記所望のタンパク質をコードする塩基配列の間に接続されている)を含む、項1に記載の発現ベクター。
項4.プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記所望のタンパク質をコードする塩基配列と前記リンカーペプチドをコードする塩基配列との間に接続されている)を含む、項3に記載の発現ベクター。
項5.リンカーペプチドが、αへリックス構造を形成するものである、項3または4に記載の発現ベクター。
項6.ペプチドタグをコードする塩基配列が、グリシン残基をコードする塩基配列を含有するものである、項1~5のいずれかに記載の発現ベクター。
項7.以下の(D)~(F)を含む、メチオニン残基含有ペプチドタグベクター、
(D)少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列、
(E)プロモーター配列(ここで、該プロモーター配列は、前記ペプチドタグをコードする塩基配列の上流に接続されている)、及び
(F)所望のタンパク質をコードする塩基配列を導入するためのクローニングサイト(ここで、該クローニングサイトは、前記プロモーター配列の下流に接続されており、かつ前記ペプチドタグをコードする塩基配列の上流及び/または下流に接続されている)。
項8.プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記クローニングサイトとの間に接続されている)を含む、項7に記載のタグベクター。
項9.リンカーペプチドをコードする塩基配列(ここで、該リンカーペプチドをコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記クローニングサイトの間に接続されている)を含む、項7に記載のタグベクター。
項10.プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記クローニングサイトと前記リンカーペプチドをコードする塩基配列との間に接続されている)を含む、項9に記載のタグベクター。
項11.リンカーペプチドが、αへリックス構造を形成するものである、項9または10に記載のタグベクター。
項12.ペプチドタグをコードする塩基配列が、グリシン残基をコードする塩基配列を含有するものである、項7~11のいずれかに記載の発現ベクター。
項13.項7~12のいずれかに記載のベクターに接続されたクローニングサイトに、所望のタンパク質をコードする塩基配列が導入された、メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター。
項14.項1~6及び13のいずれかに記載のベクターを宿主細胞に導入して形質転換させることにより得られる形質転換体。
項15.項14に記載の形質転換体から得られる、メチオニン残基含有ペプチドタグ付きタンパク質。
項16.項14に記載の形質転換体からメチオニン残基含有ペプチドタグ付きタンパク質を発現させる工程を含有する、メチオニン残基含有ペプチドタグ付きタンパク質の製造方法。
項17.項15で得られたメチオニン残基含有ペプチドタグ付きタンパク質を、金磁性粒子を用いて回収する工程を含有する、メチオニン残基含有ペプチドタグ付きタンパク質の回収方法。
項1.以下の(A)~(C)を含む、メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター、
(A)少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列、
(B)プロモーター配列(ここで、該プロモーター配列は、前記ペプチドタグをコードする塩基配列の上流に接続されている)、及び
(C)所望のタンパク質をコードする塩基配列(ここで、該所望のタンパク質をコードする塩基配列は、前記プロモーター配列の下流に接続されており、かつ前記ペプチドタグをコードする塩基配列の上流または下流に接続されている)。
項2.プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記所望のタンパク質をコードする塩基配列との間に接続されている)を含む、項1に記載の発現ベクター。
項3.リンカーペプチドをコードする塩基配列(ここで、該リンカーペプチドをコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記所望のタンパク質をコードする塩基配列の間に接続されている)を含む、項1に記載の発現ベクター。
項4.プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記所望のタンパク質をコードする塩基配列と前記リンカーペプチドをコードする塩基配列との間に接続されている)を含む、項3に記載の発現ベクター。
項5.リンカーペプチドが、αへリックス構造を形成するものである、項3または4に記載の発現ベクター。
項6.ペプチドタグをコードする塩基配列が、グリシン残基をコードする塩基配列を含有するものである、項1~5のいずれかに記載の発現ベクター。
項7.以下の(D)~(F)を含む、メチオニン残基含有ペプチドタグベクター、
(D)少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列、
(E)プロモーター配列(ここで、該プロモーター配列は、前記ペプチドタグをコードする塩基配列の上流に接続されている)、及び
(F)所望のタンパク質をコードする塩基配列を導入するためのクローニングサイト(ここで、該クローニングサイトは、前記プロモーター配列の下流に接続されており、かつ前記ペプチドタグをコードする塩基配列の上流及び/または下流に接続されている)。
項8.プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記クローニングサイトとの間に接続されている)を含む、項7に記載のタグベクター。
項9.リンカーペプチドをコードする塩基配列(ここで、該リンカーペプチドをコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記クローニングサイトの間に接続されている)を含む、項7に記載のタグベクター。
項10.プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記クローニングサイトと前記リンカーペプチドをコードする塩基配列との間に接続されている)を含む、項9に記載のタグベクター。
項11.リンカーペプチドが、αへリックス構造を形成するものである、項9または10に記載のタグベクター。
項12.ペプチドタグをコードする塩基配列が、グリシン残基をコードする塩基配列を含有するものである、項7~11のいずれかに記載の発現ベクター。
項13.項7~12のいずれかに記載のベクターに接続されたクローニングサイトに、所望のタンパク質をコードする塩基配列が導入された、メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター。
項14.項1~6及び13のいずれかに記載のベクターを宿主細胞に導入して形質転換させることにより得られる形質転換体。
項15.項14に記載の形質転換体から得られる、メチオニン残基含有ペプチドタグ付きタンパク質。
項16.項14に記載の形質転換体からメチオニン残基含有ペプチドタグ付きタンパク質を発現させる工程を含有する、メチオニン残基含有ペプチドタグ付きタンパク質の製造方法。
項17.項15で得られたメチオニン残基含有ペプチドタグ付きタンパク質を、金磁性粒子を用いて回収する工程を含有する、メチオニン残基含有ペプチドタグ付きタンパク質の回収方法。
本発明のメチオニン残基含有ペプチドタグ付きタンパク質発現ベクターによれば、これを宿主細胞に導入することにより得られた形質転換体において、メチオニン残基含有ペプチドタグが付加された所望のタンパク質を容易に発現させることができる。
また、本発明のメチオニン残基含有ペプチドタグベクターによれば、該ベクターに所望のタンパク質をコードする塩基配列を挿入することにより、前記メチオニン残基含有ペプチドタグが付加された所望のタンパク質を発現させることのできるベクターを容易に作製することができる。
また、前記ベクターを用いることにより得られる前記メチオニン残基含有ペプチドタグが付加された所望のタンパク質によれば、金、さらには金磁性粒子を使用することにより、該所望のタンパク質を効率よく回収及び精製することができる。さらに、前記ペプチドタグが付加された所望のタンパク質を、さらにリンカーペプチドを有するものとすることにより、一層効率よく所望のタンパク質を回収することができる。
また、前記ペプチドタグが付加された所望のタンパク質をプロテアーゼ認識部位を有するものとした場合には、プロテアーゼを作用させることにより、ペプチドタグ及びリンカーを所望のタンパク質から容易に切断、除去することができる。
以下、本発明について説明する。
(1)メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター
本発明のメチオニン残基含有ペプチドタグ付きタンパク質発現ベクター(以下、発現ベクターと称することもある)は、(A)少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列、(B)プロモーター配列、及び(C)所望のタンパク質をコードする塩基配列を少なくとも有する。
本発明のメチオニン残基含有ペプチドタグ付きタンパク質発現ベクター(以下、発現ベクターと称することもある)は、(A)少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列、(B)プロモーター配列、及び(C)所望のタンパク質をコードする塩基配列を少なくとも有する。
前記(A)に記載の塩基配列でコードされる少なくとも1つのメチオニン残基を含有するペプチドタグのアミノ酸残基数は、所望のタンパク質の発現を損なうことなく、発現された所望のタンパク質の活性等に影響を与えず、金との結合能力を有するものであれば限定されない。例えば、前記ペプチドタグは1~20のアミノ酸残基からなり、好ましくはアミノ酸残基2~15からなり、より好ましくはアミノ酸残基3~9からなり、よりさらに好ましくはアミノ酸残基5~9からなる。メチオニン残基含有ペプチドタグ付きタンパク質発現ベクターに、後述するプロテアーゼ認識部位をコードする塩基配列やリンカーをコードする塩基配列が含まれる場合には、前記ペプチドタグはこれらの発現にも影響を与えない。
前記ペプチドタグのアミノ酸配列は、少なくとも1つのメチオニン残基を有し、所望のタンパク質の発現を損なうことなく、発現された所望のタンパク質の活性等に影響を与えず、金との結合能力を有するものであれば、任意のアミノ酸残基から構成されていてよい。前記ペプチドタグのアミノ酸配列は、好ましくはメチオニン残基ならびにシステイン残基及び/またはグリシン残基からなり、メチオニン残基が有するスルフィド基の向きを一定方向に固定できる点から、より好ましくはメチオニン残基及びグリシン残基からなる。
例えば、前記ペプチドタグのアミノ酸配列が、メチオニン残基及びシステイン残基からなる場合、そのアミノ酸配列は限定されない。例えば、ペプチドタグが3のアミノ酸残基からなる場合、好ましくはシステイン残基数はメチオニン残基数より少ない。
また例えば、前記ペプチドタグのアミノ酸配列がメチオニン残基及びグリシン残基からなる場合、そのアミノ酸配列は限定されず、例えばメチオニン残基とグリシン残基はランダムであってもよく、メチオニン残基とグリシン残基とが規則正しく配置されていてもよい。例えば、前記ペプチドタグのアミノ酸配列は、1以上のメチオニン残基と1以上のグリシン残基とが同じ数ずつ交互に配置されていてもよく、1つのメチオニン残基と2つのグリシン残基とが交互に配置されていてもよく、1つのメチオニン残基と3つのグリシン残基とが交互に配置されていてもよく、またメチオニン残基とグリシン残基との配置関係が、この逆となっていてもよい。例えば、前記ペプチドタグのアミノ酸配列がメチオニン残基及びグリシン残基からなる場合、MGMGM(配列番号1:tag 1)、MGGMGGM(配列番号2:tag 2)、MGGGMGGGM(配列番号3:tag 3)、MMGGMMGGMM(配列番号4:tag 4)、MMMGGGMMMGGGMMM(配列番号5:tag 5)等の配列が挙げられる。
前記ペプチドタグのアミノ酸配列は、該ペプチドタグと金との結合能力に応じて、当業者により適宜決定される。
このため、前記(A)に記載の塩基配列は、前述のアミノ酸残基数及びアミノ酸配列を備えたアミノ酸をコードする塩基配列からなる。
ただし、前記発現ベクターに後述するリンカーペプチドをコードする塩基配列が含まれない場合には、前記ペプチドタグは、前述のアミノ酸残基数及びアミノ酸配列のうち、連続する3~5のメチオニン残基からなるもの以外に限定される。すなわち、前記発現ベクターにリンカーペプチドをコードする塩基配列が含まれない場合には、前記(A)に記載の塩基配列は、前述のアミノ酸残基数及びアミノ酸配列を有するペプチドタグをコードする塩基配列のうち、連続する3~5のメチオニン残基をコードする塩基配列からなるものは含まない。
前記ペプチドタグをコードする塩基配列が、前記発現ベクターを構築するために用いられるベクター(以下、基本ベクターと称することもある)にあらかじめ含まれている場合には、これを、前記ペプチドタグをコードする塩基配列の一部または全部として利用することができる。該基本ベクターにあらかじめ含まれる前記ペプチドタグをコードする塩基配列には、開始メチオニンに相当する塩基配列も包含される。
すなわち、前記発現ベクターに含まれるペプチドタグをコードする塩基配列は、(i)基本ベクターに、前記ペプチドタグをコードする塩基配列を導入することにより得られるものでもあってもよく、また(ii)基本ベクター中にあらかじめ含まれている前記ペプチドタグをコードする塩基配列であってもよく(開始メチオニンをコードする塩基配列を包含していてもよい)、また(iii)基本ベクターに導入された塩基配列と、基本ベクター中にあらかじめ含まれている塩基配列とをあわせることにより得られる前記ペプチドタグをコードする塩基配列であってもよい。
このため、前記発現ベクターを利用することにより発現されるペプチドタグは、前記基本ベクターに導入される塩基配列のみから発現されるか、前記基本ベクター中にあらかじめ含まれている塩基配列のみから発現されるか、または前記基本ベクターに導入される塩基配列と基本ベクター中にあらかじめ含まれている塩基配列とをあわせた塩基配列から発現される。
前記発現ベクターにおけるプロモーター配列の接続位置は、前記発現ベクターを導入することにより得られる形質転換体において、前記ペプチドタグが付加された所望のタンパク質が発現される限り限定されない。例えば、該プロモーター配列は、前記ペプチドタグをコードする塩基配列の上流に接続される。前記発現ベクターにおいて、前記ペプチドタグをコードする塩基配列は該プロモーター配列の制御下にある。
ここで使用されるプロモーターは、当該分野で従来公知のプロモーターであれば限定されない。例えば、プロモーターとしてT7lac、T7、araBADプロモーターなどが挙げられ、これは例えば大腸菌においてタンパク質を発現させる場合に使用される。また、SV40、CMV、RSV、TK、EF-1αプロモーターなどが挙げられ、これは例えば動物細胞においてタンパク質を発現させる場合に使用される。プロモーターとして、他に酵母用プロモーター、昆虫細胞用プロモーター、ウイルスプロモーターを使用することも可能である。
前記発現ベクターにおける所望のタンパク質をコードする塩基配列の接続位置も、前記発現ベクターを導入することにより得られる形質転換体において、前記ペプチドタグが付加された所望のタンパク質が発現される限り限定されない。
例えば、該所望のタンパク質をコードする塩基配列は、前記プロモーター配列より下流に接続され、かつ前記メチオニンタグをコードする塩基配列の上流または下流に接続される。該所望のタンパク質をコードする塩基配列が、前記ペプチドタグをコードする塩基配列の上流に接続されるか下流に接続されるかについては、使用する所望のタンパク質の性質や宿主細胞の性質等に応じて適宜変更され、当該変更は当該分野において一般的に検討される範囲内で行われる。
例えば、該所望のタンパク質をコードする塩基配列が前記ペプチドタグをコードする塩基配列の下流に接続された場合、その所望のタンパク質をコードする塩基配列のN末端部にシグナル配列等が存在する場合には、シグナルペプチダーゼ等の酵素の作用により切断を受ける可能性がある。このような場合には、所望のタンパク質をコードする塩基配列は、前記プロモーター配列より下流に接続されており、かつ前記ペプチドタグをコードする塩基配列の上流に接続することが好ましい。
いずれの場合であっても、前記発現ベクターにおいて、所望のタンパク質をコードする塩基配列は前記プロモーターの制御下に接続されている。
前記所望のタンパク質の種類は限定されず、任意のタンパク質を使用することができる。
前記発現ベクターには、さらにプロテアーゼ切断認識部位をコードする塩基配列を接続させることができる。前記発現ベクターにおけるプロテアーゼ切断認識部位をコードする塩基配列の接続位置は、前記発現ベクターを導入することにより得られる形質転換体において、例えば前記ペプチドタグをコードする塩基配列と前記所望のタンパク質をコードする塩基配列との間に接続される。該プロテアーゼ切断認識部位をコードする塩基配列も、前記プロモーターの制御下に接続される。
該プロテアーゼ切断認識部位のアミノ酸配列としてはPreScission(登録商標)Protease(GEヘルスケアバイオサイエンス株式会社)により認識されるLEVLFQGPG、エンテロキナーゼ(メルク株式会社)により認識されるDDDDL、Factor Xa (Promega、メルク株式会社他)により認識されるIEGR、トロンビン(メルク株式会社、GEヘルスケアバイオサイエンス株式会社他)により認識されるLVPRGS、Pro TEV Protease(Promega)により認識されるENLYFQG[EXXYQ(G/S)]が例示される。
このため、プロテアーゼ切断認識部位をコードする塩基配列は、前述のプロテアーゼ切断認識部位をコードする塩基配列からなる。
また、前記プロテアーゼ切断認識部位をコードする塩基配列が、前記発現ベクターを構築するために用いられる基本ベクターにあらかじめ含まれている場合には、該塩基配列を、前記プロテアーゼ切断認識部位をコードする塩基配列の一部または全部として利用することができる。すなわち、前記発現ベクターに導入されるプロテアーゼ切断認識部位をコードする塩基配列は、(i)基本ベクターに、前記プロテアーゼ切断認識部位をコードする塩基配列を導入することにより得られるものでもあってもよく、また(ii)基本ベクター中にあらかじめ含まれている前記プロテアーゼ切断認識部位をコードする塩基配列であってもよく、また(iii)基本ベクターに導入された塩基配列と、基本ベクター中にあらかじめ含まれている塩基配列とをあわせることにより得られる前記プロテアーゼ切断認識部位をコードする塩基配列でもよい。
前記発現ベクターにプロテアーゼ切断認識部位をコードする塩基配列を導入した場合、その後に発現されるペプチドタグが付加された所望のタンパク質にプロテアーゼを作用させることにより、付加されたペプチドタグを所望のタンパク質から容易に切断、除去することができる。
前記発現ベクターには、さらにリンカーペプチドをコードする塩基配列を導入することができる。該リンカーペプチドをコードする塩基配列は、前記ペプチドタグをコードする塩基配列の上流もしくは下流に配置される。例えば、該リンカーペプチドをコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記所望のタンパク質をコードする塩基配列の間に接続される。さらに、前記発現ベクターが前記プロテアーゼ切断認識部位をコードする塩基配列を有する場合には、該リンカーペプチドをコードする塩基配列は、特に前記ペプチドタグをコードする塩基配列と前記プロテアーゼ切断認識部位をコードする塩基配列の間に接続される。いずれの場合も、前記発現ベクターにおいて、該リンカーペプチドをコードする塩基配列は前記プロモーターの制御下に接続されている。
該リンカーペプチドのアミノ酸残基数も、前記ペプチドタグ及び所望のタンパク質の発現を損なうことなく、発現された所望のタンパク質の活性等の特性に影響を与えず、前記ペプチドタグと金との結合を妨げず、さらに前記発現ベクターに前記プロテアーゼ切断認識部位をコードする塩基配列が導入されている場合、該プロテアーゼ切断認識部位の発現を損なわない限り限定されない。例えば、該リンカーペプチドは1~50のアミノ酸残基からなり、好ましくはアミノ酸残基1~30からなり、より好ましくはアミノ酸残基12~30からなる。
また、該リンカーペプチドのアミノ酸配列は、前記ペプチドタグと金との結合を妨げない限り限定されない。例えば、リンカーペプチドは、棒状の構造をとるものが好ましく、より好ましくはαへリックス構造、又はポリプロリンへリックスを形成する。ポリプロリンへリックスとしては、例えばJ. AM. CHEM. SOC. 2007, 129, 873-880に記載のものが例示される。該リンカーペプチドは、さらにより好ましくはαへリックス構造を形成する。αへリックス構造を形成する該リンカーペプチドの例としては、一般式(EAAAK)n、(AAKAA)n,KAAAAKAAAAKAAAAK(配列番号6:linker 1)、YGG(KAAAA)nG、Y((AEAAKA)×8)F(配列番号7:linker 2)等で表されるものが例示される。
ここで、(EAAAK)nはEAAAK配列がn回連続して繰り返されていることを意味し、nは任意の整数とするが、nは2~5、好ましくは3~5、さらに好ましくは4~5、特に好ましくは5である。該(EAAAK)nは、例えばArai R. et al., Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering, PROTEINS: Structure, Function, and Bioinformatics 57:829-838(2004)に開示されている。
また、(AAKAA)nも同様に、AAKAA配列がn回連続して繰り返されていることを意味し、nは任意の整数とするが、nは2以上、好ましくは3以上、より好ましくは4以上、さらに好ましくは4~10、特に好ましくは4~7である。
また、YGG(KAAAA)nGも同様に、KAAAA配列がn回連続して繰り返されていることを意味し、nは任意の整数とするが、nは2以上、好ましくは2~10、より好ましくは2~7以上、さらに好ましくは3~7である。例えばn=3がよく用いられている。
Y((AEAAKA)×8)Fは、AEAAKA配列が8回連続して繰り返されていることを意味する。
このため、リンカーペプチドをコードする塩基配列は、前述のリンカーペプチドをコードする塩基配列からなる。
また、前記ペプチドタグをコードする塩基配列と同様に、前記リンカーペプチドをコードする塩基配列が、前記発現ベクターを構築するために用いられる基本ベクターにあらかじめ含まれている場合には、これを前記リンカーペプチドをコードする塩基配列の一部または全部として利用することができる。すなわち、前記発現ベクターに導入されるリンカーペプチドをコードする塩基配列は、(i)基本ベクターに、前記リンカーペプチドをコードする塩基配列を導入することにより得られるものでもあってもよく、また(ii)基本ベクター中にあらかじめ含まれている前記リンカーペプチドをコードする塩基配列であってもよく、また(iii)基本ベクターに導入された塩基配列と、基本ベクター中にあらかじめ含まれている塩基配列とをあわせることにより得られる前記リンカーペプチドをコードする塩基配列でもよい。
前記発現ベクターにリンカーペプチドをコードする塩基配列を導入した場合、前記ペプチドタグと金とが結合する割合を向上させることができ、従って所望のタンパク質を効率よく回収・精製することができる。
このほか、前記発現ベクターには、複製起点やタンパク質の発現に一般に必要なリボソーム結合部位などをコードする塩基配列が接続されていてもよく、またGreen Fluorescent Protein(GFP)遺伝子、ルシフェラーゼ遺伝子、クロラムフェニコールアセチルトランスフェラーゼ(CAT)遺伝子、β-グルクロニダーゼ遺伝子、薬剤耐性遺伝子等の塩基配列、また、β-ガラクトシダーゼをコードする塩基配列(LacZ遺伝子)等が接続されていてもよい。これらの塩基配列は、目的に応じて前記発現ベクターの任意の位置に配置される。
前記発現ベクターの製造方法としては、当該分野で従来公知の方法を用いることができ、所望の発現ベクターが得られる限り限定されない。
例えば、基本ベクターへの前記所望のタンパク質をコードする塩基配列の導入は、基本ベクター上に前記ペプチドタグをコードする塩基配列とともにクローニングサイトを配置し、該クローニングサイト部分に制限酵素等を用いて所望のタンパク質をコードする塩基配列を導入することにより行ってもよい。
また、例えば、基本ベクターへの前記ペプチドタグをコードする塩基配列の導入は、基本ベクター上に、所望のタンパク質をコードする塩基配列とともにクローニングサイトを配置し、該クローニングサイト部分に、制限酵素等を用いてペプチドタグをコードする塩基配列を導入することにより行ってもよい。
また、例えば、基本ベクターへの、前記ペプチドタグをコードする塩基配列及び所望のタンパク質をコードする塩基配列の導入は、前記ペプチドタグをコードする塩基配列と、所望のタンパク質をコードする塩基配列とをあらかじめ接続し、これを基本ベクターに導入することにより行ってもよい。この場合、プロテアーゼ切断認識部位をコードする塩基配列のベクターへの導入及びリンカーペプチドをコードする塩基配列のベクターへの導入も、上記と同様に当該分野で従来公知の方法に従い適宜行えばよい。例えば、前記ペプチドタグをコードする塩基配列と、所望のタンパク質をコードする塩基配列と、プロテアーゼ切断認識部位をコードする塩基配列とを、さらにはリンカーペプチドをコードする塩基配列とをあらかじめ接続し、これを基本ベクターに導入することにより行ってもよい。
前記発現ベクターを構築するために用いられるベクター(基本ベクター)は、所望の発現用ベクターが得られる限り種々のものが利用でき限定されない。該基本ベクターとしては、例えば、pUC18/19、pBR322、pBluescript等のプロモーターを含まないベクターやpETvector、pCruz expression vector、pcDNA vectorなどあらかじめタンパク質発現用のプロモーターを含むベクターが挙げられる。これらのベクターは、当該分野において一般的に検討される範囲内で使用目的に応じて適宜選択すればよい。
(2)メチオニン残基含有ペプチドタグベクター
本発明のメチオニン残基含有ペプチドタグベクター(以下、タグベクターと称することもある)は、(D)少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列、(E)プロモーター配列、及び(F)所望のタンパク質をコードする塩基配列を導入するためのクローニングサイトを少なくとも有する。
本発明のメチオニン残基含有ペプチドタグベクター(以下、タグベクターと称することもある)は、(D)少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列、(E)プロモーター配列、及び(F)所望のタンパク質をコードする塩基配列を導入するためのクローニングサイトを少なくとも有する。
前記(D)として記載される少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列は、前述の(A)と同様のものが挙げられる。
前記タグベクターにおける前記プロモーター配列の接続位置は、所望の効果を有するベクターが得られる限り限定されない。例えば、前記プロモーター配列は、前記ペプチドタグをコードする塩基配列の上流に接続される。該タグベクターにおいて、前記ペプチドタグをコードする塩基配列は該プロモーターの制御下にある。ここで使用されるプロモーターは、当該分野で公知のプロモーターであれば限定されず、前述のものが例示される。
また、前記タグベクターにおけるクローニングサイトの接続位置も、所望の効果を有するベクターが得られる限り限定されない。例えば、前記クローニングサイトは、前記プロモーター配列の下流に接続され、かつ前記ペプチドタグをコードする塩基配列の上流及び/または下流に接続される。
前記クローニングサイトが、前記ペプチドタグをコードする塩基配列の上流に接続されるか、下流に接続されるかについては、その後、該クローニングサイトに導入され得るタンパク質や、該タグベクターに導入される後述のプロテアーゼ切断認識部位やリンカーペプチドの性質、更には宿主細胞の性質等に応じて適宜変更され、当該変更は当該分野において一般的に検討される範囲内で行われる。
例えば、該クローニングサイトが前記ペプチドタグをコードする塩基配列の下流に接続され、かつ、該クローニングサイトにその後に導入され得るタンパク質をコードする塩基配列のN末端部にシグナル配列等がある場合、これは当該N末端部でメチオニンシグナルペプチダーゼ等の酵素の作用により切断を受ける可能性がある。このような場合には、好ましくは、前記クローニングサイトは前記ペプチドタグをコードする塩基配列の上流に接続される。
前記クローニングサイトが、前記ペプチドタグをコードする塩基配列の上流及び下流に接続される場合には、その後に導入され得るタンパク質をコードする塩基配列は、上流部または下流部のいずれか、またはその両方のクローニングサイトに導入されればよい。この場合、タンパク質をコードする塩基配列を上流、下流または両方のうち、いずれのクローニングサイトに導入するかについては、前述のように該クローニングサイトに導入され得るタンパク質の性質や、更には宿主細胞の性質等に応じて適宜決定される。
該クローニングサイトは、主に所望のタンパク質をコードする塩基配列を前記タグベクターに導入するために接続されており、これは限定されないが例えばマルチクローニングサイトが挙げられる。このため、該クローニングサイトに所望のタンパク質をコードする塩基配列が導入される場合、該所望のタンパク質をコードする塩基配列は前記プロモーター配列の制御下に接続されることになる。該クローニングサイトに導入される所望のタンパク質の種類は限定されず、任意のタンパク質を使用することができる。
なお、同様にクローニングサイトを利用して、後述のプロテアーゼ切断認識部位をコードする塩基配列やリンカーペプチドをコードする塩基配列を前記タグベクターに導入することもできる。
前記タグベクターには、さらにプロテアーゼ切断認識部位をコードする塩基配列を接続させることができる。前記発現ベクターにおける該プロテアーゼ切断認識部位をコードする塩基配列の接続位置は、所望の効果を有するベクターが得られる限り限定されず、例えば、前記ペプチドタグをコードする塩基配列と前記クローニングサイトをコードする塩基配列との間に接続される。この場合も前記タグベクターにおいて、該プロテアーゼ切断認識部位をコードする塩基配列は前記プロモーターの制御下に接続されており、この配列がコードするアミノ酸配列は前述のとおりである。このため、該プロテアーゼ切断認識部位をコードする塩基配列も前述の通りである。
前記タグベクターには、さらにリンカーペプチドをコードする塩基配列を接続させることができる。前記発現ベクターにおける該リンカーペプチドをコードする塩基配列の接続位置も、所望の効果を有するベクターが得られる限り限定されない。例えば、該リンカーペプチドをコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記クローニングサイトをコードする塩基配列の間に接続される。さらに、前記タグベクターが前記プロテアーゼ切断認識部位をコードする塩基配列を有する場合には、該リンカーペプチドをコードする塩基配列は、特に前記ペプチドタグをコードする塩基配列と前記プロテアーゼ切断認識部位をコードする塩基配列の間に接続される。いずれの場合も、前記タグベクターにおいて、該リンカーペプチドをコードする塩基配列は前記プロモーターの制御下にある。また、該リンカーペプチドをコードする塩基配列は、前述のリンカーペプチドを構成するアミノ酸配列をコードする。
このほか、前記タグベクターには、プラスミドの増幅やタンパク質の発現に一般に必要な塩基配列が接続されている。また、GFP遺伝子、ルシフェラーゼ遺伝子、薬剤耐性遺伝子等の遺伝子をコードする塩基配列などが接続されていてもよく、その塩基配列及び導入場所は前述のものが例示される。これらの塩基配列は、ペプチドタグや導入され得る所望のタンパク質、さらにはプロテアーゼ切断認識部位やリンカーペプチドの好適な発現を妨げない限り、前記タグベクターの任意の位置に接続される。
前記タグベクターの製造方法としては、当該分野で従来公知の方法を用いることができ、所望の発現ベクターが得られる限り限定されず、当該分野で従来公知の方法に従い製造することができる。
また、前記のタグベクターを構築するために用いられるベクター(基本ベクター)としては、前述のものが例示される。
(3)所望のタンパク質をコードする塩基配列のタグベクターへの導入
前記タグベクターには、所望のタンパク質をコードする塩基配列を導入することができる。該所望のタンパク質をコードする塩基配列は、前記プロモーターの制御下に接続されれば導入箇所は限定されないが、好ましくは、タグベクターに接続された前記クローニングサイトに導入される。ここで、所望のタンパク質は限定されない。
前記タグベクターには、所望のタンパク質をコードする塩基配列を導入することができる。該所望のタンパク質をコードする塩基配列は、前記プロモーターの制御下に接続されれば導入箇所は限定されないが、好ましくは、タグベクターに接続された前記クローニングサイトに導入される。ここで、所望のタンパク質は限定されない。
前記所望のタンパク質をコードする塩基配列のタグベクターへの導入は、当該分野で公知の方法に従い行われる。例えば、前記所望のタンパク質をコードする塩基配列がクローニングサイトに導入される場合、該クローニングサイトに含まれる制限酵素認識部位を利用することにより、目的とする位置に該塩基配列を導入することができる。
このように所望のタンパク質をコードする塩基配列を前記タグベクターに導入することにより、該所望のタンパク質をコードする塩基配列のN末端側またはC末端側に、ペプチドタグをコードする塩基配列を付加することができる。また、前記タグベクターがさらにプロテアーゼ切断認識部位をコードする塩基配列及び/またはリンカーペプチドをコードする塩基配列を有する場合には、同様にして、該所望のタンパク質をコードする塩基配列に、プロテアーゼ切断認識部位をコードする塩基配列及び/またはリンカーペプチドをコードする塩基配列を介して、ペプチドタグをコードする塩基配列を付加することができる。
このように、前記タグベクターに所望のタンパク質をコードする塩基配列を導入することによっても、メチオニン残基含有ペプチドタグ付きタンパク質発現ベクターを得ることができる。
(4)形質転換体
本発明の形質転換体は、前記発現ベクターを宿主細胞に導入することにより、または前記タグベクターに所望のタンパク質をコードする塩基配列を導入したのち、これを宿主細胞に導入することによりにより得ることができる。
本発明の形質転換体は、前記発現ベクターを宿主細胞に導入することにより、または前記タグベクターに所望のタンパク質をコードする塩基配列を導入したのち、これを宿主細胞に導入することによりにより得ることができる。
ここで、上記宿主細胞は限定されず、大腸菌をはじめとする細菌類、酵母、昆虫細胞、植物細胞、動物細胞など種々の細胞が挙げられる。好ましくは、細菌類、動物細胞である。
また、前記発現ベクターまたは所望のタンパク質をコードする塩基配列が導入されたタグベクターの宿主細胞への導入は、当該分野で従来公知の方法に従い行うことができる。
例えば、これらのベクターの大腸菌への導入には、塩化カルシウム法や塩化ルビジウム法で作製したコンピテントセルにヒートショック法で導入する方法や、電気的に細胞膜に穴を開けて導入するエレクトロポレーション法などを用いることができる。また、例えば酵母細胞にはLi法など、植物細胞にはアグロバクテリウム法、パーティクルガン法、エレクトロポレーション法など、哺乳細胞には塩化カルシウム法、リポソーム法、DEAEデキストラン法、リポフェクション法、エレクトロポレーション法、マイクロインジェクション法、パーティクルガン法、ウイルス法などを用いることができる。
このようにして得られた形質転換体を用いることにより、当該形質転換体において、N末端またはC末端に少なくともペプチドタグが付加されたタンパク質を発現させることができる。また、宿主細胞に導入される前記ベクターに、さらにプロテアーゼ切断認識部位をコードする塩基配列及び/またはリンカーペプチドをコードする塩基配列が含有されている場合には、当該形質転換体を用いることにより、プロテアーゼ切断認識部位及び/またはリンカーペプチドを介してペプチドタグが付加されたタンパク質を発現させることができる。
(5)メチオニン残基含有ペプチドタグ付きタンパク質の製造方法
前述のようにして得られた形質転換体における所望のタンパク質の発現は、形質転換体においてメチオニン残基含有ペプチドタグ付きタンパク質を発現させる工程を経ることにより製造される。該形質転換体におけるメチオニン残基含有ペプチドタグ付きタンパク質の発現は、前述のようにして得られた形質転換体を、その形質転換体が増殖できる培地で培養し、その後、必要に応じて発現を誘導することにより実施される。例えば、宿主として真核細胞を用いた場合には、ベクタープラスミドを該真核細胞に導入するだけで、所望のタンパク質を発現させることができる。
前述のようにして得られた形質転換体における所望のタンパク質の発現は、形質転換体においてメチオニン残基含有ペプチドタグ付きタンパク質を発現させる工程を経ることにより製造される。該形質転換体におけるメチオニン残基含有ペプチドタグ付きタンパク質の発現は、前述のようにして得られた形質転換体を、その形質転換体が増殖できる培地で培養し、その後、必要に応じて発現を誘導することにより実施される。例えば、宿主として真核細胞を用いた場合には、ベクタープラスミドを該真核細胞に導入するだけで、所望のタンパク質を発現させることができる。
ここで使用される培地、また培養時間や培養温度等の条件は限定されず、当該分野で従来公知の手順に従い適宜決定される。例えば、前記ベクターに、薬剤体性遺伝子等が発現可能なように接続されている場合には、前記培地に抗生物質等が添加されていてもよい。また、発現誘導についても、使用される発現誘導剤、作用時間及び作用温度は、その形質転換体に応じて当該分野で従来公知の手順に従い適宜決定される。
例えば以下の実施例に記載の方法により、前記ペプチドタグが付加されたタンパク質を発現、取得することができる。また、インテインを使ったプロテインスプライシング法(Chembiochem. 2008 Sep 22;9(14):2317-25、Angew Chem Int Ed Engl. 2007;46(27):5234-7)等によっても前記ペプチドタグが付加されたタンパク質を取得することができる。
(6)メチオニン残基含有ペプチドタグ付きタンパク質の回収・精製方法
(6)メチオニン残基含有ペプチドタグ付きタンパク質の回収・精製方法
前記タグ付きタンパク質を発現させた形質転換体は、遠心分離などの手法を用いて回収され、発現させた該タグつきタンパク質を溶解できるバッファーを用いて抽出、溶解される。この溶解の効率を高めるため、超音波破砕などの方法が必要に応じて用いられる。
このようにして得られた該タグ付きタンパク質を含む溶液から、ペプチドタグと親和性を有する物質を用いてペプチドタグが付加されたタンパク質を回収・精製することができる。
例えば金を利用して以下のように回収・精製することができる。前述のようにして発現されたペプチドタグ付きタンパク質と金粒子とを溶液中で混合・撹拌することにより、前記タンパク質に付加されたペプチドタグと金粒子とを結合させることができる。ここで得られた、タンパク質に付加されたペプチドタグと金粒子との結合物は、例えば金粒子と親和性の高い物質を利用して分離・回収される。ここで、磁力を利用することにより得られた結合物を容易に分離・回収できる点から、金粒子はあらかじめ磁性金属との複合体(以下、金磁性粒子と称する場合もある)としておくことが好ましい。このように金粒子をあらかじめ磁性金属との複合体としておくことにより、前述のようにして発現されたペプチドタグ付きタンパク質は金磁性粒子との結合物となる。そして、結合物中の磁性金属が磁石等にひきつけられ、その結果、得られた複合物を磁力を利用して容易に分離・回収することができる。
具体的には、例えば、前記タンパク質に付加されたペプチドタグと金磁性粒子との結合をチューブ中で行い、該チューブの外側に磁石等を近づけることにより、磁石周辺に金磁性粒子を集めることができる。すなわち、これにより磁石周辺に前記結合物を集めることができる。そしてその後、チューブから溶液を排除することにより、前記結合物を溶液中から容易に分離・回収することができる。
ここで、ペプチドタグと金粒子とを結合させる際に使用される前記溶液としては、前記タンパク質に付加されたペプチドタグと金粒子とが結合し、所望のタンパク質が溶解する限り限定されず、例えば緩衝液が例示される。緩衝液としては、リン酸緩衝液、トリス緩衝液等が例示される。また、緩衝液のpHも前記ペプチドタグと金粒子とが結合する限り限定されず、好ましくはpH 7付近が例示される。また、撹拌温度も前記ペプチドタグと金粒子とが結合し、所望のタンパク質が分解されない限り限定されず、例えば4~25℃が例示される。また、撹拌時間も同様に限定されず、例えば1分以上、好ましくは5~60分が例示される。
また、ここで使用される磁性金属としては、磁性を有し、前記金粒子と複合体を形成でき、かつ磁力により前記結合物が磁石等に捕集される効果を発揮できるものであれば限定されないが、例えば磁性金属酸化物微粒子が例示できる。磁性金属酸化物微粒子としては、酸化鉄(とりわけ磁鉱、マグヘマイト、フェライトなどのFe2O3を主成分とする磁性酸化物など)の微粒子、コバルト、ニッケルなどの酸化物微粒子、これらの金属の金属間化合物またはこれらの金属と鉄との金属間化合物(例えばCoPt、FePtなど)の酸化物微粒子、またはこれら各金属の合金(例えばCo/Ni、Co/Fe、Ni/Feなどの2元合金、Co/Fe/Niなどの3元合金など)の酸化物微粒子等を例示できる。磁性金属酸化物微粒子として、好ましくはγ-Fe2O3、Fe3O4等が挙げられる。
また、金粒子の平均粒子径は、金粒子と前記ペプチドタグとの結合が妨げられず、さらには前記磁力による捕集が妨げられない限り限定されないが、例えば平均粒子径が1-500nm、好ましくは平均粒子径1-100nm程度である。
また、前記磁性金属の平均粒子径も、金粒子と前記ペプチドタグとの結合を妨げず、前記金粒子を接合ないし担持でき、さらには前記磁力により捕集できる限り限定されないが、平均粒子径1nm-1μm、好ましくは平均粒子径1-500nm程度、より好ましくは1-200nm程度、さらに好ましくは1-100nm程度を挙げることができる。
前記金粒子と磁性金属の大きさの関係は、前記所望の効果を発揮できる限り限定されないが、金粒子の平均粒子径をA、磁性金属の平均粒子径をBとしたとき、0.01<A/B<1000、好ましくは0.1<A/B<10の式を満たすことが望ましい。
そのほか、前記金粒子及び磁性金属は、WO2004/083124号公報に基づき入手することができ、また金粒子と磁性金属との複合体、すなわち金磁性粒子は前記公報に従い製造することができる。
上述のように分離・回収された結合物における金磁性粒子の分離は、例えば緩衝液等の溶液を用いて行うことができる。例えば前記溶液が排除された上記チューブに緩衝液を添加し、前記結合物においてペプチドタグと金磁性粒子とを分離させる。その後、上述のように磁力を用いて金磁性粒子のみを磁石付近に集め、次いで溶液を回収する。これにより、ペプチドタグ付きタンパク質のみを容易に分離することができる。ここで使用される緩衝液等の溶液としては、前記タンパク質に付加されたペプチドタグと金粒子とを分離でき、所望のタンパク質を分解もしくは不溶化させない限り限定されない。例えば、該溶液として、メルカプトエタノール、ジチオスレイトール、メチオニンやシステインを含む緩衝液等が例示される。また、該溶液のpHも同様に限定されず、例えばpH7付近が例示される。また、結合物と緩衝液との混合温度も同様に限定されず、例えば4~25℃、好ましくは4℃が例示される。また、混合時間も同様に限定されず、例えば5分以上、好ましくは15分以上が例示される。
さらに、回収されたペプチドタグ付きタンパク質における、所望のタンパク質からの前記ペプチドタグの分離は、当該分野で従来公知の方法に従い行うことができるが、容易に分離できる点で、前記プロテアーゼ切断認識部位をあらかじめベクターに導入しておき、発現されたプロテアーゼ切断認識部位にプロテアーゼを作用させ、当該切断部位で切断することが好ましい。プロテアーゼ切断認識部位については、前述の通りである。
以下、実施例を挙げて、本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
試験例1
メチオニン残基含有ペプチドタグ付きタンパク質発現ベクターの構築方法をタグ領域の種類毎に分けて説明する。
試験例1
メチオニン残基含有ペプチドタグ付きタンパク質発現ベクターの構築方法をタグ領域の種類毎に分けて説明する。
(1)メチオニン残基からなるペプチドタグ付きタンパク質発現ベクターの構築
本試験では、メチオニン残基からなるペプチドタグの例として、3つのメチオニン残基からなるペプチドタグ(MMM)、及び5つのメチオニン残基からなるペプチドタグ(MMMMM)を採用した。
本試験では、メチオニン残基からなるペプチドタグの例として、3つのメチオニン残基からなるペプチドタグ(MMM)、及び5つのメチオニン残基からなるペプチドタグ(MMMMM)を採用した。
本試験で構築した発現ベクターはプロモーター配列を有する。本試験では基本ベクターとして、大腸菌でタンパク質発現が可能なベクターpET-15b(MERCK/Novagen)を用いたことから、プロモーター配列としては、基本ベクターpET-15bにあらかじめ備わっているプロモーターを用いた。
また、本試験で構築した発現ベクターは、所望のタンパク質コードする塩基配列を有する。前記所望のタンパク質としては、Enhanced Green Fluorescent Protein (EGFP)を用いた。
本試験ではまず、EGFPをコードする塩基配列を含むpCruz GFP Expression vector C (Santa Cruz Biotechnology, Inc.)を使用して、EGFPをコードする配列の3’末端部にメチオニンタグ導入用配列を付加し、これを基本ベクターpET-15bに導入した。
具体的には、pCruz GFP Expression vector C 5μgを制限酵素ScaI(東洋紡績株式会社) 25 Uを用い添付のバッファー条件を用いて100 μl中37℃で16時間処理した後、その処理液の一部を使い完全切断を電気泳動で確認した。さらに、得られた処理液に制限酵素BglII(東洋紡績株式会社製)25 Uを加え37℃で3時間処理した後、その処理液の一部を使い完全切断を電気泳動で確認した。確認後、得られた処理液をTEバッファー(10 mM Tris-HCl (pH7.5),1 mM EDTAを含有する水溶液)で200 μlにメスアップし、フェノール・クロロホルム処理(容量比が、フェノール:クロロホルム:イソアミルアルコール=25:24:1の混合液を等量加えて、ボルテックスミキサーで混合)し酵素を失活させた。その後、遠心機M150-IV(株式会社佐久間製作所製)を用い15000 rpm、5分間、室温で遠心分離を行ない、上清を分取した。
その上清に、10μg/μl グリコーゲン水溶液 1μlを加え、前記制限酵素処理済みのpCruz GFP Expression vector Cをエタノール沈殿後、回収(前記ベクタープラスミドに、3 M 酢酸ナトリウム水溶液 を20μl、エタノール(特級:ナカライテスク株式会社製)を500μl加えてよく混和後、15000 rpm、5分間、4℃で遠心分離を行ない、上清を除去した。得られた沈殿物に70%(v/v)エタノール水溶液を500μl加え、よく混和後、15000rpm、5分間、4℃で遠心分離を行ない、上清を除去した。)し、真空乾燥させた。これをTEバッファー 30μlに溶解後、その一部を用いて電気泳動を行ない、切断されたpCruz GFP Expression vector Cの回収量を、濃度既知の分子量マーカーを用いて推定した。
一方、ペプチドタグ導入用配列を含むオリゴヌクレオチド(5’-CATGATGATGTA-3’と5’-GATCTACATCATCATG-3’)をアニール(相補鎖を持つ配列をあわせて二本鎖にすること)させた。なお、前者のプライマーをsequence 1とし、配列番号8で表す。また、後者のプライマーをsequence 2とし、配列番号9で表す。アニール反応は、それぞれの配列のオリゴヌクレオチドを100 pmol/μlになるようにTEバッファーで溶解し、これを各5μlと5 M NaCl水溶液25μlとをTEバッファーで500μlにメスアップし95℃で5分間熱処理した後、1時間半ほどかけて徐冷して行った(アニール反応後の溶液濃度は10 pmol/μl)。これを150 fmolまたは300 fmol用いて、先に制限酵素処理を行なったpCruz GFP Expression vector C 50 fmolにライゲーションキット(タカラバイオ株式会社製)を用いて16℃、30 分間で導入した。
導入後、得られた溶液をTEバッファーで200μlにメスアップし、フェノール・クロロホルム処理し酵素を失活させた。さらに、15000 rpm、5 分間、室温で遠心分離を行ない、上清を分取した。その上清に、10μg/μl グリコーゲン水溶液1μlを加え、ライゲーション反応済みプラスミドをエタノール沈殿後、回収し、真空乾燥させた。これをTEバッファー 5μlで溶解後、制限酵素ScaI 5 Uを用いて添付のバッファー条件で50μL中37℃、30分間処理した。さらにTEバッファーで200μlにメスアップし、フェノール・クロロホルム処理し酵素を失活させた。次いで、15000 rpm、5 分間、室温で遠心分離を行ない、上清を分取した。その上清のプラスミドをエタノール沈殿後、回収し、真空乾燥後、TEバッファー 5μlで溶解した。
この溶液全量にコンピテントセルDH5α 50μlを加え氷上で30分間静置後、42℃で60 秒、氷上で3 分間静置後、SOC medium(2%(w/v)トリプトン、0.5%(w/v) yeast extract、10 mM 塩化ナトリウム、10 mM硫酸マグネシウム、20 mM グルコースを含む水溶液をオートクレーブで121℃ 20分の滅菌処理を施し-80℃で分注保存してあるもの)を 450μl加え、37℃で1時間インキュベートし、50 μg/mlアンピシリン含有LBプレート(1.5%(w/v) Agar, powder (Wako)を含むLB培地(1%(w/v) Tripton, 0.5%(w/v) Yeast extract, 1%(w/v) NaClを含む水溶液)をオートクレーブで121℃ 20分の滅菌処理を施した後、寒天が固まる前に滅菌済み10 cmプラスチックシャーレに無菌的に20ml入れて固まらせたもの)に塗布した。37℃、16時間後、得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、塩基配列を確認した。これにより、導入したペプチドタグをコードする塩基配列が含まれているプラスミドを得た。
得られたプラスミドを鋳型にプライマー(5’-TAATACGACTCACTATAGGG-3’、5’-TAGAAGGCACAGTCGAGG-3’)を用いてPCRを行なった。なお、前者のプライマーをsequence 3とし、配列番号10で表す。また、後者のプライマーをsequence 4とし、配列番号11で表す。増幅したペプチドタグを含むEGFP部分を制限酵素NcoIとBglIIで処理し、得られた断片(EGFPのC末端側にペプチドタグをコードする塩基配列を導入した配列)をpET-15bのNcoI、BamHI部位に挿入し、大腸菌用のペプチドタグ付きEGFP発現ベクターを作製した。具体的には、得られたプラスミドを1/100希釈したもの0.5μlを鋳型に、上記配列番号10及び11で表されるプライマーを各2.5 fmolを用いてEX Taq (タカラバイオ株式会社)の添付プロトコール通りにPCR反応を行なった。なお、PCRのサイクルは95℃ 30秒、(95℃ 10秒、55℃ 20秒、72℃ 60秒)×30サイクル、72℃ 4分、15℃ 保持で行なった。反応後、得られたPCR産物をWizard(登録商標)SV Gel and PCR Clean-Up System (Promega)を用いて添付プロトコールに従って精製した。その後、得られた溶液全量を制限酵素NcoI (NEB)、BclII (NEB)各20 Uを用いて100μl中で添付バッファー条件を用いて37℃、2時間処理した。全量を7%(w/v) SEAKEM(登録商標)GTG(登録商標)Agarose (CAMBREX)ゲルを用いてTABバッファー中で100 V定圧条件で30分間電気泳動を行なった。確認された所定の位置の泳動バンドを切り出し、Wizard(登録商標)SV Gel and PCR Clean-Up System (Promega)を用いて添付プロトコールに従ってゲルからの精製を行なった。得られた断片溶液を一部電気泳動し、サイズマーカーから濃度を推定した。
このようにして得られた断片が導入されるプラスミドpET-15b 5μgを制限酵素NcoI (タカラバイオ株式会社)、BamHI (タカラバイオ株式会社) 各25 Uを用いて100 μl中で添付バッファー条件を用いて37℃、16時間処理した。一部を使い7%(w/v)アガロース(タカラバイオ株式会社)ゲル電気泳動で確認後、TEバッファーで200μlにメスアップし、フェノール・クロロホルム処理し酵素を失活させた。15000 rpm、5 分間、室温で遠心分離を行ない、上清を分取した。その上清に、10μg/μl グリコーゲン水溶液を1μl加え、制限酵素処理済みプラスミドpET-15bをエタノール沈殿後、回収し、真空乾燥させた。これをTEバッファー 20μlに溶解後、アルカリフォスファターゼ (BAPC75、タカラバイオ株式会社)を用いて添付プロトコールにしたがって65℃、30分処理後(BAP処理)、さらに酵素を1μl追加し65℃、30分処理した。反応後TEバッファーで200μlにメスアップ後、フェノール・クロロホルム処理し酵素を失活させた。得られた溶液について15000 rpm、5 分間、室温で遠心分離を行ない、さらに下層のフェノールを分取したのち、再度、フェノール・クロロホルム処理し酵素を完全に失活させた。この上清を分取し制限酵素処理済みおよびBAP処理済みプラスミドpET-15bをエタノール沈殿後、回収し、真空乾燥後、TEバッファー 30μlで溶解した。一部をとって電気泳動を行ない、分子量マーカーを用いて濃度を推定した。
このように処理されたプラスミドpET-15b 50 fmolと先に回収した断片溶液50 fmolをライゲーションキット(タカラバイオ株式会社)の添付プロトコール通りに16℃、30分反応し、その一部とコンピテントセルDH5α 30μlを用いトランスフォーメーション反応した後、50 μg/ml アンピシリン含有LBプレートに全量塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、pET-15bにおいてEGFPをコードする塩基配列のC末端側にペプチドタグをコードする塩基配列がついたプラスミドを得た。EGFPをコードする塩基配列のC末端側にMMMからなるメチオニンタグをコードする塩基配列が存在するかどうかを確かめるために、導入した配列の全塩基配列を確認した。
同様にして先に示したメチオニンタグ導入用プライマーにメチオニンを5個コードする配列を含む以下の配列(5’- CATGATGATGATGATGTA -3’と5’- GATCTACATCATCATCATCATG -3’)を使用することによって5つのメチオニン残基からなるペプチドタグ付きEGFP発現ベクターを得た。なお、前者のプライマーをsequence 5とし、配列番号12で表す。また、後者のプライマーをsequence 6とし、配列番号13で表す。
ここで得られたベクターを鋳型として、制限酵素認識配列を付加したオリゴヌクレオチドを用いてPCRすることにより、該ベクターに、(iii)プロテアーゼ切断認識部位をコードする塩基配列、または(iv)プロテアーゼ切断認識部位をコードする塩基配列及びリンカーペプチドをコードする塩基配列を導入するための制限酵素部位を付加導入した。得られたPCR産物はTAクローニング法を用いてpGEM-T vectorに導入し、前記付加した制限酵素部位に、(iii)プロテアーゼ切断認識部位をコードする塩基配列、または(iv)プロテアーゼ切断認識部位およびリンカーペプチドをコードする塩基配列を導入した。
図1に示すように、プロテアーゼ切断認識部位を導入することでペプチドタグ領域と所望タンパク質とを、プロテアーゼにより容易に切り離すことが可能となる。リンカーペプチドは長さの異なる2種類((EAAAK)×2(すなわちn=2)および(EAAAK)×5(すなわちn=5))を作製した。 (iii)プロテアーゼ切断認識部位をコードする塩基配列、または(iv)プロテアーゼ切断認識部位およびリンカーペプチドをコードする塩基配列をコードする塩基配列を導入することにより得られたプラスミドから、EGFP及びプロテアーゼ切断認識部位をコードする塩基配列、またはEGFP、プロテアーゼ切断認識部位及びリンカーペプチドをコードする塩基配列を各々切り出し、これをpET-15b発現ベクターに戻した後、各々の塩基配列を確認し、MMMまたはMMMMMからなるペプチドタグ付きEGFP発現ベクターとした。
具体的には、前述のようにして作製したペプチドタグ付きEGFP発現ベクター 0.5 ngを鋳型として用い、5’側のプライマー(5’- TAATACGACTCACTATAGGG -3’(配列番号14:sequence 7))および3’側のプライマー[制限酵素SnaBI認識配列を含むオリゴヌクレオチド:5’- GAAGATCTACATCATCATTACGTAGAATTCCTT -3’(メチオニン残基3個(MMM)からなるペプチドタグ付きEGFP発現ベクター用(配列番号15:sequence 8))、5’- GAAGATCTACATCATC ATCATCATTACGTAGAATT -3’ (メチオニン残基5個(MMMMM)からなるペプチドタグ付きEGFP発現ベクター用(配列番号16:sequence 9))]各々50 pmol用いて50μlの系でTaKaRa Ex Taq(登録商標)Hot Start Version(タカラバイオ株式会社)0.5 μlを用いて添付バッファー条件で全量50 μlとしプロトコールに従ってPCR cycler TGRADIENT (Biometra(登録商標))を用いて95℃ 30秒、94℃ 20秒、40℃ 30秒、72℃ 60秒、(94℃ 10秒、55℃ 20秒、72℃ 60秒)×30cycle、72℃ 4分間、15℃ 保持で増幅した。得られたPCR産物はWizard(登録商標)SV Gel and PCR Clean-Up System (Promega)を用いて添付プロトコールに従って精製した。なお、後述するペプチドタグをコードする塩基配列を有さない発現ベクターの製造においては、3’側のプライマーとして 5’- CAGCCAGATCTATACGTAGAATTCCTT -3’(配列番号17:sequence 10)を使用した。
得られた精製液1 μlをpGEM(登録商標)-T Vector System (Promega)の添付プロトコールに従ってライゲーション反応を行ない、そのライゲーション溶液3 μlをコンピテントセルDH5α 30 μlに加えトランスファーメーション反応(ここで、トランスファーメーション反応として、コンピテントセルDH5αを氷上で30分静置後、42℃、30 秒のヒートショックを行ない、速やかに氷上に戻して2分間静置し、その後、あらかじめ37℃にあたためておいたSOC培地(2%(w/v)トリプトン、0.5%(w/v) yeast extract、10 mM 塩化ナトリウム、10 mM硫酸マグネシウム、20 mM グルコースを含む水溶液をオートクレーブで121℃ 20分の滅菌処理を施し-80℃で分注保存してあるもの)を0.3 ml加え1時間37℃でインキュベートした。)した後、50 μg/mlアンピシリン含有LBプレート(1.5%(w/v) Agar, powder (Wako)を含むLB培地(1%(w/v) Tripton, 0.5%(w/v) Yeast extract, 1%(w/v) NaClを含む水溶液)をオートクレーブで121℃ 20分の滅菌処理を施した後、寒天が固まる前に滅菌済み10 cmプラスチックシャーレに無菌的に20ml入れて固まらせたもの)に事前に100 mM IPTG水溶液を100 μlと50 mg/ml X-Gal (50 mg の5-bromo-4-chloro-3-indolyl-β-D-galactosidaseを1mlのN,N’-dimethyl formamideで溶解したもの)20 μlを塗布して無菌的に乾燥したものに全量塗布した。得られた白色コロニーから、プラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、制限酵素配列が付加されたPCR産物の導入を、塩基配列を解読することで確認した。
また、後述の比較例1及び2に示す、ペプチドタグをコードする塩基配列を有さない発現ベクターを作製するにあたり、ペプチドタグを導入しない以外は前述と同様の操作を行い、PCR産物が導入されていることを確認した。
確認したプラスミド約5 μgを、制限酵素SnaBI(NEB)5 Uを用い添付バッファー条件で37℃、16時間処理した。その一部を用い、完全切断を電気泳動することで確認した後、残りの溶液に制限酵素EcoRIを20 U追加し37℃、1時間処理した。その後、溶液の一部を用い制限酵素による完全切断を、7%(w/v)アガロース(タカラバイオ株式会社)ゲルを用いた電気泳動(以下、電気泳動とする)で確認した。確認後、残った処理液をTEバッファーで200μlにメスアップし、フェノール・クロロホルム処理し酵素を失活させた。その後、遠心機を用い15000 rpm、5 分間、室温で遠心分離を行ない、上清を分取した。
その上清に、10μg/μl グリコーゲン溶液1μlを加えた後、制限酵素処理済みプラスミドをエタノール沈殿後、回収し、真空乾燥させた。これを滅菌精製水 43.5μlに溶解し、アルカリホスファターゼ(BAPC75、タカラバイオ株式会社)を1.5μl、10X BAP buffer 5 μl加え65℃、30分処理(BAP処理)した。処理後TEバッファーで200μlにメスアップし、フェノール・クロロホルム処理し酵素を失活させた。得られた溶液について15000 rpm、5分間、室温で遠心分離を行ない、さらに下層のフェノールを除去したのち、再度フェノール・クロロホルム処理し完全に酵素を失活させた。
この上清を分取し、制限酵素処理およびBAP処理済みプラスミドをエタノール沈殿後、回収し、真空乾燥し、TEバッファー10μlで溶解した。一部をとってアガロース電気泳動を行ない、分子量マーカーを用いて濃度を推定(約20 fmol/μl)し、(iii)プロテアーゼ切断認識部位をコードする塩基配列、または(iv)プロテアーゼ切断認識部位およびリンカーペプチドをコードする塩基配列導入用のベクターとした。
一方、導入する前記塩基配列は、T4 PNK (NEB)の添付プロトコールに従って各オリゴヌクレオチド50 pmolを用いT4 PNK 1μl(添付試薬)、10X PNK buffer 10μl(添付試薬)、100 mM ATP 1μl(Roche)、滅菌精製水を用いて全量を100μlにし、37℃、30分間反応することで、5’側をリン酸化させた後、得られた溶液50μlを用いて等量の相補鎖とアニール反応(95℃3分間熱処理後、2時間ほどかけて室温まで徐冷)を行なった。
用いた前記オリゴヌクレオチドは、以下の通りである。
(iii)プロテアーゼ切断認識部位をコードする塩基配列:5’- AATTTCTGGAAGTTCTGTTCCAGGGGCCC -3’(配列番号18:sequence 11)および5’- GGGCCCCTGGAACAGAACTTCCAGA -3’(配列番号19:sequence 12)、
(iv)プロテアーゼ切断認識部位をコードする塩基配列およびリンカーペプチド[(EAAAK)×2]をコードする塩基配列:(I) 5’- AATTTCTGGAAGTTCTGTT CCAGGGGCCCGGGG -3(配列番号20:sequence 13)’および5’- CTGAAGCTGCTGCAAAAGAGGCGGCCGCTAAGGCC -3’(配列番号21:sequence 14)と(II) 5’- GG CCTTAGCGGCCGCCTCTTTTGCAGCAGC -(配列番号22:sequence 15)’および5’- TTCAGCCCCGGGCCCCTGGAACAGAACTTCCAGA -3’(配列番号23:sequence 16)
(iii)プロテアーゼ切断認識部位をコードする塩基配列:5’- AATTTCTGGAAGTTCTGTTCCAGGGGCCC -3’(配列番号18:sequence 11)および5’- GGGCCCCTGGAACAGAACTTCCAGA -3’(配列番号19:sequence 12)、
(iv)プロテアーゼ切断認識部位をコードする塩基配列およびリンカーペプチド[(EAAAK)×2]をコードする塩基配列:(I) 5’- AATTTCTGGAAGTTCTGTT CCAGGGGCCCGGGG -3(配列番号20:sequence 13)’および5’- CTGAAGCTGCTGCAAAAGAGGCGGCCGCTAAGGCC -3’(配列番号21:sequence 14)と(II) 5’- GG CCTTAGCGGCCGCCTCTTTTGCAGCAGC -(配列番号22:sequence 15)’および5’- TTCAGCCCCGGGCCCCTGGAACAGAACTTCCAGA -3’(配列番号23:sequence 16)
先に作製した (iii)プロテアーゼ切断認識部位をコードする塩基配列、または(iv)プロテアーゼ切断認識部位およびリンカーペプチドをコードする塩基配列導入用のベクター50fmolに、 (iii)プロテアーゼ切断認識部位をコードする塩基配列のアニール済み配列0.5μl、または、 (iv)プロテアーゼ切断認識部位およびリンカーペプチドをコードする塩基配列のアニール済み配列2種 (I及びII)各々0.5μlを加え、ライゲーションキット(タカラバイオ株式会社)を用いて16℃、30 分間で導入した(この処理により制限酵素SnaBIとEcoRI認識部位が欠失)。この反応溶液にEcoRI 10 U,およびSnaBI 2.5 Uを用いて添付バッファー系を用いて全量50 μlにし、37℃、30分間反応した。この溶液をTEバッファーで200 μlにメスアップし、フェノール・クロロホルム処理し酵素を失活させた。その後、15000 rpm、5 分間、室温で遠心分離を行ない、上清を分取した。
その上清から、ライゲーションしたプラスミドをエタノール沈殿後、回収し、真空乾燥させた。これをTEバッファー 2μlで溶解し、その全量とコンピテントセルDH5α 30μlを用いトランスフォーメーション反応した後、50 μg/ml アンピシリン含有LBプレートに全量塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、 (iii)プロテアーゼ切断認識部位をコードする塩基配列、または(iv)プロテアーゼ切断認識部位およびリンカーペプチドをコードする塩基配列が導入されているか塩基配列を解読し確認した。
得られたプラスミド2μgを制限酵素NcoI (NEB)、BclII (NEB)各20 Uを用いて50μl中で添付バッファー条件を用いて37℃、2時間処理した。全量を7%(w/v) SEAKEM(登録商標)GTG(登録商標)Agarose(CAMBREX)ゲルを用いてTABバッファー中で100 V定圧条件で30分間電気泳動を行なった。確認された所定の位置の泳動バンドを切り出し、Wizard(登録商標)SV Gel and PCR Clean-Up System(Promega)を用いて添付プロトコールに従ってゲルからの精製を行なった(アガロースゲル精製)。得られたプラスミド断片精製液を一部電気泳動し、サイズマーカーから濃度を推定した(27 fmol/μl)。
これを導入するベクターpET-15b 5μgを制限酵素NcoI (タカラバイオ株式会社)、BamHI (タカラバイオ株式会社) 各25 Uを用いて全量100 μl中で添付バッファー条件を用いて37℃、16時間処理した。一部を使い電気泳動で確認後、TEバッファーで200μlにメスアップし、フェノール・クロロホルム処理し酵素を失活させた。15000 rpm、5分間、室温で遠心分離を行ない、上清を分取した。その上清に、10μg/μl グリコーゲン溶液を1 μl加え、制限酵素処理したpET-15bをエタノール沈殿後、回収し、真空乾燥させた。これを滅菌精製水に溶解後、BAP処理を行なった。反応後TEバッファーで200μlにメスアップ後、フェノール・クロロホルム処理し酵素を失活させた。得られた溶液について15000 rpm、5分間、室温で遠心分離を行ない、さらに下層のフェノールを除去したのち、再度フェノール・クロロホルム処理し酵素を完全に失活させた。この上清を分取し、BAP処理・制限酵素処理済pET-15bをエタノール沈殿後、回収し、真空乾燥し、TEバッファー 30μlで溶解した。一部をとって電気泳動を行ない、分子量マーカーを用いて濃度を推定した(20 fmol/μl)。
このBAP処理・制限酵素処理済pET-15b 40 fmolと先に回収したプラスミド断片溶液40 fmolをライゲーションキット(タカラバイオ株式会社)の添付プロトコール通りに16℃、30分反応し(これにより制限酵素BamHI認識配列が欠失)、この反応溶液にBamHI 10 U用いて添付バッファー系を用いて全量50μlで37℃、30分間反応した。この溶液をTEバッファーで200μlにメスアップし、フェノール・クロロホルム処理し酵素を失活させた。その後、15000 rpm、5 分間、室温で遠心分離を行ない、上清を分取した。その上清から、ライゲーションしたプラスミドをエタノール沈殿後、回収し、真空乾燥させた。これをTEバッファー 2μlで溶解し、その全量とコンピテントセルDH5α 30μlを用いトランスフォーメーション反応した後、50 μg/ml アンピシリン含有LBプレートに全量塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、挿入配列の塩基配列を確認した。
これにより、pET-15bベクター上の大腸菌発現プロモーターが制御する領域かつEGFPのC末端側にプロテアーゼ切断認識部位をコードする塩基配列、またはプロテアーゼ切断認識部位およびリンカーペプチド[(EAAAK)×2]をコードする塩基配列ならびにメチオニン残基からなるペプチドタグMMM、またはMMMMMをコードする塩基配列が導入されたプラスミド、すなわちメチオニン残基からなるペプチドタグ付きタンパク質発現ベクターを得た。また、ペプチドタグをコードする塩基配列を有さない発現ベクターを得た。具体的には、以下の発現ベクターを得た。
実施例1:3つのメチオニン残基MMMからなるペプチドタグをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、及びプロテアーゼ切断認識部位をコードする塩基配列を含む発現ベクター。
実施例2:MMMからなるペプチドタグをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド [(EAAAK)×2]をコードする塩基配列を含む発現ベクター。
実施例3:5つのメチオニン残基MMMMMからなるペプチドタグをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、及びプロテアーゼ切断認識部位をコードする塩基配列を含む発現ベクター。
実施例4:MMMMMからなるペプチドタグをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド [(EAAAK)×2]をコードする塩基配列を含む発現ベクター。
比較例1:プロモーター配列、EGFPをコードする塩基配列、及びプロテアーゼ切断認識部位をコードする塩基配列を含む発現ベクター。ただし、ペプチドタグをコードする塩基配列は有さない。
比較例2:プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド[(EAAAK)×2]をコードする塩基配列を含む発現ベクター。ただし、ペプチドタグをコードする塩基配列は有さない。
そしてさらに、前記実施例2及び4ならびに比較例2に記載のベクタープラスミドを各々用いて、リンカーペプチド [(EAAAK)×5]コードする塩基配列を含む発現ベクターの構築を試みた。前記リンカーペプチド [(EAAAK)×5]をコードする塩基配列は、後述のインサートを用いて導入した。
具体的には、前記実施例2及び4ならびに比較例2に記載の各々のベクタープラスミド5μgを制限酵素SfiI (NEB) 20 Uを用いて添付のバッファー条件で全量50μlにして50℃、3時間処理した。これに、BAPC75を1μl加え50℃、30分反応後、TEバッファーで200μlにメスアップし、フェノール・クロロホルム処理し酵素を失活させた。得られた溶液について15000 rpm、5 分間、室温で遠心分離を行ない、さらに下層のフェノールを除去したのち、再度フェノール・クロロホルム処理し酵素を完全に失活させた。この上清を分取し、制限酵素処理およびBAP処理したプラスミドをエタノール沈澱後、回収し、真空乾燥後、TEバッファー30μlで溶解した。一部をとって電気泳動を行ない所望の塩基配列が回収できているかを確認し、分子量マーカーを用いて濃度を推定した(20 fmol/μl)。
一方、前記インサートはオリゴヌクレオチド 5’- AAGAGGCGGCCGCTAAGGAAGCGGCTGCAAAAGAGGCCGCTGCTA -3(配列番号24:sequence 17)’と 5’- CAGCGGCCTCTTTTGCAGCCGCTTCCTTAGCGGCCGCCTCTTTAG -3’(配列番号25:sequence 18)を用い、先に記述した方法と同様に各々50 pmolをリン酸化した後、アニールし作成した。
このインサート150 fmolと先に作製した実施例2に記載のプラスミド50 fmolをライゲーションキット(タカラバイオ株式会社)の添付プロトコール通りに16℃、30分反応し(これにより制限酵素SfiI認識配列が欠失)、制限酵素SfiI 10 Uを用いて添付バッファー条件で50℃、30分間処理した。この反応液をTEバッファーで200 μlにメスアップし、フェノール・クロロホルム処理し酵素を失活させた。その後、15000 rpm、5 分間、室温で遠心分離を行ない、上清を分取した。その上清に、エタノール沈殿後、回収し、真空乾燥させた。これをTEバッファー 2 μlで溶解し、全量とコンピテントセルDH5α 30 μlを用いてトランスフォーメーション反応し、50 μg/ml カルベニシリンを含むLBプレートに全量塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、導入部分の塩基配列を確認した。
これにより、前述の実施例2に記載のベクタープラスミドを用いた場合には、pET-15bベクター上の大腸菌発現プロモーターが制御する領域かつEGFPのC末端側に、プロテアーゼ切断認識部位、リンカーペプチド [(EAAAK)×5]をコードする塩基配列、及び3つのメチオニン残基からなるペプチドタグMMMをコードする塩基配列が導入されたプラスミド、すなわち3つのメチオニン残基からなるペプチドタグ付きタンパク質発現ベクターを得た。
また、前述の実施例4に記載のベクタープラスミドを用いた場合には、pET-15bベクター上の大腸菌発現プロモーターが制御する領域かつEGFPのC末端側に、プロテアーゼ切断認識部位、リンカーペプチド [(EAAAK)×5]をコードする塩基配列、及び5つのメチオニン残基からなるペプチドタグMMMMMをコードする塩基配列が導入されたプラスミド、すなわち5つのメチオニン残基からなるペプチドタグ付きタンパク質発現ベクターを得た。
また、前述の比較例2に記載のベクタープラスミドを用いた場合には、pET-15bベクター上の大腸菌発現プロモーターが制御する領域かつEGFPのC末端側に、プロテアーゼ切断認識部位、リンカーペプチド [(EAAAK)×5]をコードする塩基配列をコードする塩基配列が導入されているものの、ペプチドタグをコードする塩基配列をコードする塩基配列は導入されていないプラスミドベクターを得た。
具体的には、以下の発現ベクターを得た。
具体的には、以下の発現ベクターを得た。
実施例5:3つのメチオニン残基MMMからなるペプチドタグをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド [(EAAAK)×5]をコードする塩基配列を含む発現ベクター。
実施例6:5つのメチオニン残基MMMMMからなるペプチドタグをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド [(EAAAK)×5]をコードする塩基配列を含む発現ベクター。
比較例3:プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド [(EAAAK)×5]をコードする塩基配列を含む発現ベクター。ただし、ペプチドタグをコードする塩基配列は有さない。
一方、メチオニンを4つ (MMMM)をコードする塩基配列は次のようにして得た。
先に得た実施例5に記載の発現ベクターを鋳型に、ペプチドタグ領域MMM直後の停止コドン部より3’末端側80 bpをPCR増幅し(制限酵素BglII認識配列を持たせるようにする)、精製する。得られた精製DNA断片をTAクローニング法でpCR(登録商標)4-TOPO(登録商標)ベクターに導入した。これにより、タグ領域部位変異用のプラスミドを得た。
得られたプラスミドを制限酵素NotIとBglIIで処理し、ペプチドタグがメチオニンの間にグリシンが挟まれたアミノ酸配列になるように、好適な塩基配列を導入した。これにより得られたプラスミドを鋳型にして、PCRで増幅した産物を制限酵素NotIとBpu1102Iで処理し、アガロースゲル精製後、これを制限酵素NotIとBpu1102Iで処理した実施例5に記載の発現ベクターに導入し、メチオニン残基及びグリシン残基からなるペプチドタグ付きタンパク質発現ベクターを作製した。
具体的には、実施例5に記載の発現ベクター0.5 ngを鋳型にして、プライマー 5’- GTAGATCTGGCTGCTAACAAAGCCCG -3’(配列番号26:sequence 19)(下線部:制限酵素BglII認識配列)と5’- AGGGTTATGCTACTTATTGCTCAGCGGT -3’(配列番号27:sequence 20)各1 mM溶液0.25 μlを用いて50μlの系でTaKaRa Ex Taq(登録商標) Hot Start Version(タカラバイオ株式会社)0.25μlを用いて添付バッファー条件でPCR反応(95℃ 30秒、(95℃ 10秒、58℃ 20秒、72℃ 30秒)×30cycle、72℃ 4分間、15℃ 保持)を行なった。得られたPCR産物はWizard(登録商標)SV Gel and PCR Clean-Up System (Promega)を用いて添付プロトコールに従って精製した。
この精製物1μlをTOPO TA Cloning(登録商標) Kit(Invitrogen)を用いて添付プロトコールに従い付属のpCR(登録商標)4-TOPO(登録商標)ベクターにライゲーション反応を行なった。この反応液2μlとコンピテントセルTOP10 50μlを用いてトランスフォーメーション反応を行なった後、全量を50 μg/ml アンピシリン含有LBプレートに塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、塩基配列を確認し、pCR(登録商標)4-TOPO(登録商標)ベクターの制限酵素NotI認識配列側に導入断片の制限酵素BglII認識配列側が結合したプラスミドを得た。このプラスミドをタグ領域部位変異用プラスミドとした。
その変異用プラスミド3μgを制限酵素NotI (タカラバイオ株式会社)とBglII (タカラバイオ株式会社)を用いて添付バッファー条件で37℃、2時間処理した。処理した溶液をフェノール・クロロホルム処理し酵素を失活した後、得られた上清から、制限酵素処理したプラスミドをエタノール沈殿後、回収し、真空乾燥させ、TEバッファー 15μlに溶解した。一部をとって電気泳動を行ない、所望の断片が回収できているかを確認し、分子量マーカーを用いて濃度を推定した(10 fmol/μl)。
そして以下の5本のオリゴヌクレオチドを用いて、メチオニンを4つ(MMMM)コードする塩基配列を導入した。
(a) 5’- GGCCGCTAAAGAGGCGGCAGCTAAGGAAGCGGCTGCAAA -3’ (配列番号28:sequence 21)、
(b) 5’- CTTAGCTGCCGCCTCTTTAGC -3’(配列番号29:sequence 22)、
(c) 5’- CCTTAGCCGCGGCCTCTTTTGCAGCCGCTTC -3’ (配列番号30:sequence 23)、
(d) 5’- AGAGGCCGCGGCTAAGGCCGTAATGATGATGATGTA -3’ (配列番号31:sequence 24)、
(e) 5’- GATCTACATCATCATCATTACGG -3’ (配列番号32:sequence 25)
各々のオリゴヌクレオチド50 pmolを先に示した方法でリン酸化し、リン酸化済みの5本のオリゴヌクレオチド各々20μlをあわせてアニール反応を行なった(全量100μl)。
(a) 5’- GGCCGCTAAAGAGGCGGCAGCTAAGGAAGCGGCTGCAAA -3’ (配列番号28:sequence 21)、
(b) 5’- CTTAGCTGCCGCCTCTTTAGC -3’(配列番号29:sequence 22)、
(c) 5’- CCTTAGCCGCGGCCTCTTTTGCAGCCGCTTC -3’ (配列番号30:sequence 23)、
(d) 5’- AGAGGCCGCGGCTAAGGCCGTAATGATGATGATGTA -3’ (配列番号31:sequence 24)、
(e) 5’- GATCTACATCATCATCATTACGG -3’ (配列番号32:sequence 25)
各々のオリゴヌクレオチド50 pmolを先に示した方法でリン酸化し、リン酸化済みの5本のオリゴヌクレオチド各々20μlをあわせてアニール反応を行なった(全量100μl)。
アニール済みサンプル 90 fmolを先に作製した制限酵素処理済み変異用プラスミド30 fmolに加え、ライゲーションキットを用いて16℃、30分間反応を行なった。その全量とコンピテントセルTop10 50 μlを用いてトランスフォーメーション反応を行ない50 μg/ml アンピシリン含有LBプレートに塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、塩基配列を確認した。これにより、メチオニン4つからなるペプチドタグMMMMが導入されているプラスミドを得た。
このプラスミド10 μgを鋳型にプライマーM13 Forward(-20): 5’- GTAAAACGACGGCCAG -3’(配列番号33:sequence 26)と、M13 Reverse: 5’- CAGGAAACAGCTATGAC -3’ (配列番号34:sequence 27)(各1 mM溶液)をそれぞれ0.1 μl加え、50 μlの系でKOD-Plus-(東洋紡績株式会社)を用いて添付プロトコール通りにPCR反応を行った。なお、PCRのサイクルは95℃ 30秒、(95℃ 20秒、45℃20秒、72℃ 30秒)×30サイクル、72℃ 4分、15℃保持で行った。反応後得られたPCR産物はWizard(登録商標) SV Gel and PCR Clean-Up System(Promega)を用いて添付のプロトコールに従って精製した。得られた精製DNA断片は、反応制限酵素NotI (タカラバイオ株式会社)20 Uを用いて添付バッファー条件で37℃、4時間処理し、電気泳動を用いて完全に切断されていることを確認した。その反応液はTEバッファーを用いて全量を200μlにし、フェノール・クロロホルム処理することにより酵素を失活させ、得られた上清から、制限酵素処理したプラスミドをエタノール沈殿後、回収し、真空乾燥させ、TEバッファー 20μlに溶解した。その溶液全量を制限酵素Bpu1102I(タカラバイオ株式会社)10 Uを用いて添付バッファー条件で37℃、16時間処理し、全量を使用してアガロースゲル精製し、導入断片とした。
その導入断片を導入するプラスミドとして、前記実施例5に記載の発現ベクターを用いた。そのプラスミド5μgを制限酵素NotI 20 UとBpu1102I 10 Uを用いて上記導入断片と同様の処理を行なった。
導入断片とそれを導入するプラスミドは、各々一部をとり電気泳動を行ない、回収できているかを確認し、分子量マーカーを用いて濃度を推定した(断片:181.8 fmol/μl、ベクター:30 fmol/μl)。
そのプラスミド30 fmolと導入断片90 fmolをあわせてライゲーションキットを用いて反応を行ない、全量とコンピテントセルDH5α 100μlを用いてトランスフォーメーション反応後、50 μg/mlカルベニシリン含有LBプレートに塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、塩基配列を確認した。これにより、メチオニン4つからなるペプチドタグMMMMタグ付きEGFP発現ベクターを得ることができた。具体的には、以下の発現ベクターを得た。
実施例7:4つのメチオニン残基MMMMからなるペプチドタグをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド [(EAAAK)×5]をコードする塩基配列を含む発現ベクター。
(2)メチオニン残基及びグリシン残基からなるペプチドタグ付きタンパク質発現ベクターの構築
本試験では、メチオニン残基及びグリシン残基からなるペプチドタグの例として、3種類のペプチドタグ(MGMGM、MGGMGGM、MGGGMGGGM)を採用した。
本試験では、メチオニン残基及びグリシン残基からなるペプチドタグの例として、3種類のペプチドタグ(MGMGM、MGGMGGM、MGGGMGGGM)を採用した。
先の(1)で得た実施例5に記載の発現ベクターを鋳型として用い、ペプチドタグ領域MMM直後の停止コドン部より3’末端側80 bpをPCR増幅し(制限酵素BglII認識配列を持たせるようにする)、精製した。得られた精製DNA断片をTAクローニング法でpCR(登録商標)4-TOPO(登録商標)ベクター(Invitrogen)に導入した。これにより、タグ領域部位変異用のプラスミドを得た。
得られたプラスミドを制限酵素NotIとBglIIで処理し、ペプチドタグがメチオニンの間にグリシンが挟まれたアミノ酸配列になるように、好適な塩基配列を導入した。これにより得られたプラスミドを鋳型にして、PCRで増幅した産物を制限酵素NotIとBpu1102Iで処理し、アガロースゲル精製後、これを制限酵素NotIとBpu1102Iで処理した実施例5に記載の発現ベクターに導入し、メチオニン残基及びグリシン残基からなるペプチドタグ付きタンパク質発現ベクターを作製した。
具体的には、実施例5に記載の発現ベクター0.5 ngを鋳型にして、プライマー 5’- GTAGATCTGGCTGCTAACAAAGCCCG -3’(配列番号26:sequence 19)(下線部:制限酵素BglII認識配列)と5’- AGGGTTATGCTACTTATTGCTCAGCGGT -3’(配列番号27:sequence 20)各1 mM溶液0.25 μlを用いて50μlの系でTaKaRa Ex Taq(登録商標) Hot Start Version(タカラバイオ株式会社)0.25μlを用いて添付バッファー条件でPCR反応(95℃ 30秒、(95℃ 10秒、58℃ 20秒、72℃30秒)×30cycle、72℃ 4分間、15℃ 保持)を行なった。得られたPCR産物はWizard(登録商標)SV Gel and PCR Clean-Up System (Promega)を用いて添付プロトコールに従って精製した。
この精製物1μlをTOPO TA Cloning(登録商標) Kit(Invitrogen)を用いて添付プロトコールに従い付属のpCR(登録商標)4-TOPO(登録商標)ベクターにライゲーション反応を行なった。この反応液2μlとコンピテントセルTOP10 50μlを用いてトランスフォーメーション反応を行なった後、全量を50 μg/ml アンピシリン含有LBプレートに塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、塩基配列を確認し、pCR(登録商標)4-TOPO(登録商標)の制限酵素NotI認識配列側に導入断片の制限酵素BglII認識配列側が結合したプラスミドを得た。このプラスミドをタグ領域部位変異用プラスミドとした。
その変異用プラスミド3μgを制限酵素NotI(タカラバイオ株式会社)とBglII(タカラバイオ株式会社)を用いて添付バッファー条件で37℃、2時間処理した。処理した溶液をフェノール・クロロホルム処理し酵素を失活した後、得られた上清から、制限酵素処理したプラスミドをエタノール沈殿後、回収し、真空乾燥させ、TEバッファー 15μlに溶解した。一部をとって電気泳動を行ない、所望の断片が回収できているかを確認し、分子量マーカーを用いて濃度を推定した(10 fmol/μl)。
一方、前記3種類のペプチドタグ (MGMGM、MGGMGGM、MGGGMGGGM)をコードする塩基配列は、以下の表1に記載の(a)、(b)、(c)、(d)、(e)、(f)に示す6本のオリゴヌクレオチドを用いて導入した。
各々のオリゴヌクレオチド50 pmolを先に示した方法でリン酸化し、リン酸化済みの6本のオリゴヌクレオチド各々20μlをあわせて(全量120μl)アニール反応を行なった。アニール済みサンプル 150 fmolを先に作製した制限酵素処理済み変異用プラスミド50 fmolに加え、ライゲーションキットを用いて16℃、30分間反応を行なった。その全量とコンピテントセルDH5α 50 μlを用いてトランスフォーメーション反応を行ない50 μg/ml アンピシリン含有LBプレートに塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、塩基配列を確認した。これにより、メチオニン残基及びグリシン残基からなるペプチドタグMGMGM、MGGMGGMまたはMGGGMGGGMが導入されているプラスミドを得た。
このプラスミド25μgを制限酵素NotI (タカラバイオ株式会社)10 Uを用いて添付バッファー条件で37℃、2時間処理し、電気泳動を用いて完全に切断されていることを確認した。その反応液はTEバッファーを用いて全量を250μlにし、フェノール・クロロホルム処理することにより酵素を失活させ、得られた上清から、制限酵素処理したプラスミドをエタノール沈殿後、回収し、真空乾燥させ、TEバッファー 50μlに溶解した。その溶液全量を制限酵素Bpu1102I(タカラバイオ株式会社)10 Uを用いて添付バッファー条件で37℃、16時間処理し、全量を使用してアガロースゲル精製し、導入断片とした。
その導入断片を導入するプラスミドとして、前記実施例5に記載の発現ベクターを用いた。そのプラスミド5μgを制限酵素NotI 10 UとBpu1102I 10 Uを用いて上記導入断片と同様の処理を行なった。導入断片とそれを導入するプラスミドは、各々一部をとり電気泳動を行ない、回収できているかを確認し、分子量マーカーを用いて濃度を推定した(断片:70 fmol/μl、ベクター:7.5 fmol/μl)。そのプラスミド50 fmolと導入断片150 fmolをあわせてライゲーションキットを用いて反応を行ない、全量とコンピテントセルDH5α 100μlを用いてトランスフォーメーション反応後、50 μg/ml アンピシリン含有LBプレートに塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、塩基配列を確認した。これにより、メチオニン残基及びグリシン残基からなるペプチドタグMGMGM、MGGMGGMまたはMGGGMGGGMタグ付きEGFP発現ベクターを得ることができた。具体的には、以下の発現ベクターを得た。
実施例8:MGMGMからなるペプチドタグをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド [(EAAAK)×5]をコードする塩基配列を含む発現ベクター。
実施例9:MGGMGGMからなるペプチドタグをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド [(EAAAK)×5]をコードする塩基配列を含む発現ベクター。
実施例10:MGGGMGGGMからなるペプチドタグをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド [(EAAAK)×5]をコードする塩基配列を含む発現ベクター。
(3)メチオニン残基及びシステイン残基からなるペプチドタグ付きタンパク質発現ベクターの構築
本試験では、メチオニン残基及びシステイン残基からなるペプチドタグの例として、2種類のペプチドタグ(CMM、MMC)を採用した。
本試験では、メチオニン残基及びシステイン残基からなるペプチドタグの例として、2種類のペプチドタグ(CMM、MMC)を採用した。
先に得た実施例5に記載の発現ベクターを鋳型にして、ペプチドタグ領域MMM直後の停止コドン部より3’末端側80 bpをPCR増幅し(制限酵素BglII認識配列を持たせるようにする)、精製した。得られた精製DNA断片をTAクローニング法でpCR(登録商標)4-TOPO(登録商標)ベクター (Invitrogen)に導入した。これにより、タグ領域部位変異用のプラスミドを得た。
得られたプラスミドを制限酵素NotIとBglIIで処理し、ペプチドタグがメチオニンの間にグリシンが挟まれたアミノ酸配列になるように、好適な塩基配列を導入した。これにより得られたプラスミドを鋳型にして、PCRで増幅した産物を制限酵素NotIとBpu1102Iで処理し、アガロースゲル精製後、これを制限酵素NotIとBpu1102Iで処理した実施例5に記載の発現ベクターに導入し、メチオニン残基及びグリシン残基からなるペプチドタグ付きタンパク質発現ベクターを作製した。
具体的には、実施例5に記載の発現ベクター0.5 ngを鋳型にして、プライマー 5’- GTAGATCTGGCTGCTAACAAAGCCCG -3’(配列番号26:sequence 19)(下線部:制限酵素BglII認識配列)と5’- AGGGTTATGCTACTTATTGCTCAGCGGT -3’(配列番号27:sequence 20)各1 mM溶液0.25 μlを用いて50μlの系でTaKaRa Ex Taq(登録商標) Hot Start Version(タカラバイオ株式会社)0.25μlを用いて添付バッファー条件でPCR反応(95℃ 30秒、(95℃ 10秒、58℃ 20秒、72℃ 30秒)×30cycle、72℃ 4分間、15℃ 保持)を行なった。得られたPCR産物はWizard(登録商標)SV Gel and PCR Clean-Up System (Promega)を用いて添付プロトコールに従って精製した。
この精製物1μlをTOPO TA Cloning(登録商標) Kit(Invitrogen)を用いて添付プロトコールに従い付属のpCR(登録商標)4-TOPO(登録商標)ベクターにライゲーション反応を行なった。この反応液2μlとコンピテントセルTOP10 50μlを用いてトランスフォーメーション反応を行なった後、全量を50 μg/ml アンピシリン含有LBプレートに塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、塩基配列を確認し、pCR(登録商標)4-TOPO(登録商標)の制限酵素NotI認識配列側に導入断片の制限酵素BglII認識配列側が結合したプラスミドを得た。このプラスミドをタグ領域部位変異用プラスミドとした。
その変異用プラスミド3μgを制限酵素NotI (タカラバイオ株式会社)とBglII(タカラバイオ株式会社)を用いて添付バッファー条件で37℃、2時間処理した。処理した溶液をフェノール・クロロホルム処理し酵素を失活した後、得られた上清から、制限酵素処理したプラスミドをエタノール沈殿後、回収し、真空乾燥させ、TEバッファー 15μlに溶解した。一部をとって電気泳動を行ない、所望の断片が回収できているかを確認し、分子量マーカーを用いて濃度を推定した(10 fmol/μl)。
一方、前記2種類のペプチドタグ (CMM、MMC)をコードする塩基配列は、以下の表2に記載の (a)、(b)、(c)、(d)、(e)に示す5本のオリゴヌクレオチドを用いて導入した。
各々のオリゴヌクレオチド50 pmolを先に示した方法でリン酸化し、リン酸化済みの5本のオリゴヌクレオチド各々20μlをあわせてアニール反応を行なった(全量100μl)。
アニール済みサンプル 90 fmolを先に作製した制限酵素処理済み変異用プラスミド30 fmolに加え、ライゲーションキットを用いて16℃、30分間反応を行なった。その全量とコンピテントセルTop10 50 μlを用いトランスフォーメーション反応を行ない50 μg/ml アンピシリン含有LBプレートに塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、塩基配列を確認した。これにより、ペプチドタグCMM及びMMCがそれぞれ導入されているプラスミドをそれぞれ得た。
このプラスミド10 μgを鋳型にプライマーM13 Forward(-20): 5’- GTAAAACGACGGCCAG -3’と、M13 Reverse: 5’- CAGGAAACAGCTATGAC -3’(各1 mM溶液)をそれぞれ0.1 μl加え、50 μlの系でKOD-Plus-(東洋紡績株式会社)を用いて添付プロトコール通りにPCR反応を行った。なお、PCRのサイクルは95℃ 30秒、(95℃ 20秒、45℃20秒、72℃ 30秒)×30サイクル、72℃ 4分、15℃保持で行った。反応後得られたPCR産物はWizard(登録商標) SV Gel and PCR Clean-Up System(Promega)を用いて添付のプロトコールに従って精製した。得られた精製DNA断片は、反応制限酵素NotI (タカラバイオ株式会社) 20 Uを用いて添付バッファー条件で37℃、4時間処理し、電気泳動を用いて完全に切断されていることを確認した。その反応液はTEバッファーを用いて全量を200μlにし、フェノール・クロロホルム処理することにより酵素を失活させ、得られた上清から、制限酵素処理したプラスミドをエタノール沈殿後、回収し、真空乾燥させ、TEバッファー 20μlに溶解した。その溶液全量を制限酵素Bpu1102I(タカラバイオ株式会社)10 Uを用いて添付バッファー条件で37℃、16時間処理し、全量を使用してアガロースゲル精製し、導入断片とした。
その導入断片を導入するプラスミドとして、前記実施例5に記載の発現ベクターを用いた。そのプラスミド5μgを制限酵素NotI 20 UとBpu1102I 10 Uを用いて上記導入断片と同様の処理を行なった。導入断片とそれを導入するプラスミドは、各々一部をとり電気泳動を行ない、回収できているかを確認し、分子量マーカーを用いて濃度を推定した(断片:180 fmol/μl、ベクター:30 fmol/μl)。そのプラスミド30 fmolと導入断片90 fmolをあわせてライゲーションキットを用いて反応を行ない、全量とコンピテントセルDH5α 100μlを用いてトランスフォーメーション反応後、50 μg/ml カルベニシリン含有LBプレートに塗布した。得られたコロニーからプラスミドをQuickLyse Miniprep Kit (QIAGEN)を用いて調製し、塩基配列を確認した。これにより、ペプチドタグCMMタグ付きEGFP発現ベクター及びペプチドタグMMCタグ付きEGFP発現ベクターを得ることができた。具体的には、以下の発現ベクターを得た。
実施例11:ペプチドタグCMMをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド [(EAAAK)×5]をコードする塩基配列を含む発現ベクター。
実施例12:ペプチドタグMMCをコードする塩基配列、プロモーター配列、EGFPをコードする塩基配列、プロテアーゼ切断認識部位をコードする塩基配列、及びリンカーペプチド [(EAAAK)×5]をコードする塩基配列を含む発現ベクター。
試験例2
メチオニン残基含有ペプチドタグ付きタンパク質は公知の方法で発現させ、回収することが可能である。試験例2では、前記試験例1で作製したメチオニン残基含有ペプチドタグ付きEGFP発現ベクターを大腸菌に形質転換して得られた組み換え大腸菌を用いて実験を行った。なお、以下の操作は、試験例1に示したすべてのタグ付きEGFP発現用ベクターについて各々行った。
メチオニン残基含有ペプチドタグ付きタンパク質は公知の方法で発現させ、回収することが可能である。試験例2では、前記試験例1で作製したメチオニン残基含有ペプチドタグ付きEGFP発現ベクターを大腸菌に形質転換して得られた組み換え大腸菌を用いて実験を行った。なお、以下の操作は、試験例1に示したすべてのタグ付きEGFP発現用ベクターについて各々行った。
具体的には、前記形質転換は次のように行った。試験例1で作製したメチオニン残基含有ペプチドタグ付きEGFP発現ベクタープラスミド約10 ngをコンピテントセルBL21(DE3) 100μl に加え、氷上で30分静置後、42℃、60秒間熱処理し、すばやく氷上に戻し3分間静置する。その後SOC培地を1 ml加え、37℃でインキュベート後、50 μg/ml カルベニシリン含有LBプレートに塗布し、37℃、16時間インキュベートして得たコロニーを形質転換体とした。
得られた形質転換体を、50μg/mlカルベニシリンを含むLB液体培地を用いて30℃で培養し、対数増殖期(OD600=0.6付近)にIPTGを終濃度1mMになるように加えて発現誘導をかけ、3時間後に大腸菌を回収した。これより以下の操作をすべて4℃で行なった。
回収した大腸菌を1 mM DTT含有トリスバッファー(20 mM Tris-HCl(pH 8.0)、50 mM NaClを含む水溶液)で2回洗浄後、1 mM DTT およびprotease inhibitor含有トリスバッファー(100×プロテアーゼ阻害剤カクテル(ナカライテスク株式会社)水溶液をトリスバッファーに1×になるように添加したもの)で懸濁し、氷上で超音波破砕(BRANSON SONIFIER 250で20~30 sec、duty cycle 10%、output 40~60%)した。得られた懸濁液を遠心分離し、その上清を0.45μmのフィルターで濾過した後、Econo gradient pump system(Bio-Rad)とEcono packイオン交換カートリッジ High Q (Bio-Rad)を用いて精製した。この際に、1 mM DTT含有トリスバッファーを用いてEGFPをカラムへ結合させ、NaCl濃度を80 mMに上げることによりEGFP以外のタンパク質を除去した。その後、塩濃度を80 mMから110 mMまで濃度勾配をかけ110 mM付近でEGFPを含む画分を回収、濃縮することにより、メチオニン残基含有ペプチドタグ付きタンパク質の精製を行なった。
試験例3
メチオニン残基含有ペプチドタグ付きタンパク質を、金のついた磁性金属酸化物粒子(大阪大学工学部 山本孝夫教授の研究室から提供。以下金磁性粒子と称する)を用いた方法で特異的にかつ効率よく分離、精製することを試みた。
メチオニン残基含有ペプチドタグ付きタンパク質を、金のついた磁性金属酸化物粒子(大阪大学工学部 山本孝夫教授の研究室から提供。以下金磁性粒子と称する)を用いた方法で特異的にかつ効率よく分離、精製することを試みた。
ここで、磁性金属酸化物粒子としては、γ-Fe3O4を使用し、前記金磁性粒子はWO2004/083124号公報に記載の方法に従い製造した。また、本試験は、前記試験例2において得られた、すべてのメチオニン残基含有ペプチドタグ付きEGFPタンパク質について各々行なった。
試験例2で作製した各々のメチオニン残基含有ペプチドタグ付きタンパク質またはタグなしタンパク質を各々限外ろ過システムで濃縮し、ペプチドタグ付きタンパク質溶液、及びタグなしタンパク質溶液を得た。また、金磁性粒子をトリスバッファーであらかじめ洗浄した。各々のEGFPタンパク質の量は蛍光強度(単位なし)を測定した後、500(蛍光強度)/μlになるようにトリスバッファーを用いて希釈した。
金磁性粒子100μl (Fe 5 mg/ml)に、先に準備したペプチドタグ付きタンパク質溶液またはタグなしタンパク質溶液各々300μlを加えロータリーシェイカーで混合しながら、4℃、30分間、金磁性粒子とタンパク質とを結合させた。その後、金磁性粒子とタンパク質との結合体をマグネット存在下で約5分間静置することで磁気分離し、上清を分取した。この上清の蛍光量を測定し、得られた値から結合前の溶液の蛍光量を差し引き、EGFPタンパク質が金磁性粒子に結合した量を求めた。
さらに、前記磁気分離により回収された金磁性粒子とタンパク質との結合物を含む残渣をバッファーで懸濁し、磁気分離後、上清を除くという操作を2回行なうことで、金磁性粒子への非特異的な吸着物等を除去し、その後、24 mM メルカプトエタノールを含むバッファー 400μlで懸濁後、ロータリーシェイカーで混合しながら4℃、30分間、タンパク質を溶出させた。そして、磁気分離後の蛍光量を測定し、これを上記結合物からのEGFPタンパク質溶出量を求めることが可能である。
蛍光量は96穴プレートに測定サンプル250μlとり、蛍光プレートリーダーGemini XPS(Molecular Devices)を用いて測定し、バックグラウンドを差し引いた後、実際の液量に換算して結合量を求めた。
まず、前記実施例1または5に記載の発現ベクターを使用することにより得られたペプチドタグ付タンパク質における結果を図2に示した。実施例1に記載のベクターを使用した場合より、実施例5に記載のベクターを使用した場合のほうが、すなわちリンカーペプチドをベクターに導入した方が金磁性粒子への結合量が有意に多くなることが明らかとなった。(p<0.05)。溶出量についても同様に、実施例5に記載のベクターを使用した場合のほうが高くなることが明らかとなった。
次に、前記実施例5または7に記載の発現ベクターを使用することにより得られたペプチドタグ付タンパク質における結果を図3に示した。実施例7に記載のベクターを使用した場合、金磁性粒子への結合量が実施例5に記載のベクターを使用した場合と同等またはそれ以上となることが明らかとなった。すなわち4つのメチオニン残基MMMMからなるペプチドタグを付加した場合、金磁性粒子への結合量が3つのメチオニン残基MMMからなるペプチドタグを付加した場合と同等またはそれ以上となることが明らかとなった。実施例7に記載のベクターを使用した場合、溶出量についても同様に、実施例5に記載のベクターを使用した場合と同等またはそれ以上となることが明らかとなった。
また、タグ領域がメチオニン残基とグリシン残基からなるリンカーペプチド付きタンパク質においても同様に金磁性粒子への結合実験を行った。結果を図4に示した。メチオニン残基間にグリシン残基を多く挿入する方が結合量が多くなった。溶出量についても同様に、メチオニン残基間にグリシン残基を多く挿入する方が高くなることが明らかとなった。なお、図4は、前記実施例5及び7~9に記載の発現ベクターを使用することにより得られたペプチドタグ付タンパク質における結果を示す。
さらに、図5に示した通り、タグ領域がメチオニン残基とシステイン残基からなるリンカーペプチド付きタンパク質においても同様に金磁性粒子への結合実験を行ったところ、金磁性粒子への結合がみられた。なお、図5は、前記実施例5及び11~12に記載の発現ベクターを使用することにより得られたペプチドタグ付タンパク質における結果を示す。
試験例4
試験例2で作製した各々のメチオニン残基含有ペプチドタグ付きタンパク質溶液またはタグなしタンパク質溶液に対して以下の通り別途作製した大腸菌抽出液をそれぞれ添加することであえてタンパク質溶液中の夾雑物を増やしておき、かかる状況下で金磁性粒子を用いて試験例3と同様にタグ付きタンパク質を特異的にかつ効率よく分離、精製することを試みた。
試験例2で作製した各々のメチオニン残基含有ペプチドタグ付きタンパク質溶液またはタグなしタンパク質溶液に対して以下の通り別途作製した大腸菌抽出液をそれぞれ添加することであえてタンパク質溶液中の夾雑物を増やしておき、かかる状況下で金磁性粒子を用いて試験例3と同様にタグ付きタンパク質を特異的にかつ効率よく分離、精製することを試みた。
大腸菌抽出液は、以下のとおり調製した。まず、何もプラスミドを導入していない大腸菌を、LB液体培地を用いて30℃で培養し、対数増殖期(OD600=0.6付近)に1M IPTG水溶液を終濃度1mMになるように加えて発現誘導をかけ、3時間後に大腸菌を回収した。これより以下の操作をすべて4℃で行なった。回収した大腸菌は、1 mM トリスバッファー(20 mM Tris-HCl (pH 8.0)、50 mM NaClを含む水溶液)で2回洗浄後、protease inhibitor含有トリスバッファー(100×プロテアーゼ阻害剤カクテル(ナカライテスク株式会社)水溶液をトリスバッファーに1×になるように添加したもの)で懸濁し、氷上で超音波破砕(BRANSON SONIFIER 250で20~30 sec、duty cycle 10%、output 40~60%)した。得られた懸濁液を遠心分離し、その上清を0.45 μmのフィルターでろ過し、タンパク質重量をBCA Protein assay kit(Thermo SCIENTIFIC)を用いて測定した上で、それぞれのタンパク質溶液と次の通り混合した。
それぞれのタンパク質溶液と大腸菌抽出液との混合条件は、タンパク質の精製度に応じて次の通り決定した。
まず、蛍光強度(単位なし)がちょうど500 (蛍光強度)/μlとなる、MMMタグ付きEGFPタンパク質のタンパク質重量を算出した。次にこれと等重量の大腸菌抽出液をMMMタグ付きEGFPタンパク質溶液に加え、さらにこの溶液中の総タンパク質重量を算出した。他のタグ付きEGFPタンパク質については、蛍光強度とタンパク質重量を測定した後、蛍光強度、総タンパク質重量、及び溶液量のいずれもが先に調製しておいたMMMタグ付きEGFPタンパク質溶液のものと一致するように適宜大腸菌抽出液とトリスバッファーを用いて調整した。
これらのタンパク質溶液を用いて、試験例3と同様に実験を行なった。この結果を図6に示した。タグなし(リンカー付き)ベクターの場合よりメチオニン残基含有ペプチドタグ(リンカー付き)がついたベクターを使用した場合の方が金磁性粒子への結合量が有意に多くなることが明らかとなった。溶出量についても同様に、タグなしベクターを使用した場合は全く溶出せず、タグ付きベクターを使用した場合だけ溶出することができることが明らかとなった。
試験例5
大腸菌で発現させたメチオニン残基含有ペプチドタグ付きタンパク質を、大腸菌抽出液から直接精製した。
大腸菌で発現させたメチオニン残基含有ペプチドタグ付きタンパク質を、大腸菌抽出液から直接精製した。
まず、実施例7~10、及び比較例3に記載の発現ベクタープラスミドを導入した形質転換体を、50 μg/mlカルベニシリンを含むLB液体培地を用いて30℃で培養し、対数増殖期(OD600=0.6付近)にIPTGを終濃度1mMになるように加えて発現誘導をかけ、3時間後に大腸菌を回収した。これより以下の操作はすべて4℃で行なった。
上の通り回収した大腸菌を1 mM DTT含有トリスバッファーで2回洗浄後、1 mM DTT およびprotease inhibitor含有トリスバッファー(100×プロテアーゼ阻害剤カクテル(ナカライテスク株式会社)水溶液をトリスバッファーに1×になるように添加したもの)で懸濁し、氷上で超音波破砕(BRANSON SONIFIER 250で20~30 sec、duty cycle 10%、output 40~60%)した。得られた懸濁液を遠心分離し、その上清を0.45 μmのフィルターで濾過した。
結合実験に用いる金磁性粒子をトリスバッファーであらかじめ洗浄した。各々のEGFPタンパク質の量は蛍光強度(単位なし)を測定した後、500(蛍光強度)/ μlになるようにトリスバッファーを用いて希釈した。
金磁性粒子100 μl (Fe 5 mg/ml)に、先に準備したペプチドタグ付きタンパク質を含む大腸菌破砕液またはタグなしタンパク質を含む大腸菌破砕液各々300 μlを加えロータリーシェイカーで混合しながら、4℃、30分間、金磁性粒子とタンパク質とを結合させた。その後、金磁性粒子とタンパク質との結合体をマグネット存在下で約5分間静置することで磁気分離し、上清を除いた。さらに、前記磁気分離により回収された金磁性粒子とタンパク質との結合物を含む残渣をバッファーで懸濁し、磁気分離後、上清を除くという操作を2回行なうことで、金磁性粒子への非特異的な吸着物等を除去した。その後、24 mM メルカプトエタノールを含むバッファー 300 μlで懸濁後、ロータリーシェイカーで混合しながら4℃、30分間、タンパク質を溶出させた。そして、磁気分離後の蛍光量を測定した。蛍光量は96穴プレートに測定サンプル250 μlとり、蛍光プレートリーダーGemini XPS(Molecular Devices)を用いて測定し、バックグラウンドを差し引いた後、実際の液量に換算した。
金磁性粒子と結合させる前の大腸菌抽出液(精製前)と、金磁性粒子から溶出したサンプル溶液(精製後)から、EGFPタンパク質の蛍光強度が1000(単位なし)となる分量をそれぞれ分取し、トリスバッファーで20 μlに調製した。この溶液に5×SDS sample loding buffer (250 mM Tris-HCl (pH 6.8)、20%(v/v) 2-Mercaptoethanol、10%(w/v) SDS、0.1 mg/ml BPB、50%(v/v) Glycerol)を5 μl加えた混合液を95℃で3分間熱処理した後、氷上で急冷した。これらの試料及び分子量マーカーを12% SDS-ポリアクリルアミドゲルを用いて20 mAの一定電流で電気泳動を行った。泳動後、クーマシーブリリアントブルーで染色した結果を図7に示した。
泳動写真(図7)から、タグなしのEGFPタンパク質(比較例3)が全く溶出できていないことが分かった。一方、実施例7~10に記載の発現ベクターを導入した大腸菌の抽出液からは、単一のバンドとなって泳動されるタンパク質が回収されていることが確認できた。すなわち、MMMM、MGMGM、MGGMGGM、及びMGGGMGGGMのそれぞれからなるペプチドタグをそれぞれ付加したタンパク質は高純度に精製できることが明らかとなった。
配列番号1は、tag 1のアミノ酸配列を示す。
配列番号2は、tag 2のアミノ酸配列を示す。
配列番号3は、tag 3のアミノ酸配列を示す。
配列番号4は、tag 4のアミノ酸配列を示す。
配列番号5は、tag 5のアミノ酸配列を示す。
配列番号6は、linker 1のアミノ酸配列を示す。
配列番号7は、linker 2のアミノ酸配列を示す。
配列番号8は、sequence 1の塩基配列を示す。
配列番号9は、sequence 2の塩基配列を示す。
配列番号10は、sequence 3の塩基配列を示す。
配列番号11は、sequence 4の塩基配列を示す。
配列番号12は、sequence 5の塩基配列を示す。
配列番号13は、sequence 6の塩基配列を示す。
配列番号14は、sequence 7の塩基配列を示す。
配列番号15は、sequence 8の塩基配列を示す。
配列番号16は、sequence 9の塩基配列を示す。
配列番号17は、sequence 10の塩基配列を示す。
配列番号18は、sequence 11の塩基配列を示す。
配列番号19は、sequence 12の塩基配列を示す。
配列番号20は、sequence 13の塩基配列を示す。
配列番号21は、sequence 14の塩基配列を示す。
配列番号22は、sequence 15の塩基配列を示す。
配列番号23は、sequence 16の塩基配列を示す。
配列番号24は、sequence 17の塩基配列を示す。
配列番号25は、sequence 18の塩基配列を示す。
配列番号26は、sequence 19の塩基配列を示す。
配列番号27は、sequence 20の塩基配列を示す。
配列番号28は、sequence 21の塩基配列を示す。
配列番号29は、sequence 22の塩基配列を示す。
配列番号30は、sequence 23の塩基配列を示す。
配列番号31は、sequence 24の塩基配列を示す。
配列番号32は、sequence 25の塩基配列を示す。
配列番号33は、sequence 26の塩基配列を示す。
配列番号34は、sequence 27の塩基配列を示す。
配列番号35は、sequence 28の塩基配列を示す。
配列番号36は、sequence 29の塩基配列を示す。
配列番号37は、sequence 30の塩基配列を示す。
配列番号38は、sequence 31の塩基配列を示す。
配列番号39は、sequence 32の塩基配列を示す。
配列番号40は、sequence 33の塩基配列を示す。
配列番号41は、sequence 34の塩基配列を示す。
配列番号42は、sequence 35の塩基配列を示す。
配列番号43は、sequence 36の塩基配列を示す。
配列番号44は、sequence 37の塩基配列を示す。
配列番号45は、sequence 38の塩基配列を示す。
配列番号2は、tag 2のアミノ酸配列を示す。
配列番号3は、tag 3のアミノ酸配列を示す。
配列番号4は、tag 4のアミノ酸配列を示す。
配列番号5は、tag 5のアミノ酸配列を示す。
配列番号6は、linker 1のアミノ酸配列を示す。
配列番号7は、linker 2のアミノ酸配列を示す。
配列番号8は、sequence 1の塩基配列を示す。
配列番号9は、sequence 2の塩基配列を示す。
配列番号10は、sequence 3の塩基配列を示す。
配列番号11は、sequence 4の塩基配列を示す。
配列番号12は、sequence 5の塩基配列を示す。
配列番号13は、sequence 6の塩基配列を示す。
配列番号14は、sequence 7の塩基配列を示す。
配列番号15は、sequence 8の塩基配列を示す。
配列番号16は、sequence 9の塩基配列を示す。
配列番号17は、sequence 10の塩基配列を示す。
配列番号18は、sequence 11の塩基配列を示す。
配列番号19は、sequence 12の塩基配列を示す。
配列番号20は、sequence 13の塩基配列を示す。
配列番号21は、sequence 14の塩基配列を示す。
配列番号22は、sequence 15の塩基配列を示す。
配列番号23は、sequence 16の塩基配列を示す。
配列番号24は、sequence 17の塩基配列を示す。
配列番号25は、sequence 18の塩基配列を示す。
配列番号26は、sequence 19の塩基配列を示す。
配列番号27は、sequence 20の塩基配列を示す。
配列番号28は、sequence 21の塩基配列を示す。
配列番号29は、sequence 22の塩基配列を示す。
配列番号30は、sequence 23の塩基配列を示す。
配列番号31は、sequence 24の塩基配列を示す。
配列番号32は、sequence 25の塩基配列を示す。
配列番号33は、sequence 26の塩基配列を示す。
配列番号34は、sequence 27の塩基配列を示す。
配列番号35は、sequence 28の塩基配列を示す。
配列番号36は、sequence 29の塩基配列を示す。
配列番号37は、sequence 30の塩基配列を示す。
配列番号38は、sequence 31の塩基配列を示す。
配列番号39は、sequence 32の塩基配列を示す。
配列番号40は、sequence 33の塩基配列を示す。
配列番号41は、sequence 34の塩基配列を示す。
配列番号42は、sequence 35の塩基配列を示す。
配列番号43は、sequence 36の塩基配列を示す。
配列番号44は、sequence 37の塩基配列を示す。
配列番号45は、sequence 38の塩基配列を示す。
Claims (13)
- 以下の(A)~(C)を含む、メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター、
(A)少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列、
(B)プロモーター配列(ここで、該プロモーター配列は、前記ペプチドタグをコードする塩基配列の上流に接続されている)、及び
(C)所望のタンパク質をコードする塩基配列(ここで、該所望のタンパク質をコードする塩基配列は、前記プロモーター配列の下流に接続されており、かつ前記ペプチドタグをコードする塩基配列の上流または下流に接続されている)。 - プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記所望のタンパク質をコードする塩基配列との間に接続されている)を含む、請求項1に記載の発現ベクター。
- リンカーペプチドをコードする塩基配列(ここで、該リンカーペプチドをコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記所望のタンパク質をコードする塩基配列の間に接続されている)を含む、請求項1に記載の発現ベクター。
- プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記所望のタンパク質をコードする塩基配列と前記リンカーペプチドをコードする塩基配列との間に接続されている)を含む、請求項3に記載の発現ベクター。
- 以下の(D)~(F)を含む、メチオニン残基含有ペプチドタグベクター、
(D)少なくとも1つのメチオニン残基を含有するペプチドタグをコードする塩基配列、
(E)プロモーター配列(ここで、該プロモーター配列は、前記ペプチドタグをコードする塩基配列の上流に接続されている)、及び
(F)所望のタンパク質をコードする塩基配列を導入するためのクローニングサイト(ここで、該クローニングサイトは、前記プロモーター配列の下流に接続されており、かつ前記ペプチドタグをコードする塩基配列の上流及び/または下流に接続されている)。 - プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記クローニングサイトとの間に接続されている)を含む、請求項5に記載のタグベクター。
- リンカーペプチドをコードする塩基配列(ここで、該リンカーペプチドをコードする塩基配列は、前記ペプチドタグをコードする塩基配列と前記クローニングサイトの間に接続されている)を含む、請求項5に記載のタグベクター。
- プロテアーゼ切断認識部位をコードする塩基配列(ここで、該プロテアーゼ切断認識部位をコードする塩基配列は、前記クローニングサイトと前記リンカーペプチドをコードする塩基配列との間に接続されている)を含む、請求項7に記載のタグベクター。
- 請求項5~8のいずれかに記載のベクターに接続されたクローニングサイトに、所望のタンパク質をコードする塩基配列が導入された、メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター。
- 請求項1~4及び9のいずれかに記載のベクターを宿主細胞に導入して形質転換させることにより得られる形質転換体。
- 請求項10に記載の形質転換体から得られる、メチオニン残基含有ペプチドタグ付きタンパク質。
- 請求項10に記載の形質転換体からメチオニン残基含有ペプチドタグ付きタンパク質を発現させる工程を含有する、メチオニン残基含有ペプチドタグ付きタンパク質の製造方法。
- 請求項11で得られたメチオニン残基含有ペプチドタグ付きタンパク質を、金磁性粒子を用いて回収する工程を含有する、メチオニン残基含有ペプチドタグ付きタンパク質の回収方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009553338A JPWO2009101737A1 (ja) | 2008-02-14 | 2008-11-19 | メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-033815 | 2008-02-14 | ||
JP2008033815 | 2008-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009101737A1 true WO2009101737A1 (ja) | 2009-08-20 |
Family
ID=40956775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/071053 WO2009101737A1 (ja) | 2008-02-14 | 2008-11-19 | メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2009101737A1 (ja) |
WO (1) | WO2009101737A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3307766A4 (en) * | 2015-06-11 | 2019-06-12 | Genexine, Inc. | MODIFIED INTERLEUKIN-7 PROTEIN AND USES THEREOF |
CN114516902A (zh) * | 2020-11-18 | 2022-05-20 | 清华大学 | SARS-CoV-2 Spike蛋白受体结合域三聚体 |
US11357827B2 (en) | 2015-12-04 | 2022-06-14 | Genexine, Inc. | Method for preventing or treating influenza virus infection using pharmaceutical composition comprising immunoglobulin Fc-fused interleukin-7 fusion protein |
US11548927B2 (en) | 2015-11-06 | 2023-01-10 | Genexine, Inc. | Formulation of modified interleukin-7 fusion protein |
US11708399B2 (en) | 2015-12-04 | 2023-07-25 | Genexine, Inc. | Pharmaceutical composition comprising immunoglobulin Fc-fused interleukin-7 fusion protein for preventing or treating human papillomavirus-caused diseases |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002524076A (ja) * | 1998-09-03 | 2002-08-06 | ザイモジェネティクス,インコーポレイティド | KunitzドメインポリペプチドZKUN6 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2164297T3 (es) * | 1996-09-09 | 2002-02-16 | Rmf Dictagene Sa | Preparacion de (poli)peptidos purificados. |
EP1278853A2 (en) * | 2000-04-11 | 2003-01-29 | Institut Pasteur | Listeria monocytogenes genome, polypeptides and uses |
JP2005291836A (ja) * | 2004-03-31 | 2005-10-20 | Japan Science & Technology Agency | 標的物質濃縮用機能性タグ、及び該機能性タグの使用方法 |
JP2007225586A (ja) * | 2006-01-27 | 2007-09-06 | Seiko Instruments Inc | タンパク質の固定化方法 |
-
2008
- 2008-11-19 JP JP2009553338A patent/JPWO2009101737A1/ja active Pending
- 2008-11-19 WO PCT/JP2008/071053 patent/WO2009101737A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002524076A (ja) * | 1998-09-03 | 2002-08-06 | ザイモジェネティクス,インコーポレイティド | KunitzドメインポリペプチドZKUN6 |
Non-Patent Citations (2)
Title |
---|
KINOSHITA, T. ET AL.: "Magnetic separation of amino acids by gold/iron-oxide composite nanoparticles synthesized by gamma-ray irradiation", J. MAGN. MAGN. MATER., vol. 293, 2005, pages 106 - 110 * |
OMA, Y. ET AL.: "Intracellular Localization of Homopolymeric Amino Acid-containing Proteins Expressed in Mammalian Cells", J. BIOL. CHEM., vol. 279, no. 20, 14 May 2004 (2004-05-14), pages 21217 - 21222 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3307766A4 (en) * | 2015-06-11 | 2019-06-12 | Genexine, Inc. | MODIFIED INTERLEUKIN-7 PROTEIN AND USES THEREOF |
US10844104B2 (en) | 2015-06-11 | 2020-11-24 | Genexine, Inc. | Modified interleukin-7 protein |
US11041007B2 (en) | 2015-06-11 | 2021-06-22 | Genexine, Inc. | Modified interleukin-7 protein |
US11548927B2 (en) | 2015-11-06 | 2023-01-10 | Genexine, Inc. | Formulation of modified interleukin-7 fusion protein |
US11357827B2 (en) | 2015-12-04 | 2022-06-14 | Genexine, Inc. | Method for preventing or treating influenza virus infection using pharmaceutical composition comprising immunoglobulin Fc-fused interleukin-7 fusion protein |
US11708399B2 (en) | 2015-12-04 | 2023-07-25 | Genexine, Inc. | Pharmaceutical composition comprising immunoglobulin Fc-fused interleukin-7 fusion protein for preventing or treating human papillomavirus-caused diseases |
CN114516902A (zh) * | 2020-11-18 | 2022-05-20 | 清华大学 | SARS-CoV-2 Spike蛋白受体结合域三聚体 |
CN114516902B (zh) * | 2020-11-18 | 2024-04-16 | 北京微星生物科技有限公司 | SARS-CoV-2 Spike蛋白受体结合域三聚体 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009101737A1 (ja) | 2011-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7061078B2 (ja) | 耐熱性の逆転写酵素変異体 | |
AU2004254600A1 (en) | Methods and compositions for enhanced protein expression and purification | |
WO2009101737A1 (ja) | メチオニン残基含有ペプチドタグ付きタンパク質発現ベクター | |
JP4988337B2 (ja) | ポリペプチドの製造方法 | |
JP2012525143A (ja) | 不溶性の組み換えタンパク質に対して溶解性を付与する新規な融合タグ | |
WO2020124319A1 (zh) | 融合蛋白及其应用 | |
WO2016063926A1 (ja) | 精製方法、精製キット、および、これらに用いられる酸化ケイ素結合タグ | |
US11572547B2 (en) | Fusion proteins for the detection of apoptosis | |
JP2009189306A (ja) | メチオニンタグ付きタンパク質発現ベクター | |
Jong et al. | Mutagenesis-based characterization and improvement of a novel inclusion body tag | |
WO2022253266A1 (zh) | 重组蛋白纯化方法 | |
KR102282692B1 (ko) | 인간 clk2 단백질 유래 세포막 투과 도메인 | |
KR102351041B1 (ko) | 인간 lrrc24 단백질 유래 세포막 투과 도메인 | |
EP1981978B1 (en) | Affinity polypeptide for purification of recombinant proteins | |
CN102952181B (zh) | 一种荧光传感器蛋白、相应质粒和编码基因及其制备方法 | |
WO1999064455A1 (fr) | Peptides a activite de transport du noyau | |
KR101414731B1 (ko) | 자기조립 나노입자를 포함하는 박테리아-기반 마이크로로봇, 그의 제조방법 및 그의 용도 | |
US11214791B2 (en) | Engineered FHA domains | |
JP2010071744A (ja) | 化合物のスクリーニング方法、並びに、スクリーニング用キット | |
JPWO2018025826A1 (ja) | 標識タンパク質を融合した抗体 | |
WO2020087194A1 (zh) | 葡聚糖亲和性标签及其应用 | |
Miozzi | Column-free Purification Method for Recombinant Proteins Using a Self-Cleaving Aggregating tag | |
RU2470072C1 (ru) | РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК pGD-14, СОДЕРЖАЩАЯ ГИБРИДНЫЙ ГЕН, ВКЛЮЧАЮЩИЙ НУКЛЕОТИДНУЮ ПОСЛЕДОВАТЕЛЬНОСТЬ ДЕКСТРАНСВЯЗЫВАЮЩЕГО ДОМЕНА БЕТА-КОККОВ, ОБЪЕДИНЕННУЮ С ГЕНОМ ГАММА-ИНТЕРФЕРОНА ЧЕЛОВЕКА ЧЕРЕЗ КИСЛОТОЛАБИЛЬНЫЙ СПЕЙСЕР, ОПРЕДЕЛЯЮЩАЯ БИОСИНТЕЗ ХИМЕРНОЙ БЕЛКОВОЙ КОНСТРУКЦИИ ДСД(сп)ЧГИФ | |
JPH09322779A (ja) | Dna結合性タンパク質のスクリーニング法およびそれに用いられるプラスミド並びにdna結合性タンパク質 | |
KR20200076604A (ko) | 인간 gpatch4 단백질 유래 세포막 투과 도메인 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08872281 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2009553338 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08872281 Country of ref document: EP Kind code of ref document: A1 |