WO2009099124A1 - 物理量センサ - Google Patents

物理量センサ Download PDF

Info

Publication number
WO2009099124A1
WO2009099124A1 PCT/JP2009/051934 JP2009051934W WO2009099124A1 WO 2009099124 A1 WO2009099124 A1 WO 2009099124A1 JP 2009051934 W JP2009051934 W JP 2009051934W WO 2009099124 A1 WO2009099124 A1 WO 2009099124A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor
movable
portions
physical quantity
quantity sensor
Prior art date
Application number
PCT/JP2009/051934
Other languages
English (en)
French (fr)
Inventor
Hisayuki Yazawa
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Publication of WO2009099124A1 publication Critical patent/WO2009099124A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions

Definitions

  • the present invention particularly relates to a physical quantity sensor such as an acceleration sensor formed using an SOI substrate.
  • an acceleration sensor formed using an SOI substrate includes a movable portion that is displaced by acceleration on an SOI layer (active layer) located above the support substrate, a detection unit that measures the displacement of the movable portion, and the like. Is provided.
  • the anchor part that supports the movable part and the like is located outside the outer periphery of the movable part, and by using such a configuration, multilayer wiring and through wiring are not used. In both cases, the wiring layer electrically connected to the detection unit can be easily pulled out from the connection position with the anchor unit to the connection position with the external circuit.
  • the wiring layer had to be easily pulled out from the connection position with the anchor portion without using multilayer wiring or through wiring.
  • the present invention is for solving the above-described conventional problems.
  • the influence of the distortion propagated to each element portion connected to the anchor portion can be reduced. It is an object of the present invention to provide a physical quantity sensor capable of appropriately pulling out a layer from the connection position with the anchor portion along the surface to the outside of the element portion.
  • the present invention relates to a physical quantity sensor formed using an SOI substrate including a support substrate, an insulating layer, and an SOI layer.
  • the SOI layer includes a movable portion positioned above the support substrate from which the insulating layer has been removed and a detection portion for detecting a displacement amount of the movable portion, and the movable portion.
  • An anchor portion formed on the insulating layer for supporting is formed, The anchor portion is located inside an area surrounding the outermost periphery of the movable portion, A wiring layer electrically connected to the detection unit is pulled out of the element unit through a slit formed by removing the SOI layer formed in the element unit from a connection position with the anchor unit. It is characterized by being.
  • the wiring layer can be appropriately drawn out of the element portion along the surface from the connection position with the anchor portion.
  • a rib portion in which the SOI layer is left through the insulating layer is formed in the slit so as to extend from the anchor portion to the outside of the element portion. It is preferable that the rib portion is formed on the surface from the connection position with the anchor portion.
  • the wiring layer can be formed on the surface of the same SOI layer as the anchor portion surface, so that the wiring layer can be formed appropriately and easily without causing poor connection.
  • the rib portion can be firmly fixed to the support substrate and the electrical stability can be improved.
  • the anchor portions are concentrated at a substantially central position of the movable portion.
  • the detection unit includes a comb-like movable electrode and a fixed electrode arranged alternately in a plane, and the movable electrode is positioned above the support substrate from which the insulating layer has been removed.
  • the fixed electrode is provided at a position separated from the movable part, and the anchor part includes an anchor part that supports the movable part and an anchor part that supports the fixed electrode.
  • the movable portion is provided with a space for providing the fixed electrode inside a region surrounding the outermost periphery of the movable portion, and the fixed electrode is provided in the space.
  • An anchor portion is provided to support the slit, the slit continuing from the outermost peripheral surface of the movable portion to the space is provided, and the wiring layer is drawn out of the element portion through the space and the slit.
  • it is.
  • the physical quantity sensor of the present invention even if the support substrate is deformed, the influence of the distortion propagated to each element portion connected to the anchor portion can be reduced, and the detection accuracy can be improved.
  • the wiring layer can be appropriately drawn out of the element portion along the surface from the connection position with the anchor portion.
  • FIG. 1A is a plan view of the acceleration sensor according to the present embodiment
  • FIG. 1B is a side view of the beam portion viewed from the direction of arrow A
  • FIG. 1C is a diagram in which acceleration acts in the height direction.
  • FIG. 2 is an enlarged perspective view showing a part of the spring part, the beam part, and the arm part
  • FIG. 3 is taken along the line BB shown in FIG. It is the fragmentary sectional view which looked at the cut surface cut
  • the acceleration sensor 1 is formed using an SOI (Silicon on Insulator) substrate 2 as shown in FIG.
  • the SOI substrate 2 is formed of a support substrate 3 formed of a silicon substrate, an SOI layer (active layer) 5 formed of a silicon substrate, and, for example, SiO 2 positioned between the support substrate 3 and the SOI layer 5. This is a laminated structure of the oxide insulating layer 4.
  • the element portion 13 is formed in the SOI layer 5.
  • a movable part (weight) 6, detection parts 61 and 62 for detecting a displacement amount of the movable part 6, and support parts 8 to 11 are formed.
  • the movable portion 6 is supported by the anchor portions 21 and 23 via the support portions 8 to 11.
  • the oxide insulating layer 4 shown in FIG. 3 is not formed under the movable part 6 and the detection parts 61 and 62 and is floating on the support substrate 3, but the anchor parts 21 to 24 are formed on the support substrate 3. 4 is fixedly supported.
  • the movable portion 6 has a rectangular region C (indicated by a dotted line in FIG. 1 (a)) surrounding its outermost peripheral surface.
  • a concave portion 7 is formed which is recessed from the position of the width center of the outermost surfaces 6a, 6b in the left-right direction (X1 direction, X2 direction) of the movable portion 6 toward the center O direction of the movable portion 6.
  • two arm portions 25 and 26 extending in the X2 direction are provided from the first anchor portion 21.
  • two arm portions 27 and 28 extending in the X1 direction are provided from the second anchor portion 23.
  • slits 40 having a predetermined interval are formed between the arm portions 25 and 26 extending from the first anchor portion 21 in the Y1-Y2 direction.
  • slits 41 with a predetermined interval are formed between the arm portions 27 and 28 extending from the second anchor portion 23 in the Y1-Y2 direction.
  • These arm portions 25 to 28 may be supported on the support substrate 3 through the oxide insulating layer 4 or may be floated on the support substrate 3 after the oxide insulating layer 4 is removed. It is preferable that the elements 28 to 28 float from the support substrate 3 because the influence of the distortion can be reduced when the support substrate 3 is distorted, for example.
  • the end portions of the arm portions 25 to 28 opposite to the anchor portions 21 and 23 have a width dimension W1 narrower than the width dimension W2 of the arm portions 25 to 28.
  • the anchor side spring part 29 which has is linearly connected.
  • the arm portions 25 to 28 are more rigid than the anchor side spring portion 29.
  • the anchor side spring portion 29 has a shape in which the height dimension (thickness dimension) H1 is longer than the width dimension W1.
  • the height dimension H1 of the anchor side spring portion 29 is the same as the height dimension H2 of the arm portions 25-28.
  • the length dimension L2 is larger than the width dimension W1.
  • the anchor side spring portion 29 has a width dimension W1 of 0.8 to 2.0 ⁇ m, a length dimension L2 of 50 to 100 ⁇ m, and a height dimension H1 of about 10 to 30 ⁇ m.
  • the arm portion 25 provided in the first anchor portion 21 is parallel to the Y2 direction outside the outer peripheral surface 6 b of the movable portion 6 via the anchor-side spring portion 29.
  • An extending first beam portion 30 is provided continuously.
  • the arm portion 26 provided in the first anchor portion 21 is connected to the Y1 direction on the outer side of the outer peripheral surface 6b of the movable portion 6 via the anchor-side spring portion 29.
  • a second beam portion 31 extending in parallel is provided continuously.
  • the arm portion 27 provided in the second anchor portion 23 is parallel to the Y2 direction outside the outer peripheral surface 6a of the movable portion 6 via the anchor-side spring portion 29.
  • the 3rd beam part 32 extended in this is connected. Further, as shown in FIG. 1 (a), the arm portion 28 provided in the second anchor portion 23 is connected to the Y1 direction on the outer side of the outer peripheral surface 6a of the movable portion 6 via the anchor-side spring portion 29. A fourth beam portion 33 extending in parallel is provided continuously. As shown in FIG. 1A, the rear end portions 30b to 33b of the beam portions 30 to 33 are connected to the anchor side spring portion 29.
  • each of the beam portions 30 to 33 is larger than the width dimension W1 of the anchor side spring portion 29. Therefore, each of the beam portions 30 to 33 is more rigid than the anchor side spring portion 29.
  • each beam part 30 to 33 is substantially the same as the height dimension H1 of the anchor side spring part 29 and the height dimension H2 of the arm part, and each beam part 30 to 33 is supported. It floats on the substrate 3.
  • the length dimension L1 of each beam portion 30 to 33 is such that the tip portions 30a to 33a of each beam portion 30 to 33 are different from each corner of the movable portion 6 and X1. It is formed with a length substantially opposite in the ⁇ X2 direction.
  • the distal end portions 30a to 33a of the beam portions 30 to 33 and the vicinity of the four corners of the movable portion 6 are connected via a movable portion side spring portion 34 extending linearly.
  • the width dimension and height dimension (thickness dimension) of the movable part side spring part 34 are substantially the same as the width dimension W1 and the height dimension H1 of the anchor side spring part 29.
  • the beam portions 30 to 33 have a width dimension W3 of 10 to 30 ⁇ m, a length dimension L1 of 300 to 600 ⁇ m, and a height dimension of about 10 to 30 ⁇ m.
  • the support portion including the arm portions 25 to 28, the anchor side spring portion 29, the beam portions 30 to 33, and the movable portion side spring portion 34 is provided between the movable portion 6 and the first anchor portion 21 and the second anchor portion 23. 8 to 11 are connected.
  • both the anchor side spring part 29 and the movable part side spring part 34 are difficult to bend in the height direction (thickness direction). Therefore, as shown in FIG. 1B, in the initial state where no acceleration is applied in the height direction (Z direction), the beam portions 30 to 33 are parallel to the Y1-Y2 direction and displaced in the height direction. Not.
  • the movable portion 6 is moved to the upper surface 3a (see FIG. 3) of the support substrate 3 by the twist of the spring portions 29 and 34 and the displacement of the tip portions 30a to 33a of the beam portions 30 to 33 in the height direction. And move downward (translate in the height direction) while maintaining a parallel state.
  • slits 43 and 44 are provided at predetermined intervals from the position of the width center of the outermost peripheral surfaces 6c and 6d facing the Y1-Y2 direction of the movable part 6 toward the center O of the movable part 6. It has been.
  • a space 19 having a size necessary for installing the fixed electrodes 57 and 58 constituting the detection parts 61 and 62 is provided in the movable part inside the slits 43 and 44.
  • a recess 19a that is recessed in the center O direction of the movable portion 6 is formed in the space 19, and a third anchor portion 22 and a fourth anchor portion 24 are installed in the recess 19a.
  • slits 54 and 55 are formed at predetermined intervals in the X1-X2 direction, respectively.
  • the slits 54, 55 formed between the arm portions 50, 51 and between the arm portions 52, 53 are spatially continuous with the slits 43, 44 formed in the movable portion 6 and are opened to the outside of the movable portion 6. ing.
  • the two arm portions 50 and 51 extending from the third anchor portion 22 extend in the X1 direction and the X2 direction in the space 19 formed in the movable portion 6, respectively.
  • Comb-shaped first fixed electrodes 57 arranged in parallel at a predetermined interval in the X1-X2 direction are formed.
  • the two arm portions 52 and 53 extending from the fourth anchor portion 24 extend in the X1 direction and the X2 direction in the space 19 formed in the movable portion 6, respectively.
  • Comb-shaped second fixed electrodes 58 arranged in parallel at a predetermined interval in the X1-X2 direction are formed.
  • first movable electrodes 59 that are arranged in parallel with the first fixed electrodes 57 alternately at intervals are formed integrally with the movable portion 6. Yes.
  • second movable electrodes 60 arranged in parallel with the second fixed electrodes 58 alternately with a space are formed integrally with the movable portion 6. Yes.
  • the first detection unit 61 is configured by the first fixed electrode 57 and the first movable electrode 59 shown in FIG. 1A, and the second fixed electrode 58 and the second movable electrode 60 shown in FIG. 2 detection part 62 is comprised.
  • the movable electrodes 59 and 60 and the fixed electrodes 57 and 58 are shown in a cross-sectional shape cut from the thickness direction, but only the movable electrodes 59 and 60 are indicated by hatching so that the movable electrodes and the fixed electrodes can be easily distinguished. ing.
  • the first movable electrode 59, the first fixed electrode 57, the second movable electrode 60, and the second fixed electrode 58 are all formed with the same height dimension (thickness dimension).
  • the upper surface of the first movable electrode 59 and the upper surface of the second fixed electrode 58 are in the same position, and the upper surface of the second movable electrode 60 and the first fixed electrode.
  • the upper surface of 57 is arranged at the same position and shifted to a lower position with respect to the first movable electrode 59 and the second fixed electrode 58.
  • the potentials of the fixed electrodes 57 and 58 and the potentials of the movable electrodes 59 and 60 are the wiring layers 70, 71 and 72 drawn from the connection positions of the first anchor part 21, the third anchor part 22 and the fourth anchor part 24. (See FIG. 1A), respectively, and the differential output of the capacitance of the first detection unit 61 and the second detection unit 62 can be obtained. Based on this differential output, the moving distance and moving direction of the movable part 6 can be known.
  • the comb-like electrode structure shown in FIG. 10 is an example, and other forms may be used.
  • the wiring layer 70 is drawn to the outside of the element portion 13 through the slit 40 between the two arm portions 25 and 26 extending from the first anchor portion 21.
  • the wiring layer 70 is formed on the oxide insulating layer 4 from the connection position with the first anchor portion 21.
  • the wiring layer 71 passes through the slit 54 formed between the two arm portions 50 and 51 extending from the third anchor portion 22 and the slit 44 formed in the movable portion 6, and the element portion. 13 is pulled out to the outside.
  • the wiring layer 71 is also formed, for example, on the oxide insulating layer 4 from the connection position with the anchor portion.
  • the wiring layer 72 passes through the slit 55 formed between the two arm portions 52, 53 extending from the fourth anchor portion 24 and the slit 43 formed in the movable portion 6, and the element portion. 13 is pulled out to the outside.
  • the wiring layer 72 is also formed, for example, on the oxide insulating layer 4 from the connection position with the anchor portion.
  • the anchor portion includes a first anchor portion 21 and a second anchor portion 23 that support the movable portion 6, and a third anchor portion 22 and a fourth anchor that respectively support the fixed electrodes 57 and 58.
  • An anchor portion 24 is provided.
  • all of the anchor portions 21 to 24 are located inside the region C surrounding the outermost periphery of the movable portion 6. Thereby, for example, even if the support substrate 3 is deformed due to the influence of stress, the influence of strain transmitted from the anchor portions 21 to 24 to each element portion such as the movable portion 6 and the detection portion can be reduced.
  • the change in the relative position between the movable electrodes 59 and 60 and the fixed electrodes 57 and 58 due to the distortion can be reduced, the output variation can be reduced, and excellent detection accuracy can be obtained. Also, as shown in FIG. 1 (a), the influence of distortion can be reduced and the detection accuracy can be reduced by consolidating the anchor portions 21 to 24 into a central region within a certain range from the center O of the movable portion 6. It becomes possible to improve.
  • the wiring layers 70 to 72 electrically connected to the first detection unit 61 and the second detection unit 62 are moved from the connection positions to the anchor units 21, 22, and 24. 6 and the slits 40, 43, 44, 54, 55 formed by removing the SOI layer 5 formed between the two arm portions extending from the anchor portions 21, 22, 24 are pulled out to the outside of the movable portion 6. It is. That is, in the present embodiment, even if the anchor portions 21 to 24 are gathered inside the region C surrounded by the outermost periphery of the movable portion 6, the wiring layers 70 to 72 are connected to the surface from the connection position with the anchor portions 21 to 24. And can be connected to the anchor portions 21 to 24 with low load. Further, since it is not necessary to use a multilayer wiring board or the like, manufacturing costs can be reduced.
  • the interval between the slits 40, 43, 44, 54, and 55 is, for example, about 10 to 30 ⁇ m.
  • the slit in the present embodiment refers to a space between two opposing wall surfaces, and the wiring layer serves as the movable portion 6.
  • the space provided to draw out the surface from which the SOI layer has been removed from the inside to the outside is a slit.
  • the movable portion 6 has a space 19 for providing the fixed electrodes 57 and 58 inside the region C surrounding the outermost periphery of the movable portion 6. Is provided. In the space 19, the third anchor portion 22 and the fourth anchor portion 24 that support the fixed electrodes 57 and 58 are provided, and slits 43 and 44 that are continuous from the outermost peripheral surface of the movable portion 6 to the space 19 are provided. Yes. In this embodiment, the two arm portions extend from the anchor portions 22 and 24 through the slits 54 and 55. The wiring layers 71 and 72 are drawn to the outside of the element portion 13 through the space 19 and the slits 43, 44, 54, and 55.
  • the wiring layers 71 and 72 can be easily connected to the anchor portions 22 and 24 provided on the inner side of the movable portion 6 using the fixed electrode forming space. Can be pulled out to the outside.
  • two arm portions 25 and 26 each having a slit 40 are formed in the first anchor portion 21, and the slit 40 is pulled out through the wiring layer 70 to the outside of the element portion 13.
  • the arm portions 25 and 26 may not be provided, but since the first anchor portion 21 and the second anchor portion 23 are provided inside the movable portion 6, the support portions 8 to 11 for the movable portion 6 are disposed outside the movable portion 6.
  • a highly rigid arm part is provided on the first anchor part 21 and the second anchor part 22, and this arm part is away from the center O of the movable part 6. It is preferable to pull out.
  • the wiring layer 70 can be easily and appropriately drawn out of the element portion 13 through the slit 40.
  • FIG. 4 is a plan view of an acceleration sensor 100 according to another embodiment different from FIG. 1A
  • FIG. 5 is a cross-sectional view of the acceleration sensor 100 shown in FIG.
  • FIG. 6 is a partial cross-sectional view as seen from the direction of the arrow when the acceleration sensor 100 shown in FIG. 4 is cut in the height direction along the line EE
  • FIG. 7 is the acceleration shown in FIG.
  • FIG. 5 is a partial cross-sectional view of the sensor 100 as viewed from the direction of the arrow when cut in the height direction along the line FF.
  • each arm portion 101, 102, 110, 111 extending from each of the first anchor portion 21 and the second anchor portion 23 is formed in a substantially L shape so as to follow the outer periphery of the movable portion 6. Yes.
  • Each of the arm portions 101, 102, 110, and 111 supports the movable portion 6 via a spring portion 120 formed in a substantially E shape.
  • a slit 146 having a predetermined interval is formed between the two arm portions 101 and 102 extending from the first anchor portion 21, and the oxide insulating layer 4 is interposed in the slit 146.
  • a rib portion 145 is formed by leaving the SOI layer.
  • a wiring layer 130 is formed on the rib portion 145.
  • the rib portion 145 is formed entirely under the wiring layer 130.
  • a slit 121 is formed on the outermost peripheral surface located on the Y ⁇ b> 1 side of the movable portion 6, and a space for forming the fixed electrode 144 is provided in the movable portion 6 inside the slit 121. It has been. Further, a slit 122 is formed on the outermost peripheral surface located on the Y2 side of the movable part 6, and a space for forming the fixed electrode 144 is formed in the movable part 6 on the inner side of the slit 122.
  • a third anchor portion 22 and a fourth anchor portion 24 are formed in a space formed inside the movable portion 6, and two arm portions 123 to 126 are formed from each anchor portion 22, 24. It is formed to extend.
  • slits 127 and 128 having a predetermined interval are formed between the arm portions 123 and 124 and between the arm portions 125 and 126, and the slits 127 and 128 are spaced from the slits 121 and 122 formed in the movable portion 6.
  • a slit that is continuously exposed to the outside is formed.
  • the slits 127 and 121 are formed with rib portions 140 in which the SOI layer is left through the oxide insulating layer 4.
  • a wiring layer 129 is formed on the rib portion 140.
  • the rib portion 140 is formed entirely under the wiring layer 129.
  • the wiring layer 131 drawn out through the slits 122 and 128 is also formed on the rib portion 141 in the same manner.
  • the width dimension of the rib portion is about 5 to 20 ⁇ m.
  • the wiring layers 129 to 131 can be formed on the same SOI layer surface as the anchor portion surface, so that the wiring layers 129 to 131 can be connected appropriately and easily. Can be formed without waking up. Further, since the insulating layer 4 remains and is fixedly supported on the support substrate 3 under the rib portions 140, 141, 145, the rib portions 140, 141, 145 can be firmly fixed on the support substrate 3. Accordingly, there is no problem that the wiring layers 129 to 131 move carelessly due to vibration or the like, and the electrical stability can be improved.
  • a plurality of anchor portions 150 to 155, 158 and 159 are gathered inside a region G surrounding the outermost peripheral surface of the movable portion 6, and the spring portions 157 are joined to the anchor portions 150 to 155. 1 is provided, and unlike the case of FIG. 1A and FIG. 4, the movable portion 6 is directly supported inside the region G by the spring portion 157 without using the arm portion.
  • FIG. 9 is an acceleration sensor 160 corresponding to the X-axis direction and the Y-axis direction.
  • Comb-like movable electrodes 162 and 164 and fixed electrodes 161 and 163 shown in FIG. 9 are for X-axis detection, and comb-like movable electrodes 166 and 167 and fixed electrodes 165 and 168 are for Y-axis detection.
  • anchor portions 170 to 178 are provided inside a region H surrounding the outermost peripheral surface of the movable portion 6.
  • the wiring layers 182 to 189 extending from the connection position with the anchor portion toward the outside of the element portions 180 and 181 have slits 190 to 190 formed in the element portions 180 and 181, respectively. 196 extends outside the element portions 180 and 181.
  • the acceleration sensor of the present embodiment described above is used for individual detection for X-axis detection, Y-axis detection, and Z-axis detection, or for detection of two or more axes as shown in FIG.
  • this embodiment can be applied to other than the comb-like electrode, it can be effectively applied particularly to the configuration of the comb-like electrode.
  • This embodiment can be applied not only to an acceleration sensor but also to an angular velocity sensor or the like.
  • FIG. 1A is a plan view of the acceleration sensor according to the present embodiment
  • FIG. 1B is a side view of the beam portion viewed from the direction of arrow A
  • FIG. 1C is a diagram in which acceleration acts in the height direction.
  • FIG. 1 is a partial cross-sectional view of a cut surface cut in a height direction along the line BB shown in FIG.
  • FIG. 4 is a partial cross-sectional view of the acceleration sensor shown in FIG. 4 cut in the height direction along the line DD and viewed from the arrow direction;
  • FIG. 1A is a plan view of the acceleration sensor according to the present embodiment
  • FIG. 1B is a side view of the beam portion viewed from the direction of arrow A
  • FIG. 1C is a diagram in which acceleration acts in
  • FIG. 4 is a partial cross-sectional view of the acceleration sensor shown in FIG. 4 cut along the line EE in the height direction and viewed from the arrow direction;
  • FIG. 4 is a partial cross-sectional view of the acceleration sensor shown in FIG. 4 cut in the height direction along the line FF and viewed from the arrow direction;
  • the top view of the acceleration sensor in another embodiment The top view of the acceleration sensor in another embodiment, It is sectional drawing which cut

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】特に、支持基板が変形してもアンカ部に接続している各パーツに伝播される歪みの影響を小さくでき、また、配線層を、アンカ部との接続位置から表面を伝って適切に素子部の外側に引き出すことが出来る物理量センサを提供することを目的としている。 【解決手段】  SOI層には、絶縁層が除去された支持基板3の上方に位置する可動部6及び可動部6の変位量を検出するための検出部61,62にて構成される素子部13と、素子部13を支持基板3上に支持するための絶縁層上に形成されたアンカ部21~24とが形成されている。アンカ部21~24は可動部6の最外周を囲んだ領域Cよりも内側に位置している。検出部と電気的に接続される配線層70~72が、アンカ部21~24との接続位置から素子部13に形成されたSOI層が除去されて成るスリット40、43、44、54、55を通って素子部13の外側に引き出されている。

Description

物理量センサ
 本発明は、特に、SOI基板を用いて形成した加速度センサ等の物理量センサに関する。
 SOI基板を用いて形成された例えば加速度センサは、支持基板の上方に位置するSOI層(活性層)に、加速度を受けて変位する可動部、及び可動部の変位を測定するための検出部等が設けられる。
 例えば下記特許文献に示すように、可動部等を支持するアンカ部は、可動部の外周よりも外側に位置しており、このような構成とすることで、多層配線や貫通配線を利用せずとも、検出部と電気的に接続される配線層をアンカ部との接続位置から外部回路との接続位置まで引き出すことが簡単に出来る。
特開平11-304834号公報 特開2001-133479号公報 特開2006-266873号公報
 しかしながら、従来のように、支持基板に固定支持されるアンカ部を可動部の外側に配置すると、パッケージ応力の影響を受けて支持基板が変形したとき、アンカ部に接続している可動部や検出部等の各素子部分に歪みが伝播されてしまい、検出部を構成する固定電極と可動電極との相対位置が変化して検出精度が低下するといった問題があった。
 また製造費を低減等すべく、多層配線や貫通配線を利用せずとも、配線層を簡単にアンカ部との接続位置から外部に引き出す必要があった。
 そこで本発明は上記従来の課題を解決するためのものであり、特に、支持基板が変形してもアンカ部に接続している各素子部分に伝播される歪みの影響を小さくでき、また、配線層を、アンカ部との接続位置から表面を伝って適切に素子部の外側に引き出すことが出来る物理量センサを提供することを目的としている。
本発明は、支持基板と絶縁層とSOI層より成るSOI基板を用いて形成された物理量センサにおいて、
 前記SOI層には、前記絶縁層が除去された前記支持基板の上方に位置する可動部及び前記可動部の変位量を検出するための検出部にて構成される素子部と、前記素子部を支持するための絶縁層上に形成されたアンカ部とが形成されており、
 前記アンカ部は前記可動部の最外周を囲んだ領域よりも内側に位置し、
 前記検出部と電気的に接続される配線層が、前記アンカ部との接続位置から前記素子部に形成された前記SOI層が除去されて成るスリットを通って前記素子部の外側に引き出されていることを特徴とするものである。
 これにより、支持基板が変形してもアンカ部に接続している各素子部分に伝播される歪みの影響を小さくでき、検出精度を向上させることができる。しかもアンカ部を可動部の最外周を囲む領域の内側に位置させても配線層を、アンカ部との接続位置から表面を伝って適切に素子部の外側に引き出すことが出来る。
 本発明では、前記スリット内には、前記絶縁層を介して前記SOI層が残されてなるリブ部が前記アンカ部から前記素子部の外側に延出して形成されており、前記配線層は前記アンカ部との接続位置から前記リブ部の表面に形成されていることが好ましい。これにより、配線層をアンカ部表面と同じSOI層の表面に形成できるので配線層を適切且つ容易に接続不良等起こすことなく形成できる。またリブ部の下には絶縁層が残されて支持基板に固定支持されているので、リブ部を支持基板にしっかり固定でき電気的安定性を向上させることができる。
 また、前記アンカ部は、前記可動部の略中央位置に集約されていることがより好ましい。
 また、前記検出部は、平面的に交互に並設された櫛歯状の可動電極と固定電極とで構成され、前記可動電極は、前記絶縁層が除去された前記支持基板の上方に位置して前記可動部と一体化しており、前記固定電極は前記可動部から分離した位置に設けられており、前記アンカ部は前記可動部を支持するアンカ部と、前記固定電極を支持するアンカ部を備える構成に対して、本発明を効果的に適用できる。
 また櫛歯状電極構造において、前記可動部には、前記可動部の最外周を囲んだ領域よりも内側に、前記固定電極を設けるための空間が設けられており、前記空間内に前記固定電極を支持するアンカ部が設けられ、前記可動部の最外周面から前記空間に連続する前記スリットが設けられ、前記配線層は、前記空間及び前記スリットを通って前記素子部の外側に引き出されていることが好ましい。
 本発明の物理量センサによれば、支持基板が変形してもアンカ部に接続している各素子部分に伝播される歪みの影響を小さくでき、検出精度を向上させることができる。しかもアンカ部を可動部の最外周を囲む領域の内側に位置させても配線層を、アンカ部との接続位置から表面を伝って適切に素子部の外側に引き出すことが出来る。
 図1(a)は本実施形態における加速度センサの平面図、図1(b)は、矢印A方向から見たビーム部の側面図、図1(c)は、高さ方向に加速度が作用して変位したビーム部及び可動部の側面図、図2は、ばね部、ビーム部、及び腕部の一部を示す拡大斜視図、図3は図1(a)に示すB-B線に沿って高さ方向に切断した切断面を矢印方向から見た部分断面図、である。
 加速度センサ1は、図3に示すようにSOI(Silicon on Insulator)基板2を用いて形成される。SOI基板2は、シリコン基板で形成された支持基板3と、シリコン基板で形成されたSOI層(活性層)5と、支持基板3とSOI層5の間に位置する例えばSiO2で形成された酸化絶縁層4の積層構造である。
 図1(a)に示すようにSOI層5には素子部13が形成される。素子部13には、可動部(錘)6と、可動部6の変位量を検出するための検出部61,62、及び支持部8~11が形成される。可動部6は支持部8~11を介してアンカ部21,23に支持されている。可動部6や検出部61,62の下には図3に示す酸化絶縁層4が形成されておらず支持基板3上に浮いているがアンカ部21~24は支持基板3上に酸化絶縁層4を介して固定支持されている。
 図1(a)に示す形態では、可動部6は、その最外周面を囲んだ領域C(図1(a)では点線で示す)が矩形状で形成される。可動部6の左右方向(X1方向、X2方向)の最外側面6a,6bの幅中心の位置から可動部6の中心O方向に向けて窪む凹部7が形成されている。
 そして凹部7の可動部6の中心O寄りの位置に第1アンカ部21と第2アンカ部23が設けられる。
 第1アンカ部21からはX2方向に延びる2本の腕部25,26が設けられる。一方、第2アンカ部23からはX1方向に延びる2本の腕部27,28が設けられる。図1(a)に示すように、第1アンカ部21から延びる腕部25,26の間にはY1-Y2方向に所定間隔のスリット40が形成されている。また同様に、第2アンカ部23から延びる腕部27,28の間にはY1-Y2方向に所定間隔のスリット41が形成されている。
 これら腕部25~28は、支持基板3に酸化絶縁層4を介して支持されていてもよいし、酸化絶縁層4が除去されて支持基板3上に浮いていてもよいが、腕部25~28は支持基板3上から浮いているほうが、例えば支持基板3が歪んだときにその歪みの影響を小さくでき好適である。
 図1(a)、図2に示すように、各腕部25~28のアンカ部21,23側と反対側の端部には腕部25~28の幅寸法W2よりも細い幅寸法W1を有するアンカ側ばね部29が直線的に連設されている。腕部25~28はアンカ側ばね部29よりも高剛性である。
 図2に示すようにアンカ側ばね部29は、その高さ寸法(厚さ寸法)H1が、幅寸法W1に比べて長い形状である。この実施形態では、アンカ側ばね部29の高さ寸法H1は腕部25~28の高さ寸法H2と同じである。また、長さ寸法L2は幅寸法W1よりも大きい。アンカ側ばね部29の幅寸法W1は0.8~2.0μm、長さ寸法L2は、50~100μm、高さ寸法H1は10~30μm程度である。
 図1(a)に示すように第1アンカ部21に設けられた腕部25には、アンカ側ばね部29を介して、可動部6の外周面6bの外側にて、Y2方向に平行に延びる第1ビーム部30が連設されている。また図1(a)に示すように、第1アンカ部21に設けられた腕部26には、アンカ側ばね部29を介して、可動部6の外周面6bの外側にて、Y1方向に平行に延びる第2ビーム部31が連設されている。また図1(a)に示すように第2アンカ部23に設けられた腕部27には、アンカ側ばね部29を介して、可動部6の外周面6aの外側にて、Y2方向に平行に延びる第3ビーム部32が連設されている。さらに図1(a)に示すように、第2アンカ部23に設けられた腕部28には、アンカ側ばね部29を介して、可動部6の外周面6aの外側にて、Y1方向に平行に延びる第4ビーム部33が連設されている。図1(a)に示すように、各ビーム部30~33の後端部30b~33b側がアンカ側ばね部29に接続される。
 図1(a)、図2に示すように各ビーム部30~33の幅寸法W3は、アンカ側ばね部29の幅寸法W1よりも大きい。よって各ビーム部30~33は、アンカ側ばね部29よりも高剛性である。
 各ビーム部30~33の高さ寸法(厚さ寸法)は、アンカ側ばね部29の高さ寸法H1、腕部の高さ寸法H2と略同一であり、各ビーム部30~33は、支持基板3上で浮いている。この実施形態では、図1(a)に示すように、各ビーム部30~33の長さ寸法L1は、各ビーム部30~33の先端部30a~33aが、可動部6の各角とX1-X2方向にてほぼ対向する長さで形成されている。そして、各ビーム部30~33の先端部30a~33aと可動部6の四つ角近傍間が直線的に延びる可動部側ばね部34を介して連結されている。可動部側ばね部34の幅寸法や高さ寸法(厚さ寸法)は、アンカ側ばね部29の幅寸法W1及び高さ寸法H1とほぼ同じである。ビーム部30~33の幅寸法W3は10~30μm、長さ寸法L1は、300~600μm、高さ寸法は10~30μm程度である。
 このように可動部6と第1アンカ部21及び第2アンカ部23の間は、腕部25~28、アンカ側ばね部29、ビーム部30~33及び可動部側ばね部34よりなる支持部8~11により連結されている。
 アンカ側ばね部29及び可動部側ばね部34は、いずれも高さ方向(厚み方向)に撓み難い。よって、図1(b)のように、高さ方向(Z方向)に加速度が作用していない初期状態では、各ビーム部30~33はY1-Y2方向に平行であり高さ方向に変位していない。
 図1(b)に示す初期状態から例えば加速度に伴う力(慣性力)が可動部6に対して下方向に作用すると、可動部側ばね部34及びアンカ側ばね部29は捩れ、図1(c)に示すように、各ビーム部30~33の後端部30b~33b側を回転中心として、各ビーム部30~33の先端部30a~33bが同じ変位量にて下方向に向けて回動変位する。すなわちビーム部30~33の先端部30a~33aのほうが、後端部30b~33bよりも下方向に変位する。ビーム部30~33の剛性は高いため、ビーム部30~33自体が例えば曲がったり捩れたりはほとんどせず、ビーム部30~33は直方体形状を保ちながら、ばね部29,34の捩れにより高さ方向に変位する。このようにばね部29,34の捩れ、及び、各ビーム部30~33の先端部30a~33aの高さ方向への変位により、可動部6が、支持基板3の上面3a(図3参照)と平行な状態を維持しつつ下方向に向けて移動する(高さ方向に平行移動する)。
 図1(a)に示すように、可動部6のY1-Y2方向に向く最外周面6c,6dの幅中心の位置から可動部6の中心Oに向けて所定間隔のスリット43,44が設けられている。スリット43,44よりも内側の可動部には検出部61,62を構成する固定電極57,58を設置するに必要な大きさの空間19が設けられている。
 図1(a)に示すように、空間19には、可動部6の中心O方向に凹む凹部19aが形成され、この凹部19a内に、第3アンカ部22及び第4アンカ部24が設置される。第3アンカ部22からは2本の腕部50,51(兼固定電極)がY2方向に延びている。また、第4アンカ部24からは2本の腕部52,53(兼固定電極)がY1方向に延びている。腕部50,51間、及び腕部52,53間には夫々、X1-X2方向に所定間隔のスリット54,55が形成されている。腕部50、51間及び腕部52,53間に形成された各スリット54,55は、可動部6に形成されたスリット43,44と空間的に連続して可動部6の外側に開放されている。
 図1(a)に示すように、第3アンカ部22から延びる2本の腕部50,51から、可動部6に形成された空間19内にて、夫々X1方向、及びX2方向に延び、X1-X2方向に所定の間隔を空けて並設された櫛歯状の第1固定電極57が形成されている。また図1(a)に示すように、第4アンカ部24から延びる2本の腕部52,53から、可動部6に形成された空間19内にて、夫々X1方向及びX2方向に延び、X1-X2方向に所定の間隔を空けて並設された櫛歯状の第2固定電極58が形成されている。
 図1(a)に示すように、空間19内には、第1固定電極57と交互に且つ間隔を空けて並設された第1可動電極59が、可動部6と一体的に形成されている。また図1(a)に示すように空間19内には、第2固定電極58と交互に且つ間隔を空けて並設された第2可動電極60が、可動部6と一体的に形成されている。
 図1(a)に示す第1固定電極57と第1可動電極59とで第1検出部61が構成され、図1(a)に示す第2固定電極58と第2可動電極60とで第2検出部62が構成される。
 第1検出部61と第2検出部62の具体的構成及び検出原理を以下で説明する。
 図10では、可動電極59、60及び固定電極57、58を厚み方向から切断した断面形状で示しているが、可動電極と固定電極を区別しやすいように可動電極59,60のみを斜線で示している。
 図10に示すように、第1可動電極59、第1固定電極57、第2可動電極60及び第2固定電極58は全て同じ高さ寸法(厚さ寸法)で形成される。図10(a)(b)に示すように、初期状態では、第1可動電極59の上面と第2固定電極58の上面が同位置にあり、第2可動電極60の上面と第1固定電極57の上面とが同位置で且つ第1可動電極59及び第2固定電極58に対して低い位置にずれて配置されている。
 図10(a)に示すように、可動電極59、60が下方向に移動すると、第1検出部61では、第1可動電極59と第1固定電極57との対向面積は増大するため、静電容量は増大する。一方、第2検出部62では、第2可動電極60と第2固定電極58との対向面積は減少するため、静電容量は減少する。
 次に、図10(b)に示すように、可動電極59、60が上方向に移動すると、第1検出部61では、第1可動電極59と第1固定電極57との対向面積は減少するため、静電容量は減少する。一方、第2検出部62では、第2可動電極60と第2固定電極58との対向面積が増大するため、静電容量は増大する。
 固定電極57、58の電位、及び可動電極59、60の電位は、第1アンカ部21、第3アンカ部22及び第4アンカ部24との接続位置から引き出された配線層70,71,72(図1(a)参照)を介して夫々取り出され、第1検出部61及び第2検出部62の静電容量の差動出力を得ることが出来る。この差動出力に基づき、可動部6の移動距離及び移動方向を知ることができる。
 なお、図10に示す櫛歯状電極構造は一例であり、他の形態であってもよい。
 図1(a)に示すように、配線層70は、第1アンカ部21から延びる2本の腕部25,26間のスリット40を通って素子部13の外側に引き出されている。この実施形態では、図3に示すように配線層70は、第1アンカ部21との接続位置から酸化絶縁層4上に形成されている。
 また図1(a)に示すように、配線層71は、第3アンカ部22から延びる2本の腕部50,51間のスリット54及び可動部6に形成されたスリット44を通って素子部13の外側に引き出されている。この配線層71も配線層70と同様にアンカ部との接続位置から例えば酸化絶縁層4上に引き出し形成される。
 また図1(a)に示すように、配線層72は、第4アンカ部24から延びる2本の腕部52,53間のスリット55及び可動部6に形成されたスリット43を通って素子部13の外側に引き出されている。この配線層72も配線層70と同様にアンカ部との接続位置から例えば酸化絶縁層4上に引き出し形成される。
 本実施形態の特徴的構成について説明する。
 図1(a)に示すように、アンカ部には可動部6を支持する第1アンカ部21及び第2アンカ部23と、固定電極57,58を夫々支持する第3アンカ部22及び第4アンカ部24とが設けられる。
 図1(a)に示すようにアンカ部21~24の全ては可動部6の最外周を囲んだ領域Cよりも内側に位置している。これにより、例えば応力の影響を受けて支持基板3が変形しても、各アンカ部21~24から可動部6や検出部等の各素子部分に伝播される歪みの影響を小さくできる。特に、素子部13を構成する可動部6下や可動電極下のみならず固定電極や支持部8~11を構成する腕部25~28、50~53の下にも絶縁層がなく支持基板3上から浮いていることが好適である。
 以上により歪みによる可動電極59,60と固定電極57,58との相対位置の変化を小さくでき、出力のばらつきを小さくでき優れた検出精度を得ることが出来る。また、図1(a)に示すように、各アンカ部21~24を可動部6の中心Oから一定の範囲内の中央領域に集約させることで、より歪みの影響を小さくでき、検出精度を向上させることが可能になる。
 また図1(a)に示すように、第1検出部61及び第2検出部62と電気的に接続される配線層70~72が、アンカ部21,22,24との接続位置から可動部6やアンカ部21,22,24から延びる2本の腕部間に形成されたSOI層5が除去されて成るスリット40、43,44,54,55を通って可動部6の外側にまで引き出されている。すなわち本実施形態では、アンカ部21~24を可動部6の最外周で囲まれた領域Cよりも内側に集約させても、配線層70~72をアンカ部21~24との接続位置から表面をつたって形成でき、各アンカ部21~24に低負荷な状態で配線を接続することが出来る。また、多層配線基板等を用いる必要もないので、製造費も抑えることが出来る。
 なおスリット40、43,44,54,55の間隔は、例えば10~30μm程度であるが、本実施形態で言うスリットとは、2つの対向する壁面間の空間を指し、配線層を可動部6の内側から外側にSOI層が除去された表面(例えば酸化絶縁層4の表面)をつたって引き出すために設けた空間はスリットである。
 また図1(a)のように櫛歯状電極構造において、可動部6には、可動部6の最外周を囲んだ領域Cよりも内側に、固定電極57,58を設けるための空間19が設けられている。そしてこの空間19内に固定電極57,58を支持する第3アンカ部22及び第4アンカ部24が設けられ、可動部6の最外周面から空間19に連続するスリット43、44が設けられている。またこの実施形態では、アンカ部22,24から2本の腕部がスリット54,55を介して延出している。そして配線層71,72は、空間19及びスリット43、44,54,55を通って素子部13の外側に引き出されている。このような構成とすることで、固定電極の形成空間を利用して、配線層71,72を可動部6の内側に設けられたアンカ部22,24との接続位置から容易に素子部13の外側に引き出すことが出来る。また第1アンカ部21にはスリット40を備える2本の腕部25,26を形成し、このスリット40に配線層70を通して素子部13の外部に引き出している。例えば腕部25、26は無くてもよいが、可動部6の内側に第1アンカ部21及び第2アンカ部23があるので、可動部6に対する支持部8~11を可動部6の外側に設けて可動部6を外側で安定して支持するには、第1アンカ部21及び第2アンカ部22に高剛性の腕部を設け、この腕部を可動部6の中心Oから離れる方向に引き出すことが好適である。そしてこの腕部にスリット40を設けることで、配線層70をスリット40に通して素子部13の外部に簡単且つ適切に引き出すことが可能になる。
 図4は、図1(a)とは別の実施形態における加速度センサ100の平面図、図5は、図4に示す加速度センサ100をD-D線に沿って高さ方向に切断し矢印方向から見た部分断面図、図6は、図4に示す加速度センサ100をE-E線に沿って高さ方向に切断し矢印方向から見た部分断面図、図7は、図4に示す加速度センサ100をF-F線に沿って高さ方向に切断し矢印方向から見た部分断面図、である。
 図4に示す構造では、第1アンカ部21及び第2アンカ部23の夫々から延びる各腕部101,102,110,111が可動部6の外周に沿うように略L字型で形成されている。また各腕部101,102,110,111は、夫々、略E字状で形成されたばね部120を介して可動部6を支持している。
 図4、図7に示すように、第1アンカ部21から延びる2本の腕部101,102の間には所定間隔のスリット146が形成され、スリット146内には、酸化絶縁層4を介してSOI層が残されてなるリブ部145が形成されている。そしてリブ部145上に配線層130が形成されている。リブ部145は配線層130下の全体に形成されている。
 また、図4には、可動部6のY1側に位置する最外周面にスリット121が形成されており、可動部6にはスリット121よりも内側に固定電極144を形成するための空間が設けられている。また、可動部6のY2側に位置する最外周面にスリット122が形成されており、可動部6にはスリット122よりも内側に固定電極144を形成するための空間が形成されている。
 図4に示すように、可動部6の内側に形成された空間には第3アンカ部22及び第4アンカ部24が形成され、各アンカ部22,24から2本の腕部123~126が延出して形成されている。また腕部123,124の間、及び腕部125,126の間には所定間隔のスリット127,128が形成され、各スリット127,128は、可動部6に形成されたスリット121,122と空間的に連続して外部にまで露出するスリットが形成されている。
 図4、5、図6に示すように、スリット127,121には、酸化絶縁層4を介してSOI層が残されてなるリブ部140が形成されている。そしてリブ部140上に配線層129が形成されている。リブ部140は配線層129下の全体に形成されている。また図4,図5に示すように、スリット122,128を通って外部に引き出された配線層131も同様にリブ部141上に形成される。リブ部の幅寸法は、5~20μm程度である。
 このようにリブ部上に配線層129~131を形成することで、配線層129~131をアンカ部表面と同じSOI層の表面に形成できるので配線層129~131を適切且つ容易に接続不良等起こすことなく形成できる。またリブ部140,141,145の下には絶縁層4が残されて支持基板3に固定支持されているので、リブ部140,141,145を支持基板3上にしっかり固定できる。よって振動等によっても配線層129~131が不用意に動くといった問題がなく電気的安定性を向上させることができる。
 次に図8に示す他の実施形態では、可動部6の最外周面を囲む領域Gの内側に複数のアンカ部150~155,158,159が集約され、アンカ部150~155にばね部157が連設され、図1(a)や図4と異なってばね部157により腕部を介さずに直接、可動部6を領域Gよりも内側にて支持している。
 図9に示す他の実施形態は、X軸方向及びY軸方向対応型の加速度センサ160である。図9に示す櫛歯状の可動電極162,164と固定電極161,163とがX軸検知用で、櫛歯状の可動電極166,167と固定電極165,168とがY軸検知用である。図9でも、可動部6の最外周面を囲む領域Hの内側にアンカ部170~178が設けられる。
 また図8,図9に示すように、アンカ部との接続位置から素子部180,181の外側に向けて延出する配線層182~189は、素子部180,181に形成されたスリット190~196を通って素子部180,181の外方に延出している。
 上記した本実施形態の加速度センサはX軸検知用、Y軸検知用、及びZ軸検知用の個々の検知用として、あるいは図9のような2軸以上の検知用として用いられる。
 本実施形態では櫛歯状電極以外にも適用できるが、特に櫛歯状電極の構成に効果的に適用できる。
 本実施形態は加速度センサのみならず角速度センサ等にも適用可能である。
図1(a)は本実施形態における加速度センサの平面図、図1(b)は、矢印A方向から見たビーム部の側面図、図1(c)は、高さ方向に加速度が作用して変位したビーム部及び可動部の側面図、 ばね部、ビーム部、及び腕部の一部を示す拡大斜視図、 図1(a)に示すB-B線に沿って高さ方向に切断した切断面を矢印方向から見た部分断面図、 図1(a)とは別の実施形態における加速度センサの平面図、 図4に示す加速度センサをD-D線に沿って高さ方向に切断し矢印方向から見た部分断面図、 図4に示す加速度センサをE-E線に沿って高さ方向に切断し矢印方向から見た部分断面図、 図4に示す加速度センサをF-F線に沿って高さ方向に切断し矢印方向から見た部分断面図、 別の実施形態における加速度センサの平面図、 別の実施形態における加速度センサの平面図、 図1に示す加速度センサに用いられる櫛歯状構造の可動電極と固定電極を高さ方向から切断した断面図であり、(a)は初期状態と、初期状態から可動部が下方向に移動したときの図、(b)は初期状態と、初期状態から可動部が上方向に移動したときの図、
符号の説明
1、100、160 加速度センサ
2 SOI基板
3 支持基板
4 酸化絶縁層
5 SOI層(活性層)
6 可動部
8~11 支持部
13、180、181素子部
21~24、150~155、158、159、170~178 アンカ部
29 アンカ側ばね部
30~33 ビーム部
34 可動部側ばね部
40、43、44、54、55、121、122、127、128、146、190~196 スリット
57、58、161、163、165、168 固定電極
59、60、162、164、166、167 可動電極
61 第1検出部
62 第2検出部
70~72、129~131、182~189 配線層
140、141、145 リブ部

Claims (5)

  1.  支持基板と絶縁層とSOI層より成るSOI基板を用いて形成された物理量センサにおいて、
     前記SOI層には、前記絶縁層が除去された前記支持基板の上方に位置する可動部及び前記可動部の変位量を検出するための検出部にて構成される素子部と、前記素子部を支持するための絶縁層上に形成されたアンカ部とが形成されており、
     前記アンカ部は前記可動部の最外周を囲んだ領域よりも内側に位置し、
     前記検出部と電気的に接続される配線層が、前記アンカ部との接続位置から前記素子部に形成された前記SOI層が除去されて成るスリットを通って前記素子部の外側に引き出されていることを特徴とする物理量センサ。
  2.  前記スリット内には、前記絶縁層を介して前記SOI層が残されてなるリブ部が前記アンカ部から前記素子部の外側に延出して形成されており、前記配線層は前記アンカ部との接続位置から前記リブ部の表面に形成されている請求項1記載の物理量センサ。
  3.  前記アンカ部は、前記可動部の略中央位置に集約されている請求項1又は2に記載の物理量センサ。
  4.  前記検出部は、平面的に交互に並設された櫛歯状の可動電極と固定電極とで構成され、前記可動電極は、前記絶縁層が除去された前記支持基板の上方に位置して前記可動部と一体化しており、前記固定電極は前記可動部から分離した位置に設けられており、前記アンカ部は前記可動部を支持するアンカ部と、前記固定電極を支持するアンカ部を備える請求項1ないし3のいずれかに記載の物理量センサ。
  5.  前記可動部には、前記可動部の最外周を囲んだ領域よりも内側に、前記固定電極を設けるための空間が設けられており、前記空間内に前記固定電極を支持するアンカ部が設けられ、前記可動部の最外周面から前記空間に連続する前記スリットが設けられ、前記配線層は、前記空間及び前記スリットを通って前記素子部の外側に引き出されている請求項4記載の物理量センサ。
PCT/JP2009/051934 2008-02-07 2009-02-05 物理量センサ WO2009099124A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-027863 2008-02-07
JP2008027863 2008-02-07

Publications (1)

Publication Number Publication Date
WO2009099124A1 true WO2009099124A1 (ja) 2009-08-13

Family

ID=40952197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051934 WO2009099124A1 (ja) 2008-02-07 2009-02-05 物理量センサ

Country Status (1)

Country Link
WO (1) WO2009099124A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377346B2 (en) 2019-09-11 2022-07-05 Murata Manufacturing Co., Ltd. Low-noise multi axis MEMS accelerometer
US11467181B2 (en) 2019-09-11 2022-10-11 Murata Manufacturing Co., Ltd. Low-noise multi-axis MEMS accelerometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166999A (ja) * 2001-12-03 2003-06-13 Denso Corp 半導体力学量センサ
JP2007078439A (ja) * 2005-09-13 2007-03-29 Sony Corp 容量検出型センサ素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166999A (ja) * 2001-12-03 2003-06-13 Denso Corp 半導体力学量センサ
JP2007078439A (ja) * 2005-09-13 2007-03-29 Sony Corp 容量検出型センサ素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377346B2 (en) 2019-09-11 2022-07-05 Murata Manufacturing Co., Ltd. Low-noise multi axis MEMS accelerometer
US11467181B2 (en) 2019-09-11 2022-10-11 Murata Manufacturing Co., Ltd. Low-noise multi-axis MEMS accelerometer

Similar Documents

Publication Publication Date Title
JP5175308B2 (ja) 物理量センサ
TWI417547B (zh) Capacitive sensor
JP6020392B2 (ja) 加速度センサ
WO2016119418A1 (zh) 一种加速度计中的z轴结构
US9739797B2 (en) Sensor device
JP2007298410A (ja) 静電容量式センサ
JP5790003B2 (ja) 加速度センサー
JP6020341B2 (ja) 容量式物理量センサおよびその製造方法
WO2009099124A1 (ja) 物理量センサ
JP2008275325A (ja) センサ装置
WO2009099123A1 (ja) 物理量センサ及びその製造方法
JP5083635B2 (ja) 加速度センサ
JP4775412B2 (ja) 半導体物理量センサ
JP2006153481A (ja) 力学量センサ
JP5783201B2 (ja) 容量式物理量センサ
JP2009270944A (ja) 静電容量型加速度センサ
JP2009300225A (ja) 静電容量型加速度センサ
JP2010216834A (ja) 力学量検出センサ
JP2008190887A (ja) センサ
WO2013073163A1 (ja) 加速度センサ
JP4855078B2 (ja) 振動検出器
JP2016070739A (ja) センサ
US10444015B2 (en) Sensor for detecting angular velocity
US9702894B2 (en) Monolithic z-axis torsional CMOS MEMS accelerometer
JP4353303B2 (ja) センサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP