WO2009099205A1 - Method and apparatus for driving light-emitting device - Google Patents

Method and apparatus for driving light-emitting device Download PDF

Info

Publication number
WO2009099205A1
WO2009099205A1 PCT/JP2009/052092 JP2009052092W WO2009099205A1 WO 2009099205 A1 WO2009099205 A1 WO 2009099205A1 JP 2009052092 W JP2009052092 W JP 2009052092W WO 2009099205 A1 WO2009099205 A1 WO 2009099205A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electrode
light emitting
effect transistor
emitting device
Prior art date
Application number
PCT/JP2009/052092
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Yamao
Yasuhiro Shimizu
Kohei Terasaki
Shu Hotta
Original Assignee
National University Corporation Kyoto Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kyoto Institute Of Technology filed Critical National University Corporation Kyoto Institute Of Technology
Priority to JP2009552549A priority Critical patent/JP5403518B2/en
Publication of WO2009099205A1 publication Critical patent/WO2009099205A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes

Definitions

  • the present invention includes a light emitting layer made of a semiconductor material (for example, an organic semiconductor material), two electrodes electrically connected to the light emitting layer, and an electrode connected to the light emitting layer through an insulator layer.
  • the present invention relates to a method and an apparatus for driving a light emitting device.
  • Patent Document 1 discloses that a gate electrode is provided on an insulating support substrate, an insulator layer and an organic light emitting layer are provided thereon, and a source electrode and a drain electrode are provided thereon.
  • An organic field effect transistor is disclosed (see FIG. 28). In order to emit light from such an organic light emitting device, it is necessary to efficiently inject electrons and holes into the light emitting layer and recombine them.
  • an organic electroluminescent element generally includes a metal having a high work function (anode), an organic semiconductor that easily allows holes to flow (p-type semiconductor), an organic semiconductor as a light emitting material, an electron Is formed with an element structure including an organic semiconductor (n-type semiconductor) and a metal (cathode) having a small work function, and the total thickness of the organic semiconductor is 1 ⁇ m or less. Holes are injected into the light emitting layer from the anode and the p-type semiconductor, and electrons are injected into the light emitting layer from the cathode and the n type semiconductor, and light emission is realized by recombining them in the light emitting layer.
  • the source electrode 12 directly attached to the organic light emitting layer made of a bipolar (or p-type or n-type) organic semiconductor material using both electrons and holes as carriers.
  • a gate electrode 15 attached to the organic semiconductor material via the insulator layer 14 to induce carriers in the organic light emitting layer 10 made of the organic semiconductor material on the insulator layer side.
  • a voltage is applied between the source electrode 12 and the drain electrode 13 which is another electrode attached to the organic light emitting layer 10, thereby causing a current to flow between the source electrode 12 and the drain electrode 13.
  • an ambipolar organic semiconductor light emission is observed inside the organic light emitting layer 10 and in the case of a p-type semiconductor, light emission is observed on the drain electrode 13 side in the organic light emitting layer 10 (see FIG. 28).
  • the emission luminance can be controlled by changing the voltage value between the anode and the cathode. Since this element is an element having only two electrodes (bipolar element), if the voltage of the power source is changed in order to adjust the luminance, the current flowing through the power source used for the control also changes at the same time.
  • an organic field effect transistor is an element having three electrodes (tripolar element), and as long as a constant voltage power source capable of supplying power is connected to the source electrode and the drain electrode, the source electrode and the drain electrode are connected. The current flowing between them can be controlled simply by changing the value of the gate voltage. At this time, no current flows through the gate electrode. That is, in the organic field effect transistor, the power source for controlling the luminance (gate voltage control power source) does not need to be supplied with power, and therefore the organic field effect transistor is suitable for practical use such as a display panel.
  • the conventional driving method of the organic field effect transistor uses a DC power source for the light emission control voltage, and therefore, it is not possible to effectively inject electrons and holes into the organic light emitting layer, and the emission luminance does not increase. was there.
  • a technique for solving this problem there is a technique disclosed in Patent Document 2.
  • Patent Document 2 a positive potential rectangular wave voltage is applied to one of a source electrode and a drain electrode (second conductor) of an organic field effect transistor with a gate potential (first conductor) as a reference, and the inside of the organic light emitting layer After a certain time has elapsed, a negative rectangular wave voltage is applied to the other of the source electrode and the drain electrode, and electrons are injected into the organic light emitting layer, thereby effectively bringing carriers into the organic light emitting layer.
  • a method of injecting is disclosed.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a light-emitting device that realizes light emission of a light-emitting device (for example, an organic light-emitting device) with high light emission luminance with an easy circuit configuration.
  • a driving method and a driving apparatus are provided.
  • a driving method of a light emitting device includes a light emitting layer made of a semiconductor material, first and second electrodes electrically connected to the light emitting layer, and a first electrode connected to the light emitting layer through an insulator layer.
  • 3 is a driving method of a light emitting device including three electrodes. In the driving method, a DC voltage is applied between the first electrode and the second electrode, and an AC voltage is applied to the third electrode.
  • a light emitting device driving apparatus includes a light emitting layer made of a semiconductor material, first and second electrodes electrically connected to the light emitting layer, and a first electrode connected to the light emitting layer via an insulator layer.
  • a driving device for a light-emitting device comprising three electrodes, a first power supply for supplying a DC voltage between the first electrode and the second electrode, and an AC voltage for the third electrode.
  • a second power source to be supplied.
  • the semiconductor material constituting the light emitting layer is, for example, an organic material.
  • the organic material is preferably a bipolar material (both n-type and p-type semiconductors) having both electrons and holes as carriers.
  • the semiconductor material constituting the light emitting layer may be an amorphous film or a crystalline film. Alternatively, the organic material may be a crystal and both end surfaces thereof form a resonator structure.
  • the AC voltage applied to the third electrode may be a rectangular wave voltage.
  • the light emitting device is driven by simultaneously applying a DC voltage to the source electrode and the drain electrode and applying an AC voltage to the gate voltage.
  • efficient injection of electrons and holes into the light emitting layer and efficient recombination of electrons and holes become possible, and high emission intensity can be obtained.
  • the power supply configuration of the drive circuit of the light emitting device can be facilitated. Increase in scale can be suppressed.
  • Diagram showing emission spectrum when asymmetric voltage is applied to source and drain electrodes A diagram showing the light emission intensity when the AC voltage applied as the gate voltage is a rectangular wave voltage and a sine wave voltage Diagram showing emission intensity and fluorescence spectrum under ultraviolet excitation when the AC voltage applied as the gate voltage is a rectangular wave voltage Diagram showing emission intensity and fluorescence spectrum under ultraviolet excitation when the AC voltage applied as the gate voltage is a rectangular wave voltage
  • FIG. 1 shows an example of the configuration of a drive circuit that realizes the organic field effect transistor drive method according to the present invention.
  • the organic field effect transistor 1 to be driven includes an organic light emitting layer 10, which is formed of an organic semiconductor, and a source electrode 12 and a drain electrode 13 are electrically connected.
  • the organic field effect transistor 1 further includes an insulator layer 14 to which a gate electrode 15 is connected via the insulator layer 14.
  • the drive circuit 20 that drives the organic field effect transistor 1 includes a DC power supply 21, a DC power supply 22, and an AC power supply 23.
  • the DC power source 21 applies a negative DC voltage (V s ) to the source electrode 12.
  • the DC power source 22 applies a positive DC voltage V D to the drain electrode 13.
  • AC power source 23 applies an AC voltage V G to the gate electrode 15.
  • the voltage applied between the source electrode and the drain electrode mainly contributes to the movement and recombination of carriers in the organic light emitting layer 10, and the voltage applied to the gate electrode 15 is used to inject carriers into the organic light emitting layer 10. Contribute.
  • the driving principle of the organic field effect transistor according to the present embodiment will be described with reference to FIGS.
  • the organic light emitting layer 10 is composed of an ambipolar organic semiconductor, which is an organic semiconductor that can flow electrons and holes as carriers, will be described as an example.
  • FIG. 2 is a diagram showing the time change of the voltage at each electrode 12, 13, 15 of the organic field effect transistor 1.
  • a DC voltage hereinafter referred to as “drain voltage”
  • source voltage DC voltage
  • V S DC voltage
  • FIG. 3 is a diagram schematically illustrating a change in carrier density in the organic light emitting layer 10 made of an ambipolar organic semiconductor material when the voltage applied to each electrode is changed as shown in FIG.
  • the driving principle by the driving method of the present embodiment is considered as follows.
  • the state of the carrier density when the gate voltage V G is in each of the states (a) to (f) shown in FIG. 2 will be considered.
  • Electrons and holes recombine at the interface to emit light (the same applies to the following light emission locations).
  • FIG. 4 shows another configuration of a drive circuit for an organic field effect transistor.
  • a drive circuit 25 for driving the organic field effect transistor 1 includes a DC power source 26 that applies a voltage V D between the source electrode 12 and the drain electrode 13, and a power source 27 that applies a voltage V G to the gate electrode 15. Is provided.
  • the power supply 27 supplies a voltage obtained by adding a predetermined DC voltage to the AC voltage.
  • a DC voltage having opposite polarity is applied to the source electrode 12 and the drain electrode 13, and an AC voltage is applied to the gate electrode 15.
  • a DC voltage (drain voltage) V D is applied to the drain electrode 13 with reference to the potential of the source electrode 12, and a DC voltage is applied to the gate electrode 15 as an AC voltage.
  • V G a voltage obtained by adding the voltage.
  • the value of the DC voltage added to the AC voltage in the gate voltage V G is a voltage that is 1 ⁇ 2 of the drain voltage V D.
  • FIG. 5 shows how the voltage applied to each electrode in the configuration of FIG. 4 changes with time.
  • FIG. 5 shows voltage changes when the source voltage V S is grounded, the drain voltage V D is +120 V, the frequency of the gate voltage V G is 20 kHz, and the amplitude is 100 V.
  • the AC voltage applied as the gate voltage V G is a sinusoidal voltage, (not shown) instead rectangular wave voltage and the triangular wave voltage as shown in FIG. 6 of the sinusoidal voltage, Alternatively, a sawtooth wave (not shown) may be applied to the gate electrode 15.
  • a rectangular wave voltage, a triangular wave voltage, or a sawtooth wave may be used instead of the sine wave voltage. Even if a rectangular wave voltage, a triangular wave voltage, or a sawtooth wave is used, the same effect as in the case of a sine wave voltage can be obtained. In particular, a rectangular wave voltage has a great effect.
  • the positional relationship of the gate voltage V G with respect to the source voltage V S and the drain voltage V D may be as shown in FIG.
  • the absolute value of the amplitude of the source voltage V S and the absolute value of the amplitude of the drain voltage V D when the gate voltage V G is used as a reference are made different. May be. That is, the value of the source voltage V S of the measurement of the center of the amplitude of the gate voltage V G as a reference, may be different from the value of the drain voltage V D to the center of the amplitude was measured as a reference gate voltage V G. That is, both voltages may be asymmetric.
  • the organic field effect transistor used for the experiment was produced as follows. On a silicon substrate (not shown) on which an oxide film corresponding to an insulator layer is formed, a device substrate on which comb-shaped electrodes 42 and 43 are formed as shown in FIG. An organic material 40 serving as an organic light emitting layer was deposited by about 250 nm to produce an organic field effect transistor. The silicon substrate below the oxide film is also used as an electrode. As the organic material, BP1T represented by the following chemical formula was used.
  • the cross-sectional structure near the electrodes is a silicon substrate, a silicon oxide film formed on the silicon substrate, a chromium layer disposed on the silicon oxide film, and a gold layer disposed on the chromium layer.
  • a chromium layer and a gold layer constitute an electrode.
  • the inter-comb (channel length) d of the comb electrode is 0.4 ⁇ m or 10 ⁇ m, and the comb length (channel width) L is 8 cm.
  • One of the comb-shaped electrodes 42 and 43 serves as the source electrode of the organic field effect transistor, and the other serves as the drain electrode.
  • the silicon substrate becomes a gate electrode.
  • FIG. 9 shows that the organic field effect transistor having a channel length of 0.4 ⁇ m fabricated as described above has a direct current of ⁇ 40 V applied to the source electrode.
  • a DC voltage of 40 V is applied to the drain electrode and an AC voltage with an amplitude of 75.5 V and a frequency of 20 kHz is applied to the gate electrode, and when no gate voltage is applied (that is, when the gate electrode is opened) It is the figure which showed the change of the emission spectrum in).
  • the AC voltage is applied to the gate electrode, the spectral intensity is much higher, and it can be seen that the driving method of this embodiment contributes to the light emission of the organic field effect transistor.
  • FIG. 10 is measured when a -30V DC voltage is applied to the source electrode of the organic field effect transistor, a DC voltage of 30V is applied to the drain electrode, and an AC voltage having an amplitude of 40V and a frequency of 20 kHz is applied to the gate electrode. It is the figure which showed the emission spectrum.
  • FIG. 10 also shows an emission spectrum when the source electrode is a reference voltage (ground), and a DC voltage of ⁇ 60 V is applied to the drain electrode and ⁇ 80 V to the gate electrode. From the figure, it can be confirmed that a higher emission spectrum is obtained when an AC voltage is applied to the gate electrode than when a DC voltage is applied. From this, it can be understood that the driving method of the present embodiment contributes effectively to the light emission of the organic field effect transistor.
  • FIG. 11A shows measurement results of an organic field effect transistor having a channel length of 0.4 ⁇ m
  • FIG. 11B shows measurement results of an organic field effect transistor having a channel length of 10 ⁇ m.
  • the emission spectrum was measured by changing the frequency of the voltage of the gate electrode to 2 Hz, 20 Hz, 200 Hz, 2 kHz, and 20 kHz with respect to the aforementioned organic field effect transistor.
  • a DC voltage of ⁇ 30 V was applied to the source electrode
  • a DC voltage of 30 V was applied to the drain electrode
  • an AC voltage with an amplitude of 40 V was applied to the gate electrode. From FIGS.
  • the intensity of the emission spectrum increased as the frequency increased. From this, it can be understood that the application of the alternating voltage to the gate electrode according to the present embodiment effectively contributes to the increase in the light emission intensity of the light emitting transistor.
  • the emission luminance can be controlled by frequency.
  • light emission from the organic field effect transistor was visually recognized as continuous light.
  • FIG. 12 shows the measurement results of an organic field effect transistor having a channel length of 10 ⁇ m. Specifically, the emission spectrum was measured by fixing the frequency of the voltage of the gate electrode at 20 kHz and changing the amplitude to 0 V, 10 V, 20 V, 30 V, and 40 V with respect to the organic field effect transistor described above. A DC voltage of ⁇ 30 V was applied to the source electrode, and a DC voltage of 30 V was applied to the drain electrode. From FIG. 12, it was confirmed that a larger emission spectrum was obtained when the AC amplitude of the gate electrode was larger, and the luminance could be adjusted by changing the AC voltage amplitude of the gate electrode.
  • FIG. 13 shows the measurement results of an organic field effect transistor having a channel length of 10 ⁇ m. Specifically, for the organic field effect transistor described above, the amplitude of the voltage of the gate electrode is fixed at 40 V and the frequency is fixed at 20 kHz, and the voltages of the drain electrode and the source electrode are set to 0 V, 10 V and ⁇ 10 V, 20 V and ⁇ The emission spectrum was measured by changing each of 20V, 30V and -30V. From FIG. 13, it was confirmed that a larger emission spectrum was obtained when the absolute values of the drain and source electrode voltages were large.
  • FIG. 14 shows the results of measuring the intensity of the emission spectrum when the distance (channel length) d between the combs of the organic field effect transistor is 0.4 ⁇ m and 10 ⁇ m. As the inter-comb (channel length) d increases, the light emission intensity decreases. Therefore, it can be understood that a narrow element between the combs is more advantageous for light emission.
  • FIG. 15 shows a photograph of light emission by applying an AC voltage to the gate electrode of an organic field effect transistor having a channel length of 10 ⁇ m.
  • FIG. 15A is a photograph of an organic field effect transistor before application of a voltage in a bright place
  • FIG. 15B is a photograph of an organic field effect transistor emitting light with a dark surrounding.
  • an organic field effect transistor using a BP1T crystal shown in Chemical Formula 1 as an organic material 40 to be an organic light emitting layer was manufactured.
  • the substrate used is a device substrate on which the comb electrodes 42 and 43 shown in FIG. 8 are formed.
  • the cross-sectional structure near the electrode is a silicon substrate, a silicon oxide film formed on the silicon substrate, a titanium layer disposed on the silicon oxide film, and a platinum layer disposed on the titanium layer.
  • the titanium layer, the platinum layer and the silicon substrate constitute an electrode.
  • the inter-comb (channel length) d of the comb-shaped electrode is 10 ⁇ m, and the comb length (channel width) L is 8 cm.
  • One of the comb-shaped electrodes 42 and 43 serves as the source electrode of the organic field effect transistor, and the other serves as the drain electrode.
  • the silicon substrate becomes a gate electrode.
  • FIG. 16 shows a DC voltage of ⁇ 50V applied to the source electrode and 50V DC applied to the drain electrode of the organic field effect transistor fabricated as described above.
  • the AC voltage is applied to the gate electrode, the spectral intensity is much higher, and it can be seen that the driving method of this embodiment contributes to the light emission of the organic field effect transistor.
  • FIG. 17 is measured when a DC voltage of ⁇ 50 V is applied to the source electrode of the organic field effect transistor, a DC voltage of 50 V is applied to the drain electrode, and an AC voltage having an amplitude of 60 V and a frequency of 20 kHz is applied to the gate electrode. It is the figure which showed the emission spectrum.
  • FIG. 17 also shows an emission spectrum when a source electrode is set to a reference voltage (ground), a DC voltage of ⁇ 100 V is applied to the drain electrode, and ⁇ 120 V is applied to the gate electrode. From the figure, it can be confirmed that a higher emission spectrum is obtained when an AC voltage is applied to the gate electrode than when a DC voltage is applied. From this, it can be understood that the driving method of the present embodiment also contributes effectively to the light emission of the organic field effect transistor having the crystal as the organic light emitting layer.
  • FIG. 18 shows the measurement results. Specifically, the emission spectrum was measured by fixing the voltage amplitude of the gate electrode to 60 V and changing the frequency to 2 Hz, 20 Hz, 200 Hz, 2 kHz, and 20 kHz with respect to the organic field effect transistor described above. A DC voltage of ⁇ 50 V was applied to the source electrode, and a DC voltage of 50 V was applied to the drain electrode. From FIG. 18, it was confirmed that the intensity of the emission spectrum increased as the frequency increased. From this, it can be understood that the application of the alternating voltage to the gate electrode according to the present embodiment effectively contributes to the increase in the light emission intensity of the light emitting transistor. In addition, the emission luminance can be controlled by frequency.
  • the emission spectrum was measured by changing the amplitude of the AC voltage of the gate electrode.
  • FIG. 19 shows the measurement results. Specifically, the emission spectrum was measured by fixing the frequency of the voltage of the gate electrode at 20 kHz and changing the amplitude to 0 V, 20 V, 40 V, and 60 V with respect to the organic field effect transistor described above. A DC voltage of ⁇ 50 V was applied to the source electrode, and a DC voltage of 50 V was applied to the drain electrode. From FIG. 19, it was confirmed that a larger emission spectrum was obtained when the AC amplitude of the gate electrode was larger, and the luminance could be adjusted by changing the AC voltage amplitude of the gate electrode.
  • FIG. 20 shows the measurement results. Specifically, for the organic field effect transistor described above, the amplitude of the gate voltage is fixed at 60 V, the frequency is fixed at 20 kHz, and the voltages applied to the drain electrode and the source electrode are 0 V, 10 V and ⁇ 10 V, 30 V and ⁇ The emission spectrum was measured by changing each of 30V, 50V and -50V. From FIG. 20, it was confirmed that a larger emission spectrum was obtained when the absolute values of the drain and source electrode voltages were larger.
  • FIG. 21 shows a photograph of a state where light is emitted by applying an AC voltage to the gate electrode of the organic field effect transistor.
  • FIG. 21A is a photograph of an organic field effect transistor before voltage application in a bright place
  • FIG. 21B is a photograph of an organic field effect transistor that emits light with a dark surrounding.
  • FIG. 22 shows a photograph of a state where an AC voltage is applied to the gate electrode of the organic field effect transistor to emit light.
  • FIG. 22A is a photograph of an organic field effect transistor before voltage application in a bright place
  • FIG. 22B is a photograph of an organic field effect transistor that emits light with a dark surrounding.
  • an organic field effect transistor using an AC5-1CF 3-12OMe crystal shown in Chemical Formula 3 as the organic light emitting layer 1 was fabricated.
  • the substance shown in Chemical Formula 3 is a bipolar material.
  • Substrate used was a silicon substrate having an oxide film formed thereon corresponding to the insulator layer, to form a polymethylmethacrylate layer on the oxide film, further crystals of the AC5-1CF 3 -12OMe thereon Is an organic field effect transistor in which a gold layer and a magnesium silver layer are formed by vapor deposition from above the crystal.
  • the gold layer becomes the drain electrode and the magnesium silver layer becomes the source electrode.
  • the silicon substrate becomes a gate electrode.
  • FIG. 23A is measured when a DC voltage of ⁇ 100 V is applied to the source electrode of the organic field effect transistor, a DC voltage of 100 V is applied to the drain electrode, and an AC voltage having an amplitude of 120 V and a frequency of 500 Hz is applied to the gate electrode. It is the figure which showed the time change of the light emission from the alternating voltage applied to the gate electrode and the organic field effect transistor.
  • FIG. 23B is a diagram showing the time change of light emission from the organic field effect transistor produced by depositing BP1T shown in Chemical Formula 1 on the device substrate having the comb-shaped electrode shown in FIG. .
  • a DC voltage of ⁇ 30 V was applied to the source electrode, a DC voltage of 30 V was applied to the drain electrode, and an AC voltage having an amplitude of 80 V and a frequency of 200 Hz was applied to the gate electrode.
  • FIG. 23 (a) shows that when the bipolar material shown in Chemical formula 3 is used for the organic light emitting layer 1, the intensity is maximized at the maximum value and the minimum value of the AC voltage of the gate electrode at 500 Hz. Indicates that light is emitted.
  • the p-type material shown in Chemical formula 1 when used for the organic light emitting layer 1, light is emitted at 200 Hz so that the intensity becomes maximum when the gate voltage is minimum. This is because when the organic light emitting layer is a bipolar material, electrons flow when the gate voltage is maximum, and holes flow through the organic light emitting layer when the gate voltage is minimum, whereas the p-type material emits light. In this case, when the gate voltage is the minimum, holes flow through the organic light emitting layer to emit light.
  • FIG. 24 is a diagram showing an emission spectrum when an asymmetric voltage is applied to the source electrode and the drain electrode. Most examples asymmetry is large, and the emission intensity was measured source voltage V s 0V, the drain voltage V D as 140 V.
  • emission intensity was measured with a source voltage V s of ⁇ 70 V and a drain voltage V D of 70 V.
  • a sine wave AC voltage having an amplitude of 80 V and a frequency of 2 kHz was applied to the gate electrode as the gate voltage V G.
  • the emission spectrum increases as the degree of asymmetry increases.
  • the maximum light intensity is obtained when the source voltage V s is 0 V and the drain voltage V D is 140 V.
  • efficient light emission can be obtained by applying an asymmetric voltage to the source electrode 12 and the drain electrode 13.
  • the source electrode and the drain electrode when applying the asymmetrical voltage to the gate voltage V G, the amount of holes and electrons injected into the organic light-emitting layer in accordance with the asymmetry changes, considered emission spectrum changes.
  • the substrate used is a device substrate on which the comb electrodes 42 and 43 shown in FIG. 8 are formed.
  • the cross-sectional structure near the electrode is a silicon substrate, a silicon oxide film formed on the silicon substrate, a chromium layer disposed on the silicon oxide film, and a gold layer disposed on the chromium layer.
  • the chromium layer, the gold layer, and the silicon substrate constitute an electrode.
  • FIG. 25 is a diagram showing an emission spectrum of the organic field effect transistor when the AC voltage applied as the gate voltage V G is a rectangular wave voltage and a sine wave voltage. Specifically, with respect to the organic field effect transistor described above, the amplitude of the gate voltage is fixed at 40 V, the frequency is fixed at 20 kHz, the DC voltage applied to the drain electrode is 30 V, and the DC voltage applied to the source electrode is ⁇ 30 V. The emission spectrum was measured.
  • the AC voltage applied as the gate voltage V G is better of the rectangular wave voltage than for the sine wave voltage, it can be seen that emit light more efficiently.
  • the square wave voltage instantaneously switches between positive and negative. That is, when applying a rectangular wave voltage as the gate voltage V G, since the positive and negative gate voltage V G is switched rapidly, before the injected holes to reach the source electrode (i.e., injected holes organic light-emitting layer The state is switched to a state where electrons are injected. For this reason, it is considered that recombination of electrons and holes occurs efficiently in the organic light emitting layer, and high light emission intensity can be obtained.
  • the gate voltage V G be a sine wave voltage, since the switch gradually polarity of the gate voltage V G, the number of injected holes is believed to reach the source electrode before which contributes to light emission. Therefore, switching the polarity of the gate voltage V G, when electrons are injected, have become less holes remaining in the organic light-emitting layer, Thus, even when electrons are injected, the electrons and holes in the organic emission layer since the recombination does not occur too high luminous intensity as when the case where the gate voltage V G is the rectangular wave voltage is considered not obtained.
  • the solid line in FIG. 26 is a diagram showing an emission spectrum of an organic field effect transistor in the case of applying a rectangular wave voltage as an alternating voltage of the gate voltage V G. Specifically, for the organic field effect transistor described above, an emission spectrum is obtained by setting the amplitude of the gate voltage to 120 V, the frequency to 2 kHz, the voltage applied to the drain electrode to 120 V, and the voltage applied to the source electrode to ⁇ 120 V. It was measured.
  • the broken line in FIG. 26 is a fluorescence spectrum when the BP1T crystal is excited with ultraviolet rays. As shown in FIG. 26, the narrow lines of luminescence emission spectrum and applying a rectangular wave voltage of the AC voltage as the gate voltage V G is significantly thinner was observed.
  • an organic field effect transistor using an AC5 crystal shown in Chemical Formula 4 as the organic light emitting layer 1 was fabricated.
  • the substrate used was a silicon substrate on which an oxide film corresponding to an insulator layer was formed.
  • the above-mentioned AC5 crystal was placed on the substrate, and a gold layer and a magnesium silver layer were formed by vapor deposition on the crystal. It is a field effect transistor.
  • the gold layer becomes the drain electrode and the magnesium silver layer becomes the source electrode.
  • the silicon substrate becomes a gate electrode.
  • the organic material of the organic light-emitting layer 1 of the organic field effect transistor thus fabricated is a crystal, and both end surfaces thereof form a resonator structure.
  • FIG. 27 shows the measurement results for this sample.
  • the solid line in FIG. 27 is a diagram showing an emission spectrum of an organic field effect transistor in the case of applying a rectangular wave voltage as an alternating voltage of the gate voltage V G.
  • the emission spectrum is obtained by setting the amplitude of the gate voltage to 100 V, the frequency to 20 kHz, the voltage applied to the drain electrode to 70 V, and the voltage applied to the source electrode to -70 V. It was measured.
  • the broken line in FIG. 27 is a fluorescence spectrum when an AC5 crystal is excited by ultraviolet rays. As shown in FIG. 27, the narrow lines of luminescence emission spectrum and applying a rectangular wave voltage of the AC voltage as the gate voltage V G is significantly thinner was observed.
  • the potential of the gate electrode 15 is changed with time in a state where the potential of the source electrode 12 and the drain electrode 13 is kept constant without changing with time.
  • Patent Document 2 it is necessary to control both the source voltage and the drain voltage with time, and it is necessary to control the source voltage and the drain voltage in order to control the light emission luminance. There was a problem that became complicated. On the other hand, in the method of the present embodiment, only the gate voltage is changed with time, so that only the gate voltage may be appropriately controlled when controlling the light emission luminance. Becomes easy.
  • the technical idea shown in the present embodiment can be applied not only when the light emitting layer is made of an organic material but also when the light emitting layer is made of an inorganic material.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)

