WO2009099181A1 - 排気ガス浄化装置 - Google Patents

排気ガス浄化装置 Download PDF

Info

Publication number
WO2009099181A1
WO2009099181A1 PCT/JP2009/052046 JP2009052046W WO2009099181A1 WO 2009099181 A1 WO2009099181 A1 WO 2009099181A1 JP 2009052046 W JP2009052046 W JP 2009052046W WO 2009099181 A1 WO2009099181 A1 WO 2009099181A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust passage
exhaust
exhaust gas
nitrogen oxide
main
Prior art date
Application number
PCT/JP2009/052046
Other languages
English (en)
French (fr)
Inventor
Taisuke Ono
Original Assignee
Yanmar Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co., Ltd. filed Critical Yanmar Co., Ltd.
Priority to CN2009801045613A priority Critical patent/CN101939515A/zh
Priority to EP09708045A priority patent/EP2241732A1/en
Priority to US12/866,426 priority patent/US20100326057A1/en
Publication of WO2009099181A1 publication Critical patent/WO2009099181A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8637Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • B01D53/949Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start for storing sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/204Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using an exhaust gas igniter, e.g. a spark or glow plug, without introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/008Adaptations for flue gas purification in steam generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an apparatus for purifying exhaust gas of an internal combustion engine such as a diesel engine, a gas engine, a gasoline engine or a gas turbine engine, or a combustion device such as an incinerator or a boiler, and in particular, performs a normal operation in an excess air state.
  • the present invention relates to an exhaust gas purification device that is connected to an exhaust passage of an internal combustion engine or the like and removes nitrogen oxides.
  • Exhaust gas discharged from internal combustion engines and the like contains nitrogen oxides, carbon monoxide, hydrocarbons and the like as harmful components.
  • Various devices have been developed in the past for removing these substances from the exhaust gas and purifying the exhaust gas.
  • FIG. 5 shows the exhaust gas purifying device described in FIG.
  • the conventional exhaust gas purifying apparatus by the applicant of the present application includes a nitrogen oxide adsorbent 204 and an adsorbent in each of a plurality of branch exhaust passages 202a and 202b connected to an internal combustion engine or the like.
  • Desorption means 203 and a combustion device 205 are provided. Exhaust gas from an internal combustion engine or the like is supplied only to a part of the branch exhaust passages 202a (or 202b) and is not supplied to the other branch exhaust passages 202b (or 202a).
  • the branch exhaust passage 202a to which exhaust gas is supplied nitrogen oxides are adsorbed and removed by the nitrogen oxide adsorbent 204, and carbon monoxide and carbonization are performed by the oxidation catalyst of the nitrogen oxide adsorbent 204. Hydrogen is oxidized to carbon dioxide and water.
  • the adsorbed substance desorbing means 203 desorbs the nitrogen oxide from the nitrogen oxide adsorbent 204, and the desorbed nitrogen oxide is removed by the combustion device 205. Reduced to nitrogen.
  • branch exhaust passages 202a normal operation is performed in which nitrogen oxides are adsorbed by the nitrogen oxide adsorbent 204, and at the same time, nitrogen oxides are desorbed from the adsorbent 204 in other branch exhaust passages 202b.
  • the regeneration operation is performed, and the adsorption capability of the nitrogen oxide adsorbent 204 is maintained.
  • the exhaust gas purification device shown in FIG. 5 is a purification device that does not use a three-way catalyst, ammonia, urea, or the like.
  • a three-way catalyst is a catalyst that can simultaneously decompose nitrogen oxides, carbon monoxide and hydrocarbons, but does not work effectively under excess air conditions.
  • a purification apparatus using ammonia or the like has many problems because the apparatus itself is very complicated and expensive, and maintenance costs for ammonia as a reducing agent and a supply system for ammonia and the like are also required.
  • the exhaust gas purification device shown in FIG. 5 solves the above problems.
  • An object of the present invention is to provide an exhaust gas purification device with low manufacturing cost.
  • 1st invention of this application is an exhaust-gas purification apparatus connected to the engine side exhaust passage of an internal combustion engine or a combustion apparatus, A main exhaust passage and a branch exhaust passage connected to the engine side exhaust passage; Exhaust gas blocking means capable of blocking exhaust gas at an exhaust inlet of the main exhaust passage and the branch exhaust passage; A nitrogen oxide adsorbent that is provided in the main exhaust passage, temporarily adsorbs nitrogen oxides in an excess air atmosphere, and desorbs the adsorbed nitrogen oxides in a temperature rising or reducing atmosphere; An adsorbent detachment unit that is disposed upstream of the nitrogen oxide adsorbent in the main exhaust passage and has an air supply unit, and makes the air supplied from the air supply unit a temperature rising or reducing atmosphere; , A combustion apparatus that is disposed in the main exhaust passage on the exhaust downstream side of the nitrogen oxide adsorbent and includes an air supply means, a fuel supply means, and an ignition means; With The branch exhaust passage is configured so that the exhaust gas from the engine side exhaust passage is discharge
  • the first invention preferably employs the following configurations (a) and (b).
  • a filter member that is disposed on the exhaust downstream side of the combustion device in the main exhaust passage and is capable of capturing particulate matter contained in the exhaust gas is provided.
  • (B) Arranged in the main exhaust passage upstream of the nitrogen oxide adsorbent and downstream of the adsorbent desorption means, and temporarily adsorbs sulfur oxide in an excess air atmosphere. And a sulfur oxide adsorbent that desorbs the sulfur oxide that has been removed in a temperature rising or reducing atmosphere.
  • the second invention of the present application is an exhaust gas purification apparatus connected to an engine side exhaust passage of an internal combustion engine or combustion equipment, A main exhaust passage and a branch exhaust passage connected to the exhaust passage; Exhaust gas blocking means capable of blocking exhaust gas at the exhaust outlet of the main exhaust passage and the exhaust inlet of the branch exhaust passage, A nitrogen oxide adsorbent that is provided in the main exhaust passage, temporarily adsorbs nitrogen oxides in an excess air atmosphere, and desorbs the adsorbed nitrogen oxides in a temperature rising or reducing atmosphere; The air is disposed downstream of the nitrogen oxide adsorbent in the main exhaust passage and has an air supply means. The temperature of the air supplied from the air supply means is increased corresponding to the nitrogen oxide adsorbent.
  • Adsorbent desorption means for reducing atmosphere A sulfur oxide adsorbent that is disposed upstream of the nitrogen oxide adsorbent in the main exhaust passage and can adsorb sulfur oxide;
  • a combustion apparatus that is disposed upstream of the sulfur oxide adsorbent in the main exhaust passage and is configured by air supply means, fuel supply means, and ignition means;
  • a filter member disposed upstream of the combustion device in the main exhaust passage and capable of capturing particulate matter contained in the exhaust gas;
  • the control device closes the exhaust outlet of the main exhaust passage and opens the exhaust inlet of the branch exhaust passage by the exhaust gas shut-off means, and operates the adsorbed substance desorbing means and the combustion device.
  • the air flow generated by the exhaust gas blocking means and the air supply means of the combustion device is caused to flow in a direction opposite to the flow direction of the exhaust gas in the main exhaust passage, It is characterized by that.
  • the branch exhaust passage for allowing the exhaust gas to flow as it is since the branch exhaust passage for allowing the exhaust gas to flow as it is is provided, the inflow of the exhaust gas to the main exhaust passage is interrupted, and the nitrogen oxide adsorbent in the main exhaust passage Nitrogen oxides can be desorbed from.
  • the exhaust gas purifying apparatus has the nitrogen oxide adsorbing material 5, the adsorbed substance desorbing means and the combustion device related to the adsorption, desorption and reduction of nitrogen oxide only in one exhaust passage (main exhaust passage).
  • the nitrogen oxide adsorption capacity can be maintained while being arranged. Therefore, an exhaust gas purification device with a low manufacturing cost is provided.
  • the exhaust gas purification device can remove particulate matter from the exhaust gas by including the filter member. Moreover, the capture capability of the filter member can be maintained by the operation of the adsorbing substance desorbing means.
  • the exhaust gas purification device includes the sulfur oxide adsorbent on the exhaust upstream side of the nitrogen oxide adsorbent, thereby allowing the sulfur oxide adsorbent to flow into the nitrogen oxide adsorbent. Can be prevented. Moreover, the adsorption
  • the branch exhaust passage for allowing the exhaust gas to flow as it is since the branch exhaust passage for allowing the exhaust gas to flow as it is is provided, the inflow of the exhaust gas to the main exhaust passage is shut off, and the nitrogen oxide adsorbent in the main exhaust passage Nitrogen oxides can be desorbed from.
  • the exhaust gas purifying apparatus has the nitrogen oxide adsorbing material 5, the adsorbed substance desorbing means and the combustion device related to the adsorption, desorption and reduction of nitrogen oxide only in one exhaust passage (main exhaust passage).
  • the nitrogen oxide adsorption capacity can be maintained while being arranged. Therefore, an exhaust gas purification device with a low manufacturing cost is provided.
  • the exhaust gas purification device can remove particulate matter from the exhaust gas by including a filter member. Moreover, the capture capability of the filter member can be maintained by the operation of the adsorbing substance desorbing means.
  • the exhaust gas purification device can prevent inflow of sulfur oxide into the nitrogen oxide adsorbing material by providing the sulfur oxide adsorbing material on the exhaust upstream side of the nitrogen oxide adsorbing material.
  • suction capability of the sulfur oxide of a sulfur oxide adsorbent can be maintained by the action
  • the adsorbing substance desorbing means is activated, an air flow is formed toward the exhaust upstream side, and sulfur oxide does not flow into the nitrogen oxide adsorbing material. That is, performance degradation due to sulfur oxide poisoning of the nitrogen oxide adsorbent is prevented.
  • FIG. 1 is a schematic view of an exhaust gas purification device (first embodiment).
  • FIG. It is the schematic of an exhaust-gas purification apparatus (2nd Embodiment). It is the schematic of an exhaust-gas purification apparatus (3rd Embodiment). It is the schematic of an exhaust-gas purification apparatus (4th Embodiment). It is the schematic of the conventional exhaust gas purification apparatus.
  • the exhaust gas purification apparatus 1 of 1st Embodiment is demonstrated using FIG.
  • the exhaust gas purification device 1 is a device connected to an engine side exhaust passage 100 of an internal combustion engine or combustion equipment.
  • An internal combustion engine or a combustion device burns a mixed gas of air and fuel to generate exhaust gas.
  • the exhaust gas contains nitrogen oxides (N0x), carbon monoxide (C0), hydrocarbons (HC), and the like as unburned substances.
  • the engine side exhaust passage 100 is an exhaust passage provided in the internal combustion engine or the combustion equipment. Exhaust gas generated by the internal combustion engine or the combustion equipment is discharged from the engine side exhaust passage 100.
  • FIG. 1 shows an engine-side exhaust passage 100, a main exhaust passage 2, a branch exhaust passage 3, and a merged exhaust passage 110 as exhaust gas passages.
  • the main exhaust passage 2 and the branch exhaust passage 3 are exhaust passages provided in the exhaust gas purification device 1.
  • the exhaust outlet 100 b of the engine side exhaust passage 100 is connected to the exhaust inlet 2 a of the main exhaust passage 2 and the exhaust inlet 3 a of the branch exhaust passage 3.
  • the exhaust outlet 2b of the main exhaust passage 2 and the exhaust outlet 3b of the branch exhaust passage 3 are connected to the merged exhaust passage 110a.
  • These exhaust passages 100, 2, 3 and 110 are passages cut off from outside air, and are constituted by pipes, for example.
  • the merged exhaust passage 110 may be an exhaust passage provided in the exhaust gas purification device 1 or an exhaust passage of an internal combustion engine or a combustion device.
  • the exhaust gas from the engine side exhaust passage 100 flows from the exhaust inlet 2a to the exhaust outlet 2b in the main exhaust passage 2, and flows from the exhaust inlet 3a to the exhaust outlet 3b in the branch exhaust passage 3. Therefore, in the following, the direction from the exhaust inlet 2a to the exhaust outlet 2b in the main exhaust passage 2 is the exhaust direction F2. Similarly, in the branch exhaust passage 3, the direction from the exhaust inlet 3a to the exhaust outlet 3b is the exhaust direction F3.
  • the exhaust gas purification device 1 includes a control device (electronic control unit) 10.
  • the control device 10 controls each device (described later) provided in the exhaust gas purification device 1.
  • the exhaust gas purification device 1 is provided with exhaust gas blocking means capable of blocking the exhaust gas at the exhaust inlets 2 a and 3 a of the main exhaust passage 2 and the branch exhaust passage 3.
  • gas shut-off valves 4A and 4B are provided at the exhaust inlets 2a and 3a, respectively.
  • the shutoff valve 4A blocks or allows the inflow of exhaust gas from the engine side exhaust passage 100 to the main exhaust passage 2.
  • the shutoff valve 4B blocks or allows the inflow of exhaust gas from the engine side exhaust passage 100 to the branch exhaust passage 3. Switching between shutoff and allowance in the shutoff valves 4A and 4B is performed under the control of the control device 10.
  • the exhaust gas blocking means may be a single switching valve that selectively switches the flow path of the exhaust gas communicating with the engine side exhaust passage 100 between the main exhaust passage 2 and the branch exhaust passage 3. This switching valve is disposed at the exhaust inlets 2 a and 3 a of the main exhaust passage 2 and the branch exhaust passage 3.
  • the exhaust gas purifying device 1 includes a nitrogen oxide adsorbing material 5, an adsorbing material desorbing means 6, and a combustion device 7 in the main exhaust passage 2.
  • the adsorbed substance desorbing means 6, the nitrogen oxide adsorbing material 5, and the combustion device 7 are arranged in this order from the upstream side to the downstream side in the exhaust direction F2.
  • the nitrogen oxide adsorbing material 5 is a material that temporarily adsorbs nitrogen oxide in an excess air atmosphere and desorbs the adsorbed nitrogen oxide in a temperature rising or reducing atmosphere.
  • excess air refers to a state where the excess air ratio (a value obtained by dividing the air-fuel ratio of the supplied mixed gas by the ideal air-fuel ratio) is greater than 1 in a mixed gas of air (oxygen) and fuel.
  • a state where the excess air ratio is smaller than 1 is a state where the fuel is excessive.
  • the reducing atmosphere refers to a gas in which the reducing agent is excessive and oxygen is insufficient when combustion (oxidation and reduction reaction) occurs.
  • nitrogen oxide when nitrogen oxide is desorbed from the nitrogen oxide adsorbent 5, there are the following three cases.
  • first case of desorption the nitrogen oxide adsorbing material 5 is placed in a temperature rising atmosphere.
  • second case of desorption is when the nitrogen oxide adsorbing material 5 is placed in a reducing atmosphere.
  • third case of desorption is when the nitrogen oxide adsorbing material 5 is placed in a temperature rising atmosphere and a reducing atmosphere.
  • the nitrogen oxide adsorbing material 5 also has a catalytic component having an oxidizing action.
  • the adsorbed substance desorbing means 6 is a desorbing means having an air supply means and making the air supplied from the air supply means a temperature rising or reducing atmosphere.
  • the adsorbed substance desorbing means 6 is a combustion apparatus in this embodiment.
  • the combustion apparatus includes air supply means, fuel supply means, and ignition means.
  • the adsorbed substance desorbing means 6 generates a combustion reaction under excess fuel conditions, thereby generating unburned substances (carbon monoxide and hydrocarbons) as a reducing agent and raising the temperature by the heat of the combustion reaction. Is realized.
  • the air supply means of the adsorbed substance detachment means 6 includes an air supply device 11, an air metering device 12, and an air nozzle 61.
  • the air supply device 11 takes in outside air and supplies it to the air metering device 12.
  • the air metering device 12 supplies the supplied air (outside air) to the air nozzle 61 after adjusting the air amount.
  • the air nozzle 61 is a nozzle that opens to a region A6 in the main exhaust passage 2.
  • the air supplied to the air nozzle 61 is injected into the main exhaust passage 2.
  • the control device 10 controls the air metering device 12 to adjust the amount of air supplied to the air nozzle 61.
  • the fuel supply means of the adsorbed substance desorbing means 6 includes a control device 10, a fuel tank 13, a fuel metering device 14, and a fuel nozzle 62.
  • Fuel is stored in the fuel tank 13.
  • the fuel metering device 14 supplies the fuel supplied from the fuel tank 13 to the fuel nozzle 62 after adjusting the amount of fuel.
  • the fuel nozzle 62 is a nozzle that opens to a region A6 in the main exhaust passage 2.
  • the region A6 is located on the exhaust upstream side of the nitrogen oxide adsorbing material 5.
  • the fuel supplied to the fuel nozzle 62 is injected into the main exhaust passage 2.
  • the control device 10 controls the fuel metering device 14 to adjust the amount of fuel supplied to the fuel nozzle 62.
  • the adsorbed substance desorbing means 6 Since the adsorbed substance desorbing means 6 is a combustion device, a temperature rising and reducing atmosphere is generated on the exhaust downstream side of the adsorbed substance desorbing means 6. The temperature rising atmosphere is generated by the heat of combustion of the mixed gas. The reducing atmosphere is generated when unburned substances (carbon monoxide, hydrocarbons) are generated by the combustion of the mixed gas. Therefore, the adsorbed substance desorbing means 6 has air supply means and is means for raising the temperature of the air supplied from the air supply means to a temperature-reducing or reducing atmosphere.
  • the position of the adsorbed substance desorbing means 6 in the main exhaust passage 2 indicates the positions of the air nozzle 61, the combustion nozzle 62 and the spark plug 63, precisely.
  • the air nozzle 61, the combustion nozzle 62, and the spark plug 63 are elements that are directly related to the main exhaust passage 2 in the adsorbed material detachment means 6.
  • the adsorbed substance desorbing means 6 is not limited to the combustion apparatus as described above.
  • the adsorbed substance desorbing means 6 only needs to be provided with an air supply means and can provide either one of a temperature rise or a reducing atmosphere.
  • the air supply means is necessary for blowing air in the main exhaust passage 2 when the exhaust inlet 2a is closed.
  • Combustion device 7 includes air supply means, fuel supply means, and spark plug 63.
  • the combustion device 7 is operated under an excess air condition, and oxidizes and removes the reducing agent (unburned material) that has passed through the nitrogen oxide adsorbent 5 while remaining unreacted.
  • the reducing agent unburned material
  • nitrogen oxide is reduced and removed in this excessive fuel combustion region.
  • the combustion region generated by the combustion device 7 is a so-called two-stage combustion mode in which the combustion overcombustion region and the air overcombustion region are clearly separated, the action of removing nitrogen oxides and unburned substances is effective. To be realized.
  • the nitrogen oxide adsorbing material 5 when the oxidation catalyst component contained in the nitrogen oxide adsorbing material 5 is a noble metal such as Pt, Rh, Pd, the nitrogen oxide adsorbing material 5 has a reducing catalyst component that reduces nitrogen oxide in a reducing atmosphere. Will have. In this case, most of the nitrogen oxides are reduced and removed when they are desorbed from the nitrogen oxide adsorbing material 5, so that the nitrogen oxide removing action is more effectively realized.
  • a noble metal such as Pt, Rh, Pd
  • the air supply means of the combustion device 7 is the same as the air supply means of the adsorbed substance desorbing means 6.
  • the air supply means of the combustion device 7 includes an air supply device 11, an air metering device 12, and an air nozzle 71. That is, the air nozzle 61 of the air supply unit of the adsorbed substance detaching unit 6 is replaced with the air nozzle 71 in the air supply unit of the combustion device 7.
  • the air nozzle 61 opens in a region A7 in the main exhaust passage 2.
  • the region A7 is located on the exhaust downstream side of the nitrogen oxide adsorbing material 5.
  • the fuel supply means of the combustion device 7 is the same as the fuel supply means of the adsorbed substance desorbing means 6.
  • the fuel supply means of the combustion device 7 includes a fuel tank 13, a fuel metering device 14, and a fuel nozzle 72. That is, the fuel nozzle 62 of the air supply means of the adsorbed substance detaching means 6 is replaced with the fuel nozzle 72 in the fuel supply means of the combustion device 7.
  • the fuel nozzle 62 opens in a region A7 in the main exhaust passage 2.
  • the ignition means of the combustion device 7 is the same as the ignition means of the adsorbed substance desorbing means 6.
  • the ignition means of the combustion device 7 is a spark plug 73, and is a device that performs ignition in a region A 7 in the main exhaust passage 2.
  • the exhaust gas purification device 1 is not provided with a device for processing exhaust gas in the branch exhaust passage 3. Therefore, the exhaust gas supplied from the engine-side exhaust passage 100 to the branch exhaust passage 3 is discharged as it is from the exhaust outlet 3 b of the branch exhaust passage 3.
  • control device 10 operates the exhaust gas purification device 1.
  • the operation in which the control device 10 operates the exhaust gas purification device 1 includes a normal operation and a regeneration operation.
  • the normal operation means an operation in which exhaust gas discharged from the engine side exhaust passage 100 such as an internal combustion engine is passed through the main exhaust passage 2 and nitrogen oxide contained in the exhaust gas is adsorbed to the nitrogen oxide adsorbing material 5. .
  • the control device 10 opens the shutoff valve 4A and closes the shutoff valve 4B. At this time, the control device 10 does not operate the adsorbed substance desorbing means 6 and the combustion device 7.
  • the regeneration operation means an operation in which the nitrogen oxide adsorbed on the nitrogen oxide adsorbing material 5 in the normal operation is desorbed from the nitrogen oxide adsorbing material 5 and then reduced to nitrogen to make it harmless.
  • the control device 10 closes the shutoff valve 4A and opens the shutoff valve 4B. Further, the control device 10 operates the adsorbed substance detaching means 6 and the combustion device 7.
  • the control device 10 starts the operation of the exhaust gas purification device 1 accordingly. At this time, the control device 10 starts normal operation.
  • the shutoff valve 4A is opened, the exhaust gas is supplied to the main exhaust passage 2 and flows in the main exhaust passage 2 along the discharge direction F2. On the other hand, the exhaust gas does not flow into the branch exhaust passage 3 by closing the shutoff valve 4B.
  • nitrogen oxides contained in the exhaust gas are adsorbed by the nitrogen oxide adsorbing material 5. Then, nitrogen oxides are removed from the exhaust gas. Further, since the nitrogen oxide adsorbing material 5 has an oxidation catalyst component, carbon monoxide and hydrocarbons contained in the exhaust gas are oxidized. Carbon monoxide and hydrocarbons are oxidized and detoxified by carbon dioxide and water. Then, carbon monoxide and hydrocarbons are removed from the exhaust gas.
  • the adsorption capacity of the nitrogen oxide adsorbing material 5 decreases. In order to maintain the adsorption capacity of the nitrogen oxide adsorbing material 5, it is necessary to desorb nitrogen oxide from the nitrogen oxide adsorbing material 5.
  • the control device 10 performs a normal operation until the amount of nitrogen oxide adsorbed on the nitrogen oxide adsorbing material 5 reaches a predetermined amount or for a predetermined fixed time.
  • the time during which normal operation is performed is defined as normal operation time.
  • the control device 10 interrupts the normal operation and starts the regeneration operation. Exhaust gas does not flow into the main exhaust passage 2 by closing the shutoff valve 4A. On the other hand, when the shutoff valve 4B is opened, the exhaust gas is supplied to the branch exhaust passage 3 and flows in the branch exhaust passage 3 along the discharge direction F3.
  • the control device 10 operates the adsorbed substance desorbing means 6 under the excessive fuel condition.
  • a mixed gas of fuel and air is generated in the region A6, and then this mixed gas is burned.
  • the post-combustion gas generated by burning the mixed gas contains carbon monoxide and hydrocarbons as unburned substances. Carbon monoxide and hydrocarbons act as nitrogen oxide reducing agents.
  • the post-combustion gas is heated due to the heat of combustion. This combusted gas is sent to the exhaust downstream side when air is injected by the air nozzle 61.
  • the post-combustion gas generates a reducing atmosphere and a temperature rising atmosphere around the nitrogen oxide adsorbing material 5.
  • the nitrogen oxide adsorbed on the nitrogen oxide adsorbing material 5 is desorbed from the nitrogen oxide adsorbing material 5.
  • the material of the nitrogen oxide adsorbing material 5 is a noble metal such as Pt, the desorbed nitrogen oxide is immediately reduced to nitrogen.
  • the control device 10 operates the combustion device 7 under the excessive fuel condition at the same time as or after the operation of the adsorbed substance desorbing means 6. By the operation of the combustion device 7, after the mixed gas of fuel and air is generated in the region A7, this mixed gas is burned.
  • the post-combustion gas containing nitrogen oxides passes through the region A7.
  • the burned gas containing nitrogen oxides and the like is also burned in the region A7.
  • nitrogen oxides and the like contained in the gas after combustion are reduced using the fuel and unburned substances (carbon monoxide and hydrocarbons) as a reducing agent, and change to nitrogen.
  • the unburned matter is oxidized by the combustion reaction and changes to carbon dioxide and water.
  • gas that has undergone twice combustion is discharged, from which nitrogen oxides are removed and carbon monoxide and carbonized carbon that are unburned substances. Hydrogen has also been removed. That is, the gas from which harmful substances have been removed is discharged from the main exhaust passage 2.
  • the control device 10 performs the regeneration operation until the amount of nitrogen oxide adsorbed on the nitrogen oxide adsorbing material 5 becomes 0 (or a small constant value) or for a predetermined fixed time.
  • the time during which the regeneration operation is executed is defined as the regeneration operation time.
  • the control device 10 continues to operate the adsorbed substance desorbing means 6 and the combustion device 7.
  • nitrogen oxide is removed from the nitrogen oxide adsorbing material 5 and the adsorption performance of the nitrogen oxide adsorbing material 5 is regenerated.
  • the control device 10 interrupts the regeneration operation and starts the normal operation again. Thereafter, the control device 10 alternately repeats the normal operation and the regeneration operation.
  • exhaust gas is discharged through the branch exhaust passage 3 during the regeneration operation.
  • the exhaust gas is discharged from the exhaust gas purification device 1 in a state where nitrogen oxides contained in the exhaust gas are not removed.
  • the ratio of the regeneration operation time to the normal operation time is set to be small.
  • the normal operation time is set as a time during which the nitrogen oxide adsorbing material 5 can exhibit a certain level of adsorption performance. For this reason, even if the operating condition of the exhaust gas purification device 1 is changed, the ratio of the normal operation time (normal operation time / (normal operation time + regeneration operation time)) cannot be shortened.