Abstract

A light-emitting device (1) comprises a light-emitting layer (10) composed of a semiconductor material (for example, an organic semiconductor), first and second electrodes (12, 13) electrically connected to the light-emitting layer, and a third electrode (15) connected to the light-emitting layer through an insulating layer (14). A direct current voltage (VD-VS) is applied between the first electrode (12) and the second electrode (13), and an alternating current voltage (VG) is applied to the third electrode (15).

Description

発光デバイスの駆動方法及び駆動装置Driving method and driving apparatus for light emitting device
 本発明は、半導体材料(例えば、有機半導体材料)からなる発光層と、発光層に電気的に接続された2つの電極と、発光層に絶縁体層を介して接続された電極とを備えた発光デバイスを駆動する方法及び装置に関する。 The present invention includes a light emitting layer made of a semiconductor material (for example, an organic semiconductor material), two electrodes electrically connected to the light emitting layer, and an electrode connected to the light emitting layer through an insulator layer. The present invention relates to a method and an apparatus for driving a light emitting device.
 発光層に有機半導体材料を用いた有機発光デバイスとして、有機電界発光素子や有機電界効果トランジスタが研究されている。例えば、有機電界効果トランジスタについて、特許文献1に、絶縁性支持基板上にゲート電極が設けられ、その上に絶縁体層と有機発光層が設けられ、更にその上にソース電極とドレイン電極が設けられた有機電界効果トランジスタが開示されている(図28参照)。このような有機発光デバイスを発光させるためには、発光層に電子とホールとを効率的に注入し、再結合させる必要がある。 Organic electroluminescent elements and organic field effect transistors have been studied as organic light emitting devices using organic semiconductor materials for the light emitting layer. For example, regarding an organic field effect transistor, Patent Document 1 discloses that a gate electrode is provided on an insulating support substrate, an insulator layer and an organic light emitting layer are provided thereon, and a source electrode and a drain electrode are provided thereon. An organic field effect transistor is disclosed (see FIG. 28). In order to emit light from such an organic light emitting device, it is necessary to efficiently inject electrons and holes into the light emitting layer and recombine them.
 効率的な再結合を実現するため、有機電界発光素子は、一般に、仕事関数の大きな金属(陽極)と、ホールを流しやすい有機半導体(p型半導体)と、発光材料としての有機半導体と、電子を流しやすい有機半導体(n型半導体)と、仕事関数の小さい金属(陰極)とを含む素子構造で構成され、有機半導体全体の膜厚は1μm以下になるよう形成される。陽極およびp型半導体からはホールが、陰極およびn型半導体からは電子がそれぞれ発光層へ注入され、それらを発光層内で再結合させることで発光が実現される。 In order to realize efficient recombination, an organic electroluminescent element generally includes a metal having a high work function (anode), an organic semiconductor that easily allows holes to flow (p-type semiconductor), an organic semiconductor as a light emitting material, an electron Is formed with an element structure including an organic semiconductor (n-type semiconductor) and a metal (cathode) having a small work function, and the total thickness of the organic semiconductor is 1 μm or less. Holes are injected into the light emitting layer from the anode and the p-type semiconductor, and electrons are injected into the light emitting layer from the cathode and the n type semiconductor, and light emission is realized by recombining them in the light emitting layer.
 一方、図28に示すような有機電界効果トランジスタでは、電子とホールの双方をキャリアとする両極性(もしくはp型またはn型)の有機半導体材料からなる有機発光層に直接取り付けられたソース電極12と、有機半導体材料に絶縁体層14を介して取り付けられたゲート電極15との間に電圧を印加することで、絶縁体層側の有機半導体材料からなる有機発光層10内にキャリアを誘起する。そして、ソース電極12と、有機発光層10に取り付けられたもう1つの電極であるドレイン電極13との間に電圧を印加することにより、ソース電極12とドレイン電極13間に電流を流す。両極性有機半導体の場合には有機発光層10の内部で発光が観測され、p型半導体の場合には、有機発光層10内のドレイン電極13側で発光が観測される(図28参照)。 On the other hand, in the organic field effect transistor as shown in FIG. 28, the source electrode 12 directly attached to the organic light emitting layer made of a bipolar (or p-type or n-type) organic semiconductor material using both electrons and holes as carriers. And a gate electrode 15 attached to the organic semiconductor material via the insulator layer 14 to induce carriers in the organic light emitting layer 10 made of the organic semiconductor material on the insulator layer side. . Then, a voltage is applied between the source electrode 12 and the drain electrode 13 which is another electrode attached to the organic light emitting layer 10, thereby causing a current to flow between the source electrode 12 and the drain electrode 13. In the case of an ambipolar organic semiconductor, light emission is observed inside the organic light emitting layer 10, and in the case of a p-type semiconductor, light emission is observed on the drain electrode 13 side in the organic light emitting layer 10 (see FIG. 28).
 有機電界発光素子では、発光輝度は陽極および陰極間の電圧値を変えることで制御できる。この素子は2つの電極のみを備えた素子(2極素子)であるため、輝度を調整するために電源の電圧を変えると、その制御に用いている電源を流れる電流も同時に変化してしまう。 In the organic electroluminescence device, the emission luminance can be controlled by changing the voltage value between the anode and the cathode. Since this element is an element having only two electrodes (bipolar element), if the voltage of the power source is changed in order to adjust the luminance, the current flowing through the power source used for the control also changes at the same time.
 一方、有機電界効果トランジスタは3つの電極を備えた素子(3極素子)であり、ソース電極とドレイン電極に電力を供給できる一定電圧の電源を接続しておきさえすれば、ソース電極とドレイン電極間を流れる電流はゲート電圧の値を変化させるだけで制御することができる。このときゲート電極に電流は流れない。すなわち有機電界効果トランジスタでは、発光輝度の制御用電源(ゲート電圧制御用電源)は電力供給の必要がなく、このため、有機電界効果トランジスタは表示パネルなどの実用用途に好適である。 On the other hand, an organic field effect transistor is an element having three electrodes (tripolar element), and as long as a constant voltage power source capable of supplying power is connected to the source electrode and the drain electrode, the source electrode and the drain electrode are connected. The current flowing between them can be controlled simply by changing the value of the gate voltage. At this time, no current flows through the gate electrode. That is, in the organic field effect transistor, the power source for controlling the luminance (gate voltage control power source) does not need to be supplied with power, and therefore the organic field effect transistor is suitable for practical use such as a display panel.
 しかし、従来の有機電界効果トランジスタの駆動方法では、発光制御の電圧に直流電源を用いており、このため、有機発光層内に電子とホールを有効に注入できず、発光輝度が上昇しないという問題があった。これを解決するものとして特許文献2に開示された技術がある。 However, the conventional driving method of the organic field effect transistor uses a DC power source for the light emission control voltage, and therefore, it is not possible to effectively inject electrons and holes into the organic light emitting layer, and the emission luminance does not increase. was there. As a technique for solving this problem, there is a technique disclosed in Patent Document 2.
 特許文献2では、ゲート電位(第1の導体)を基準として、有機電界効果トランジスタのソース電極及びドレイン電極(第2の導体)の一方に正電位の矩形波電圧を印加して有機発光層内にホールを注入し、一定時間経過後に、ソース電極及びドレイン電極の他方に負電位の矩形波電圧を印加し、有機発光層内に電子を注入することにより、有機発光層内にキャリアを有効に注入する方法が開示されている。 In Patent Document 2, a positive potential rectangular wave voltage is applied to one of a source electrode and a drain electrode (second conductor) of an organic field effect transistor with a gate potential (first conductor) as a reference, and the inside of the organic light emitting layer After a certain time has elapsed, a negative rectangular wave voltage is applied to the other of the source electrode and the drain electrode, and electrons are injected into the organic light emitting layer, thereby effectively bringing carriers into the organic light emitting layer. A method of injecting is disclosed.
特開2004-128469号公報JP 2004-128469 A 特開2005-328002号公報JP 2005-328002 A
 しかし、特許文献2の方法は、ゲート電位を基準として、ソース電極及びドレイン電極の電位を時間的に変化させている。つまり、ソース電極及びドレイン電極それぞれを交流駆動している。このため、ソース電極及びドレイン電極それぞれに交流電圧を供給するための別々の電源が必要となる。この場合、電源間の同期を取る必要があり回路構成が複雑になるとともに、複数の電源が必要となることから回路規模が増大するという問題がある。特に、複数の有機電界効果トランジスタをアレイ状に配置して利用するディスプレイパネル等の用途において、特許文献2の方法では、より多くの電源が必要となり、回路規模が増大するという問題を招来し、実用上問題となる。 However, in the method of Patent Document 2, the potentials of the source electrode and the drain electrode are temporally changed with reference to the gate potential. That is, the source electrode and the drain electrode are AC driven. For this reason, separate power supplies for supplying an AC voltage to each of the source electrode and the drain electrode are required. In this case, there is a problem that it is necessary to synchronize the power supplies, the circuit configuration becomes complicated, and a plurality of power supplies are required, so that the circuit scale increases. In particular, in applications such as a display panel that uses a plurality of organic field effect transistors arranged in an array, the method of Patent Document 2 requires more power and causes a problem that the circuit scale increases. This is a practical problem.
 本発明は、上記課題を解決すべくなされたものであり、その目的とするところは、容易な回路構成で高い発光輝度での発光デバイス(例えば、有機発光デバイス)の発光を実現する発光デバイスの駆動方法及び駆動装置を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a light-emitting device that realizes light emission of a light-emitting device (for example, an organic light-emitting device) with high light emission luminance with an easy circuit configuration. A driving method and a driving apparatus are provided.
 本発明に係る発光デバイスの駆動方法は、半導体材料からなる発光層と、発光層に電気的に接続された第1及び第2の電極と、発光層に絶縁体層を介して接続された第3の電極とを備えた発光デバイスの駆動方法である。その駆動方法は、第1の電極と第2の電極間に対して直流電圧を印加するとともに、第3の電極に対して交流電圧を印加する。 A driving method of a light emitting device according to the present invention includes a light emitting layer made of a semiconductor material, first and second electrodes electrically connected to the light emitting layer, and a first electrode connected to the light emitting layer through an insulator layer. 3 is a driving method of a light emitting device including three electrodes. In the driving method, a DC voltage is applied between the first electrode and the second electrode, and an AC voltage is applied to the third electrode.
 本発明に係る発光デバイスの駆動装置は、半導体材料からなる発光層と、発光層に電気的に接続された第1及び第2の電極と、発光層に絶縁体層を介して接続された第3の電極とを備えた発光デバイスの駆動装置であって、第1の電極と第2の電極間に対して直流電圧を供給する第1の電源と、第3の電極に対して交流電圧を供給する第2の電源とを備える。 A light emitting device driving apparatus according to the present invention includes a light emitting layer made of a semiconductor material, first and second electrodes electrically connected to the light emitting layer, and a first electrode connected to the light emitting layer via an insulator layer. A driving device for a light-emitting device comprising three electrodes, a first power supply for supplying a DC voltage between the first electrode and the second electrode, and an AC voltage for the third electrode. A second power source to be supplied.
 上記の発光層を構成する半導体材料は例えば有機材料である。有機材料は、電子とホールの双方をキャリアとする両極性材料(n型およびp型半導体のいずれであってもよい)であるのが好ましい。上記の発光層を構成する半導体材料の形態は、アモルファス膜でも結晶膜でも良い。または、有機材料は、結晶であるとともに、その両端面が共振器構造を形成しているものであってもよい。 The semiconductor material constituting the light emitting layer is, for example, an organic material. The organic material is preferably a bipolar material (both n-type and p-type semiconductors) having both electrons and holes as carriers. The semiconductor material constituting the light emitting layer may be an amorphous film or a crystalline film. Alternatively, the organic material may be a crystal and both end surfaces thereof form a resonator structure.
 第3の電極に対して印加する交流電圧は矩形波電圧であってもよい。 The AC voltage applied to the third electrode may be a rectangular wave voltage.
 本発明によれば、ソース電極及びドレイン電極に同時に直流電圧を印加するとともに、ゲート電圧に交流電圧を印加することにより発光デバイスを駆動する。これにより、発光層への効率的な電子およびホールの注入、及び効率的な電子とホールの再結合が可能となり、高い発光強度が得られる。また、ソース電極及びドレイン電極に印加する電圧を時間的に変化させずに、ゲート電極に印加する電圧のみを時間的に変化させることから、発光デバイスの駆動回路の電源構成を容易にでき、回路規模の増大を抑制できる。 According to the present invention, the light emitting device is driven by simultaneously applying a DC voltage to the source electrode and the drain electrode and applying an AC voltage to the gate voltage. Thereby, efficient injection of electrons and holes into the light emitting layer and efficient recombination of electrons and holes become possible, and high emission intensity can be obtained. In addition, since only the voltage applied to the gate electrode is changed over time without changing the voltage applied to the source electrode and the drain electrode over time, the power supply configuration of the drive circuit of the light emitting device can be facilitated. Increase in scale can be suppressed.
本発明に係る有機電界効果トランジスタの駆動方法を実現する駆動回路の構成例を示す図The figure which shows the structural example of the drive circuit which implement | achieves the drive method of the organic field effect transistor which concerns on this invention 図1に示す駆動回路により有機電界効果トランジスタに印加されるゲート電圧、ソース電圧、ドレイン電圧の波形を示した図The figure which showed the waveform of the gate voltage applied to an organic field effect transistor by the drive circuit shown in FIG. 1, a source voltage, and a drain voltage 図2に示す各電圧印加状態(a)~(f)に対応するキャリア密度の変化を説明した図The figure explaining the change of the carrier density corresponding to each voltage application state (a) to (f) shown in FIG. 本発明に係る有機電界効果トランジスタの駆動方法を実現する駆動回路の別の構成を示す図The figure which shows another structure of the drive circuit which implement | achieves the drive method of the organic field effect transistor which concerns on this invention 図4に示す駆動回路により印加されるゲート電圧、ソース電圧、ドレイン電圧の波形を示した図The figure which showed the waveform of the gate voltage, source voltage, and drain voltage which are applied by the drive circuit shown in FIG. ゲート電圧として印加される矩形波電圧の波形を示した図The figure which showed the waveform of the rectangular wave voltage applied as a gate voltage ゲート電圧の振幅を変えた場合、およびゲート電圧に直流電圧を重畳した場合のゲート電圧、ソース電圧、ドレイン電圧の波形を示した図Diagram showing the waveforms of the gate voltage, source voltage, and drain voltage when the amplitude of the gate voltage is changed and when the DC voltage is superimposed on the gate voltage 実験に用いた有機電界効果トランジスタの櫛形電極を説明するための図Diagram for explaining the comb-shaped electrode of the organic field effect transistor used in the experiment ゲート電圧として交流電圧を印加した場合とゲート電圧を印加しない場合で測定した蒸着膜を発光層とする有機電界効果トランジスタの発光スペクトルを示した図The figure which showed the emission spectrum of the organic field effect transistor which made the vapor deposition film the light emitting layer measured when the alternating voltage was applied as a gate voltage, and when the gate voltage was not applied 交流電圧及び直流電圧のゲート電圧を印加した場合に測定された蒸着膜を発光層とする有機電界効果トランジスタの発光スペクトルを示した図The figure which showed the emission spectrum of the organic field effect transistor which made the vapor deposition film the light emitting layer measured when the gate voltage of alternating voltage and direct current voltage was applied ゲート電圧の種々の周波数に対して測定された蒸着膜を発光層とする有機電界効果トランジスタ(チャネル長0.4μm)の発光スペクトルを示した図The figure which showed the emission spectrum of the organic field effect transistor (channel length 0.4 micrometer) which uses the vapor deposition film as a light emitting layer measured with respect to the various frequency of gate voltage ゲート電圧の種々の周波数に対して測定された蒸着膜を発光層とする有機電界効果トランジスタ(チャネル長10μm)の発光スペクトルを示した図The figure which showed the emission spectrum of the organic field effect transistor (channel length 10 micrometers) which uses the vapor deposition film measured for various frequencies of gate voltage as a light emitting layer ゲート電圧の種々の振幅に対して測定された蒸着膜を発光層とする有機電界効果トランジスタの発光スペクトルを示した図Diagram showing the emission spectrum of an organic field-effect transistor with the deposited film as the light-emitting layer, measured for various amplitudes of the gate voltage ドレイン電圧およびソース電圧の種々の値に対して測定された蒸着膜を発光層とする有機電界効果トランジスタの発光スペクトルを示した図The figure which showed the emission spectrum of the organic field effect transistor which made the vapor deposition film the light emitting layer measured with respect to various values of drain voltage and source voltage 2種類の異なる櫛形電極の櫛間距離に対して測定された有機電界効果トランジスタの発光スペクトルを示した図The figure which showed the emission spectrum of the organic field effect transistor measured with respect to the intercombination distance of two different types of comb electrodes ゲート電極に交流電圧を印加した場合の蒸着膜を発光層とする有機電界効果トランジスタの発光の様子を示した図The figure which showed the mode of light emission of the organic field effect transistor which makes a vapor deposition film the light emitting layer when an alternating voltage is impressed to a gate electrode ゲート電圧として交流電圧を印加した場合とゲート電圧を印加しない場合で測定した結晶膜を発光層とする有機電界効果トランジスタの発光スペクトルを示した図The figure which showed the emission spectrum of the organic field effect transistor which made the crystalline film the light emitting layer measured with and without applying the AC voltage as the gate voltage 交流電圧及び直流電圧のゲート電圧を印加した場合に測定された結晶膜を発光層とする有機電界効果トランジスタの発光スペクトルを示した図The figure which showed the emission spectrum of the organic field effect transistor which made the crystal | crystallization film | membrane measured when the gate voltage of alternating voltage and direct-current voltage was applied the light emitting layer ゲート電圧の種々の周波数に対して測定された結晶膜を発光層とする有機電界効果トランジスタの発光スペクトルを示した図Figure showing the emission spectrum of an organic field-effect transistor with a crystalline layer as the light-emitting layer, measured for various frequencies of the gate voltage ゲート電圧の種々の振幅に対して測定された結晶膜を発光層とする有機電界効果トランジスタの発光スペクトルを示した図Diagram showing the emission spectrum of an organic field-effect transistor with a crystalline film as the light-emitting layer, measured for various amplitudes of the gate voltage ドレイン電圧およびソース電圧の種々の値に対して測定された結晶膜を発光層とする有機電界効果トランジスタの発光スペクトルを示した図Figure showing the emission spectrum of an organic field-effect transistor having a light-emitting layer as a crystal film, measured for various values of drain voltage and source voltage ゲート電極に交流電圧を印加した場合の結晶膜を発光層とする有機電界効果トランジスタの発光の様子を示した図The figure which showed the mode of light emission of the organic field effect transistor which uses a crystalline film as a light emitting layer when an alternating voltage is applied to a gate electrode ゲート電極に交流電圧を印加した場合の結晶膜を発光層とする有機電界効果トランジスタの発光の様子を示した図The figure which showed the mode of light emission of the organic field effect transistor which uses a crystalline film as a light emitting layer when an alternating voltage is applied to a gate electrode ゲート電極に交流電圧を印加した場合の有機電界効果トランジスタの発光の時間変化の様子を示した図A diagram showing how the organic field effect transistor emits light over time when an AC voltage is applied to the gate electrode. ソース電極とドレイン電極に非対称な電圧を印加した場合の発光スペクトルを示した図Diagram showing emission spectrum when asymmetric voltage is applied to source and drain electrodes ゲート電圧として印加する交流電圧が矩形波電圧の場合と正弦波電圧の場合における発光強度を示した図A diagram showing the light emission intensity when the AC voltage applied as the gate voltage is a rectangular wave voltage and a sine wave voltage ゲート電圧として印加する交流電圧が矩形波電圧の場合の発光強度と紫外線励起下の蛍光スペクトルを示した図Diagram showing emission intensity and fluorescence spectrum under ultraviolet excitation when the AC voltage applied as the gate voltage is a rectangular wave voltage ゲート電圧として印加する交流電圧が矩形波電圧の場合の発光強度と紫外線励起下の蛍光スペクトルを示した図Diagram showing emission intensity and fluorescence spectrum under ultraviolet excitation when the AC voltage applied as the gate voltage is a rectangular wave voltage 従来の有機電界効果トランジスタの駆動方法を説明するための図The figure for demonstrating the drive method of the conventional organic field effect transistor
符号の説明Explanation of symbols
 1 有機電界効果トランジスタ
10 有機発光層
12 ソース電極
13 ドレイン電極
14 絶縁体層
15 ゲート電極
20、25 駆動回路
21、22、26 直流電源
23 交流電源
27 直流電圧が重畳された交流電圧を出力する交流電源
40 有機材料
42、43 櫛形電極
DESCRIPTION OF SYMBOLS 1 Organic field effect transistor 10 Organic light emitting layer 12 Source electrode 13 Drain electrode 14 Insulator layer 15 Gate electrode 20, 25 Drive circuit 21, 22, 26 DC power source 23 AC power source 27 AC which outputs AC voltage on which DC voltage is superimposed Power supply 40 Organic material 42, 43 Comb electrode
 以下、添付の図面を参照し、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
1.構成
 図1に、本発明に係る有機電界効果トランジスタの駆動方法を実現する駆動回路の構成の一例を示す。
1. Configuration FIG. 1 shows an example of the configuration of a drive circuit that realizes the organic field effect transistor drive method according to the present invention.
 駆動対象である有機電界効果トランジスタ1は有機発光層10を含み、有機発光層10は有機半導体で形成され、ソース電極12とドレイン電極13が電気的に接続されている。有機電界効果トランジスタ1はさらに絶縁体層14を含み、絶縁体層14を介してゲート電極15が接続されている。 The organic field effect transistor 1 to be driven includes an organic light emitting layer 10, which is formed of an organic semiconductor, and a source electrode 12 and a drain electrode 13 are electrically connected. The organic field effect transistor 1 further includes an insulator layer 14 to which a gate electrode 15 is connected via the insulator layer 14.
 有機電界効果トランジスタ1を駆動する駆動回路20は直流電源21、直流電源22及び交流電源23を含む。直流電源21はソース電極12に対して負極性の直流電圧(Vs)を印加する。直流電源22はドレイン電極13に対して正極性の直流電圧VDを印加する。交流電源23はゲート電極15に交流電圧VGを印加する。ソース電極-ドレイン電極間に印加された電圧は主として有機発光層10内でのキャリアの移動及び再結合に寄与し、ゲート電極15に印加された電圧は有機発光層10内へのキャリアの注入に寄与する。 The drive circuit 20 that drives the organic field effect transistor 1 includes a DC power supply 21, a DC power supply 22, and an AC power supply 23. The DC power source 21 applies a negative DC voltage (V s ) to the source electrode 12. The DC power source 22 applies a positive DC voltage V D to the drain electrode 13. AC power source 23 applies an AC voltage V G to the gate electrode 15. The voltage applied between the source electrode and the drain electrode mainly contributes to the movement and recombination of carriers in the organic light emitting layer 10, and the voltage applied to the gate electrode 15 is used to inject carriers into the organic light emitting layer 10. Contribute.
2.駆動原理
 以下、図2及び図3を参照し、本実施形態による有機電界効果トランジスタの駆動原理を説明する。なお、以下では、有機発光層10が、キャリアとして電子もホールも全く同様に流すことができる有機半導体である両極性有機半導体で構成される場合を例として用いて説明する。
2. Driving Principle Hereinafter, the driving principle of the organic field effect transistor according to the present embodiment will be described with reference to FIGS. In the following, the case where the organic light emitting layer 10 is composed of an ambipolar organic semiconductor, which is an organic semiconductor that can flow electrons and holes as carriers, will be described as an example.
 図2は、有機電界効果トランジスタ1の各電極12、13、15における電圧の時間変化を示した図である。図2では、一例として、ドレイン電極13に印加する直流電圧(以下「ドレイン電圧」という)VDを+60Vと、ソース電極12に印加する直流電圧(以下「ソース電圧」という)VSを-60Vと、ゲート電極15に印加する交流電圧(以下「ゲート電圧」という)VGの周波数を20kHz、振幅を100Vとした場合の電圧変化を示している。図3は、各電極に印加する電圧を図2に示すように変化させた場合の、両極性有機半導体材料からなる有機発光層10におけるキャリア密度の変化を模式的に説明した図である。 FIG. 2 is a diagram showing the time change of the voltage at each electrode 12, 13, 15 of the organic field effect transistor 1. In FIG. 2, as an example, a DC voltage (hereinafter referred to as “drain voltage”) V D applied to the drain electrode 13 is +60 V, and a DC voltage (hereinafter referred to as “source voltage”) V S applied to the source electrode 12 is −60 V. when shows the voltage change when the AC voltage (hereinafter referred to as "gate voltage") the frequency of V G 20 kHz applied to the gate electrode 15, the amplitude was 100 V. FIG. 3 is a diagram schematically illustrating a change in carrier density in the organic light emitting layer 10 made of an ambipolar organic semiconductor material when the voltage applied to each electrode is changed as shown in FIG.
 本実施形態の駆動方法による駆動原理は次のように考えられる。以下、ゲート電圧VGが図2に示す(a)~(f)の各状態にあるときのキャリア密度の状態について考察する。 The driving principle by the driving method of the present embodiment is considered as follows. Hereinafter, the state of the carrier density when the gate voltage V G is in each of the states (a) to (f) shown in FIG. 2 will be considered.
 状態(a): ゲート電圧VGがドレイン電圧を上回り、正極性で最大となる。このとき、有機発光層10内では、ソース電極12側から電子が注入され、蓄積される(図3(a)参照)。ソース電極12とドレイン電極13間の電圧(VD-VS)による電界により、ソース電極12からドレイン電極13に向けて電子が流れる。
 状態(b): ゲート電圧VGがドレイン電圧VDを下回る。有機発光層10内の電子の注入、蓄積が減少し、代わりにドレイン電極13側からホールが注入され、蓄積され始める(図3(b)参照)。ソース電極12とドレイン電極13間の電界により、ソース電極12に向けてホールが流れる。電子とホールは界面で再結合し発光する(以下の発光場所も同様)。
 状態(c): ゲート電圧VGが零(ソース電圧VSとドレイン電圧VDの中間値)となる。これにより、電子およびホールの密度が均衡する(図3(c)参照)。このとき、発光は有機発光層10の中心付近で観測され得る。
 状態(d): ゲート電圧VGが負になる。これにより、ドレイン電極13側でのホールの蓄積量が増え、ソース電極12側での電子の蓄積量が減る(図3(d)参照)。
 状態(e): ゲート電圧VGがソース電圧VSを下回り、負で最小となる。これにより有機発光層10内において、ホールがドレイン電極13側から注入され、蓄積される。ソース電極12とドレイン電極13間の電界により、ソース電極12に向けてホールが流れる。
 状態(f): ゲート電圧VGがソース電圧VSを上回る。これにより、有機発光層10内のホールの蓄積が減り、代わりに電子がソース電極12側から注入され、蓄積され始める。ソース電極12とドレイン電極13間の電界により、ドレイン電極13に向けて電子が流れる。
Condition (a): the gate voltage V G exceeds the drain voltage, the maximum positive polarity. At this time, electrons are injected and accumulated in the organic light emitting layer 10 from the source electrode 12 side (see FIG. 3A). Electrons flow from the source electrode 12 toward the drain electrode 13 due to the electric field generated by the voltage (V D −V S ) between the source electrode 12 and the drain electrode 13.
State (b): The gate voltage V G is lower than the drain voltage V D. The injection and accumulation of electrons in the organic light emitting layer 10 decrease, and instead holes are injected from the drain electrode 13 side and start to accumulate (see FIG. 3B). A hole flows toward the source electrode 12 by the electric field between the source electrode 12 and the drain electrode 13. Electrons and holes recombine at the interface to emit light (the same applies to the following light emission locations).
State (c): The gate voltage V G becomes zero (an intermediate value between the source voltage V S and the drain voltage V D ). Thereby, the density of electrons and holes is balanced (see FIG. 3C). At this time, light emission can be observed near the center of the organic light emitting layer 10.
Condition (d): the gate voltage V G is negative. Thereby, the accumulated amount of holes on the drain electrode 13 side increases, and the accumulated amount of electrons on the source electrode 12 side decreases (see FIG. 3D).
State (e): The gate voltage V G is lower than the source voltage V S and is negative and minimum. Thereby, in the organic light emitting layer 10, holes are injected from the drain electrode 13 side and accumulated. A hole flows toward the source electrode 12 by the electric field between the source electrode 12 and the drain electrode 13.
State (f): The gate voltage V G exceeds the source voltage V S. Thereby, the accumulation of holes in the organic light emitting layer 10 is reduced, and instead, electrons are injected from the source electrode 12 side and start to be accumulated. Electrons flow toward the drain electrode 13 due to the electric field between the source electrode 12 and the drain electrode 13.
 以上のように、ソース電極12-ドレイン電極13間に直流電圧を印加するとともに、ゲート電極15に交流電圧を印加することにより、ゲート電圧が正極性であるときは、有機発光層10内に、主としてソース電極12から電子が注入され、ゲート電圧が負極性であるときは、主としてドレイン電極13からホールが注入される。このようにキャリアを有機発光層10内に効率よく注入でき、再結合させることができるため、有機発光層10の発光効率を向上できると考えられる。 As described above, when a DC voltage is applied between the source electrode 12 and the drain electrode 13 and an AC voltage is applied to the gate electrode 15, when the gate voltage is positive, When electrons are mainly injected from the source electrode 12 and the gate voltage is negative, holes are mainly injected from the drain electrode 13. Thus, it is considered that carriers can be efficiently injected into the organic light emitting layer 10 and can be recombined, so that the light emission efficiency of the organic light emitting layer 10 can be improved.
3.別の構成例
 図4に、有機電界効果トランジスタの駆動回路の別の構成を示す。図4において、有機電界効果トランジスタ1を駆動する駆動回路25は、ソース電極12-ドレイン電極13間に電圧VDを印加する直流電源26と、ゲート電極15に電圧VGを印加する電源27とを備える。電源27は、交流電圧に所定の直流電圧を加算した電圧を供給する。
3. Another Configuration Example FIG. 4 shows another configuration of a drive circuit for an organic field effect transistor. In FIG. 4, a drive circuit 25 for driving the organic field effect transistor 1 includes a DC power source 26 that applies a voltage V D between the source electrode 12 and the drain electrode 13, and a power source 27 that applies a voltage V G to the gate electrode 15. Is provided. The power supply 27 supplies a voltage obtained by adding a predetermined DC voltage to the AC voltage.
 図1の例では、ソース電極12とドレイン電極13にそれぞれ逆極性となる直流電圧を印加し、ゲート電極15に交流電圧を印加していた。これに対して、図4の例では、ソース電極12の電位を基準にして、ドレイン電極13に直流電圧(ドレイン電圧)VDを印加し、ゲート電極15には、ゲート電圧として交流電圧に直流電圧を加算した電圧VGを印加する。なお、ここでは、ゲート電圧VGにおいて交流電圧に加算される直流電圧の値はドレイン電圧VDの1/2の電圧としている。図4の構成により、回路構成を図1の場合に比してより簡略化できる。図5に、図4の構成による各電極に印加される電圧の時間変化の様子を示す。図5では一例として、ソース電圧VSを接地し、ドレイン電圧VDを+120Vと、ゲート電圧VGの周波数を20kHz、振幅を100Vとした場合の電圧変化を示している。 In the example of FIG. 1, a DC voltage having opposite polarity is applied to the source electrode 12 and the drain electrode 13, and an AC voltage is applied to the gate electrode 15. On the other hand, in the example of FIG. 4, a DC voltage (drain voltage) V D is applied to the drain electrode 13 with reference to the potential of the source electrode 12, and a DC voltage is applied to the gate electrode 15 as an AC voltage. applying a voltage V G obtained by adding the voltage. Here, the value of the DC voltage added to the AC voltage in the gate voltage V G is a voltage that is ½ of the drain voltage V D. With the configuration of FIG. 4, the circuit configuration can be further simplified as compared with the case of FIG. FIG. 5 shows how the voltage applied to each electrode in the configuration of FIG. 4 changes with time. As an example, FIG. 5 shows voltage changes when the source voltage V S is grounded, the drain voltage V D is +120 V, the frequency of the gate voltage V G is 20 kHz, and the amplitude is 100 V.
 なお、図1に示す構成において、ゲート電圧VGとして印加する交流電圧は正弦波電圧であるが、正弦波電圧の代わりに図6に示すような矩形波電圧や三角波電圧(図示せず)、またはノコギリ波(図示せず)をゲート電極15に印加してもよい。図4に示す構成においても、正弦波電圧の代わりに矩形波電圧や三角波電圧、またはノコギリ波を用いてもよい。矩形波電圧や三角波電圧、またはノコギリ波を用いても正弦波電圧の場合と同様の効果が得られる。特に矩形波電圧では効果が大きい。 In the configuration shown in FIG. 1, the AC voltage applied as the gate voltage V G is a sinusoidal voltage, (not shown) instead rectangular wave voltage and the triangular wave voltage as shown in FIG. 6 of the sinusoidal voltage, Alternatively, a sawtooth wave (not shown) may be applied to the gate electrode 15. Also in the configuration shown in FIG. 4, a rectangular wave voltage, a triangular wave voltage, or a sawtooth wave may be used instead of the sine wave voltage. Even if a rectangular wave voltage, a triangular wave voltage, or a sawtooth wave is used, the same effect as in the case of a sine wave voltage can be obtained. In particular, a rectangular wave voltage has a great effect.
 ソース電圧VSやドレイン電圧VDに対するゲート電圧VGの位置関係は図7のようになってもよい。特に、図7(b)、(c)に示すように、ゲート電圧VGを基準としたときの、ソース電圧VSの振幅の絶対値とドレイン電圧VDの振幅の絶対値とを異ならせてもよい。すなわち、ゲート電圧VGの振幅の中心を基準として測定したソース電圧VSの値と、ゲート電圧VGの振幅の中心を基準として測定したドレイン電圧VDの値とを異ならせてもよい。すなわち、両電圧を非対称にしてもよい。 The positional relationship of the gate voltage V G with respect to the source voltage V S and the drain voltage V D may be as shown in FIG. In particular, as shown in FIGS. 7B and 7C, the absolute value of the amplitude of the source voltage V S and the absolute value of the amplitude of the drain voltage V D when the gate voltage V G is used as a reference are made different. May be. That is, the value of the source voltage V S of the measurement of the center of the amplitude of the gate voltage V G as a reference, may be different from the value of the drain voltage V D to the center of the amplitude was measured as a reference gate voltage V G. That is, both voltages may be asymmetric.
4.実験結果
 実際の有機電界効果トランジスタに対して上記駆動方法を用いて発光実験を行った。以下、その実験結果を示す。
4). Experimental Results A light emission experiment was performed on the actual organic field effect transistor using the above driving method. The experimental results are shown below.
(1)蒸着膜を用いた実験
 実験に用いた有機電界効果トランジスタは次のようにして作製した。絶縁体層に該当する酸化膜がその上部に形成されたシリコン基板(図示せず)の上に、図8に示すように櫛型電極42、43を形成したデバイス基板を作製し、その上に有機発光層となる有機材料40を約250nm蒸着して有機電界効果トランジスタを作製した。酸化膜の下部のシリコン基板も電極として使用する。有機材料は以下の化学式で示されるBP1Tを用いた。
Figure JPOXMLDOC01-appb-C000001
(1) Experiment using vapor deposition film The organic field effect transistor used for the experiment was produced as follows. On a silicon substrate (not shown) on which an oxide film corresponding to an insulator layer is formed, a device substrate on which comb-shaped electrodes 42 and 43 are formed as shown in FIG. An organic material 40 serving as an organic light emitting layer was deposited by about 250 nm to produce an organic field effect transistor. The silicon substrate below the oxide film is also used as an electrode. As the organic material, BP1T represented by the following chemical formula was used.
Figure JPOXMLDOC01-appb-C000001
 電極付近の断面構造は、シリコン基板、シリコン基板上に形成されたシリコン酸化膜、シリコン酸化膜上に配置されたクロム層、クロム層上に配置された金層となる。クロム層と金層が電極を構成する。櫛型電極の櫛間(チャネル長)dは0.4μmまたは10μm、櫛長(チャネル幅)Lは8cmである。櫛型電極42、43の一方が有機電界効果トランジスタのソース電極となり、他方がドレイン電極となる。シリコン基板はゲート電極となる。 The cross-sectional structure near the electrodes is a silicon substrate, a silicon oxide film formed on the silicon substrate, a chromium layer disposed on the silicon oxide film, and a gold layer disposed on the chromium layer. A chromium layer and a gold layer constitute an electrode. The inter-comb (channel length) d of the comb electrode is 0.4 μm or 10 μm, and the comb length (channel width) L is 8 cm. One of the comb-shaped electrodes 42 and 43 serves as the source electrode of the organic field effect transistor, and the other serves as the drain electrode. The silicon substrate becomes a gate electrode.
(1.1)ゲート電極に交流電圧を印加したときの有効性の確認
図9は、上記のように作製したチャネル長0.4μmの有機電界効果トランジスタに対して、ソース電極に-40Vの直流電圧を、ドレイン電極に40Vの直流電圧を印加し、ゲート電極に振幅75.5V、周波数20kHzの交流電圧を印加した場合と、ゲート電圧を印加しなかった場合(すなわち、ゲート電極を開放した場合)とにおける発光スペクトルの変化を示した図である。ゲート電極に交流電圧が印加されている場合の方が、スペクトル強度がはるかに高く、本実施形態の駆動方法が有機電界効果トランジスタの発光に寄与していることがわかる。
(1.1) Confirmation of effectiveness when an AC voltage is applied to the gate electrode FIG. 9 shows that the organic field effect transistor having a channel length of 0.4 μm fabricated as described above has a direct current of −40 V applied to the source electrode. When a DC voltage of 40 V is applied to the drain electrode and an AC voltage with an amplitude of 75.5 V and a frequency of 20 kHz is applied to the gate electrode, and when no gate voltage is applied (that is, when the gate electrode is opened) It is the figure which showed the change of the emission spectrum in). When the AC voltage is applied to the gate electrode, the spectral intensity is much higher, and it can be seen that the driving method of this embodiment contributes to the light emission of the organic field effect transistor.
 また、図10は、有機電界効果トランジスタのソース電極に-30Vの直流電圧を、ドレイン電極に30Vの直流電圧を、ゲート電極に振幅40V、周波数20kHzの交流電圧をそれぞれ印加したときに測定された発光スペクトルを示した図である。図10には比較のために、ソース電極を基準電圧(接地)とし、ドレイン電極に-60V、ゲート電極に-80Vのそれぞれ直流電圧を印加したときの発光スペクトルも合わせて示している。同図より、ゲート電極に交流電圧を印加した場合の方が直流電圧を印加した場合よりも、より高い発光スペクトルが得られていることが確認できる。このことから、本実施形態の駆動方法が有機電界効果トランジスタの発光に有効に寄与していることが理解できる。 FIG. 10 is measured when a -30V DC voltage is applied to the source electrode of the organic field effect transistor, a DC voltage of 30V is applied to the drain electrode, and an AC voltage having an amplitude of 40V and a frequency of 20 kHz is applied to the gate electrode. It is the figure which showed the emission spectrum. For comparison, FIG. 10 also shows an emission spectrum when the source electrode is a reference voltage (ground), and a DC voltage of −60 V is applied to the drain electrode and −80 V to the gate electrode. From the figure, it can be confirmed that a higher emission spectrum is obtained when an AC voltage is applied to the gate electrode than when a DC voltage is applied. From this, it can be understood that the driving method of the present embodiment contributes effectively to the light emission of the organic field effect transistor.
(1.2)発光スペクトルにおけるゲート電圧の周波数依存性
 さらに、ゲート電極の交流電圧の周波数を変化させて発光スペクトルを測定した。図11Aにチャネル長0.4μmの有機電界効果トランジスタ、図11Bにチャネル長10μmの有機電界効果トランジスタの測定結果をそれぞれ示す。具体的には、前述の有機電界効果トランジスタに対して、ゲート電極の電圧の周波数を2Hz、20Hz、200Hz、2kHz、20kHzと変化させて発光スペクトルを測定した。ソース電極に-30Vの直流電圧を、ドレイン電極に30Vの直流電圧を、ゲート電極に振幅40Vの交流電圧を印加した。図11A及び図11Bから、周波数が大きくなるにしたがい発光スペクトルの強度が増大していることが確認できた。このことからも、本実施形態によるゲート電極への交流電圧の印加が、発光トランジスタの発光強度の増大に効果的に寄与していることが理解できる。また発光輝度を周波数で制御することができる。なお、200Hz以上で駆動した場合に、有機電界効果トランジスタからの発光が時間的に連続した光として視認できた。
(1.2) Frequency dependence of gate voltage in emission spectrum Furthermore, the emission spectrum was measured by changing the frequency of the alternating voltage of the gate electrode. FIG. 11A shows measurement results of an organic field effect transistor having a channel length of 0.4 μm, and FIG. 11B shows measurement results of an organic field effect transistor having a channel length of 10 μm. Specifically, the emission spectrum was measured by changing the frequency of the voltage of the gate electrode to 2 Hz, 20 Hz, 200 Hz, 2 kHz, and 20 kHz with respect to the aforementioned organic field effect transistor. A DC voltage of −30 V was applied to the source electrode, a DC voltage of 30 V was applied to the drain electrode, and an AC voltage with an amplitude of 40 V was applied to the gate electrode. From FIGS. 11A and 11B, it was confirmed that the intensity of the emission spectrum increased as the frequency increased. From this, it can be understood that the application of the alternating voltage to the gate electrode according to the present embodiment effectively contributes to the increase in the light emission intensity of the light emitting transistor. In addition, the emission luminance can be controlled by frequency. In addition, when driving at 200 Hz or higher, light emission from the organic field effect transistor was visually recognized as continuous light.
(1.3)発光スペクトルにおけるゲート電極の電圧振幅依存性
 ゲート電極の交流電圧の振幅を変化させて発光スペクトルを測定した。図12にチャネル長10μmの有機電界効果トランジスタの測定結果を示す。具体的には、前述の有機電界効果トランジスタに対して、ゲート電極の電圧の周波数を20kHzで固定し、振幅を、0V、10V、20V、30V、40Vと変化させて発光スペクトルを測定した。ソース電極に-30Vの直流電圧を、ドレイン電極に30Vの直流電圧を印加した。図12から、ゲート電極の交流振幅が大きい場合の方がより大きな発光スペクトルが得られていることが確認でき、ゲート電極の交流電圧振幅を変えることで輝度の調整ができた。
(1.3) Dependence of gate electrode voltage amplitude on emission spectrum The emission spectrum was measured by changing the amplitude of the AC voltage of the gate electrode. FIG. 12 shows the measurement results of an organic field effect transistor having a channel length of 10 μm. Specifically, the emission spectrum was measured by fixing the frequency of the voltage of the gate electrode at 20 kHz and changing the amplitude to 0 V, 10 V, 20 V, 30 V, and 40 V with respect to the organic field effect transistor described above. A DC voltage of −30 V was applied to the source electrode, and a DC voltage of 30 V was applied to the drain electrode. From FIG. 12, it was confirmed that a larger emission spectrum was obtained when the AC amplitude of the gate electrode was larger, and the luminance could be adjusted by changing the AC voltage amplitude of the gate electrode.
(1.4)発光スペクトルにおけるソースおよびドレイン電極の電圧依存性
 ソースおよびドレイン電極の電圧を変化させて発光スペクトルを測定した。図13にチャネル長10μmの有機電界効果トランジスタの測定結果を示す。具体的には、前述の有機電界効果トランジスタに対して、ゲート電極の電圧の振幅を40V、周波数を20kHzで固定し、ドレイン電極とソース電極の電圧を、0V、10Vと-10V、20Vと-20V、30Vと-30Vとそれぞれ変化させて発光スペクトルを測定した。図13から、ドレインおよびソース電極の電圧の絶対値が大きい場合の方がより大きな発光スペクトルが得られていることが確認できた。
(1.4) Voltage dependence of source and drain electrodes in emission spectrum The emission spectrum was measured by changing the voltage of the source and drain electrodes. FIG. 13 shows the measurement results of an organic field effect transistor having a channel length of 10 μm. Specifically, for the organic field effect transistor described above, the amplitude of the voltage of the gate electrode is fixed at 40 V and the frequency is fixed at 20 kHz, and the voltages of the drain electrode and the source electrode are set to 0 V, 10 V and −10 V, 20 V and − The emission spectrum was measured by changing each of 20V, 30V and -30V. From FIG. 13, it was confirmed that a larger emission spectrum was obtained when the absolute values of the drain and source electrode voltages were large.
(1.5)発光スペクトルにおける櫛形電極の櫛間距離依存性
 さらに、有機電界効果トランジスタの櫛形電極の櫛間の距離に対する発光スペクトルの依存性を測定した。図14に、有機電界効果トランジスタの櫛間の距離(チャネル長)dを0.4μmと10μmにした場合の発光スペクトルの強度を測定した結果を示す。櫛間(チャネル長)dが大きくなると発光強度が弱くなっていることから、櫛間の狭い素子のほうが発光に有利であることが理解できる。
(1.5) Inter-comb distance dependency of comb electrodes in emission spectrum Further, the dependency of the emission spectrum on the distance between comb electrodes of the organic field effect transistor was measured. FIG. 14 shows the results of measuring the intensity of the emission spectrum when the distance (channel length) d between the combs of the organic field effect transistor is 0.4 μm and 10 μm. As the inter-comb (channel length) d increases, the light emission intensity decreases. Therefore, it can be understood that a narrow element between the combs is more advantageous for light emission.
(1.6)発光の様子
 図15にチャネル長10μmの有機電界効果トランジスタのゲート電極に交流電圧を印加して発光している様子の写真を示す。図15(a)は、電圧印加前の有機電界効果トランジスタを明るいところで撮影したもの、図15(b)は、周りを暗くして発光している有機電界効果トランジスタを撮影したものである。
(1.6) State of light emission FIG. 15 shows a photograph of light emission by applying an AC voltage to the gate electrode of an organic field effect transistor having a channel length of 10 μm. FIG. 15A is a photograph of an organic field effect transistor before application of a voltage in a bright place, and FIG. 15B is a photograph of an organic field effect transistor emitting light with a dark surrounding.
(2)結晶膜を用いた実験
 その他に有機発光層となる有機材料40に化1に示されるBP1Tの結晶を用いた有機電界効果トランジスタを作製した。使用した基板は図8に示した櫛型電極42、43を形成したデバイス基板である。電極付近の断面構造は、シリコン基板、シリコン基板上に形成されたシリコン酸化膜、シリコン酸化膜上に配置されたチタン層、チタン層上に配置された白金層となる。チタン層と白金層およびシリコン基板が電極を構成する。櫛型電極の櫛間(チャネル長)dは10μm、櫛長(チャネル幅)Lは8cmである。櫛型電極42、43の一方が有機電界効果トランジスタのソース電極となり、他方がドレイン電極となる。シリコン基板はゲート電極となる。
(2) Experiment Using Crystal Film In addition, an organic field effect transistor using a BP1T crystal shown in Chemical Formula 1 as an organic material 40 to be an organic light emitting layer was manufactured. The substrate used is a device substrate on which the comb electrodes 42 and 43 shown in FIG. 8 are formed. The cross-sectional structure near the electrode is a silicon substrate, a silicon oxide film formed on the silicon substrate, a titanium layer disposed on the silicon oxide film, and a platinum layer disposed on the titanium layer. The titanium layer, the platinum layer and the silicon substrate constitute an electrode. The inter-comb (channel length) d of the comb-shaped electrode is 10 μm, and the comb length (channel width) L is 8 cm. One of the comb-shaped electrodes 42 and 43 serves as the source electrode of the organic field effect transistor, and the other serves as the drain electrode. The silicon substrate becomes a gate electrode.
(2.1)ゲート電極に交流電圧を印加したときの有効性の確認
 図16は、上記のように作製した有機電界効果トランジスタのソース電極に-50Vの直流電圧を、ドレイン電極に50Vの直流電圧を印加し、ゲート電極に振幅60V、周波数20kHzの交流電圧を印加した場合と、ゲート電圧を印加しなかった場合(すなわち、ゲート電極を開放した場合)とにおける発光スペクトルの変化を示した図である。ゲート電極に交流電圧が印加されている場合の方が、スペクトル強度がはるかに高く、本実施形態の駆動方法が有機電界効果トランジスタの発光に寄与していることがわかる。
(2.1) Confirmation of Effectiveness when AC Voltage is Applied to the Gate Electrode FIG. 16 shows a DC voltage of −50V applied to the source electrode and 50V DC applied to the drain electrode of the organic field effect transistor fabricated as described above. The figure which showed the change of the emission spectrum when a voltage is applied and the alternating voltage of amplitude 60V and frequency 20kHz is applied to a gate electrode, and when a gate voltage is not applied (namely, when a gate electrode is open | released) It is. When the AC voltage is applied to the gate electrode, the spectral intensity is much higher, and it can be seen that the driving method of this embodiment contributes to the light emission of the organic field effect transistor.
 また、図17は、有機電界効果トランジスタのソース電極に-50Vの直流電圧を、ドレイン電極に50Vの直流電圧を、ゲート電極に振幅60V、周波数20kHzの交流電圧をそれぞれ印加したときに測定された発光スペクトルを示した図である。図17には比較のために、ソース電極を基準電圧(接地)とし、ドレイン電極に-100V、ゲート電極に-120Vの直流電圧をそれぞれ印加したときの発光スペクトルも合わせて示している。同図より、ゲート電極に交流電圧を印加した場合の方が直流電圧を印加した場合よりも、より高い発光スペクトルが得られていることが確認できる。このことから、本実施形態の駆動方法が結晶を有機発光層とした有機電界効果トランジスタの発光にも有効に寄与していることが理解できる。 Further, FIG. 17 is measured when a DC voltage of −50 V is applied to the source electrode of the organic field effect transistor, a DC voltage of 50 V is applied to the drain electrode, and an AC voltage having an amplitude of 60 V and a frequency of 20 kHz is applied to the gate electrode. It is the figure which showed the emission spectrum. For comparison, FIG. 17 also shows an emission spectrum when a source electrode is set to a reference voltage (ground), a DC voltage of −100 V is applied to the drain electrode, and −120 V is applied to the gate electrode. From the figure, it can be confirmed that a higher emission spectrum is obtained when an AC voltage is applied to the gate electrode than when a DC voltage is applied. From this, it can be understood that the driving method of the present embodiment also contributes effectively to the light emission of the organic field effect transistor having the crystal as the organic light emitting layer.
(2.2)発光スペクトルにおけるゲート電極の電圧の周波数依存性
 さらに、ゲート電極の交流電圧の周波数を変化させて発光スペクトルを測定した。図18に測定結果を示す。具体的には、前述の有機電界効果トランジスタに対して、ゲート電極の電圧振幅を60Vに固定し、周波数を2Hz、20Hz、200Hz、2kHz、20kHzと変化させて発光スペクトルを測定した。ソース電極には-50Vの直流電圧を、ドレイン電極に50Vの直流電圧を印加した。図18から、周波数が大きくなるにしたがい発光スペクトルの強度が増大していることが確認できた。このことからも、本実施形態によるゲート電極への交流電圧の印加が、発光トランジスタの発光強度の増大に効果的に寄与していることが理解できる。また発光輝度を周波数で制御することができる。
(2.2) Frequency dependence of gate electrode voltage in emission spectrum Furthermore, the emission spectrum was measured by changing the frequency of the AC voltage of the gate electrode. FIG. 18 shows the measurement results. Specifically, the emission spectrum was measured by fixing the voltage amplitude of the gate electrode to 60 V and changing the frequency to 2 Hz, 20 Hz, 200 Hz, 2 kHz, and 20 kHz with respect to the organic field effect transistor described above. A DC voltage of −50 V was applied to the source electrode, and a DC voltage of 50 V was applied to the drain electrode. From FIG. 18, it was confirmed that the intensity of the emission spectrum increased as the frequency increased. From this, it can be understood that the application of the alternating voltage to the gate electrode according to the present embodiment effectively contributes to the increase in the light emission intensity of the light emitting transistor. In addition, the emission luminance can be controlled by frequency.
(2.3)発光スペクトルにおけるゲート電圧振幅依存性
 ゲート電極の交流電圧の振幅を変化させて発光スペクトルを測定した。図19に測定結果を示す。具体的には、前述の有機電界効果トランジスタに対して、ゲート電極の電圧の周波数を20kHzで固定し、振幅を、0V、20V、40V、60Vと変化させて発光スペクトルを測定した。ソース電極には-50Vの直流電圧を、ドレイン電極に50Vの直流電圧を印加した。図19から、ゲート電極の交流振幅が大きい場合の方がより大きな発光スペクトルが得られていることが確認でき、ゲート電極の交流電圧振幅を変えることで輝度の調整ができた。
(2.3) Dependence of gate voltage amplitude on emission spectrum The emission spectrum was measured by changing the amplitude of the AC voltage of the gate electrode. FIG. 19 shows the measurement results. Specifically, the emission spectrum was measured by fixing the frequency of the voltage of the gate electrode at 20 kHz and changing the amplitude to 0 V, 20 V, 40 V, and 60 V with respect to the organic field effect transistor described above. A DC voltage of −50 V was applied to the source electrode, and a DC voltage of 50 V was applied to the drain electrode. From FIG. 19, it was confirmed that a larger emission spectrum was obtained when the AC amplitude of the gate electrode was larger, and the luminance could be adjusted by changing the AC voltage amplitude of the gate electrode.
(2.4)発光スペクトルにおけるソースおよびドレイン電圧依存性
 ソースおよびドレイン電圧を変化させて発光スペクトルを測定した。図20に測定結果を示す。具体的には、前述の有機電界効果トランジスタに対して、ゲート電圧の振幅を60V、周波数を20kHzで固定し、ドレイン電極とソース電極に印加する電圧を、0V、10Vと-10V、30Vと-30V、50Vと-50Vとそれぞれ変化させて発光スペクトルを測定した。図20から、ドレインおよびソース電極の電圧の絶対値が大きい場合の方がより大きな発光スペクトルが得られていることが確認できた。
(2.4) Dependence of source and drain voltage on emission spectrum The emission spectrum was measured by changing the source and drain voltages. FIG. 20 shows the measurement results. Specifically, for the organic field effect transistor described above, the amplitude of the gate voltage is fixed at 60 V, the frequency is fixed at 20 kHz, and the voltages applied to the drain electrode and the source electrode are 0 V, 10 V and −10 V, 30 V and − The emission spectrum was measured by changing each of 30V, 50V and -50V. From FIG. 20, it was confirmed that a larger emission spectrum was obtained when the absolute values of the drain and source electrode voltages were larger.
 図21に有機電界効果トランジスタのゲート電極に交流電圧を印加して発光している様子の写真を示す。図21(a)は、電圧印加前の有機電界効果トランジスタを明るいところで撮影したもの、図21(b)は、周りを暗くして発光している有機電界効果トランジスタを撮影したものである。 FIG. 21 shows a photograph of a state where light is emitted by applying an AC voltage to the gate electrode of the organic field effect transistor. FIG. 21A is a photograph of an organic field effect transistor before voltage application in a bright place, and FIG. 21B is a photograph of an organic field effect transistor that emits light with a dark surrounding.
(3)その他の材料を用いた実験
 その他に有機発光層1に、化2に示されるAC5-CFの結晶を用いた有機電界効果トランジスタを作製した。使用した基板は、絶縁体層に該当する酸化膜がその上部に形成されたシリコン基板で、その上に上記AC5-CFの結晶を乗せ、結晶の上から金層を蒸着により作製した有機電界効果トランジスタである。金層がソースおよびドレイン電極となる。シリコン基板はゲート電極となる。
Figure JPOXMLDOC01-appb-C000002
(3) Experiment Using Other Materials In addition, an organic field effect transistor using an AC5-CF 3 crystal shown in Chemical Formula 2 as the organic light emitting layer 1 was fabricated. Substrate used was a silicon substrate having an oxide film formed thereon corresponding to the insulator layer, the upper placing the crystals of the AC5-CF 3, the organic electroluminescent prepared by depositing a gold layer over the crystal It is an effect transistor. The gold layer becomes the source and drain electrodes. The silicon substrate becomes a gate electrode.
Figure JPOXMLDOC01-appb-C000002
 図22に有機電界効果トランジスタのゲート電極に交流電圧を印加して発光している様子の写真を示す。図22(a)は、電圧印加前の有機電界効果トランジスタを明るいところで撮影したもの、図22(b)は、周りを暗くして発光している有機電界効果トランジスタを撮影したものである。 FIG. 22 shows a photograph of a state where an AC voltage is applied to the gate electrode of the organic field effect transistor to emit light. FIG. 22A is a photograph of an organic field effect transistor before voltage application in a bright place, and FIG. 22B is a photograph of an organic field effect transistor that emits light with a dark surrounding.
 その他に有機発光層1に、化3に示されるAC5-1CF―12OMeの結晶を用いた有機電界効果トランジスタを作製した。化3に示される物質は、両極性の材料である。使用した基板は、絶縁体層に該当する酸化膜がその上部に形成されたシリコン基板で、酸化膜の上にポリメチルメタクリレート層を形成し、さらにその上に上記AC5-1CF―12OMeの結晶を乗せ、結晶の上から金層およびマグネシウム銀層を蒸着により作製した有機電界効果トランジスタである。金層がドレイン電極、マグネシウム銀層がソース電極となる。シリコン基板はゲート電極となる。
Figure JPOXMLDOC01-appb-C000003
In addition, an organic field effect transistor using an AC5-1CF 3-12OMe crystal shown in Chemical Formula 3 as the organic light emitting layer 1 was fabricated. The substance shown in Chemical Formula 3 is a bipolar material. Substrate used was a silicon substrate having an oxide film formed thereon corresponding to the insulator layer, to form a polymethylmethacrylate layer on the oxide film, further crystals of the AC5-1CF 3 -12OMe thereon Is an organic field effect transistor in which a gold layer and a magnesium silver layer are formed by vapor deposition from above the crystal. The gold layer becomes the drain electrode and the magnesium silver layer becomes the source electrode. The silicon substrate becomes a gate electrode.
Figure JPOXMLDOC01-appb-C000003
 図23(a)は、有機電界効果トランジスタのソース電極に-100Vの直流電圧を、ドレイン電極に100Vの直流電圧を、ゲート電極に振幅120V、周波数500Hzの交流電圧をそれぞれ印加したときに測定されたゲート電極に印加した交流電圧と有機電界効果トランジスタからの発光の時間変化を示した図である。 FIG. 23A is measured when a DC voltage of −100 V is applied to the source electrode of the organic field effect transistor, a DC voltage of 100 V is applied to the drain electrode, and an AC voltage having an amplitude of 120 V and a frequency of 500 Hz is applied to the gate electrode. It is the figure which showed the time change of the light emission from the alternating voltage applied to the gate electrode and the organic field effect transistor.
 図23(b)は、図8に示した櫛型電極をもつデバイス基板の上に化1に示したBP1Tを蒸着して作製した有機電界効果トランジスタからの発光の時間変化を示した図である。ソース電極に-30Vの直流電圧を、ドレイン電極に30Vの直流電圧を、ゲート電極に振幅80V、周波数200Hzの交流電圧をそれぞれ印加した。 FIG. 23B is a diagram showing the time change of light emission from the organic field effect transistor produced by depositing BP1T shown in Chemical Formula 1 on the device substrate having the comb-shaped electrode shown in FIG. . A DC voltage of −30 V was applied to the source electrode, a DC voltage of 30 V was applied to the drain electrode, and an AC voltage having an amplitude of 80 V and a frequency of 200 Hz was applied to the gate electrode.
 図23(a)は、有機発光層1に、化3に示される両極性の材料を用いた場合、500Hzではゲート電極の交流電圧の最大値および最小値のときに強度が最大になるように発光していることを示している。一方、有機発光層1に、化1に示されるp型の材料を用いた場合には、200Hzではゲート電圧が最小のときに強度が最大になるように発光している。これは、有機発光層が両極性の材料の場合、ゲート電圧が最大の場合電子が、ゲート電圧が最小のときにホールが有機発光層を流れて発光しているのに対し、p型材料の場合、ゲート電圧が最小のときに有機発光層の中をホールが流れ発光していることを示している。 FIG. 23 (a) shows that when the bipolar material shown in Chemical formula 3 is used for the organic light emitting layer 1, the intensity is maximized at the maximum value and the minimum value of the AC voltage of the gate electrode at 500 Hz. Indicates that light is emitted. On the other hand, when the p-type material shown in Chemical formula 1 is used for the organic light emitting layer 1, light is emitted at 200 Hz so that the intensity becomes maximum when the gate voltage is minimum. This is because when the organic light emitting layer is a bipolar material, electrons flow when the gate voltage is maximum, and holes flow through the organic light emitting layer when the gate voltage is minimum, whereas the p-type material emits light. In this case, when the gate voltage is the minimum, holes flow through the organic light emitting layer to emit light.
(4)その他の実験データ
(4.1)ソース電極とドレイン電極に非対称な電圧を印加した場合の発光スペクトル
 図8に示すような櫛型電極を形成したデバイス基板の上の有機発光層1に、化4に示されるAC5の蒸着膜を用いた有機電界効果トランジスタを作製した。櫛型電極の櫛間(チャネル長)dは0.4μm、櫛長(チャネル幅)Lは8cmである。図24は、ソース電極とドレイン電極に非対称な電圧を印加した場合の発光スペクトルを示した図である。最も非対称性が大きい例として、ソース電圧Vsを0V、ドレイン電圧VDを140Vとして発光強度を測定した。また、最も非対称性が小さい例として、ソース電圧Vsを-70V、ドレイン電圧VDを70Vとして発光強度を測定した。ゲート電圧VGとしてゲート電極に振幅80V、周波数2kHzの正弦波交流電圧を印加した。
Figure JPOXMLDOC01-appb-C000004
(4) Other experimental data (4.1) Emission spectrum when an asymmetric voltage is applied to the source electrode and the drain electrode The organic light emitting layer 1 on the device substrate on which the comb-shaped electrode as shown in FIG. An organic field effect transistor using an AC5 vapor deposition film shown in Chemical formula 4 was prepared. The inter-comb (channel length) d of the comb-shaped electrode is 0.4 μm, and the comb length (channel width) L is 8 cm. FIG. 24 is a diagram showing an emission spectrum when an asymmetric voltage is applied to the source electrode and the drain electrode. Most examples asymmetry is large, and the emission intensity was measured source voltage V s 0V, the drain voltage V D as 140 V. As an example with the smallest asymmetry, emission intensity was measured with a source voltage V s of −70 V and a drain voltage V D of 70 V. A sine wave AC voltage having an amplitude of 80 V and a frequency of 2 kHz was applied to the gate electrode as the gate voltage V G.
Figure JPOXMLDOC01-appb-C000004
 図24に示すように、非対称性の度合いが大きいほど、発光スペクトルも大きくなっている。この例では、ソース電圧Vsを0V、ドレイン電圧VDを140Vとした場合に最大の光強度が得られている。このように、ソース電極12とドレイン電極13に非対称な電圧を印加することで効率のよい発光が得られることが理解できる。 As shown in FIG. 24, the emission spectrum increases as the degree of asymmetry increases. In this example, the maximum light intensity is obtained when the source voltage V s is 0 V and the drain voltage V D is 140 V. Thus, it can be understood that efficient light emission can be obtained by applying an asymmetric voltage to the source electrode 12 and the drain electrode 13.
 ソース電極とドレイン電極に、ゲート電圧VGに対する非対称な電圧を印加した場合、非対称性に応じて有機発光層に注入されるホールと電子の量が変化するため、発光スペクトルが変化すると考えられる。 The source electrode and the drain electrode, when applying the asymmetrical voltage to the gate voltage V G, the amount of holes and electrons injected into the organic light-emitting layer in accordance with the asymmetry changes, considered emission spectrum changes.
(4.2)発光強度におけるゲート電圧波形依存性
 有機発光層1に化1に示されるBP1Tの結晶を用いた有機電界効果トランジスタを作製した。使用した基板は図8に示した櫛型電極42、43を形成したデバイス基板である。電極付近の断面構造は、シリコン基板、シリコン基板上に形成されたシリコン酸化膜、シリコン酸化膜上に配置されたクロム層、クロム層上に配置された金層となる。クロム層と金層およびシリコン基板が電極を構成する。櫛型電極の櫛間(チャネル長)櫛型電極42、43の一方が有機電界効果トランジスタのソース電極となり、他方がドレイン電極となる。シリコン基板はゲート電極となる。図25は、ゲート電圧VGとして印加する交流電圧が矩形波電圧の場合と正弦波電圧の場合における有機電界効果トランジスタの発光スペクトルを示した図である。具体的には、前述の有機電界効果トランジスタに対して、ゲート電圧の振幅を40V、周波数を20kHzで固定し、ドレイン電極に印加する直流電圧を30V、ソース電極に印加する直流電圧を-30Vにして発光スペクトルを測定した。
(4.2) Dependence of Gate Voltage Waveform on Luminous Intensity An organic field effect transistor using the BP1T crystal shown in Chemical Formula 1 as the organic light emitting layer 1 was fabricated. The substrate used is a device substrate on which the comb electrodes 42 and 43 shown in FIG. 8 are formed. The cross-sectional structure near the electrode is a silicon substrate, a silicon oxide film formed on the silicon substrate, a chromium layer disposed on the silicon oxide film, and a gold layer disposed on the chromium layer. The chromium layer, the gold layer, and the silicon substrate constitute an electrode. Between the comb-shaped electrodes (channel length), one of the comb-shaped electrodes 42 and 43 is a source electrode of the organic field effect transistor, and the other is a drain electrode. The silicon substrate becomes a gate electrode. FIG. 25 is a diagram showing an emission spectrum of the organic field effect transistor when the AC voltage applied as the gate voltage V G is a rectangular wave voltage and a sine wave voltage. Specifically, with respect to the organic field effect transistor described above, the amplitude of the gate voltage is fixed at 40 V, the frequency is fixed at 20 kHz, the DC voltage applied to the drain electrode is 30 V, and the DC voltage applied to the source electrode is −30 V. The emission spectrum was measured.
 図25に示すように、ゲート電圧VGとして印加する交流電圧が矩形波電圧の方が正弦波電圧の場合よりも、より効率よく発光していることが理解できる。これは、矩形波電圧は瞬間的に正負が切り替わるためであると思われる。すなわち、ゲート電圧VGとして矩形波電圧を印加した場合、ゲート電圧VGの正負が急激に切り替わるため、注入されたホールがソース電極に到達する前に(すなわち、注入されたホールが有機発光層に残っている状態で)、電子が注入される状態に切り替わる。このため、有機発光層において電子とホールの再結合が効率よく生じ、高い発光強度が得られると考えられる。 As shown in FIG. 25, the AC voltage applied as the gate voltage V G is better of the rectangular wave voltage than for the sine wave voltage, it can be seen that emit light more efficiently. This seems to be because the square wave voltage instantaneously switches between positive and negative. That is, when applying a rectangular wave voltage as the gate voltage V G, since the positive and negative gate voltage V G is switched rapidly, before the injected holes to reach the source electrode (i.e., injected holes organic light-emitting layer The state is switched to a state where electrons are injected. For this reason, it is considered that recombination of electrons and holes occurs efficiently in the organic light emitting layer, and high light emission intensity can be obtained.
 これに対して、ゲート電圧VGが正弦波電圧である場合、ゲート電圧VGの正負は徐々に切り替わるため、多くの注入されたホールは発光に寄与する前にソース電極に到達すると考えられる。このため、ゲート電圧VGの極性が切り替わり、電子が注入されるときには、有機発光層に残っているホールが少なくなっており、このため、電子が注入されても、有機発光層において電子とホールの再結合があまり生じないため、ゲート電圧VGが矩形波電圧の場合のときほど高い発光強度が得られないと考えられる。 In contrast, the gate voltage V G be a sine wave voltage, since the switch gradually polarity of the gate voltage V G, the number of injected holes is believed to reach the source electrode before which contributes to light emission. Therefore, switching the polarity of the gate voltage V G, when electrons are injected, have become less holes remaining in the organic light-emitting layer, Thus, even when electrons are injected, the electrons and holes in the organic emission layer since the recombination does not occur too high luminous intensity as when the case where the gate voltage V G is the rectangular wave voltage is considered not obtained.
 (4.3)ゲート電圧に矩形波を印加した場合の狭線化発光スペクトル
 有機発光層1に化1に示されるBP1Tの結晶を用いた有機電界効果トランジスタを作製した。使用した基板は、絶縁体層に該当する酸化膜がその上部に形成されたシリコン基板で、その上に上記BP1Tの結晶を乗せ、結晶の上から金層およびマグネシウム銀層を蒸着により作製した有機電界効果トランジスタである。金層がドレイン電極およびマグネシウム銀層がソース電極となる。シリコン基板はゲート電極となる。このようにして作製された有機電界効果トランジスタの有機発光層1の有機材料は結晶であるとともに、その両端面が共振器構造を形成している。図26に、この試料に対する測定結果を示す。
(4.3) Narrowed emission spectrum when a rectangular wave is applied to the gate voltage An organic field effect transistor using the BP1T crystal shown in Chemical formula 1 as the organic light emitting layer 1 was fabricated. The substrate used was a silicon substrate on which an oxide film corresponding to an insulator layer was formed. An organic layer in which the BP1T crystal was placed thereon, and a gold layer and a magnesium silver layer were formed on the crystal by vapor deposition. It is a field effect transistor. The gold layer becomes the drain electrode and the magnesium silver layer becomes the source electrode. The silicon substrate becomes a gate electrode. The organic material of the organic light-emitting layer 1 of the organic field effect transistor thus fabricated is a crystal, and both end surfaces thereof form a resonator structure. FIG. 26 shows the measurement results for this sample.
 図26の実線は、ゲート電圧VGの交流電圧として矩形波電圧を印加した場合の有機電界効果トランジスタの発光スペクトルを示した図である。具体的には、前述の有機電界効果トランジスタに対して、ゲート電圧の振幅を120V、周波数を2kHzにし、ドレイン電極に印加する電圧を120V、ソース電極に印加する電圧を-120Vにして発光スペクトルを測定した。 The solid line in FIG. 26 is a diagram showing an emission spectrum of an organic field effect transistor in the case of applying a rectangular wave voltage as an alternating voltage of the gate voltage V G. Specifically, for the organic field effect transistor described above, an emission spectrum is obtained by setting the amplitude of the gate voltage to 120 V, the frequency to 2 kHz, the voltage applied to the drain electrode to 120 V, and the voltage applied to the source electrode to −120 V. It was measured.
 図26中の破線はBP1Tの結晶を紫外線で励起した場合の蛍光スペクトルである。図26に示すように、ゲート電圧VGとして交流電圧の矩形波電圧を印加すると発光スペクトルが著しく細くなる狭線化発光が観測された。 The broken line in FIG. 26 is a fluorescence spectrum when the BP1T crystal is excited with ultraviolet rays. As shown in FIG. 26, the narrow lines of luminescence emission spectrum and applying a rectangular wave voltage of the AC voltage as the gate voltage V G is significantly thinner was observed.
 また、別の試料として、有機発光層1に化4に示されるAC5の結晶を用いた有機電界効果トランジスタを作製した。使用した基板は、絶縁体層に該当する酸化膜がその上部に形成されたシリコン基板で、その上に上記AC5の結晶を乗せ、結晶の上から金層およびマグネシウム銀層を蒸着により作製した有機電界効果トランジスタである。金層がドレイン電極およびマグネシウム銀層がソース電極となる。シリコン基板はゲート電極となる。このようにして作製された有機電界効果トランジスタの有機発光層1の有機材料は結晶であるとともに、その両端面が共振器構造を形成している。図27に、この試料に対する測定結果を示す。 As another sample, an organic field effect transistor using an AC5 crystal shown in Chemical Formula 4 as the organic light emitting layer 1 was fabricated. The substrate used was a silicon substrate on which an oxide film corresponding to an insulator layer was formed. The above-mentioned AC5 crystal was placed on the substrate, and a gold layer and a magnesium silver layer were formed by vapor deposition on the crystal. It is a field effect transistor. The gold layer becomes the drain electrode and the magnesium silver layer becomes the source electrode. The silicon substrate becomes a gate electrode. The organic material of the organic light-emitting layer 1 of the organic field effect transistor thus fabricated is a crystal, and both end surfaces thereof form a resonator structure. FIG. 27 shows the measurement results for this sample.
 図27の実線は、ゲート電圧VGの交流電圧として矩形波電圧を印加した場合の有機電界効果トランジスタの発光スペクトルを示した図である。具体的には、前述の有機電界効果トランジスタに対して、ゲート電圧の振幅を100V、周波数を20kHzにし、ドレイン電極に印加する電圧を70V、ソース電極に印加する電圧を-70Vにして発光スペクトルを測定した。 The solid line in FIG. 27 is a diagram showing an emission spectrum of an organic field effect transistor in the case of applying a rectangular wave voltage as an alternating voltage of the gate voltage V G. Specifically, for the organic field effect transistor described above, the emission spectrum is obtained by setting the amplitude of the gate voltage to 100 V, the frequency to 20 kHz, the voltage applied to the drain electrode to 70 V, and the voltage applied to the source electrode to -70 V. It was measured.
 図27中の破線はAC5の結晶を紫外線で励起した場合の蛍光スペクトルである。図27に示すように、ゲート電圧VGとして交流電圧の矩形波電圧を印加すると発光スペクトルが著しく細くなる狭線化発光が観測された。 The broken line in FIG. 27 is a fluorescence spectrum when an AC5 crystal is excited by ultraviolet rays. As shown in FIG. 27, the narrow lines of luminescence emission spectrum and applying a rectangular wave voltage of the AC voltage as the gate voltage V G is significantly thinner was observed.
 以上のように、ゲート電圧VGの交流電圧として矩形波電圧を印加することは、狭線化発光に効果的であることがわかる。 As described above, applying a rectangular wave voltage as an alternating voltage of the gate voltage V G it is found to be effective in a narrow line of light emission.
5.まとめ
 以上のように、本実施形態では、有機電界効果トランジスタを駆動する際に、ソース電極12及びドレイン電極13に直流電圧を印加しつつゲート電極15に交流電圧を印加する。これにより、ソース電極12及びドレイン電極13のそれぞれから有機発光層10内に電子及びホールが効率よく注入されるため、これらのキャリアの再結合がより発生しやすくなり、高い発光強度を得ることができる。
5. Summary As described above, in this embodiment, when the organic field effect transistor is driven, an AC voltage is applied to the gate electrode 15 while a DC voltage is applied to the source electrode 12 and the drain electrode 13. As a result, electrons and holes are efficiently injected into the organic light emitting layer 10 from each of the source electrode 12 and the drain electrode 13, so that recombination of these carriers is more likely to occur, and high emission intensity can be obtained. it can.
 さらに、本実施形態では、ソース電極12とドレイン電極13の電位を時間的に変化させず一定に保持した状態で、ゲート電極15の電位を時間的に変化させている。この構成により、ゲート電極15に対してのみ交流電源を用意すればよく、特許文献2のようにソース電極とドレイン電極それぞれに対して交流電源を設ける必要がなく、かつ、2つの交流電源間の同期をとる必要がなくなるため、電源回路の構成を容易にし、回路規模の増大化を抑制できる。このことは、特に、複数の有機電界効果トランジスタをアレイ状に配置したディスプレイパネル等の用途において、装置規模の増大化を抑制できるため、特に有益となる。また、特許文献2では、ソース電圧とドレイン電圧の双方を時間的に変化させるという制御が必要な上、発光輝度の制御のためにもソース電圧とドレイン電圧を制御することが必要となり、制御系が複雑になる問題が存在した。これに対して、本実施形態の方法では、ゲート電圧をのみを時間的に変化させていることから、発光輝度の制御する際にも、ゲート電圧のみを適宜制御すればよく、発光輝度の制御が容易となる。 Furthermore, in this embodiment, the potential of the gate electrode 15 is changed with time in a state where the potential of the source electrode 12 and the drain electrode 13 is kept constant without changing with time. With this configuration, it is only necessary to prepare an AC power source only for the gate electrode 15, and there is no need to provide an AC power source for each of the source electrode and the drain electrode as in Patent Document 2, and between the two AC power sources. Since there is no need to synchronize, the configuration of the power supply circuit can be facilitated, and an increase in circuit scale can be suppressed. This is particularly beneficial in an application such as a display panel in which a plurality of organic field effect transistors are arranged in an array, because an increase in device scale can be suppressed. In Patent Document 2, it is necessary to control both the source voltage and the drain voltage with time, and it is necessary to control the source voltage and the drain voltage in order to control the light emission luminance. There was a problem that became complicated. On the other hand, in the method of the present embodiment, only the gate voltage is changed with time, so that only the gate voltage may be appropriately controlled when controlling the light emission luminance. Becomes easy.
 なお、本実施形態で示した技術思想は、発光層を有機材料で構成した場合のみならず、発光層を無機材料で構成した場合にも同様に適用できることは言うまでもない。 Needless to say, the technical idea shown in the present embodiment can be applied not only when the light emitting layer is made of an organic material but also when the light emitting layer is made of an inorganic material.
 本発明は、特定の実施形態について説明されてきたが、当業者にとっては他の多くの変形例、修正、他の利用が明らかである。それゆえ、本発明は、ここでの特定の開示に限定されず、添付の請求の範囲によってのみ限定され得る。なお、本出願は日本国特許出願、特願2008-029318号(2008年2月8日提出)に関連し、それらの内容は参照することにより本文中に組み入れられる。 Although the present invention has been described with respect to particular embodiments, many other variations, modifications, and other uses will be apparent to those skilled in the art. Accordingly, the invention is not limited to the specific disclosure herein, but can be limited only by the scope of the appended claims. This application relates to a Japanese patent application, Japanese Patent Application No. 2008-029318 (submitted on February 8, 2008), the contents of which are incorporated herein by reference.

Claims (16)

  1.  半導体材料からなる発光層と、前記発光層に電気的に接続された第1及び第2の電極と、前記発光層に絶縁体層を介して接続された第3の電極とを備えた発光デバイスの駆動方法であって、
     前記第1の電極と第2の電極間に対して直流電圧を印加するとともに、前記第3の電極に対して交流電圧を印加する、
    ことを特徴とする発光デバイスの駆動方法。
    A light emitting device comprising: a light emitting layer made of a semiconductor material; first and second electrodes electrically connected to the light emitting layer; and a third electrode connected to the light emitting layer through an insulator layer. Driving method,
    Applying a DC voltage between the first electrode and the second electrode, and applying an AC voltage to the third electrode;
    A method for driving a light-emitting device.
  2.  前記交流電圧の振幅値が前記直流電圧値の1/2よりも大きいことを特徴とする請求項1記載の発光デバイスの駆動方法。 The method for driving a light emitting device according to claim 1, wherein an amplitude value of the AC voltage is larger than ½ of the DC voltage value.
  3.  前記第1の電極に対して第1の直流電圧を印加し、前記第2の電極に対して、前記第1の直流電圧と極性が異なる第2の直流電圧を印加し、前記第3の電極に対して交流電圧を印加する、ことを特徴とする請求項1記載の発光デバイスの駆動方法。 A first DC voltage is applied to the first electrode, a second DC voltage having a polarity different from that of the first DC voltage is applied to the second electrode, and the third electrode 2. The method of driving a light emitting device according to claim 1, wherein an alternating voltage is applied to the light emitting device.
  4.  前記第1の電極の電位を基準電位として、前記第2の電極に対して第1の直流電圧を印加するとともに、前記第3の電極に対して、第2の直流電圧に交流電圧を重畳した電圧を印加する、ことを特徴とする請求項1記載の発光デバイスの駆動方法。 A first DC voltage is applied to the second electrode with the potential of the first electrode as a reference potential, and an AC voltage is superimposed on the second DC voltage with respect to the third electrode. The method of driving a light emitting device according to claim 1, wherein a voltage is applied.
  5.  前記半導体材料は有機材料である、ことを特徴とする請求項1ないし4のいずれか1つに記載の発光デバイスの駆動方法。 The method for driving a light-emitting device according to claim 1, wherein the semiconductor material is an organic material.
  6.  前記有機材料は電子とホールの双方をキャリアとする両極性材料である、ことを特徴とする請求項5に記載の発光デバイスの駆動方法。 6. The method for driving a light emitting device according to claim 5, wherein the organic material is a bipolar material using both electrons and holes as carriers.
  7.  前記第3の電極に対して印加する交流電圧は矩形波電圧である、ことを特徴とする請求項1ないし4のいずれか1つに記載の発光デバイスの駆動方法。 5. The method for driving a light emitting device according to claim 1, wherein the AC voltage applied to the third electrode is a rectangular wave voltage.
  8.  前記有機材料は結晶であるとともに、その両端面が共振器構造を形成している、ことを特徴とする請求項5に記載の発光デバイスの駆動方法。 6. The method of driving a light emitting device according to claim 5, wherein the organic material is a crystal and both end faces form a resonator structure.
  9.  半導体材料からなる発光層と、前記発光層に電気的に接続された第1及び第2の電極と、前記発光層に絶縁体層を介して接続された第3の電極とを備えた発光デバイスの駆動装置であって、
     前記第1の電極と第2の電極間に対して直流電圧を供給する第1の電源と、
     前記第3の電極に対して交流電圧を供給する第2の電源とを備えた
    ことを特徴とする発光デバイスの駆動装置。
    A light emitting device comprising: a light emitting layer made of a semiconductor material; first and second electrodes electrically connected to the light emitting layer; and a third electrode connected to the light emitting layer through an insulator layer. Drive device
    A first power source for supplying a DC voltage between the first electrode and the second electrode;
    And a second power source for supplying an AC voltage to the third electrode.
  10.  前記交流電圧の振幅値が前記直流電圧値の1/2よりも大きいことを特徴とする請求項9記載の発光デバイスの駆動装置。 10. The drive device for a light emitting device according to claim 9, wherein an amplitude value of the AC voltage is larger than ½ of the DC voltage value.
  11.  前記第1の電源は、前記第1の電極に対して第1の直流電圧を印加する直流電源と、前記第2の電極に対して前記第1の直流電圧と極性が異なる第2の直流電圧を印加する直流電源とを含む、ことを特徴とする請求項9記載の発光デバイスの駆動装置。 The first power source includes a DC power source that applies a first DC voltage to the first electrode, and a second DC voltage that is different in polarity from the first DC voltage with respect to the second electrode. The drive device of the light-emitting device according to claim 9, further comprising:
  12.  前記第1の電源は、前記第1の電極の電位を基準電位として、前記第2の電極に対して第1の直流電圧を印加し、
     前記第2の電源は、前記第1の電極の電位を基準電位として、前記第3の電極に対して第2の直流電圧に交流電圧を重畳した電圧を印加する、ことを特徴とする請求項9記載の発光デバイスの駆動装置。
    The first power supply applies a first DC voltage to the second electrode with the potential of the first electrode as a reference potential,
    The second power supply is configured to apply a voltage obtained by superimposing an AC voltage on a second DC voltage to the third electrode using the potential of the first electrode as a reference potential. The drive device of the light-emitting device of 9.
  13.  前記半導体材料は有機材料である、ことを特徴とする請求項9ないし12のいずれか1つに記載の発光デバイスの駆動装置。 13. The light emitting device driving apparatus according to claim 9, wherein the semiconductor material is an organic material.
  14.  前記有機材料は電子とホールの双方をキャリアとする両極性材料である、ことを特徴とする請求項13に記載の発光デバイスの駆動装置。 14. The drive device for a light emitting device according to claim 13, wherein the organic material is a bipolar material using both electrons and holes as carriers.
  15.  前記第3の電極に対して印加する交流電圧は矩形波電圧である、ことを特徴とする請求項9ないし12のいずれか1つに記載の発光デバイスの駆動装置。 The drive device for a light-emitting device according to any one of claims 9 to 12, wherein the AC voltage applied to the third electrode is a rectangular wave voltage.
  16.  前記有機材料は結晶であるとともに、その両端面が共振器構造を形成している、ことを特徴とする請求項13に記載の発光デバイスの駆動装置。 14. The drive device for a light emitting device according to claim 13, wherein the organic material is a crystal and both end faces form a resonator structure.
PCT/JP2009/052092 2008-02-08 2009-02-06 Method and apparatus for driving light-emitting device WO2009099205A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009552549A JP5403518B2 (en) 2008-02-08 2009-02-06 Driving method and driving apparatus for light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-029318 2008-02-08
JP2008029318 2008-02-08

Publications (1)

Publication Number Publication Date
WO2009099205A1 true WO2009099205A1 (en) 2009-08-13

Family

ID=40952273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052092 WO2009099205A1 (en) 2008-02-08 2009-02-06 Method and apparatus for driving light-emitting device

Country Status (2)

Country Link
JP (1) JP5403518B2 (en)
WO (1) WO2009099205A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099525A1 (en) * 2010-02-12 2011-08-18 国立大学法人京都工芸繊維大学 Light emitting transistor
WO2012137916A1 (en) * 2011-04-07 2012-10-11 株式会社日立製作所 Organic light-emitting element, light source device using organic light-emitting element, manufacturing methods therefor, and coating solution for manufacturing organic light-emitting element used in said manufacturing methods
JP2012221671A (en) * 2011-04-07 2012-11-12 Hitachi Ltd Organic light emitting element, light source device including the same and methods for manufacturing the organic light emitting element and the light source device
ITMI20111446A1 (en) * 2011-07-29 2013-01-30 E T C Srl ELECTROLUMINESCENT ORGANIC TRANSISTOR
JP2013020778A (en) * 2011-07-11 2013-01-31 Hitachi Ltd Organic light-emitting element coating liquid, organic light-emitting element, organic light-emitting element light source, and manufacturing method thereof
WO2013122198A1 (en) * 2012-02-16 2013-08-22 国立大学法人京都工芸繊維大学 Organic light-emitting transistor having second gate electrode
US8772765B2 (en) 2011-07-29 2014-07-08 E.T.C. S.R.L. Electroluminescent organic transistor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282884A (en) * 2002-03-26 2003-10-03 Kansai Tlo Kk Side gate type organic fet and organic el
JP2005209455A (en) * 2004-01-21 2005-08-04 Kyoto Univ Organic semiconductor device, and imaging device and display device using it
WO2005079119A1 (en) * 2004-02-16 2005-08-25 Japan Science And Technology Agency Light emitting transistor
JP2005243871A (en) * 2004-02-26 2005-09-08 Nec Corp Organic thin film light emitting transistor and manufacturing method thereof
WO2006025274A1 (en) * 2004-08-30 2006-03-09 Kyoto University Organic semiconductor light-emitting device and display using same
JP2007084485A (en) * 2005-09-22 2007-04-05 Kyoto Univ Naphthalene derivative, organic semiconductor material, and light-emitting transistor element and organic electroluminescent element using the semiconductor material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667096B2 (en) * 2005-03-25 2011-04-06 株式会社半導体エネルギー研究所 Organic semiconductor device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282884A (en) * 2002-03-26 2003-10-03 Kansai Tlo Kk Side gate type organic fet and organic el
JP2005209455A (en) * 2004-01-21 2005-08-04 Kyoto Univ Organic semiconductor device, and imaging device and display device using it
WO2005079119A1 (en) * 2004-02-16 2005-08-25 Japan Science And Technology Agency Light emitting transistor
JP2005243871A (en) * 2004-02-26 2005-09-08 Nec Corp Organic thin film light emitting transistor and manufacturing method thereof
WO2006025274A1 (en) * 2004-08-30 2006-03-09 Kyoto University Organic semiconductor light-emitting device and display using same
JP2007084485A (en) * 2005-09-22 2007-04-05 Kyoto Univ Naphthalene derivative, organic semiconductor material, and light-emitting transistor element and organic electroluminescent element using the semiconductor material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011099525A1 (en) * 2010-02-12 2013-06-13 国立大学法人京都工芸繊維大学 Light emitting transistor
WO2011099525A1 (en) * 2010-02-12 2011-08-18 国立大学法人京都工芸繊維大学 Light emitting transistor
JP5678338B2 (en) * 2010-02-12 2015-03-04 国立大学法人京都工芸繊維大学 Light emitting transistor
WO2012137916A1 (en) * 2011-04-07 2012-10-11 株式会社日立製作所 Organic light-emitting element, light source device using organic light-emitting element, manufacturing methods therefor, and coating solution for manufacturing organic light-emitting element used in said manufacturing methods
JP2012221671A (en) * 2011-04-07 2012-11-12 Hitachi Ltd Organic light emitting element, light source device including the same and methods for manufacturing the organic light emitting element and the light source device
JP2013020778A (en) * 2011-07-11 2013-01-31 Hitachi Ltd Organic light-emitting element coating liquid, organic light-emitting element, organic light-emitting element light source, and manufacturing method thereof
ITMI20111446A1 (en) * 2011-07-29 2013-01-30 E T C Srl ELECTROLUMINESCENT ORGANIC TRANSISTOR
CN103718327A (en) * 2011-07-29 2014-04-09 E.T.C.有限责任公司 Electroluminescent organic transistor
US8729540B2 (en) 2011-07-29 2014-05-20 E.T.C. S.R.L. Electroluminescent organic transistor
US8772765B2 (en) 2011-07-29 2014-07-08 E.T.C. S.R.L. Electroluminescent organic transistor
JP2014525149A (en) * 2011-07-29 2014-09-25 エ・ティ・チ・エッセ・エッレ・エッレ Electroluminescent organic transistor
WO2013018002A1 (en) * 2011-07-29 2013-02-07 E.T.C. S.R.L. Electroluminescent organic transistor
KR101570407B1 (en) 2011-07-29 2015-11-20 이.티.씨. 에스.알.엘. Electroluminescent organic transistor
WO2013122198A1 (en) * 2012-02-16 2013-08-22 国立大学法人京都工芸繊維大学 Organic light-emitting transistor having second gate electrode

Also Published As

Publication number Publication date
JPWO2009099205A1 (en) 2011-05-26
JP5403518B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5403518B2 (en) Driving method and driving apparatus for light emitting device
US7671825B2 (en) Method of driving organic EL device and display device
Yamao et al. Organic Light‐Emitting Field‐Effect Transistors Operated by Alternating‐Current Gate Voltages
JP4972730B2 (en) Organic semiconductor light emitting device and display device using the same
TW526677B (en) Driving circuit for an electro-luminescence display device
KR100526267B1 (en) Display device, organic light-emitting diode panel, control device for thin-film transistor, method of controlling thin-film transistor and method of controlling organic light-emitting diode display
WO2009002760A3 (en) Apparatus and method for modulating photon output of a quantum dot light emitting device
ATE522539T1 (en) ORGANIC IRIDIUM COMPLEX AND ELECTROLUMINESCENCE DEVICE IN WHICH IT IS USED
EP2093749A3 (en) Organic light emitting diode display and method of driving the same
TW201249250A (en) Light emitting device, method for manufacturing light emitting device, lighting device, backlight, and display device
JP4996660B2 (en) Light emitting device and manufacturing method thereof
CN1573871A (en) Image display apparatus
JP6007046B2 (en) Display device
JP2016058172A (en) Light emitting element and electronic apparatus
EP1814141A3 (en) Electron emission device, backlight unit (BLU) including the electron emission device, flat display apparatus including the BLU, and method of driving the electron emission device
US20130069552A1 (en) Organic electroluminescent device with space charge/voltage instability stabilization drive
JP2014072215A5 (en)
JP2003332063A (en) Organic el module
JP2001203077A (en) Driving method of organic electroluminescent element and driving device
CN1419260A (en) Field emission type electronic source and driving method thereof
JP4366505B2 (en) AC-driven electrochemiluminescence device
CN109004031A (en) Ferroelectrical thin film transistor, organic light emitting array substrate driving circuit and display device
KR20080046893A (en) Manufacturing method of display device
JP4306026B2 (en) Method for driving light emission of organic electroluminescence device
JP2006140478A (en) Light emitting ambipolar device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707843

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009552549

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707843

Country of ref document: EP

Kind code of ref document: A1