  • the regeneration operation time is set as a time required for the nitrogen oxide adsorbing material 5 to be regenerated.
  • the speed of regeneration of the nitrogen oxide adsorbing material 5 can be shortened by changing the operating conditions of the adsorbed substance desorbing means 6 and the combustion apparatus 7 (setting of fuel and air injection amounts per unit time, etc.). is there. Further, by reducing the ratio of the regeneration operation time to the normal operation time, the reduction rate of nitrogen oxides contained in the exhaust gas is maintained high.
  • the exhaust gas purification apparatus 1 of the first embodiment exhibits the following effects.
  • the branch exhaust passage 3 for allowing the exhaust gas to flow as it is is provided, the inflow of the exhaust gas to the main exhaust passage 2 is cut off, and the nitrogen oxide is adsorbed from the nitrogen oxide adsorbing material 5 in the main exhaust passage 2. Can be desorbed.
  • the exhaust gas purifying apparatus 1 is configured so that the nitrogen oxide adsorbing material 5, the adsorbed substance desorbing means 6 and the combustion device 7 related to the adsorption, desorption and reduction of nitrogen oxide are separated into one exhaust passage (main exhaust passage). The adsorption ability of nitrogen oxides can be maintained while being arranged only in 2). Therefore, an exhaust gas purification device with a low manufacturing cost is provided.
  • the exhaust gas purification apparatus 1 of 2nd Embodiment is demonstrated using FIG.
  • the exhaust gas purification device 1 of the second embodiment is further provided with a filter member 8 in addition to the exhaust gas purification device 1 of the first embodiment.
  • the filter member 8 is disposed in the main exhaust passage 2 on the exhaust downstream side of the combustion device 7.
  • the filter member 8 is a member capable of capturing particulate matter contained in the exhaust gas.
  • the particulate matter is fine particles of carbon, hydrocarbons, nitrates, and the like generated by incomplete combustion of fuel.
  • the operation in which the control device 10 operates the exhaust gas purification device 1 includes the filter regeneration operation and the filter normal operation in addition to the normal operation and the regeneration operation.
  • the filter regeneration operation means an operation in which the particulate matter captured by the filter member 8 is oxidized and removed.
  • the control device 10 operates the combustion device 7.
  • a combustion reaction occurs on the exhaust downstream side of the region A7 and the region A7.
  • the particulate matter (carbon) captured by the filter member 8 is oxidized and removed.
  • the combustion device 7 generates and burns a mixed gas containing excess air even in the filter regeneration operation.
  • Normal filter operation refers to operation when filter regeneration operation is not executed. That is, in the normal filter operation, the control device 10 does not operate the combustion device 7.
  • the control device 10 performs normal filter operation until the trapped amount of the particulate matter by the filter member 8 reaches a predetermined amount or for a predetermined fixed time.
  • the time during which the normal filter operation is executed is defined as the normal filter operation time.
  • the detection of the capture amount is possible by providing means for detecting the capture amount of the filter member 8.
  • pressure sensors that detect the pressure in the main exhaust passage 2 are provided on the exhaust upstream side and exhaust downstream side of the filter member 8 as means for detecting the amount of capture.
  • the degree of clogging of the filter member 8 changes according to the amount of trapping, and the magnitude of the pressure difference between the exhaust upstream side and the exhaust downstream side of the filter member 8 changes. For this reason, it is possible to specify the capture amount from the magnitude of this pressure difference.
  • Filter regeneration operation and normal filter operation are performed at different timings from normal operation and regeneration operation.
  • the filter regeneration operation and the regeneration operation are both operations under an excess air condition, the normal operation and the regeneration operation may be performed at the same timing.
  • the exhaust gas purification apparatus 1 of the second embodiment further exhibits the following effects.
  • the exhaust gas purification device 1 includes the filter member 8, particulate matter can be removed from the exhaust gas. Further, the capture capability of the filter member 8 can be maintained by the operation of the adsorbed substance desorbing means 6.
  • the exhaust gas purification apparatus 1 of 3rd Embodiment is demonstrated using FIG.
  • the exhaust gas purification apparatus 1 of the third embodiment is further provided with a sulfur oxide adsorbing material 9 in addition to the exhaust gas purification apparatus 1 of the second embodiment.
  • the exhaust gas contains sulfur oxides.
  • the sulfur oxide adsorbent 9 relates to the removal of sulfur oxide contained in the exhaust gas.
  • the sulfur oxide adsorbing material 9 is arranged in the main exhaust passage 2 on the exhaust upstream side of the nitrogen oxide adsorbing material 5 and on the exhaust downstream side of the adsorbing substance desorbing means 6.
  • the sulfur oxide adsorbing material 9 is a material that temporarily adsorbs sulfur oxide in an excess air atmosphere and desorbs the adsorbed sulfur oxide in a temperature rising or reducing atmosphere.
  • the adsorption and desorption actions in the sulfur oxide adsorbent 9 are the same as the adsorption and desorption actions in the nitrogen oxide adsorbent 5.
  • nitrogen oxides contained in the exhaust gas are adsorbed by the nitrogen oxide adsorbing material 5. Further, the sulfur oxide contained in the exhaust gas is adsorbed by the sulfur oxide adsorbing material 9. Then, sulfur oxide is removed from the exhaust gas.
  • the control device 10 operates the adsorbed substance desorbing means 6.
  • the post-combustion gas is sent to the exhaust downstream side of the region A6.
  • This post-combustion gas generates a reducing atmosphere and a temperature rising atmosphere around the nitrogen oxide adsorbing material 5, and also generates a reducing atmosphere and a temperature rising atmosphere around the sulfur oxide adsorbing material 9.
  • the sulfur oxide adsorbed on the sulfur oxide adsorbing material 9 is desorbed from the sulfur oxide adsorbing material 9. For this reason, in the regeneration operation of the nitrogen oxide adsorbent 5, the adsorption capacity of the sulfur oxide adsorbent 9 is also regenerated.
  • the nitrogen oxide adsorbing material 5 is also placed in a temperature rising or reducing atmosphere, adsorption of sulfur oxide to the nitrogen oxide adsorbing material 5 is prevented.
  • the exhaust gas purification apparatus 1 of the third embodiment further exhibits the following effects.
  • the exhaust gas purifying device 1 can prevent the inflow of sulfur oxide into the nitrogen oxide adsorbing material 5 by providing the sulfur oxide adsorbing material 9 on the exhaust upstream side of the nitrogen oxide adsorbing material 5. Moreover, the adsorption capability of the sulfur oxide adsorbent 9 can be maintained by the operation of the adsorbed substance desorbing means 5. In addition, when the sulfur oxide is desorbed, the nitrogen oxide adsorbing material 5 is also placed in a temperature rising or reducing atmosphere, so that the sulfur oxide does not adhere to the nitrogen oxide adsorbing material 5. That is, performance degradation due to sulfur oxide poisoning of the nitrogen oxide adsorbing material 5 is prevented.
  • the exhaust gas purification apparatus 1 of 4th Embodiment is demonstrated using FIG.
  • the exhaust gas purification device 1 of the fourth embodiment is the same in terms of the device configuration as compared to the exhaust gas purification device 1 of the third embodiment, but is different in the arrangement configuration.
  • the first difference is the arrangement of the exhaust gas blocking means.
  • the second difference is the arrangement configuration of the nitrogen oxide adsorbing material 5, the adsorbed substance desorbing means 6, the combustion device 7, the filter member 8 and the sulfur oxide adsorbing material 9 in the main exhaust passage 2.
  • the control content of the control device 10 is changed by changing the arrangement configuration. Therefore, the third difference is the control content of the control device 10.
  • shut-off valves 4A and 4B which are exhaust gas shut-off means, are provided at the exhaust outlet 2b of the main exhaust passage 2 and the exhaust inlet 3a of the branch exhaust passage 3, respectively.
  • the filter member 8 in the main exhaust passage 2, along the exhaust direction F2 (from the exhaust upstream side to the downstream side), the filter member 8, the combustion device 7, the sulfur oxide adsorbing material 9, and the nitrogen oxide adsorption
  • the material 5, the adsorbed substance detaching means 6, and the shutoff valve 4A are arranged in this order.
  • the exhaust gas purification device 1 of the fourth embodiment includes a nitrogen oxide adsorbing material 5, a sulfur oxide adsorbing material 9 and a filter member 8.
  • the control device 10 of the fourth embodiment repeatedly performs the normal operation and the regeneration operation, and repeatedly performs the filter normal operation and the filter regeneration operation.
  • the direction of the air flow passing through the nitrogen oxide adsorbent 5 and the sulfur oxide adsorbent 9 changes in the reverse direction in the main exhaust passage 2 between the normal operation and the regeneration operation.
  • the direction of the air flow passing through the nitrogen oxide adsorbing material 5 and the sulfur oxide adsorbing material 9 is always the same.
  • the gas flow path is the same as in the first to third embodiments.
  • the control device 10 opens the shutoff valve 4A and closes the shutoff valve 4B.
  • the shutoff valve 4A When the shutoff valve 4A is opened, the exhaust gas from the engine side exhaust passage 100 flows in the main exhaust passage 2 along the discharge direction F2, and then is discharged to the merged exhaust passage 110.
  • the exhaust gas does not flow into the branch exhaust passage 3 by closing the shutoff valve 4B.
  • the exhaust gas passes through the filter member 8, the sulfur oxide adsorbent 9 and the nitrogen oxide adsorbent 5 in this order in the main exhaust passage 2. For this reason, the sulfur oxide in the exhaust gas is removed by the sulfur oxide adsorbing material 9. Particulate matter in the exhaust gas is removed by the filter member 8. Nitrogen oxides in the exhaust gas are removed by the nitrogen oxide adsorbing material 5.
  • the adsorbed substance desorbing means 6 and the combustion apparatus 7 are provided with an air supply means. An air flow in the reverse direction FR is generated. Then, the gas generated by the adsorbed substance desorbing means 6 and the combustion device 7 flows along the reverse direction FR in the main exhaust passage 2, merges with the exhaust gas at the exhaust outlet 100 b, and passes through the branch exhaust passage 3. After flowing along the exhaust direction F3, the exhaust gas is discharged into the merged exhaust passage 110.
  • the post-combustion gas generated in the region A6 by the adsorbed substance desorbing means 6 is in the main exhaust passage 2 along the reverse direction FR, the nitrogen oxide adsorbent 5, the sulfur oxide adsorbent 9, It passes through the combustion device 7 and the filter member 8 in order. For this reason, after nitrogen oxide is desorbed from the nitrogen oxide adsorbent 5, it is reduced to nitrogen by the combustion device 7 and rendered harmless. Sulfur oxide is desorbed from the sulfur oxide adsorbing material 9. In this way, the nitrogen oxide adsorbing material 5 and the sulfur oxide adsorbing material 9 are regenerated.
  • the filter regeneration operation the excessive air-burned gas generated in the region A7 by the combustion device 7 flows along the reverse direction FR in the main exhaust passage 2 and passes through the filter member 8.
  • the particulate matter captured by the filter member 8 is burned and rendered harmless. In this way, the filter member 8 is regenerated.
  • the ratio of the regeneration operation time to the normal operation time is set to be small.
  • the exhaust gas purification device 1 of the fourth embodiment exhibits the following effects.
  • the branch exhaust passage 3 for allowing the exhaust gas to flow as it is is provided, the inflow of the exhaust gas to the main exhaust passage 2 is cut off, and the nitrogen oxide is adsorbed from the nitrogen oxide adsorbing material 5 in the main exhaust passage 2. Can be desorbed.
  • the exhaust gas purifying apparatus 1 is configured so that the nitrogen oxide adsorbing material 5, the adsorbed substance desorbing means 6 and the combustion device 7 related to the adsorption, desorption and reduction of nitrogen oxide are separated into one exhaust passage (main exhaust passage). The adsorption ability of nitrogen oxides can be maintained while being arranged only in 2). Therefore, an exhaust gas purification device with a low manufacturing cost is provided.
  • the exhaust gas purification device 1 includes the filter member 8 so that particulate matter can be removed from the exhaust gas. Further, the capture capability of the filter member 8 can be maintained by the operation of the combustion device 7.
  • the exhaust gas purification device 1 can prevent the inflow of sulfur oxide into the nitrogen oxide adsorbing material 5 by providing the sulfur oxide adsorbing material 9 on the exhaust upstream side of the nitrogen oxide adsorbing material 5.
  • the adsorption capability of the sulfur oxide adsorbing material 9 can be maintained by the operation of the adsorbing substance detaching means 6.
  • an air flow (a flow of the gas after combustion in the reverse direction FR) is formed toward the exhaust upstream side, and sulfur oxide flows into the nitrogen oxide adsorbing material 5. do not do. That is, performance degradation due to sulfur oxide poisoning of the nitrogen oxide adsorbing material 5 is prevented.
  • the present invention can be applied to an apparatus for purifying exhaust gas of an internal combustion engine such as a diesel engine, a gas engine, a gasoline engine or a gas turbine engine, or a combustion device such as an incinerator or a boiler.
  • an internal combustion engine such as a diesel engine, a gas engine, a gasoline engine or a gas turbine engine, or a combustion device such as an incinerator or a boiler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Chimneys And Flues (AREA)

Abstract

 排気ガス浄化装置1において、機関側排気通路100に接続される主排気通路2及び分岐排気通路3を備え、主排気通路2及び分岐排気通路3の排気入口2a、3aに、排気ガスを遮断可能な遮断弁4A、4Bを備え、主排気通路2内に、空気過剰雰囲気で窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材5と、窒素酸化物吸着材5より排気上流側に配置され、空気ノズル61を有すると共に、空気ノズル61から供給される空気を昇温又は還元雰囲気にする吸着物質脱離手段6と、窒素酸化物吸着材5より排気下流側に配置され、空気ノズル71、燃料ノズル72及び着火ノズル73から構成される燃焼装置7と、を備え、分岐排気通路3の排気出口3aからは、機関側排気通路100からの排気ガスがそのまま排出される。

Description

排気ガス浄化装置
 本発明は、ディーゼル機関、ガス機関、ガソリン機関あるいはガスタービン機関等の内燃機関、又は、焼却炉やボイラ等の燃焼機器、の排気ガスを浄化する装置に関し、特に空気過剰状態で通常運転を行う内燃機関等の排気通路に接続されて窒素酸化物を除去する排気ガス浄化装置に関する。
 内燃機関等から排出される排気ガスには、有害成分として、窒素酸化物、一酸化炭素及び炭化水素など、が含まれている。これらの物質を排気ガスより除去して、排気ガスを浄化する装置は、従来各種開発されている。
 本件出願人は、排気ガス浄化装置を開発し、既に出願している(特許文献1)。図5には、特許文献1の図1に記載の排気ガス浄化装置が示されている。図5に示されるように、本件出願人による従前の排気ガス浄化装置には、内燃機関等に接続される複数の分岐排気通路202a、202bのそれぞれに、窒素酸化物吸着材204と、吸着物質脱離手段203と、燃焼装置205と、が設けられている。内燃機関等からの排気ガスは、一部の分岐排気通路202a(又は202b)にのみ供給され、他の分岐排気通路202b(又は202a)には供給されない。そして、排気ガスの供給された分岐排気通路202aでは、窒素酸化物が窒素酸化物吸着材204に吸着されて除去されると共に、窒素酸化物吸着材204の有する酸化触媒により、一酸化炭素及び炭化水素が、二酸化炭素や水に酸化される。一方、排気ガスの供給が遮断された分岐排気通路202bでは、吸着物質脱離手段203により窒素酸化物吸着材204から窒素酸化物から脱離され、脱離された窒素酸化物が燃焼装置205により窒素に還元される。つまり、一部の分岐排気通路202aでは、窒素酸化物を窒素酸化物吸着材204に吸着させる通常運転が行われ、同時に、他の分岐排気通路202bでは、窒素酸化物を吸着材204から脱離させる再生運転が行われ、窒素酸化物吸着材204の吸着能力の維持が図られている。
 図5に示される排気ガス浄化装置は、三元触媒や、アンモニアや尿素などを用いることのない浄化装置である。三元触媒は、窒素酸化物、一酸化炭素及び炭化水素を同時に分解できる触媒であるが、空気過剰条件下では有効に作用しない。アンモニア等を用いた浄化装置は、装置自体が非常に複雑で高価であり、還元剤としてのアンモニア等の維持費やアンモニア等の供給体制の整備も必要で、問題点が多い。図5に示される排気ガス浄化装置は、上記問題点を解決している。図5に示される排気ガス浄化装置は、空気過剰条件下で運転される内燃機関等から排出される排気ガスより、有害成分(窒素酸化物、一酸化炭素、炭化水素)を除去して浄化し、しかも、その浄化能力を低下させることなく維持できる。
特開2006-272115号公報
 窒素酸化物吸着材の吸着能力を維持するため、図5に示される排気ガス浄化装置では、複数の分岐排気通路のそれぞれに、有害成分の除去に関わる手段(吸着剤、脱離手段、燃焼装置)が配置されている。このため、排気ガス浄化装置の製造コストが高くなる不具合があった。
 本発明は、製造コストの低い排気ガス浄化装置を提供することを目的とする。
 本願の第1発明は、内燃機関又は燃焼機器の機関側排気通路に接続される排気ガス浄化装置において、
 前記機関側排気通路に接続される主排気通路及び分岐排気通路と、
 前記主排気通路及び前記分岐排気通路の排気入口で、排気ガスを遮断可能な排気ガス遮断手段と、
 前記主排気通路内に設けられ、空気過剰雰囲気で窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、
 前記主排気通路内で前記窒素酸化物吸着材より排気上流側に配置され、空気供給手段を有すると共に、該空気供給手段から供給される空気を昇温又は還元雰囲気にする吸着物質脱離手段と、
 前記主排気通路内で前記窒素酸化物吸着材より排気下流側に配置され、空気供給手段、燃料供給手段及び着火手段から構成される燃焼装置と、
 を備え、
 前記分岐排気通路は、前記機関側排気通路からの排気ガスが処理されずにそのまま排出されるように構成されている、
 ことを特徴とする。
 前記第1発明は、次の構成(a)、(b)を採用することが好ましい。
(a)前記主排気通路内で前記燃焼装置の排気下流側に配置され、排気ガスに含まれる粒子状物質を捕獲可能なフィルター部材を、備えている。
(b)前記主排気通路内で前記窒素酸化物吸着材の排気上流側かつ前記吸着物質脱離手段の排気下流側に配置され、空気過剰雰囲気で硫黄酸化物を一時的に吸着し、該吸着した硫黄酸化物を昇温又は還元雰囲気で脱離する硫黄酸化物吸着材を、備えている。
 本願の第2発明は、内燃機関又は燃焼機器の機関側排気通路に接続される排気ガス浄化装置において、
 前記排気通路に接続される主排気通路及び分岐排気通路と、
 前記主排気通路の排気出口及び前記分岐排気通路の排気入口で、それぞれ、排気ガスを遮断可能な排気ガス遮断手段と、
 前記主排気通路内に設けられ、空気過剰雰囲気で窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、
 前記主排気通路内で前記窒素酸化物吸着材より排気下流側に配置され、空気供給手段を有すると共に、前記窒素酸化物吸着材に対応して、該空気供給手段から供給される空気を昇温又は還元雰囲気にする吸着物質脱離手段と、
 前記主排気通路内で前記窒素酸化物吸着材より排気上流側に配置され、硫黄酸化物を吸着可能な硫黄酸化物吸着材と、
 前記主排気通路内で前記硫黄酸化物吸着材より排気上流側に配置され、空気供給手段、燃料供給手段及び着火手段から構成される燃焼装置と、
 前記主排気通路内で前記燃焼装置より排気上流側に配置され、排気ガスに含まれる粒子状物質を捕獲可能なフィルター部材と、
 通常運転と再生運転とを行う制御装置と、
 を備え、
 前記分岐排気通路が、前記機関側排気通路からの排気ガスが処理されずにそのまま排出されるように構成されており、
 前記制御装置が、前記通常運転において、前記排気ガス遮断手段により前記主排気通路の排気出口を開放かつ前記分岐排気通路の排気入口を閉鎖して、排気ガスを主排気通路に沿って流すようにし、
 前記制御装置が、前記再生運転において、前記排気ガス遮断手段により前記主排気通路の排気出口を閉鎖かつ前記分岐排気通路の排気入口を開放し、前記吸着物質脱離手段及び前記燃焼装置を作動させて、前記排気ガス遮断手段及び前記燃焼装置の空気供給手段が発生させた空気流を、前記主排気通路内での排気ガスの流れ方向とは逆方向に流すようにする、
 ことを特徴とする。
 本願の第1発明によれば、排気ガスをそのまま流すための分岐排気通路が設けられているので、主排気通路への排気ガスの流入を遮断して、主排気通路内で窒素酸化物吸着材から窒素酸化物を脱離させることができる。このため、排気ガス浄化装置は、窒素酸化物の吸着、脱離及び還元に係る、窒素酸化物吸着材5、吸着物質脱離手段及び燃焼装置を、1つの排気通路(主排気通路)にのみ配置しながら、窒素酸化物の吸着能力を維持できる。したがって、製造コストの低い排気ガス浄化装置が提供される。
 更に、構成(a)によれば、排気ガス浄化装置は、フィルター部材を備えることより、粒子状物質を排気ガスより除去できる。また、吸着物質脱離手段の作動により、フィルター部材の捕獲能力を維持できる。
 更に、構成(b)によれば、排気ガス浄化装置は、窒素酸化物吸着材の排気上流側に、硫黄酸化物吸着材を備えることより、窒素酸化物吸着材への硫黄酸化物の流入を防止できる。また、吸着物質脱離手段の作動により、硫黄酸化物吸着材の硫黄酸化物の吸着能力を維持できる。しかも、硫黄酸化物が脱離したときは、窒素酸化物吸着材も昇温又は還元雰囲気に置かれるため、窒素酸化物吸着材に硫黄酸化物が付着しない。つまり、窒素酸化物吸着材の硫黄酸化物の被毒による性能劣化が防止される。
 本願の第2発明によれば、排気ガスをそのまま流すための分岐排気通路が設けられているので、主排気通路への排気ガスの流入を遮断して、主排気通路内で窒素酸化物吸着材から窒素酸化物を脱離させることができる。このため、排気ガス浄化装置は、窒素酸化物の吸着、脱離及び還元に係る、窒素酸化物吸着材5、吸着物質脱離手段及び燃焼装置を、1つの排気通路(主排気通路)にのみ配置しながら、窒素酸化物の吸着能力を維持できる。したがって、製造コストの低い排気ガス浄化装置が提供される。
 更に、排気ガス浄化装置は、フィルター部材を備えることより、粒子状物質を排気ガスより除去できる。また、吸着物質脱離手段の作動により、フィルター部材の捕獲能力を維持できる。
 更に、排気ガス浄化装置は、窒素酸化物吸着材の排気上流側に、硫黄酸化物吸着材を備えることより、窒素酸化物吸着材への硫黄酸化物の流入を防止できる。また、吸着物質脱離手段の作動により、硫黄酸化物吸着材の硫黄酸化物の吸着能力を維持できる。特に、吸着物質脱離手段が作動するときに、排気上流側へ向けて空気流が形成され、窒素酸化物吸着材に硫黄酸化物が流入しない。つまり、窒素酸化物吸着材の硫黄酸化物の被毒による性能劣化が防止される。
排気ガス浄化装置の概略図である(第1実施形態)。 排気ガス浄化装置の概略図である(第2実施形態)。 排気ガス浄化装置の概略図である(第3実施形態)。 排気ガス浄化装置の概略図である(第4実施形態)。 従来の排気ガス浄化装置の概略図である。
符号の説明
 1 排気ガス浄化装置
 2 主排気通路
 2a 排気入口
 2b 排気出口
 3 分岐排気通路
 3a 排気入口
 3b 排気出口
 4A、4B 遮断弁
 5 窒素酸化物吸着材
 6 吸着物質脱離手段
 7 燃焼装置
 8 フィルター部材
 9 硫黄酸化物吸着材
 10 制御装置
 61、71 空気ノズル(空気供給手段の一部)
 62、72 燃料ノズル(燃料供給手段の一部)
 63、73 点火プラグ(着火装置)
 100 機関側排気通路
 100b 排気出口
[第1実施形態]
 図1を用いて、第1実施形態の排気ガス浄化装置1が説明される。排気ガス浄化装置1は、内燃機関又は燃焼機器の機関側排気通路100に接続される装置である。
 内燃機関又は燃焼機器は、空気及び燃料の混合気体を燃焼させて、排気ガスを生成する。排気ガスには、窒素酸化物(N0x)や、未燃物としての一酸化炭素(C0)や炭化水素(HC)、などが含まれている。機関側排気通路100は、内燃機関又は燃焼機器が備える排気通路である。内燃機関又は燃焼機器で生成された排気ガスは、機関側排気通路100より排出される。
 図1には、排気ガスの通路として、機関側排気通路100と、主排気通路2及び分岐排気通路3と、合流排気通路110と、が示されている。主排気通路2及び分岐排気通路3は、排気ガス浄化装置1が備える排気通路である。機関側排気通路100の排気出口100bは、主排気通路2の排気入口2a及び分岐排気通路3の排気入口3aに接続されている。主排気通路2の排気出口2b及び分岐排気通路3の排気出口3bは、合流排気通路110aに接続されている。これらの排気通路100、2、3及び110は、外気から遮断された通路であり、例えば、パイプで構成される。なお、合流排気通路110は、排気ガス浄化装置1が備える排気通路であっても、内燃機関又は燃焼機器の排気通路であってもよい。
 機関側排気通路100からの排気ガスは、主排気通路2内では、排気入口2aから排気出口2bへと流れ、分岐排気通路3内では、排気入口3aから排気出口3bへと流れる。したがって、以下では、主排気通路2について、排気入口2aから排気出口2bへと向かう方向が、排気方向F2である。同じく、分岐排気通路3について、排気入口3aから排気出口3bへと向かう方向が、排気方向F3である。
 排気ガス浄化装置1は、制御装置(電子コントロールユニット)10を備えている。制御装置10は、排気ガス浄化装置1に備える各装置(後述)を制御する。
 排気ガス浄化装置1は、主排気通路2及び分岐排気通路3の排気入口2a、3aに、排気ガスを遮断可能な排気ガス遮断手段を備えている。
 排気ガス遮断手段として、具体的には、排気入口2a、3aのそれぞれに、ガスの遮断弁4A、4Bが設けられている。遮断弁4Aは、機関側排気通路100から主排気通路2への排気ガスの流入を、遮断又は許容する。同じく、遮断弁4Bは、機関側排気通路100から分岐排気通路3への排気ガスの流入を、遮断又は許容する。遮断弁4A、4Bにおける遮断及び許容の切替えは、制御装置10の制御により行われる。なお、排気ガス遮断手段は、機関側排気通路100に連通する排気ガスの流路を、主排気通路2及び分岐排気通路3の間で択一的に切替える単一の切替弁でもよい。この切替弁は、主排気通路2及び分岐排気通路3の排気入口2a、3aに配置される。
 排気ガス浄化装置1は、主排気通路2内に、窒素酸化物吸着材5と、吸着物質脱離手段6と、燃焼装置7と、を備えている。排気方向F2の上流側から下流側に向けて、吸着物質脱離手段6、窒素酸化物吸着材5、燃焼装置7が、順に配置されている。
 窒素酸化物吸着材5は、空気過剰雰囲気で窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する材料である。
 ここで、空気過剰とは、空気(酸素)及び燃料の混合気体において、空気過剰率(供給された混合気体の空燃比を理想空燃比で割った値)が、1より大きい状態を指す。また、空気過剰率が1より小さい状態は、燃料過剰の状態である。還元雰囲気とは、燃焼(酸化及び還元反応)が発生した際に、還元剤が過剰で酸素が不足する状態にあるガスを指す。
 また、窒素酸化物吸着材5から窒素酸化物が脱離する場合には、次の3つの場合がある。脱離の第1の場合は、窒素酸化物吸着材5が、昇温雰囲気に置かれた場合である。脱離の第2の場合は、窒素酸化物吸着材5が、還元雰囲気に置かれた場合である。脱離の第3の場合は、窒素酸化物吸着材5が、昇温雰囲気かつ還元雰囲気に置かれた場合、である。
 窒素酸化物吸着材5は、酸化作用を有する触媒成分も有している。
 吸着物質脱離手段6は、空気供給手段を有すると共に、該空気供給手段から供給される空気を昇温又は還元雰囲気にする脱離手段である。
 吸着物質脱離手段6は、本実施形態では、燃焼装置である。燃焼装置は、空気供給手段と、燃料供給手段と、着火手段と、で構成される。そして、吸着物質脱離手段6は、燃料過剰条件下で燃焼反応を発生させることで、還元剤としての未燃物(一酸化炭素及び炭化水素)を発生させると共に、燃焼反応の熱により昇温を実現する。
 吸着物質脱離手段6の空気供給手段は、空気供給装置11と、空気調量装置12と、空気ノズル61と、を備えている。空気供給装置11は、外気を取り込んで、空気調量装置12に供給する。空気調量装置12は、供給された空気(外気)を、空気量を調整した後、空気ノズル61に供給する。空気ノズル61は、主排気通路2内の領域A6に開口したノズルである。空気ノズル61に供給された空気は、主排気通路2内に噴射される。ここで、制御装置10が、空気調量装置12を制御して、空気ノズル61に供給される空気量を調整する。
 吸着物質脱離手段6の燃料供給手段は、制御装置10と、燃料タンク13と、燃料調量装置14と、燃料ノズル62と、を備えている。燃料タンク13には、燃料が蓄えられている。燃料調量装置14は、燃料タンク13から供給される燃料を、燃料の量を調整した後、燃料ノズル62に供給する。燃料ノズル62は、主排気通路2内の領域A6に開口したノズルである。領域A6は、窒素酸化物吸着材5の排気上流側に位置している。燃料ノズル62に供給された燃料は、主排気通路2内に噴射される。また、制御装置10は、燃料調量装置14を制御して、燃料ノズル62に供給される燃料の量を調整する。
 吸着物質脱離手段6の着火手段は、点火プラグ63である。点火プラグ63は、主排気通路2内で、着火を行う装置である。ここで、空気ノズル61から噴射された空気と、燃料ノズル62から噴射された燃料とにより、主排気通路2内の領域A6に、混合ガスが生成されている。点火プラグ63は、この混合ガスを着火して、燃焼させる。
 吸着物質脱離手段6は、燃焼装置であるので、吸着物質脱離手段6の排気下流側に、昇温及び還元雰囲気を発生させる。昇温雰囲気は、混合ガスの燃焼の熱により発生する。還元雰囲気は、混合ガスの燃焼により未燃物(一酸化炭素、炭化水素)が生成されることにより、発生する。したがって、吸着物質脱離手段6は、空気供給手段を有すると共に、該空気供給手段から供給される空気を昇温又は還元雰囲気にする手段である。
 なお、主排気通路2における吸着物質脱離手段6の位置は、正確には、空気ノズル61、燃焼ノズル62及び点火プラグ63の位置を指している。空気ノズル61、燃焼ノズル62及び点火プラグ63が、吸着物質脱離手段6において、主排気通路2に直接係りのある要素である。
 なお、吸着物質脱離手段6は、上述したような燃焼装置に限定されない。吸着物質脱離手段6は、空気供給手段を備え、昇温又は還元雰囲気のいずれか一方を提供できれば良い。空気供給手段は、排気入口2aが閉鎖された際に主排気通路2内で送風するために必要である。
 燃焼装置7は、空気供給手段と、燃料供給手段と、点火プラグ63と、で構成される。燃焼装置7は、空気過剰条件で運転され、未反応のまま窒素酸化物吸着材5を通過した還元剤(未燃物)を酸化して除去する。なお、燃焼装置7が発生させる燃焼火炎内には局所的に燃料過剰の燃焼領域が存在するので、この燃料過剰の燃焼領域で窒素酸化物が還元されて除去される。特に、燃焼装置7が発生させる燃焼領域が、燃焼過剰燃焼領域と空気過剰燃焼領域とに明確に分離された所謂2段燃焼形態である場合、窒素酸化物及び未燃物の除去作用が効果的に実現される。更に、窒素酸化物吸着材5に含まれる酸化触媒成分が、Pt、Rh、Pdなどの貴金属である場合、窒素酸化物吸着材5は、還元雰囲気で窒素酸化物を還元する還元触媒成分をも有することになる。この場合、窒素酸化物は、窒素酸化物吸着材5から脱離すると大部分が還元されて除去されるため、窒素酸化物の除去作用がより一層効果的に実現される。
 燃焼装置7の空気供給手段も、吸着物質脱離手段6の空気供給手段と同様である。燃焼装置7の空気供給手段は、空気供給装置11と、空気調量装置12と、空気ノズル71と、を備えている。つまり、吸着物質脱離手段6の空気供給手段の空気ノズル61が、燃焼装置7の空気供給手段では、空気ノズル71に置換されている。なお、空気ノズル61は、主排気通路2内の領域A7に開口している。領域A7は、窒素酸化物吸着材5の排気下流側に位置している。
 燃焼装置7の燃料供給手段も、吸着物質脱離手段6の燃料供給手段と同様である。燃焼装置7の燃料供給手段は、燃料タンク13と、燃料調量装置14と、燃料ノズル72と、を備えている。つまり、吸着物質脱離手段6の空気供給手段の燃料ノズル62が、燃焼装置7の燃料供給手段では、燃料ノズル72に置換されている。なお、燃料ノズル62は、主排気通路2内の領域A7に開口している。
 燃焼装置7の着火手段も、吸着物質脱離手段6の着火手段と同様である。燃焼装置7の着火手段は、点火プラグ73であり、主排気通路2内の領域A7で着火を行う装置である。
 一方、排気ガス浄化装置1は、分岐排気通路3内には、排気ガスの処理に係る装置を、備えていない。このため、機関側排気通路100から分岐排気通路3に供給された排気ガスは、分岐排気通路3の排気出口3bから、そのまま排出される。
[第1実施形態の作動]
 次に、排気ガス浄化装置1の作動が説明される。ここで、制御装置10が、排気ガス浄化装置1を作動させる。制御装置10が排気ガス浄化装置1を作動させる運転には、通常運転と、再生運転と、がある。
 通常運転は、内燃機関等の機関側排気通路100から排出される排気ガスを主排気通路2に通し、該排気ガスに含まれる窒素酸化物を窒素酸化物吸着材5に吸着させる運転を意味する。通常運転では、制御装置10は、遮断弁4Aを開放すると共に、遮断弁4Bを閉鎖する。このとき、制御装置10は、吸着物質脱離手段6及び燃焼装置7を作動させない。
 再生運転は、通常運転により窒素酸化物吸着材5に吸着した窒素酸化物を、窒素酸化物吸着材5から脱離させた後、窒素に還元して無害化する運転を意味する。再生運転では、制御装置10は、遮断弁4Aを閉鎖すると共に、遮断弁4Bを開放する。また、制御装置10は、吸着物質脱離手段6及び燃焼装置7を作動させる。
 排気ガス浄化装置1に接続される内燃機関等の作動が開始されると、それに応じて、制御装置10は、排気ガス浄化装置1の作動を開始させる。このとき、制御装置10は、通常運転を開始する。遮断弁4Aが開放されることにより、排気ガスは、主排気通路2に供給され、排出方向F2に沿って主排気通路2内を流れる。一方、遮断弁4Bが閉鎖されることにより、排気ガスは、分岐排気通路3内には流入しない。
 通常運転において、排気ガスに含まれる窒素酸化物は、窒素酸化物吸着材5に吸着される。そして、排気ガスより窒素酸化物が除去される。また、窒素酸化物吸着材5が酸化触媒成分を有していることにより、排気ガスに含まれる一酸化炭素及び炭化水素が酸化される。一酸化炭素及び炭化水素は、二酸化炭素及び水に酸化されて、無害化される。そして、排気ガスより、一酸化炭素及び炭化水素が除去される。
 窒素酸化物吸着材5に窒素酸化物が吸着されるにつれて、窒素酸化物吸着材5の吸着能力が低下する。窒素酸化物吸着材5の吸着能力を維持するには、窒素酸化物吸着材5より窒素酸化物を脱離させる必要がある。
 制御装置10は、窒素酸化物吸着材5への窒素酸化物の吸着量が所定量に達するまで、もしくは、所定の一定時間の間、通常運転を行う。通常運転の実行される時間を、通常運転時間とする。
 制御装置10は、通常運転の開始時から通常運転時間が経過すると、通常運転を中断して、再生運転を開始する。遮断弁4Aが閉鎖されることにより、排気ガスは、主排気通路2内には流入しない。一方、遮断弁4Bが開放されることにより、排気ガスは、分岐排気通路3に供給され、排出方向F3に沿って分岐排気通路3内を流れる。
 再生運転において、制御装置10は、燃料過剰条件で吸着物質脱離手段6を作動させる。吸着物質脱離手段6の作動により、領域A6で、燃料、空気の混合ガスが生成された後、この混合ガスが燃焼される。混合ガスが燃焼されて生成される燃焼後ガスには、未燃物として、一酸化炭素及び炭化水素が含まれている。一酸化炭素及び炭化水素は、窒素酸化物の還元剤として働く。また、燃焼後ガスは、燃焼の熱のため、昇温されている。この燃焼後ガスは、空気ノズル61で空気が噴射されることにより、排気下流側へと送られる。そして、この燃焼後ガスにより、窒素酸化物吸着材5の周囲に、還元雰囲気及び昇温雰囲気が発生する。
 窒素酸化物吸着材5が還元雰囲気及び昇温雰囲気に置かれるので、窒素酸化物吸着材5に吸着した窒素酸化物が、窒素酸化物吸着材5より脱離する。ここで、窒素酸化物吸着材5の材料が貴金属であるPt等の場合、脱離した窒素酸化物は、直ちに、窒素に還元される。
 制御装置10は、吸着物質脱離手段6の作動と同時もしくは作動後に、燃料過剰条件で燃焼装置7を作動させる。燃焼装置7の作動により、領域A7で、燃料、空気の混合ガスが生成された後、この混合ガスが燃焼される。
 ここで、窒素酸化物等の含まれた燃焼後ガスが、領域A7を通過する。窒素酸化物等の含まれた燃焼後ガスも、領域A7で燃焼される。領域A7の燃料過剰燃焼領域で、燃焼後ガスに含まれる窒素酸化物等が、燃料及び未燃物(一酸化炭素及び炭化水素)を還元剤として還元され、窒素に変化する。また、領域A7の空気過剰燃焼領域で、未燃物は、燃焼反応により酸化されて、二酸化炭素及び水に変化する。
 主排気通路2の排気出口2bからは、2度の燃焼を経たガスが排出されるが、このガス中からは、窒素酸化物が除去されていると共に、未燃物である一酸化炭素及び炭化水素も除去されている。つまり、有害物質の除去されたガスが、主排気通路2より排出される。
 制御装置10は、窒素酸化物吸着材5への窒素酸化物の吸着量が0(もしくは微小な一定値)になるまで、もしくは、所定の一定時間の間、再生運転を行う。再生運転の実行される時間を、再生運転時間とする。再生運転の間は、制御装置10は、吸着物質脱離手段6及び燃焼装置7の作動を継続する。この再生運転により、窒素酸化物吸着材5より窒素酸化物が除去されて、窒素酸化物吸着材5の吸着性能が再生される。制御装置10は、通常運転の開始時から再生運転時間が経過すると、再生運転を中断して、再び、通常運転を開始する。以後、制御装置10は、通常運転と、再生運転とを、交互に繰り返す。
 ここで、再生運転の間は、排気ガスは、分岐排気通路3を通じて排出される。再生運転の間は、排気ガスに含まれる窒素酸化物が除去されない状態で、排気ガスが、排気ガス浄化装置1より排出される。
 そこで、通常運転時間に対する再生運転時間の比が、小さくなるように設定されている。通常運転時間は、窒素酸化物吸着材5が一定以上の吸着性能を発揮できる時間として設定されている。このため、排気ガス浄化装置1の作動条件を変更しても、通常運転時間の占める割合(通常運転時間/(通常運転時間+再生運転時間))を短縮することはできない。一方、再生運転時間は、窒素酸化物吸着材5が再生されるのに要する時間として設定されている。窒素酸化物吸着材5の再生の速度は、吸着物質脱離手段6及び燃焼装置7の作動条件(単位時間当たりの燃料及び空気の噴射量の設定など)の変更によって、短縮させることが可能である。そして、通常運転時間に対する再生運転時間の比を小さくすることで、排気ガスに含まれる窒素酸化物の低減率が、高く維持される。
[第1実施形態の効果]
 第1実施形態の排気ガス浄化装置1は、次のような効果を発揮する。
 排気ガスをそのまま流すための分岐排気通路3が設けられているので、主排気通路2への排気ガスの流入を遮断して、主排気通路2内で窒素酸化物吸着材5から窒素酸化物を脱離させることができる。このため、排気ガス浄化装置1は、窒素酸化物の吸着、脱離及び還元に係る、窒素酸化物吸着材5、吸着物質脱離手段6及び燃焼装置7を、1つの排気通路(主排気通路2)にのみ配置しながら、窒素酸化物の吸着能力を維持できる。したがって、製造コストの低い排気ガス浄化装置が提供される。
[第2実施形態]
 図2を用いて、第2実施形態の排気ガス浄化装置1が説明される。第2実施形態の排気ガス浄化装置1には、第1実施形態の排気ガス浄化装置1に、更に、フィルター部材8が備えられている。
 フィルター部材8は、主排気通路2内で、燃焼装置7の排気下流側に配置されている。
 フィルター部材8は、排気ガスに含まれる粒子状物質を捕獲可能な部材である。粒子状物質は、燃料の不完全燃焼によって発生する、炭素、炭化水素、硝酸塩類の微粒子などである。
[第2実施形態の作動]
 次に、排気ガス浄化装置1の作動において、フィルター部材8に係る点が説明される。
 第2実施形態では、制御装置10が排気ガス浄化装置1を作動させる運転に、通常運転及び再生運転に加えて、フィルター再生運転及びフィルター通常運転がある。
 フィルター再生運転は、フィルター部材8に捕獲された粒子状物質を酸化して除去する運転を意味する。フィルター再生運転では、制御装置10は、燃焼装置7を作動させる。燃焼装置7が作動すると、領域A7及び領域A7の排気下流側で燃焼反応が発生する。この燃焼反応により、フィルター部材8に捕獲された粒子状物質(炭素)が、酸化されて、除去される。粒子状物質を酸化させるため、フィルター再生運転においても、燃焼装置7は、空気過剰の混合ガスを生成して、燃焼させる。
 フィルター通常運転は、フィルター再生運転の実行されないときの運転を指している。つまり、フィルター通常運転では、制御装置10は、燃焼装置7を作動させない。
 制御装置10は、フィルター部材8による粒子状物質の捕獲量が所定量に達するまで、もしくは、所定の一定時間の間、フィルター通常運転を行う。フィルター通常運転の実行される時間を、フィルター通常運転時間とする。
 捕獲量の検出は、フィルター部材8の捕獲量の検出手段を設けることで可能である。例えば、フィルター部材8の排気上流側及び排気下流側に、主排気通路2内の圧力を検出する圧力センサが、捕獲量の検出手段として設けられる。捕獲量に応じて、フィルター部材8の目詰まりの程度が変化し、フィルター部材8の排気上流側と排気下流側との間の圧力差の大きさが変化する。このため、この圧力差の大きさより、捕獲量を特定することが可能である。
 フィルター再生運転及びフィルター通常運転は、通常運転及び再生運転とは、異なるタイミングに実施される。なお、フィルター再生運転及び再生運転は共に空気過剰条件での運転であるので、通常運転及び再生運転が同一のタイミングで実施されても良い。
[第2実施形態の効果]
 第2実施形態の排気ガス浄化装置1は、更に、次のような効果を発揮する。
 排気ガス浄化装置1は、フィルター部材8を備えることより、粒子状物質を排気ガスより除去できる。また、吸着物質脱離手段6の作動により、フィルター部材8の捕獲能力を維持できる。
[第3実施形態]
 図3を用いて、第3実施形態の排気ガス浄化装置1が説明される。第3実施形態の排気ガス浄化装置1には、第2実施形態の排気ガス浄化装置1に、更に、硫黄酸化物吸着材9が備えられている。
 燃料に硫黄が含まれている場合、排気ガスに硫黄酸化物が含まれる。硫黄酸化物吸着材9は、排気ガスに含まれる硫黄酸化物の除去に係る。
 硫黄酸化物吸着材9は、主排気通路2内で、窒素酸化物吸着材5の排気上流側かつ吸着物質脱離手段6の排気下流側に配置されている。
 硫黄酸化物吸着材9は、空気過剰雰囲気で硫黄酸化物を一時的に吸着し、該吸着した硫黄酸化物を昇温又は還元雰囲気で脱離する材料である。硫黄酸化物吸着材9における吸着及び脱離の作用は、窒素酸化物吸着材5における吸着及び脱離の作用と同様である。
[第3実施形態の作動]
 次に、排気ガス浄化装置1の作動において、硫黄酸化物吸着材9に係る点が説明される。
 通常運転において、排気ガスに含まれる窒素酸化物は、窒素酸化物吸着材5に吸着される。また、排気ガスに含まれる硫黄酸化物は、硫黄酸化物吸着材9に吸着される。そして、排気ガスより硫黄酸化物が除去される。
 再生運転において、制御装置10は、吸着物質脱離手段6を作動させる。吸着物質脱離手段6の作動により、燃焼後ガスが、領域A6の排気下流側へと送られる。この燃焼後ガスにより、窒素酸化物吸着材5の周囲に、還元雰囲気及び昇温雰囲気が発生すると共に、硫黄酸化物吸着材9の周囲に、還元雰囲気及び昇温雰囲気が発生する。
 硫黄酸化物吸着材9が還元雰囲気又は昇温雰囲気に置かれると、硫黄酸化物吸着材9に吸着した硫黄酸化物が、硫黄酸化物吸着材9より脱離する。このため、窒素酸化物吸着材5の再生運転において、硫黄酸化物吸着材9の吸着能力も、再生される。ここで、窒素酸化物吸着材5も昇温又は還元雰囲気に置かれているため、窒素酸化物吸着材5への硫黄酸化物の吸着が防止されている。
[第3実施形態の効果]
 第3実施形態の排気ガス浄化装置1は、更に、次のような効果を発揮する。
 排気ガス浄化装置1は、窒素酸化物吸着材5の排気上流側に、硫黄酸化物吸着材9を備えることより、窒素酸化物吸着材5への硫黄酸化物の流入を防止できる。また、吸着物質脱離手段5の作動により、硫黄酸化物吸着材9の硫黄酸化物の吸着能力を維持できる。しかも、硫黄酸化物が脱離したときは、窒素酸化物吸着材5も昇温又は還元雰囲気に置かれるため、窒素酸化物吸着材5に硫黄酸化物が付着しない。つまり、窒素酸化物吸着材5の硫黄酸化物の被毒による性能劣化が防止される。
[第4実施形態]
 図4を用いて、第4実施形態の排気ガス浄化装置1が説明される。第4実施形態の排気ガス浄化装置1は、第3実施形態の排気ガス浄化装置1と比べて、装置構成の点では同一であるが、配置構成の点で相違している。第1の相違点は、排気ガス遮断手段の配置構成である。第2の相違点は、主排気通路2内における、窒素酸化物吸着材5、吸着物質脱離手段6、燃焼装置7、フィルター部材8及び硫黄酸化物吸着材9の配置構成である。また、配置構成の変更により、制御装置10の制御内容が変更される。したがって、第3の相違点は、制御装置10の制御内容である。
 第4実施形態では、排気ガス遮断手段である遮断弁4A、4Bが、主排気通路2の排気出口2b、分岐排気通路3の排気入口3aのそれぞれに、設けられている。
 第4実施形態では、主排気通路2内に、排気方向F2に沿って(排気上流側から下流側に向けて)、フィルター部材8、燃焼装置7、硫黄酸化物吸着材9、窒素酸化物吸着材5、吸着物質脱離手段6及び遮断弁4Aが、順に配置されている。
[第4実施形態の作動]
 次に、第4実施形態の排気ガス浄化装置1の作動が説明される。ここで、第4実施形態の排気ガス浄化装置1は、窒素酸化物吸着材5、硫黄酸化物吸着材9及びフィルター部材8を備えている。このため、第4実施形態の制御装置10は、通常運転及び再生運転を繰り返し行うと共に、フィルター通常運転及びフィルター再生運転を繰り返し行う。
 特に、第4実施形態では、通常運転と再生運転とで、主排気通路2内において、窒素酸化物吸着材5及び硫黄酸化物吸着材9を通過する空気流の方向が、逆方向に変化する。これに対して、第1~第3実施形態では、窒素酸化物吸着材5及び硫黄酸化物吸着材9を通過する空気流の方向は、常に同じである。
 第4実施形態の通常運転では、ガスの流れる経路は、第1~第3実施形態と同様である。通常運転では、制御装置10は、遮断弁4Aを開放すると共に、遮断弁4Bを閉鎖する。遮断弁4Aが開放されることにより、機関側排気通路100からの排気ガスは、主排気通路2内を排出方向F2に沿って流れた後、合流排気通路110へと排出される。一方、遮断弁4Bが閉鎖されることにより、排気ガスは、分岐排気通路3内には流入しない。
 通常運転において、排気ガスは、主排気通路2内で、フィルター部材8、硫黄酸化物吸着材9及び窒素酸化物吸着材5を、順に通過する。このため、排気ガス中の硫黄酸化物が硫黄酸化物吸着材9により除去される。排気ガス中の粒子状物質がフィルター部材8により除去される。排気ガス中の窒素酸化物が窒素酸化物吸着材5により除去される。
 第4実施形態の再生運転では、ガスの流れる経路が、第1~第3実施形態とは相違する。再生運転では、制御装置10は、遮断弁4Aを閉鎖すると共に、遮断弁4Bを開放する。このとき、遮断弁4Bが開放されることにより、機関側排気通路100からの排気ガスは、主排気通路2内を排出方向F3に沿って流れた後、合流排気通路110へと排出される。一方、遮断弁4Aが遮断されているが、遮断弁4Bは主排気通路2の排気出口2bを開閉するものである。主排気通路2の排気入口2aは開放されている。したがって、吸着物質脱離手段6又は燃焼装置7が作動すると、吸着物質脱離手段6及び燃焼装置7は空気供給手段を備えているため、主排気通路2内に、排気方向F2(排気ガスの流れ方向)とは逆方向FRの空気流が発生する。そして、吸着物質脱離手段6及び燃焼装置7で生成されたガスが、主排気通路2内を逆方向FRに沿って流され、排気出口100bで排気ガスと合流し、分岐排気通路3内を排気方向F3に沿って流された後、合流排気通路110へと排出される。
 再生運転において、吸着物質脱離手段6により領域A6で生成された燃焼後ガスは、主排気通路2内で、逆方向FRに沿って、窒素酸化物吸着材5、硫黄酸化物吸着材9、燃焼装置7及びフィルター部材8を、順に通過する。このため、窒素酸化物は、窒素酸化物吸着材5から脱離した後、燃焼装置7により窒素に還元されて、無害化される。硫黄酸化物は、硫黄酸化物吸着材9から脱離する。このようにして、窒素酸化物吸着材5及び硫黄酸化物吸着材9が、再生される。
 フィルター再生運転において、燃焼装置7により領域A7で生成された空気過剰の燃焼後ガスは、主排気通路2内で、逆方向FRに沿って流されて、フィルター部材8を通過する。そして、フィルター部材8に捕獲された粒子状物質が、燃焼されて、無害化される。このようにして、フィルター部材8が、再生される。
 第4実施形態においても、第1~第3実施形態と同様に、通常運転時間に対する再生運転時間の比は、小さくなるように設定されている。
[第4実施形態の効果]
 第4実施形態の排気ガス浄化装置1は、次のような効果を発揮する。
 排気ガスをそのまま流すための分岐排気通路3が設けられているので、主排気通路2への排気ガスの流入を遮断して、主排気通路2内で窒素酸化物吸着材5から窒素酸化物を脱離させることができる。このため、排気ガス浄化装置1は、窒素酸化物の吸着、脱離及び還元に係る、窒素酸化物吸着材5、吸着物質脱離手段6及び燃焼装置7を、1つの排気通路(主排気通路2)にのみ配置しながら、窒素酸化物の吸着能力を維持できる。したがって、製造コストの低い排気ガス浄化装置が提供される。
 更に、排気ガス浄化装置1は、フィルター部材8を備えることより、粒子状物質を排気ガスより除去できる。また、燃焼装置7の作動により、フィルター部材8の捕獲能力を維持できる。
 更に、排気ガス浄化装置1は、窒素酸化物吸着材5の排気上流側に、硫黄酸化物吸着材9を備えることより、窒素酸化物吸着材5への硫黄酸化物の流入を防止できる。また、吸着物質脱離手段6の作動により、硫黄酸化物吸着材9の硫黄酸化物の吸着能力を維持できる。特に、吸着物質脱離手段6が作動するときに、排気上流側へ向けて空気流(逆方向FRへの燃焼後ガスの流れ)が形成され、窒素酸化物吸着材5に硫黄酸化物が流入しない。つまり、窒素酸化物吸着材5の硫黄酸化物の被毒による性能劣化が防止される。
 本発明は、ディーゼル機関、ガス機関、ガソリン機関あるいはガスタービン機関等の内燃機関、又は、焼却炉やボイラ等の燃焼機器、の排気ガスを浄化する装置に、適用できる。

Claims (4)

  1.  内燃機関又は燃焼機器の機関側排気通路に接続される排気ガス浄化装置において、
     前記機関側排気通路に接続される主排気通路及び分岐排気通路と、
     前記主排気通路及び前記分岐排気通路の排気入口で、排気ガスを遮断可能な排気ガス遮断手段と、
     前記主排気通路内に設けられ、空気過剰雰囲気で窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、
     前記主排気通路内で前記窒素酸化物吸着材より排気上流側に配置され、空気供給手段を有すると共に、該空気供給手段から供給される空気を昇温又は還元雰囲気にする吸着物質脱離手段と、
     前記主排気通路内で前記窒素酸化物吸着材より排気下流側に配置され、空気供給手段、燃料供給手段及び着火手段から構成される燃焼装置と、
     を備え、
     前記分岐排気通路は、前記機関側排気通路からの排気ガスが処理されずにそのまま排出されるように構成されている、
     ことを特徴とする排気ガス浄化装置。
  2.  請求項1記載の排気ガス浄化装置において、
     前記主排気通路内で前記燃焼装置の排気下流側に配置され、排気ガスに含まれる粒子状物質を捕獲可能なフィルター部材を、備えている、
     排気ガス浄化装置。
  3.  請求項1又は2記載の排気ガス浄化装置において、
     前記主排気通路内で前記窒素酸化物吸着材の排気上流側かつ前記吸着物質脱離手段の排気下流側に配置され、空気過剰雰囲気で硫黄酸化物を一時的に吸着し、該吸着した硫黄酸化物を昇温又は還元雰囲気で脱離する硫黄酸化物吸着材を、備えている、
     排気ガス浄化装置。
  4.  内燃機関又は燃焼機器の機関側排気通路に接続される排気ガス浄化装置において、
     前記排気通路に接続される主排気通路及び分岐排気通路と、
     前記主排気通路の排気出口及び前記分岐排気通路の排気入口で、それぞれ、排気ガスを遮断可能な排気ガス遮断手段と、
     前記主排気通路内に設けられ、空気過剰雰囲気で窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、
     前記主排気通路内で前記窒素酸化物吸着材より排気下流側に配置され、空気供給手段を有すると共に、前記窒素酸化物吸着材に対応して、該空気供給手段から供給される空気を昇温又は還元雰囲気にする吸着物質脱離手段と、
     前記主排気通路内で前記窒素酸化物吸着材より排気上流側に配置され、硫黄酸化物を吸着可能な硫黄酸化物吸着材と、
     前記主排気通路内で前記硫黄酸化物吸着材より排気上流側に配置され、空気供給手段、燃料供給手段及び着火手段から構成される燃焼装置と、
     前記主排気通路内で前記燃焼装置より排気上流側に配置され、排気ガスに含まれる粒子状物質を捕獲可能なフィルター部材と、
     通常運転と再生運転とを行う制御装置と、
     を備え、
     前記分岐排気通路が、前記機関側排気通路からの排気ガスが処理されずにそのまま排出されるように構成されており、
     前記制御装置が、前記通常運転において、前記排気ガス遮断手段により前記主排気通路の排気出口を開放かつ前記分岐排気通路の排気入口を閉鎖して、排気ガスを主排気通路に沿って流すようにし、
     前記制御装置が、前記再生運転において、前記排気ガス遮断手段により前記主排気通路の排気出口を閉鎖かつ前記分岐排気通路の排気入口を開放し、前記吸着物質脱離手段及び前記燃焼装置を作動させて、前記排気ガス遮断手段及び前記燃焼装置の空気供給手段が発生させた空気流を、前記主排気通路内での排気ガスの流れ方向とは逆方向に流すようにする、
     ことを特徴とする排気ガス浄化装置。
PCT/JP2009/052046 2008-02-08 2009-02-06 排気ガス浄化装置 WO2009099181A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801045613A CN101939515A (zh) 2008-02-08 2009-02-06 排气净化装置
EP09708045A EP2241732A1 (en) 2008-02-08 2009-02-06 Exhaust gas purification device
US12/866,426 US20100326057A1 (en) 2008-02-08 2009-02-06 Exhaust Gas Purification Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008028845A JP2009185763A (ja) 2008-02-08 2008-02-08 排気ガス浄化装置
JP2008-028845 2008-02-08

Publications (1)

Publication Number Publication Date
WO2009099181A1 true WO2009099181A1 (ja) 2009-08-13

Family

ID=40952253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052046 WO2009099181A1 (ja) 2008-02-08 2009-02-06 排気ガス浄化装置

Country Status (6)

Country Link
US (1) US20100326057A1 (ja)
EP (1) EP2241732A1 (ja)
JP (1) JP2009185763A (ja)
KR (1) KR20100107037A (ja)
CN (1) CN101939515A (ja)
WO (1) WO2009099181A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510936A (zh) * 2010-08-23 2012-06-20 丰田自动车株式会社 内燃机的排气处理方法及其装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749464A1 (en) 2005-08-01 2007-02-07 Saeco IPR Limited Control panel for an automatic machine for preparing hot beverages and automatic machine comprising such a control panel
US9062569B2 (en) 2010-10-29 2015-06-23 General Electric Company Systems, methods, and apparatus for regenerating a catalytic material
KR101461337B1 (ko) * 2013-09-09 2014-11-13 두산엔진주식회사 선택적 촉매 환원 시스템
JP6500636B2 (ja) * 2015-06-25 2019-04-17 三菱自動車工業株式会社 エンジンの排気浄化装置
JP6544388B2 (ja) * 2017-06-23 2019-07-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN113663432A (zh) * 2021-08-18 2021-11-19 宏芯气体(上海)有限公司 一种氮气制备过程的尾气处理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272326A (ja) * 1992-03-25 1993-10-19 Ngk Spark Plug Co Ltd 排気パティキュレートトラップ装置
JP2002097940A (ja) * 2000-09-27 2002-04-05 Hino Motors Ltd 排気浄化装置の運転方法
JP2005207281A (ja) * 2004-01-21 2005-08-04 Yanmar Co Ltd 排気ガス浄化装置及びその制御方法
JP2006502345A (ja) * 2002-10-02 2006-01-19 ウエストポート リサーチ インコーポレイテッド NOx吸着体のバイパス制御式再生
JP2006274875A (ja) * 2005-03-29 2006-10-12 Yanmar Co Ltd 排気ガス浄化装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7249455B2 (en) * 2003-12-23 2007-07-31 Arvin Technologies, Inc. Method and apparatus for regenerating a nitrogen oxides absorber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272326A (ja) * 1992-03-25 1993-10-19 Ngk Spark Plug Co Ltd 排気パティキュレートトラップ装置
JP2002097940A (ja) * 2000-09-27 2002-04-05 Hino Motors Ltd 排気浄化装置の運転方法
JP2006502345A (ja) * 2002-10-02 2006-01-19 ウエストポート リサーチ インコーポレイテッド NOx吸着体のバイパス制御式再生
JP2005207281A (ja) * 2004-01-21 2005-08-04 Yanmar Co Ltd 排気ガス浄化装置及びその制御方法
JP2006274875A (ja) * 2005-03-29 2006-10-12 Yanmar Co Ltd 排気ガス浄化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510936A (zh) * 2010-08-23 2012-06-20 丰田自动车株式会社 内燃机的排气处理方法及其装置

Also Published As

Publication number Publication date
CN101939515A (zh) 2011-01-05
JP2009185763A (ja) 2009-08-20
KR20100107037A (ko) 2010-10-04
EP2241732A1 (en) 2010-10-20
US20100326057A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
EP1865162B1 (en) Exhaust gas purification device
JP4413020B2 (ja) 排気ガス浄化装置及びその制御方法
US20070079602A1 (en) Thermal management of hybrid LNT/SCR aftertreatment during desulfation
WO2009099181A1 (ja) 排気ガス浄化装置
JP5431677B2 (ja) 排気ガス浄化装置
JP4515217B2 (ja) 排気ガス浄化装置の制御方法
JP5285296B2 (ja) 排気ガス浄化装置
JP5285309B2 (ja) 排気ガス浄化装置
JP2009221922A (ja) 排気ガス浄化装置
KR100734899B1 (ko) Hc흡착촉매를 갖는 디젤엔진용 후처리시스템 및후처리방법
JP2008298034A (ja) 排気ガス浄化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104561.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009708045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2825/KOLNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107017303

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12866426

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE