WO2009098951A1 - Aqueous dispersion for chemical mechanical polishing, kit for preparing the dispersion, method for preparing aqueous dispersion for chemical mechanical polishing using the kit, and chemical mechanical polishing method for semiconductor device - Google Patents

Aqueous dispersion for chemical mechanical polishing, kit for preparing the dispersion, method for preparing aqueous dispersion for chemical mechanical polishing using the kit, and chemical mechanical polishing method for semiconductor device Download PDF

Info

Publication number
WO2009098951A1
WO2009098951A1 PCT/JP2009/051036 JP2009051036W WO2009098951A1 WO 2009098951 A1 WO2009098951 A1 WO 2009098951A1 JP 2009051036 W JP2009051036 W JP 2009051036W WO 2009098951 A1 WO2009098951 A1 WO 2009098951A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical mechanical
mechanical polishing
aqueous dispersion
composition
kit
Prior art date
Application number
PCT/JP2009/051036
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Takemura
Hirotaka Shida
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to JP2009552431A priority Critical patent/JP5408437B2/en
Publication of WO2009098951A1 publication Critical patent/WO2009098951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to an aqueous dispersion for chemical mechanical polishing, a kit for preparing the dispersion, a method for preparing an aqueous dispersion for chemical mechanical polishing using the kit, and a chemical mechanical polishing method for a semiconductor device.
  • Copper damascene wiring mounted on a high-performance LSI is formed using chemical mechanical polishing (hereinafter also referred to as “CMP”).
  • CMP chemical mechanical polishing
  • a first polishing process for mainly removing copper and a second polishing process for removing unnecessary metals and insulating films are performed.
  • the first polishing step is required to polish the copper film at a high speed and suppress copper dishing without substantially removing the barrier metal film such as tantalum or titanium.
  • the polishing friction is large, film peeling or film destruction occurs. For this reason, it is becoming difficult to apply the conventional chemical mechanical polishing aqueous dispersion (hereinafter also referred to as “CMP slurry”) having a large polishing friction.
  • the second polishing step is also polished with low friction to increase the hydrophilicity between the surface to be polished and the polishing cloth, and reduce scratches on copper, copper corrosion, and scratches on the insulating film, It is desired to improve copper dishing and erosion.
  • JP-A-2003-282494, JP-A-2002-270549, and JP-T-2002-517593 disclose polyvinyl pyrrolidone (PVP).
  • the CMP slurry used is disclosed.
  • Japanese Patent Application Laid-Open No. 2005-340755 discloses dishing or by using a vinylpyrrolidone-vinylimidazole copolymer obtained by polymerizing vinylpyrrolidone and an azole compound having a vinyl group to increase the affinity with copper wiring.
  • a polishing composition and a polishing method for suppressing erosion are also disclosed.
  • JP 2004-175905 A discloses a CMP slurry using two kinds of amino acids.
  • the purpose of the present invention is chemical mechanical polishing that can uniformly and stably polish a copper film with low friction without causing defects in the copper film or insulating film while achieving both high polishing speed and high planarization characteristics.
  • An aqueous dispersion, a kit for preparing the dispersion, a method for preparing a chemical mechanical polishing aqueous dispersion using the kit, and a chemical mechanical polishing method for a semiconductor device are provided.
  • An aqueous dispersion for chemical mechanical polishing comprises (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group, (B) at least one amino acid selected from glycine, alanine and aspartic acid, C) containing an oxidizing agent, (D) abrasive grains, and (E) an anionic surfactant, the content (W A ) [mass%] of the component (A) and the content of the component (B)
  • the ratio (W A / W B ) to the amount (W B ) [% by mass] is 0.5 or more and 50 or less.
  • the compound (A) having a nitrogen-containing five-membered ring and a carboxyl group has at least one heterocyclic structure selected from a pyrrole skeleton, an imidazole skeleton, and a pyrazole skeleton.
  • the compound (A) having a nitrogen-containing five-membered ring and a carboxyl group may be histidine or tryptophan.
  • the (D) abrasive grains may be silica.
  • the (E) anionic surfactant may be an alkylbenzene sulfonate.
  • the pH may be 8-11.
  • the chemical mechanical polishing aqueous dispersion preparation kit prepares the chemical mechanical polishing aqueous dispersion by mixing the third composition, the fourth composition, and the fifth composition.
  • the third composition comprises (D) abrasive grains
  • the fourth composition comprises (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group, and (B) It contains at least one amino acid selected from glycine, alanine and aspartic acid and (E) an anionic surfactant
  • the fifth composition contains (C) an oxidizing agent.
  • the compound (A) having a nitrogen-containing five-membered ring and a carboxyl group may be histidine or tryptophan.
  • the (E) anionic surfactant may be an alkylbenzene sulfonate.
  • the method for preparing an aqueous dispersion for chemical mechanical polishing according to the present invention includes a step of mixing each composition according to the kit for preparing an aqueous dispersion for chemical mechanical polishing.
  • the chemical mechanical polishing aqueous dispersion preparation kit can store a part of the components contained in the chemical mechanical polishing aqueous dispersion as separate compositions, it increases the storage stability of each component. Can do. And since the aqueous dispersion for chemical mechanical polishing can be prepared by mixing and diluting each composition at the time of use, it can always exhibit fixed polishing performance.
  • the chemical mechanical polishing aqueous dispersion according to the present invention comprises (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group (hereinafter also simply referred to as “component (A)”), (B) glycine, alanine and At least one amino acid selected from aspartic acid (hereinafter also simply referred to as “component (B)”), (C) an oxidizing agent, (D) abrasive grains, and (E) an anionic surfactant,
  • the ratio (W A / W B ) between the content (W A ) [mass%] of the component (A) and the content (W B ) [mass%] of the component ( B ) is 0 .5 or more and 50 or less.
  • a compound having a nitrogen-containing five-membered ring and a carboxyl group easily forms a coordination bond with a copper ion via a nitrogen atom on the ring, and increases the affinity with copper and copper ion, and is adsorbed on the surface of the copper film. Can be reasonably protected. Further, the presence of a carboxyl group in the molecule suppresses excessive protection of the copper surface and does not reduce the polishing rate.
  • the compound having a nitrogen-containing five-membered ring and a carboxyl group preferably has at least one heterocyclic structure selected from a pyrrole skeleton, an imidazole skeleton, and a pyrazole skeleton, from the viewpoint of having the above-described effects. Particularly preferred is tryptophan.
  • Component (B) At least one amino acid selected from glycine, alanine, and aspartic acid used in the present embodiment has an action of promoting the polishing rate for the copper film.
  • the component (B) is preferably a copper ion or an amino acid having a coordination ability with respect to the surface of the copper film. More preferably, it is an amino acid having a chelate coordination ability to the surface of a copper ion or a copper film.
  • the said (B) component can be used individually by 1 type or in combination of 2 or more types.
  • the surface roughness of the copper film is suppressed and high flatness is maintained.
  • the polishing rate for the copper film can be increased.
  • it can coordinate easily with the copper ion eluted in the slurry by grinding
  • polishing defects such as scratches on the copper film.
  • unnecessary metals can be efficiently captured from the surface of the polished object after polishing, and unnecessary metals can be efficiently captured from the surface of the object to be polished. Can be removed.
  • the water-soluble polymer when a water-soluble polymer described later is used in combination, depending on the type and amount of addition, the water-soluble polymer may be adsorbed on the surface of the copper film to inhibit polishing and reduce the polishing rate. Even in such a case, the polishing rate of the copper film can be increased by using both the component (A) and the component (B) in spite of the addition of the water-soluble polymer.
  • the preferred range of the content of the component (A) and the component (B) with respect to the total mass of the chemical mechanical polishing aqueous dispersion is as described above, but the content of the component (A) (W A ) [mass%] And (B) content (W B ) [mass%] ratio (W A / W B ) is 0.5 or more and 50 or less.
  • the value of W A / W B is more preferably 0.5 to 5, and particularly preferably 0.5 or more and 1 or less. When the value of W A / W B of less than 0.5 is not preferable surface roughness and scratches suppression effect of the copper film is insufficient.
  • (C) Oxidizing agent used in this embodiment oxidizes the surface of the copper film and promotes a complexing reaction with a polishing liquid component, thereby forming a fragile modified layer of the copper film. Creates on the surface and has an effect of making the copper film easy to polish.
  • the (D) abrasive grain used in the present embodiment is a so-called abrasive and has an action of mechanically polishing a copper film.
  • the abrasive grains (D) used in this embodiment are preferably inorganic particles or organic-inorganic composite particles.
  • examples include silica synthesized by hydrolytic condensation of metal alkoxides; high-purity colloidal silica synthesized by an inorganic colloid method or the like and having impurities removed by purification.
  • colloidal silica is particularly preferable.
  • Colloidal silica is alkaline and stable at pH 8-11 and can be further stabilized in the presence of an anionic surfactant.
  • colloidal silica is spherical and has a uniform particle size, it can provide a stable high polishing rate for the copper film.
  • the organic / inorganic composite particles may be formed using the polymer particles, silica particles, alumina particles, titania particles and the like.
  • the composite particles may be formed such that silica particles or the like are present on the surface of the polymer particles using a polycondensate such as polysiloxane, polyaluminoxane, or polytitanoxane as a binder.
  • the functional group such as a hydroxyl group may be chemically bonded to the functional group of the polymer particle.
  • organic-inorganic composite particles composite particles in which organic particles and inorganic particles having different zeta potential signs are combined by electrostatic force in an aqueous dispersion containing these particles may be used.
  • the composite particles integrated by electrostatic force are polycondensed with alkoxysilane, aluminum alkoxide, titanium alkoxide, etc. in the presence of the composite particles, so that at least the surface thereof has polysiloxane, polyaluminoxane, polytitanoxane.
  • a polycondensate such as the above may be further formed.
  • the (E) anionic surfactant preferably has a carboxyl group, a sulfonic acid group, a phosphoric acid group, and at least one functional group selected from ammonium salts and metal salts of these functional groups.
  • Organic acid, inorganic acid, and salt thereof may contain an organic acid, an inorganic acid, and a salt thereof as necessary.
  • Organic acids, inorganic acids, and salts thereof have the effect of further promoting the polishing rate for the copper film when used in combination with the component (A) and the component (B).
  • organic acid, inorganic acid, and salts thereof include, for example, citric acid, malic acid, oxalic acid, maleic acid, malonic acid, succinic acid, tartaric acid, lactic acid, benzoic acid, and other organic acids; carbonic acid, nitric acid, sulfuric acid, And inorganic acids such as amidosulfuric acid and phosphoric acid; and ammonium and potassium salts thereof.
  • the pH of the chemical mechanical polishing aqueous dispersion according to this embodiment is preferably 8 to 11, and more preferably 9 to 10.5.
  • a commonly used anticorrosive agent such as benzotriazole or a derivative thereof.
  • basic compounds such as potassium hydroxide, ammonia, ethylenediamine, and TMAH (tetramethylammonium hydroxide), can be added, for example.
  • Ammonia is preferably used because it itself has the ability to form a complex with copper and promotes the complex formation of component (A) or component (B) with copper.
  • the to-be-processed object 100 is shown to FIG. 1A.
  • the target object 100 includes a substrate 10.
  • the base 10 has at least a semiconductor substrate (not shown).
  • the base 10 may be composed of, for example, a silicon substrate and a silicon oxide film formed thereon.
  • a functional device such as a transistor may be formed on the semiconductor substrate of the base 10.
  • the copper polishing step is a step of polishing the copper film 20 of the workpiece 100 using the chemical mechanical polishing aqueous dispersion.
  • the copper film 20 other than the portion buried in the wiring recess 22 is polished until the barrier metal film 18 is exposed.
  • the chemical mechanical polishing aqueous dispersion can be supplied in a state where it can be used as a polishing composition as it is after the preparation.
  • a polishing composition that is, a concentrated polishing composition
  • containing each component of the chemical mechanical polishing aqueous dispersion at a high concentration is prepared, and the concentrated polishing composition is used at the time of use. It may be diluted to obtain a desired chemical mechanical polishing aqueous dispersion.
  • a plurality of compositions (for example, two or three compositions) containing any of the above components can be prepared and used by mixing them at the time of use.
  • this may be supplied to the chemical mechanical polishing apparatus, or a plurality of liquids may be supplied individually to the chemical mechanical polishing apparatus.
  • a chemical mechanical polishing aqueous dispersion may be prepared on a surface plate.
  • the chemical mechanical polishing aqueous dispersion can be prepared by mixing a plurality of liquids using the following first and second kits.
  • the mixing method and timing are not particularly limited.
  • the first composition and the second composition containing each component at a high concentration are prepared, and the first composition and the second composition are diluted at the time of use, and these are mixed,
  • a chemical mechanical polishing aqueous dispersion in which the concentration of is within the above range is prepared.
  • the concentration of each component of the chemical mechanical polishing aqueous dispersion actually used is 2 What is necessary is just to prepare the 1st composition and 2nd composition which were concentrated twice.
  • concentration of 2 times or more and mixing these by the weight ratio of 1: 1 it dilutes with water so that each component may become the said range. Also good.
  • the second kit is a kit for preparing the chemical mechanical polishing aqueous dispersion by mixing the third composition, the fourth composition, and the fifth composition. is there.
  • the third composition is (D) an aqueous dispersion containing abrasive grains
  • the fourth composition is (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group
  • the fifth composition is (C) an aqueous solution containing an oxidizing agent. .
  • This silica particle dispersion is again passed through the hydrogen-type cation exchange resin layer to remove most of sodium, and then a 10% by mass potassium hydroxide aqueous solution is added to obtain a silica particle concentration of 28.0% by mass. %
  • Aqueous dispersion “D25” containing colloidal silica particles having a pH of 10.0 was obtained.
  • the average primary particle diameter of the colloidal silica particles contained in this aqueous dispersion was 26 nm, and the average secondary particle diameter was 26 nm.
  • a chemical mechanical polishing apparatus (Applied Materials Co., Model “MIRRA-Mesa”) has a porous polyurethane polishing pad (Rohm & Haas Co., Ltd.)
  • a chemical mechanical polishing treatment is performed for 1 minute under the following polishing conditions for the following polishing rate measurement substrate while supplying the chemical mechanical polishing aqueous dispersion prepared by the above method with the product number “IC1010”)
  • the polishing rate of the copper film was calculated by the following method.
  • the polishing rate of the copper film is preferably 8,000 angstroms or more, and more preferably 10,000 angstroms or more.
  • the polishing rate for the copper film was sufficiently high at 8,000 angstroms / minute or more. Moreover, the dishing of the copper film was suppressed to 1000 angstroms or less, and the erosion of the copper film was also suppressed to 500 angstroms or less. Furthermore, the surface roughness of the copper film was not recognized.
  • the chemical mechanical polishing aqueous dispersion of Comparative Example 2 does not contain the component (B).
  • the chemical mechanical polishing aqueous dispersion of Comparative Example 2 was used, it was confirmed that the polishing rate for the copper film was insufficient.
  • the content ratio (W A / W B ) of the component (A) and the component (B) contained in the chemical mechanical polishing aqueous dispersion of Comparative Example 3 is 0.17 (less than 0.5).
  • the chemical mechanical polishing aqueous dispersion of Comparative Example 3 was used, the effect of protecting the copper film was not sufficient, and surface roughness of the copper film was observed.
  • the content ratio (W A / W B ) of the component (A) and the component (B) contained in the chemical mechanical polishing aqueous dispersion of Comparative Example 4 is 0.4 (less than 0.5).
  • the chemical mechanical polishing aqueous dispersion of Comparative Example 4 was used, the effect of protecting the copper film was not sufficient, and surface roughness of the copper film was observed.
  • the component (A) and the component (B) are contained in a specific ratio, and (E) an anionic interface It has been found that the polishing performance of the chemical mechanical polishing aqueous dispersion on the copper film is significantly improved by containing the activator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Disclosed is an aqueous dispersion for chemical mechanical polishing, which contains (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group, (B) at least one amino acid selected from glycine, alanine and aspartic acid, (C) an oxidizing agent, (D) abrasive grains and (E) an anionic surfactant. The ratio between the amount (WA) [% by mass] of the component (A) contained therein and the amount (WB) [% by mass] of the component (B) contained therein, namely WA/WB, is not less than 0.5 but not more than 50.

Description

化学機械研磨用水系分散体、および該分散体を調製するためのキット、該キットを用いた化学機械研磨用水系分散体の調製方法、ならびに半導体装置の化学機械研磨方法Chemical mechanical polishing aqueous dispersion, kit for preparing the dispersion, method for preparing chemical mechanical polishing aqueous dispersion using the kit, and chemical mechanical polishing method for semiconductor device
 本発明は、化学機械研磨用水系分散体、および該分散体を調製するためのキット、該キットを用いた化学機械研磨用水系分散体の調製方法、ならびに半導体装置の化学機械研磨方法に関する。 The present invention relates to an aqueous dispersion for chemical mechanical polishing, a kit for preparing the dispersion, a method for preparing an aqueous dispersion for chemical mechanical polishing using the kit, and a chemical mechanical polishing method for a semiconductor device.
 高性能LSIに搭載される銅ダマシン配線は、化学機械研磨(以下、「CMP」ともいう。)を用いて形成される。CMPでは、主に銅を削る第1研磨工程と、不要な金属および絶縁膜を削る第2研磨工程とが行なわれる。第1研磨工程は、銅膜を高速で研磨すること、およびタンタルやチタンなどのバリアメタル膜を実質的に削らずに銅ディッシングを抑制することが要求される。絶縁膜としてlow-k材料を用いる場合、研磨摩擦が大きいと膜剥れや膜自体の破壊が生じる。このため、従来の研磨摩擦が大きい化学機械研磨用水系分散体(以下、「CMPスラリー」ともいう。)では適用困難になりつつある。 Copper damascene wiring mounted on a high-performance LSI is formed using chemical mechanical polishing (hereinafter also referred to as “CMP”). In CMP, a first polishing process for mainly removing copper and a second polishing process for removing unnecessary metals and insulating films are performed. The first polishing step is required to polish the copper film at a high speed and suppress copper dishing without substantially removing the barrier metal film such as tantalum or titanium. In the case where a low-k material is used as the insulating film, if the polishing friction is large, film peeling or film destruction occurs. For this reason, it is becoming difficult to apply the conventional chemical mechanical polishing aqueous dispersion (hereinafter also referred to as “CMP slurry”) having a large polishing friction.
 第2研磨工程もまた、第1研磨工程と同様に低摩擦で研磨して被研磨面と研磨布との親水性を高め、銅上スクラッチや銅コロージョン、絶縁膜上のスクラッチを低減するとともに、銅ディッシングやエロージョンを改善することが望まれている。 Similarly to the first polishing step, the second polishing step is also polished with low friction to increase the hydrophilicity between the surface to be polished and the polishing cloth, and reduce scratches on copper, copper corrosion, and scratches on the insulating film, It is desired to improve copper dishing and erosion.
 上述したような第1研磨工程および第2研磨工程における要求に対し、特開2003-282494号公報、特開2002-270549号公報、特表2002-517593号公報には、ポリビニルピロリドン(PVP)を用いたCMPスラリーが開示されている。また、特開2005-340755号公報には、ビニルピロリドンとビニル基を有するアゾール化合物とを重合させたビニルピロリドン-ビニルイミダゾール共重合体を用いて銅配線との親和性を高めることにより、ディッシングやエロージョンを抑制する研磨組成物および研磨方法も開示されている。さらに、特開2004-175905号公報には、二種類のアミノ酸を用いたCMPスラリーが開示されている。 In response to the requirements in the first polishing step and the second polishing step as described above, JP-A-2003-282494, JP-A-2002-270549, and JP-T-2002-517593 disclose polyvinyl pyrrolidone (PVP). The CMP slurry used is disclosed. Japanese Patent Application Laid-Open No. 2005-340755 discloses dishing or by using a vinylpyrrolidone-vinylimidazole copolymer obtained by polymerizing vinylpyrrolidone and an azole compound having a vinyl group to increase the affinity with copper wiring. A polishing composition and a polishing method for suppressing erosion are also disclosed. Further, JP 2004-175905 A discloses a CMP slurry using two kinds of amino acids.
 しかしながら、近年、配線の更なる微細化に伴い銅のディッシングやコロージョン、絶縁膜のスクラッチに対する要求がさらに厳しくなっている。特に銅のディッシングは、1,000オングストローム以下にまで低減することが要求されている。さらに、スループット向上の観点から研磨速度の高速化も求められ、8,000オングストローム/分以上の研磨速度が要求されている。上記のポリビニルピロリドンを用いたCMPスラリー、ビニルピロリドン-ビニルイミダゾール共重合体を用いたCMPスラリー、二種類のアミノ酸を用いたCMPスラリーでは、これらの要求を満たすことはできなかった。そこで、次世代LSIのCMPに要求される高研磨速度および被研磨面の平坦化の両方を達成可能なCMPスラリーの開発が要求されている。 However, in recent years, with further miniaturization of wiring, demands for copper dishing and corrosion, and scratches on insulating films have become more severe. In particular, copper dishing is required to be reduced to 1,000 angstroms or less. Further, from the viewpoint of improving the throughput, a higher polishing rate is also required, and a polishing rate of 8,000 angstroms / minute or more is required. These CMP slurries using polyvinyl pyrrolidone, CMP slurries using vinyl pyrrolidone-vinyl imidazole copolymer, and CMP slurries using two types of amino acids could not meet these requirements. Therefore, development of a CMP slurry that can achieve both the high polishing rate and flattening of the surface to be polished required for next-generation LSI CMP is required.
 本発明の目的は、銅膜や絶縁膜に欠陥を引き起こすことなく、高研磨速度と高平坦化特性を両立させながら、銅膜を低摩擦で均一に安定して研磨することができる化学機械研磨用水系分散体、および該分散体を調製するためのキット、該キットを用いた化学機械研磨用水系分散体の調製方法、ならびに半導体装置の化学機械研磨方法を提供する。 The purpose of the present invention is chemical mechanical polishing that can uniformly and stably polish a copper film with low friction without causing defects in the copper film or insulating film while achieving both high polishing speed and high planarization characteristics. An aqueous dispersion, a kit for preparing the dispersion, a method for preparing a chemical mechanical polishing aqueous dispersion using the kit, and a chemical mechanical polishing method for a semiconductor device are provided.
 本発明に係る化学機械研磨用水系分散体は、(A)含窒素五員環およびカルボキシル基を有する化合物と、(B)グリシン、アラニンおよびアスパラギン酸から選択される少なくとも1種のアミノ酸と、(C)酸化剤と、(D)砥粒と、(E)アニオン性界面活性剤と、を含み、前記(A)成分の含有量(W)[質量%]と前記(B)成分の含有量(W)[質量%]との比率(W/W)は、0.5以上50以下である。 An aqueous dispersion for chemical mechanical polishing according to the present invention comprises (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group, (B) at least one amino acid selected from glycine, alanine and aspartic acid, C) containing an oxidizing agent, (D) abrasive grains, and (E) an anionic surfactant, the content (W A ) [mass%] of the component (A) and the content of the component (B) The ratio (W A / W B ) to the amount (W B ) [% by mass] is 0.5 or more and 50 or less.
 本発明に係る化学機械研磨用水系分散体において、前記(A)含窒素五員環およびカルボキシル基を有する化合物は、ピロール骨格、イミダゾール骨格およびピラゾール骨格から選択される少なくとも1種の複素環構造を有することができる。 In the chemical mechanical polishing aqueous dispersion according to the invention, the compound (A) having a nitrogen-containing five-membered ring and a carboxyl group has at least one heterocyclic structure selected from a pyrrole skeleton, an imidazole skeleton, and a pyrazole skeleton. Can have.
 本発明に係る化学機械研磨用水系分散体において、前記(A)含窒素五員環およびカルボキシル基を有する化合物は、ヒスチジンまたはトリプトファンであることができる。 In the chemical mechanical polishing aqueous dispersion according to the present invention, the compound (A) having a nitrogen-containing five-membered ring and a carboxyl group may be histidine or tryptophan.
 本発明に係る化学機械研磨用水系分散体において、前記(D)砥粒は、シリカであることができる。 In the chemical mechanical polishing aqueous dispersion according to the present invention, the (D) abrasive grains may be silica.
 本発明に係る化学機械研磨用水系分散体において、前記(E)アニオン性界面活性剤は、アルキルベンゼンスルホン酸塩であることができる。 In the chemical mechanical polishing aqueous dispersion according to the present invention, the (E) anionic surfactant may be an alkylbenzene sulfonate.
 本発明に係る化学機械研磨用水系分散体において、pHは、8~11であることができる。 In the chemical mechanical polishing aqueous dispersion according to the present invention, the pH may be 8-11.
 本発明に係る化学機械研磨用水系分散体調製用キットは、第1の組成物および第2の組成物を混合して、上記の化学機械研磨用水系分散体を調製するためのキットであって、前記第1の組成物は、(D)砥粒を含み、前記第2の組成物は、(A)含窒素五員環およびカルボキシル基を有する化合物と、(B)グリシン、アラニンおよびアスパラギン酸から選択される少なくとも1種のアミノ酸と、(E)アニオン性界面活性剤と、を含み、前記第1の組成物および前記第2の組成物の少なくとも一方は、(C)酸化剤を含む。 The chemical mechanical polishing aqueous dispersion preparation kit according to the present invention is a kit for preparing the chemical mechanical polishing aqueous dispersion by mixing the first composition and the second composition. The first composition comprises (D) abrasive grains, the second composition comprises (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group, and (B) glycine, alanine and aspartic acid. At least one amino acid selected from (E) an anionic surfactant, and at least one of the first composition and the second composition contains (C) an oxidizing agent.
 本発明に係る化学機械研磨用水系分散体調製用キットは、第3の組成物、第4の組成物および第5の組成物を混合して、上記の化学機械研磨用水系分散体を調製するためのキットであって、前記第3の組成物は、(D)砥粒を含み、前記第4の組成物は、(A)含窒素五員環およびカルボキシル基を有する化合物と、(B)グリシン、アラニンおよびアスパラギン酸から選択される少なくとも1種のアミノ酸と、(E)アニオン性界面活性剤と、を含み、前記第5の組成物は、(C)酸化剤を含む。 The chemical mechanical polishing aqueous dispersion preparation kit according to the present invention prepares the chemical mechanical polishing aqueous dispersion by mixing the third composition, the fourth composition, and the fifth composition. The third composition comprises (D) abrasive grains, and the fourth composition comprises (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group, and (B) It contains at least one amino acid selected from glycine, alanine and aspartic acid and (E) an anionic surfactant, and the fifth composition contains (C) an oxidizing agent.
 本発明に係る化学機械研磨用水系分散体調製用キットにおいて、前記(A)含窒素五員環およびカルボキシル基を有する化合物は、ヒスチジンまたはトリプトファンであることができる。 In the chemical mechanical polishing aqueous dispersion preparation kit according to the present invention, the compound (A) having a nitrogen-containing five-membered ring and a carboxyl group may be histidine or tryptophan.
 本発明に係る化学機械研磨用水系分散体調製用キットにおいて、前記(E)アニオン性界面活性剤は、アルキルベンゼンスルホン酸塩であることができる。 In the chemical mechanical polishing aqueous dispersion preparation kit according to the present invention, the (E) anionic surfactant may be an alkylbenzene sulfonate.
 本発明に係る化学機械研磨用水系分散体の調製方法は、上記の化学機械研磨用水系分散体調製用キットにかかる各組成物を混合する工程を含む。 The method for preparing an aqueous dispersion for chemical mechanical polishing according to the present invention includes a step of mixing each composition according to the kit for preparing an aqueous dispersion for chemical mechanical polishing.
 本発明に係る半導体装置の化学機械研磨方法は、上記の化学機械研磨用水系分散体を用いて、半導体基板上に形成された銅または銅合金からなる膜を研磨するというものである。 The chemical mechanical polishing method for a semiconductor device according to the present invention is to polish a film made of copper or a copper alloy formed on a semiconductor substrate using the above chemical mechanical polishing aqueous dispersion.
 上記化学機械研磨用水系分散体を用いて化学機械研磨を行うことにより、銅膜や絶縁膜に欠陥を引き起こすことなく、高研磨速度と高平坦化特性を両立させながら、銅膜を低摩擦で均一に安定して研磨することができる。上記化学機械研磨用水系分散体は、特にダマシン法で二段階研磨処理を行う場合の第1研磨工程における研磨材として用いる場合に有用である。これにより、化学機械研磨後の銅残りが少なく、銅膜のディッシング、エロージョンおよびコロージョンの発生を大幅に抑制することができる。 By performing chemical mechanical polishing using the chemical mechanical polishing aqueous dispersion, the copper film can be made with low friction while achieving both high polishing speed and high planarization characteristics without causing defects in the copper film and insulating film. Polishing can be performed uniformly and stably. The chemical mechanical polishing aqueous dispersion is particularly useful when used as an abrasive in the first polishing step when a two-stage polishing process is performed by the damascene method. Thereby, there is little copper residue after chemical mechanical polishing, and the occurrence of dishing, erosion, and corrosion of the copper film can be significantly suppressed.
 上記化学機械研磨用水系分散体調製用キットは、上記化学機械研磨用水系分散体に含まれる成分の一部を別々の組成物として保管することができるため、各成分の保存安定性を高めることができる。そして、使用時に各組成物を混合・希釈することにより化学機械研磨用水系分散体を調製することができるので、常に一定の研磨性能を発揮することができる。 Since the chemical mechanical polishing aqueous dispersion preparation kit can store a part of the components contained in the chemical mechanical polishing aqueous dispersion as separate compositions, it increases the storage stability of each component. Can do. And since the aqueous dispersion for chemical mechanical polishing can be prepared by mixing and diluting each composition at the time of use, it can always exhibit fixed polishing performance.
図1Aは、本実施形態に係る化学機械研磨方法の一具体例を示す断面図である。FIG. 1A is a cross-sectional view showing a specific example of the chemical mechanical polishing method according to the present embodiment. 図1Bは、本実施形態に係る化学機械研磨方法の一具体例を示す断面図である。FIG. 1B is a cross-sectional view showing a specific example of the chemical mechanical polishing method according to the present embodiment. 図2は、本実施形態に用いる化学機械研磨装置を示す模式図である。FIG. 2 is a schematic view showing a chemical mechanical polishing apparatus used in the present embodiment.
 本発明に係る化学機械研磨用水系分散体は、(A)含窒素五員環およびカルボキシル基を有する化合物(以下、単に「(A)成分」ともいう。)と、(B)グリシン、アラニンおよびアスパラギン酸から選択される少なくとも1種のアミノ酸(以下、単に「(B)成分」ともいう。)と、(C)酸化剤と、(D)砥粒と、(E)アニオン性界面活性剤と、を含み、前記(A)成分の含有量(W)[質量%]と前記(B)成分の含有量(W)[質量%]との比率(W/W)は、0.5以上50以下である。 The chemical mechanical polishing aqueous dispersion according to the present invention comprises (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group (hereinafter also simply referred to as “component (A)”), (B) glycine, alanine and At least one amino acid selected from aspartic acid (hereinafter also simply referred to as “component (B)”), (C) an oxidizing agent, (D) abrasive grains, and (E) an anionic surfactant, The ratio (W A / W B ) between the content (W A ) [mass%] of the component (A) and the content (W B ) [mass%] of the component ( B ) is 0 .5 or more and 50 or less.
 以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
 1.化学機械研磨用水系分散体
 まず、本発明の一実施形態に係る化学機械研磨用水系分散体を構成する各成分について説明する。
1. First, each component constituting the chemical mechanical polishing aqueous dispersion according to an embodiment of the present invention will be described.
 1.1 (A)成分
 本実施形態に用いられる(A)含窒素五員環およびカルボキシル基を有する化合物は、後述する銅膜に対し高研磨速度を実現するための(B)成分の性能を保ちつつ、銅膜の表面荒れやスクラッチの発生を抑制する効果がある。
1.1 (A) Component (A) The compound having a nitrogen-containing five-membered ring and a carboxyl group used in this embodiment has the performance of the component (B) for realizing a high polishing rate with respect to a copper film described later. While maintaining, there is an effect of suppressing the surface roughness of the copper film and the generation of scratches.
 含窒素五員環およびカルボキシル基を有する化合物は、環上の窒素原子を介して銅イオンと配位結合を形成しやすく、銅および銅イオンとの親和性を高め、銅膜の表面に吸着して適度に保護することができる。また、分子内にカルボキシル基が存在することにより、銅表面の過度な保護が抑制され、研磨速度を低下させない。 A compound having a nitrogen-containing five-membered ring and a carboxyl group easily forms a coordination bond with a copper ion via a nitrogen atom on the ring, and increases the affinity with copper and copper ion, and is adsorbed on the surface of the copper film. Can be reasonably protected. Further, the presence of a carboxyl group in the molecule suppresses excessive protection of the copper surface and does not reduce the polishing rate.
 含窒素五員環およびカルボキシル基を有する化合物は、上記のような効果を有する観点から、ピロール骨格、イミダゾール骨格およびピラゾール骨格から選択される少なくとも1種の複素環構造を有することが好ましく、ヒスチジンまたはトリプトファンであることが特に好ましい。 The compound having a nitrogen-containing five-membered ring and a carboxyl group preferably has at least one heterocyclic structure selected from a pyrrole skeleton, an imidazole skeleton, and a pyrazole skeleton, from the viewpoint of having the above-described effects. Particularly preferred is tryptophan.
 上記(A)成分の含有量は、化学機械研磨用水系分散体の全質量に対し、0.001質量%以上5質量%以下が好ましく、0.01質量%以上1質量%以下がより好ましく、0.05質量%以上0.5質量%以下が特に好ましい。(A)成分の含有量が0.001質量%未満の場合には、銅膜の表面荒れやスクラッチの発生を十分に抑制する効果が得られないことがある。一方、(A)成分の含有量が5質量%を超えると、化学機械研磨用水系分散体の保存安定性が悪くなることがあり、また、コストも高くなり好ましくない。 The content of the component (A) is preferably 0.001% by mass or more and 5% by mass or less, more preferably 0.01% by mass or more and 1% by mass or less, based on the total mass of the chemical mechanical polishing aqueous dispersion. 0.05 mass% or more and 0.5 mass% or less are especially preferable. When the content of the component (A) is less than 0.001% by mass, the effect of sufficiently suppressing the surface roughness of the copper film and the occurrence of scratches may not be obtained. On the other hand, when the content of the component (A) exceeds 5% by mass, the storage stability of the chemical mechanical polishing aqueous dispersion may be deteriorated, and the cost is undesirably increased.
 1.2 (B)成分
 本実施形態に用いられる(B)グリシン、アラニンおよびアスパラギン酸から選択される少なくとも1種のアミノ酸は、銅膜に対する研磨速度を促進させる作用がある。(B)成分は、銅イオンまたは銅膜の表面に対し配位能力を有するアミノ酸が好ましい。より好ましくは、銅イオンまたは銅膜の表面に対しキレート配位能力を有するアミノ酸である。上記(B)成分は、1種単独でまたは2種以上を組み合わせて使用することができる。
1.2 (B) Component (B) At least one amino acid selected from glycine, alanine, and aspartic acid used in the present embodiment has an action of promoting the polishing rate for the copper film. The component (B) is preferably a copper ion or an amino acid having a coordination ability with respect to the surface of the copper film. More preferably, it is an amino acid having a chelate coordination ability to the surface of a copper ion or a copper film. The said (B) component can be used individually by 1 type or in combination of 2 or more types.
 上記(B)成分の含有量は、化学機械研磨用水系分散体の全質量に対し、0.01質量%以上5質量%以下であることが好ましく、0.05質量%以上2質量%以下であることがより好ましい。(B)成分の含有量が0.01質量%未満の場合には、実用的な研磨速度が得られないことがある。一方、(B)成分の含有量が5質量%を超えると、平坦性が不良となるおそれがある。 The content of the component (B) is preferably 0.01% by mass or more and 5% by mass or less, and 0.05% by mass or more and 2% by mass or less with respect to the total mass of the chemical mechanical polishing aqueous dispersion. More preferably. When the content of the component (B) is less than 0.01% by mass, a practical polishing rate may not be obtained. On the other hand, when the content of the component (B) exceeds 5% by mass, the flatness may be poor.
 本実施形態に係る化学機械研磨用水系分散体は、(A)成分と(B)成分を併用することにより、銅膜の表面荒れを抑制し高い平坦性を維持しつつ、銅および銅イオンとの親和性を高め、銅膜に対する研磨速度を促進させることができる。また、(A)成分と(B)成分とを併用することにより、銅膜の研磨によりスラリー中へ溶出した銅イオンと容易に配位することができ銅の析出を防ぐことができる。その結果、銅膜上のスクラッチなどの研磨欠陥の発生を抑制することができる。さらに、(A)成分と(B)成分とを併用することにより、研磨後の被研磨物表面から不要な金属を効率良く捕捉することができ、被研磨物表面から効率的に不要な金属を除去することができる。 In the chemical mechanical polishing aqueous dispersion according to the present embodiment, by using the component (A) and the component (B) in combination, the surface roughness of the copper film is suppressed and high flatness is maintained. Thus, the polishing rate for the copper film can be increased. Moreover, by using together (A) component and (B) component, it can coordinate easily with the copper ion eluted in the slurry by grinding | polishing of a copper film, and can prevent precipitation of copper. As a result, it is possible to suppress the occurrence of polishing defects such as scratches on the copper film. Furthermore, by using both the component (A) and the component (B), unnecessary metals can be efficiently captured from the surface of the polished object after polishing, and unnecessary metals can be efficiently captured from the surface of the object to be polished. Can be removed.
 また、後述する水溶性高分子を併用する場合において、その種類や添加量にもよるが、水溶性高分子が銅膜表面に吸着することにより研磨を阻害し研磨速度を低下させることがある。このような場合においても、(A)成分と(B)成分を併用することにより、水溶性高分子の添加にもかかわらず銅膜の研磨速度を増大させることができる。 In addition, when a water-soluble polymer described later is used in combination, depending on the type and amount of addition, the water-soluble polymer may be adsorbed on the surface of the copper film to inhibit polishing and reduce the polishing rate. Even in such a case, the polishing rate of the copper film can be increased by using both the component (A) and the component (B) in spite of the addition of the water-soluble polymer.
 化学機械研磨用水系分散体の全質量に対する(A)成分および(B)成分の含有量の好適な範囲は上記のとおりであるが、(A)成分の含有量(W)[質量%]と(B)成分の含有量(W)[質量%]との比率(W/W)は、0.5以上50以下である。W/Wの値は、0.5以上5以下であることがより好ましく、0.5以上1以下であることが特に好ましい。W/Wの値が0.5未満であると、銅膜の表面荒れやスクラッチの抑制効果が不十分となり好ましくない。一方、W/Wの値が50を超えると、銅膜に対する研磨速度が不十分となることがある。上記の含有比率の範囲内では、銅膜の表面荒れやディッシング、エロージョンを抑制しながら、銅膜の高研磨速度を実現することができる。これにより、研磨による段差解消性が大幅に向上し、パターン付きウエハの研磨時間を短縮することができる。 The preferred range of the content of the component (A) and the component (B) with respect to the total mass of the chemical mechanical polishing aqueous dispersion is as described above, but the content of the component (A) (W A ) [mass%] And (B) content (W B ) [mass%] ratio (W A / W B ) is 0.5 or more and 50 or less. The value of W A / W B is more preferably 0.5 to 5, and particularly preferably 0.5 or more and 1 or less. When the value of W A / W B of less than 0.5 is not preferable surface roughness and scratches suppression effect of the copper film is insufficient. On the other hand, when the value of W A / W B exceeds 50, there is the polishing rate of the copper layer may be insufficient. Within the above range of the content ratio, a high polishing rate of the copper film can be realized while suppressing surface roughness, dishing and erosion of the copper film. Thereby, the level | step difference elimination property by grinding | polishing improves significantly and the grinding | polishing time of a wafer with a pattern can be shortened.
 1.3 (C)酸化剤
 本実施形態に用いられる(C)酸化剤は、銅膜の表面を酸化し研磨液成分との錯化反応を促すことにより、脆弱な改質層を銅膜の表面に作り出し、銅膜を研磨しやすくする効果がある。
1.3 (C) Oxidizing agent The (C) oxidizing agent used in this embodiment oxidizes the surface of the copper film and promotes a complexing reaction with a polishing liquid component, thereby forming a fragile modified layer of the copper film. Creates on the surface and has an effect of making the copper film easy to polish.
 上記(C)酸化剤としては、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、硝酸第二鉄、硝酸二アンモニウムセリウム、硫酸鉄、オゾンおよび過ヨウ素酸カリウム、過酢酸などが挙げられる。これらの酸化剤は1種単独でまたは2種以上を組み合わせて用いることができる。また、これらの酸化剤のうち、酸化力、保護膜との相性、および取り扱いやすさなどを考慮すると、過硫酸アンモニウム、過硫酸カリウム、および過酸化水素が特に好ましい。 Examples of the (C) oxidizing agent include ammonium persulfate, potassium persulfate, hydrogen peroxide, ferric nitrate, diammonium cerium nitrate, iron sulfate, ozone, potassium periodate, and peracetic acid. These oxidizing agents can be used alone or in combination of two or more. Of these oxidizing agents, ammonium persulfate, potassium persulfate, and hydrogen peroxide are particularly preferable in view of oxidizing power, compatibility with a protective film, and ease of handling.
 上記(C)酸化剤の含有量は、化学機械研磨用水系分散体の全質量に対し、0.01質量%以上5質量%以下であることが好ましく、0.05質量%以上2質量%以下であることがより好ましい。酸化剤の含有量が0.01質量%未満の場合には、銅膜の表面を十分に酸化させることができないため、銅膜の研磨速度が小さくなることがある。一方、5質量%を越えると、銅膜の腐食やディッシングが大きくなるおそれがある。 The content of the (C) oxidizing agent is preferably 0.01% by mass or more and 5% by mass or less, and 0.05% by mass or more and 2% by mass or less with respect to the total mass of the chemical mechanical polishing aqueous dispersion. It is more preferable that When the content of the oxidizing agent is less than 0.01% by mass, the surface of the copper film cannot be sufficiently oxidized, and the polishing rate of the copper film may be reduced. On the other hand, if it exceeds 5 mass%, the corrosion and dishing of the copper film may increase.
 1.4 (D)砥粒
 本実施形態に用いられる(D)砥粒は、いわゆる研磨材であり、銅膜を機械的に研磨する作用がある。本実施形態に用いられる(D)砥粒は、無機粒子または有機無機複合粒子であることが好ましい。
1.4 (D) Abrasive Grain The (D) abrasive grain used in the present embodiment is a so-called abrasive and has an action of mechanically polishing a copper film. The abrasive grains (D) used in this embodiment are preferably inorganic particles or organic-inorganic composite particles.
 無機粒子としては、ヒュームド法により、塩化ケイ素、塩化アルミニウムまたは塩化チタン等と酸素および水素とを気相中で反応させて合成されたヒュームドシリカ、ヒュームドアルミナ、ヒュームドチタニア;ゾルゲル法により、金属アルコキシドを加水分解縮合して合成されたシリカ;無機コロイド法等により合成され、精製により不純物を除去した高純度コロイダルシリカなどが挙げられる。 As inorganic particles, fumed silica, fumed alumina, fumed titania synthesized by reacting silicon chloride, aluminum chloride, titanium chloride or the like with oxygen and hydrogen in the gas phase by fumed method; by sol-gel method, Examples include silica synthesized by hydrolytic condensation of metal alkoxides; high-purity colloidal silica synthesized by an inorganic colloid method or the like and having impurities removed by purification.
 上記の無機粒子の中でも、コロイダルシリカは特に好ましい。コロイダルシリカは、pH8~11のアルカリ性で安定し、アニオン性界面活性剤の存在下でさらに安定化することができる。また、コロイダルシリカは、球状で粒径がそろっているため、銅膜に対し安定した高研磨速度を提供することができる。 Among the above inorganic particles, colloidal silica is particularly preferable. Colloidal silica is alkaline and stable at pH 8-11 and can be further stabilized in the presence of an anionic surfactant. Moreover, since colloidal silica is spherical and has a uniform particle size, it can provide a stable high polishing rate for the copper film.
 有機無機複合粒子としては、有機粒子と無機粒子とが、研磨時に、容易に分離しない程度に一体に形成されていれば、その種類、構成等は特に限定されない。例えば、ポリスチレン、ポリメチルメタクリレート等の重合体粒子の存在下で、アルコキシシラン、アルミニウムアルコキシド、チタンアルコキシド等を重縮合させ、重合体粒子の少なくとも表面に、ポリシロキサン、ポリアルミノキサン、ポリチタノキサン等の重縮合物が形成された複合粒子を挙げることができる。形成された重縮合物は、重合体粒子の官能基に直接結合していてもよいし、シランカップリング剤等を介して結合していてもよい。 The organic-inorganic composite particles are not particularly limited in terms of type and configuration as long as the organic particles and the inorganic particles are integrally formed to such an extent that they are not easily separated during polishing. For example, polycondensation of alkoxysilane, aluminum alkoxide, titanium alkoxide, etc. in the presence of polymer particles such as polystyrene and polymethyl methacrylate, and polycondensation of polysiloxane, polyaluminoxane, polytitanoxane, etc. on at least the surface of the polymer particles The composite particle in which the thing was formed can be mentioned. The formed polycondensate may be directly bonded to the functional group of the polymer particles, or may be bonded via a silane coupling agent or the like.
 また、有機無機複合粒子は、前記重合体粒子と、シリカ粒子、アルミナ粒子、チタニア粒子等とを用いて形成してもよい。この場合、前記複合粒子は、ポリシロキサン、ポリアルミノキサン、ポリチタノキサン等の重縮合物をバインダーとして、重合体粒子の表面にシリカ粒子等が存在するように形成されていてもよいし、シリカ粒子等が有するヒドロキシル基等の官能基と、重合体粒子の官能基とが化学的に結合して形成されていてもよい。 Further, the organic / inorganic composite particles may be formed using the polymer particles, silica particles, alumina particles, titania particles and the like. In this case, the composite particles may be formed such that silica particles or the like are present on the surface of the polymer particles using a polycondensate such as polysiloxane, polyaluminoxane, or polytitanoxane as a binder. The functional group such as a hydroxyl group may be chemically bonded to the functional group of the polymer particle.
 さらに、有機無機複合粒子として、ゼータ電位の符号が互いに異なる有機粒子と無機粒子とが、これらの粒子を含む水分散体において、静電力により結合している複合粒子を使用することもできる。 Furthermore, as the organic-inorganic composite particles, composite particles in which organic particles and inorganic particles having different zeta potential signs are combined by electrostatic force in an aqueous dispersion containing these particles may be used.
 有機粒子のゼータ電位は、全pH域、または低pH域を除く広範なpH域に亘って、負であることが多い。有機粒子は、カルボキシル基、スルホン酸基等を有すると、より確実に負のゼータ電位を有することが多い。有機粒子がアミノ基等を有すると、特定のpH域において正のゼータ電位を有することもある。 The zeta potential of organic particles is often negative over the entire pH range or a wide pH range excluding a low pH range. When the organic particles have a carboxyl group, a sulfonic acid group, etc., they often have a negative zeta potential more reliably. When the organic particle has an amino group or the like, it may have a positive zeta potential in a specific pH range.
 一方、無機粒子のゼータ電位は、pH依存性が高く、ゼータ電位が0となる等電点を有し、pHによってその前後でゼータ電位の符号が逆転する。 On the other hand, the zeta potential of inorganic particles is highly pH-dependent and has an isoelectric point where the zeta potential is 0, and the sign of the zeta potential is reversed before and after the pH depending on the pH.
 したがって、特定の有機粒子と無機粒子とを、これらのゼータ電位が逆符号となるpH域で混合することによって、静電力により有機粒子と無機粒子とが結合し、一体化して複合粒子を形成することができる。また、混合時のpHではゼータ電位が同符号であっても、その後、pHを変化させ、一方の粒子、特に無機粒子のゼータ電位を逆符号にすることによって、有機粒子と無機粒子とを一体化することもできる。 Therefore, by mixing specific organic particles and inorganic particles in a pH range in which the zeta potential has an opposite sign, the organic particles and the inorganic particles are combined by electrostatic force to form a composite particle. be able to. In addition, even if the zeta potential has the same sign at the pH at the time of mixing, the pH is changed thereafter, and the zeta potential of one particle, especially the inorganic particle, is reversed, thereby integrating the organic particles and the inorganic particles. It can also be converted.
 このように静電力により一体化された複合粒子は、この複合粒子の存在下で、アルコキシシラン、アルミニウムアルコキシド、チタンアルコキシド等を重縮合させることにより、その少なくとも表面に、ポリシロキサン、ポリアルミノキサン、ポリチタノキサン等の重縮合物をさらに形成してもよい。 In this way, the composite particles integrated by electrostatic force are polycondensed with alkoxysilane, aluminum alkoxide, titanium alkoxide, etc. in the presence of the composite particles, so that at least the surface thereof has polysiloxane, polyaluminoxane, polytitanoxane. A polycondensate such as the above may be further formed.
 上記(D)砥粒の平均粒子径は、5~1000nmが好ましい。この平均粒子径は、レーザー散乱回折型測定機により測定することができる。この平均粒子径は、測定される算術平均値であり、実質的には一次粒子が会合した二次粒子径に相当する。平均粒子径が5nm未満では、十分に研磨速度が大きい化学機械研磨用水系分散体を得ることができないことがある。1000nmを超えると、ディッシングおよびエロージョンの抑制が不十分となることがあり、また砥粒の沈降・分離により、安定な水系分散体を容易に得ることができないことがある。砥粒の平均粒子径は上記範囲でもよいが、より好ましくは10~500nm、特に好ましくは20~200nmである。平均粒子径がこの範囲にあると、研磨速度が大きく、ディッシングおよびエロージョンが十分に抑制され、かつ粒子の沈降・分離が発生しにくい、安定な化学機械研磨用水系分散体を得ることができる。上記砥粒は、1種単独でまたは2種以上を組み合わせて使用することができる。 The average particle diameter of the above (D) abrasive grains is preferably 5 to 1000 nm. This average particle diameter can be measured with a laser scattering diffraction type measuring instrument. This average particle diameter is an arithmetic average value to be measured, and substantially corresponds to a secondary particle diameter in which primary particles are associated. If the average particle size is less than 5 nm, a chemical mechanical polishing aqueous dispersion having a sufficiently high polishing rate may not be obtained. If it exceeds 1000 nm, the suppression of dishing and erosion may be insufficient, and a stable aqueous dispersion may not be easily obtained due to sedimentation and separation of the abrasive grains. The average particle diameter of the abrasive grains may be in the above range, but is more preferably 10 to 500 nm, and particularly preferably 20 to 200 nm. When the average particle diameter is within this range, a stable chemical mechanical polishing aqueous dispersion can be obtained in which the polishing rate is high, dishing and erosion are sufficiently suppressed, and particle settling and separation are unlikely to occur. The said abrasive grain can be used individually by 1 type or in combination of 2 or more types.
 上記(D)砥粒の含有量は、化学機械研磨用水系分散体の全質量に対し、0.01質量%以上5質量%以下であることが好ましく、0.01質量%以上2質量%以下であることがより好ましい。砥粒量が0.01質量%未満になると十分な研磨速度を得ることができないことがあり、5質量%を超えるとコストが高くなるとともに安定した化学機械研磨用水系分散体を得られないことがある。 The content of the abrasive grains (D) is preferably 0.01% by mass or more and 5% by mass or less, and 0.01% by mass or more and 2% by mass or less with respect to the total mass of the chemical mechanical polishing aqueous dispersion. It is more preferable that When the amount of abrasive grains is less than 0.01% by mass, a sufficient polishing rate may not be obtained. When the amount exceeds 5% by mass, the cost increases and a stable chemical mechanical polishing aqueous dispersion cannot be obtained. There is.
 1.5 (E)アニオン性界面活性剤
 本実施形態に用いられる(E)アニオン性界面活性剤は、研磨中の銅膜表面を保護しつつ、上記(D)砥粒の分散安定性を高める効果ある。砥粒の凝集した化学機械研磨用水系分散体を用いると、銅膜のディッシングやエロージョンが発生し、銅膜の表面が平坦にならない。
1.5 (E) Anionic surfactant The (E) anionic surfactant used in this embodiment enhances the dispersion stability of the above-mentioned (D) abrasive grains while protecting the copper film surface during polishing. There is an effect. When the chemical mechanical polishing aqueous dispersion in which abrasive grains are aggregated is used, dishing or erosion of the copper film occurs, and the surface of the copper film does not become flat.
 上記(E)アニオン性界面活性剤は、カルボキシル基、スルホン酸基、リン酸基、ならびにこれらの官能基のアンモニウム塩および金属塩から選択される少なくとも1種の官能基を有することが好ましい。 The (E) anionic surfactant preferably has a carboxyl group, a sulfonic acid group, a phosphoric acid group, and at least one functional group selected from ammonium salts and metal salts of these functional groups.
 上記(E)アニオン性界面活性剤としては、例えば、脂肪酸塩(オレイン酸カリウム等)、アルキル硫酸塩、アルキルエーテル硫酸エステル塩、アルキルエステルカルボン酸塩、アルキルベンゼンスルホン酸塩、直鎖アルキルベンゼンスルホン酸塩、アルファスルホ脂肪酸エステル塩、アルキルポリオキシエチレン硫酸塩、アルキルリン酸塩、モノアルキルリン酸エステル塩、ナフタレンスルホン酸塩、アルファオレフィンスルホン酸塩、アルカンスルホン酸塩、アルキルスルホコハク酸塩、アルケニルコハク酸塩などが挙げられる。これらのうち、アルキルベンゼンスルホン酸塩(ドデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸アンモニウム等)、直鎖アルキルベンゼンスルホン酸塩(オクチルナフタレンスルホン酸ナトリウム等)、ナフタレンスルホン酸塩(ナフタレンスルホン酸ホルマリン縮合物塩等)、アルキルスルホコハク酸塩、アルケニルコハク酸塩であることがより好ましい。これらのアニオン性界面活性剤は、1種単独でまたは2種以上を組み合わせて使用することができる。 Examples of the (E) anionic surfactant include fatty acid salts (such as potassium oleate), alkyl sulfates, alkyl ether sulfate esters, alkyl ester carboxylates, alkylbenzene sulfonates, and linear alkylbenzene sulfonates. , Alpha sulfo fatty acid ester salt, alkyl polyoxyethylene sulfate, alkyl phosphate, monoalkyl phosphate ester salt, naphthalene sulfonate, alpha olefin sulfonate, alkane sulfonate, alkyl sulfosuccinate, alkenyl succinic acid Examples include salt. Among these, alkylbenzene sulfonates (potassium dodecylbenzenesulfonate, ammonium dodecylbenzenesulfonate, etc.), linear alkylbenzene sulfonates (sodium octylnaphthalenesulfonate, etc.), naphthalenesulfonate (formalene condensate salt of naphthalenesulfonate) Etc.), alkylsulfosuccinate and alkenyl succinate are more preferred. These anionic surfactants can be used singly or in combination of two or more.
 アルキルスルホコハク酸塩の具体的な商品名として、商品名「ニューコール291-M」、商品名「ニューコール292-PG」(いずれもナトリウム塩タイプ、日本乳化剤株式会社から入手可能)、商品名「ペレックスTA」(花王株式会社から入手可能)などが挙げられる。アルケニルコハク酸塩の具体的な商品名として、商品名「ラテムルASK」(カリウム塩タイプ、花王株式会社から入手可能)などが挙げられる。 As specific trade names of alkylsulfosuccinates, trade names “New Coal 291-M”, trade names “New Coal 292-PG” (both sodium salt type, available from Nippon Emulsifier Co., Ltd.), trade names “ Perex TA "(available from Kao Corporation). Specific trade names for alkenyl succinate include trade name “Latemul ASK” (potassium salt type, available from Kao Corporation) and the like.
 上記(E)アニオン性界面活性剤の含有量は、化学機械研磨用水系分散体の全質量に対し0.001質量%以上1質量%以下であることが好ましく、0.01質量%以上0.5質量%以下であることがより好ましい。上記(E)アニオン性界面活性剤の含有量が上記範囲未満であると、銅膜表面の保護作用が弱くなり腐食や過度のエッチングが進行する結果、ディッシングやエロージョンを抑制できないことがある。一方、上記(E)アニオン性界面活性剤の含有量が上記範囲を超えると、銅膜表面の保護作用が強くなりすぎるため十分な研磨速度が得られず銅残り(銅残渣)が発生する場合がある。 The content of the (E) anionic surfactant is preferably 0.001% by mass or more and 1% by mass or less, and 0.01% by mass or more and 0.00% by mass or more based on the total mass of the chemical mechanical polishing aqueous dispersion. More preferably, it is 5 mass% or less. When the content of the (E) anionic surfactant is less than the above range, the protective action on the surface of the copper film is weakened, and as a result of corrosion and excessive etching, dishing and erosion may not be suppressed. On the other hand, when the content of the (E) anionic surfactant exceeds the above range, the protective effect on the surface of the copper film becomes too strong, so that a sufficient polishing rate cannot be obtained and a copper residue (copper residue) is generated. There is.
 1.6 水溶性高分子
 本実施形態に係る化学機械研磨用水系分散体は、必要に応じて水溶性高分子を含有することができる。水溶性高分子としては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリスチレンスルホン酸、およびこれらの塩;ポリビニルアルコール、ポリオキシエチレン、ポリビニルピロリドン、ポリビニルピリジン、ポリアクリルアミド、ポリビニルホルムアミド、ポリエチレンイミン、ポリビニルオキサゾリン、ポリビニルイミダゾールなどのビニル系合成ポリマー;ヒドロキシエチルセルロース、カルボキシメチルセルロース、加工澱粉などの天然多糖類の変性物などが挙げられるが、これらに限定されない。これらの水溶性高分子は、1種単独でまたは2種以上を組み合わせて用いることができる。
1.6 Water-soluble polymer The chemical mechanical polishing aqueous dispersion according to this embodiment may contain a water-soluble polymer, if necessary. Examples of the water-soluble polymer include polyacrylic acid, polymethacrylic acid, polymaleic acid, polyvinyl sulfonic acid, polyallyl sulfonic acid, polystyrene sulfonic acid, and salts thereof; polyvinyl alcohol, polyoxyethylene, polyvinyl pyrrolidone, polyvinyl pyridine , Vinyl synthetic polymers such as polyacrylamide, polyvinyl formamide, polyethyleneimine, polyvinyl oxazoline, and polyvinyl imidazole; and modified natural polysaccharides such as hydroxyethyl cellulose, carboxymethyl cellulose, and modified starch, but are not limited thereto. These water-soluble polymers can be used alone or in combination of two or more.
 水溶性高分子は、ホモポリマーでもよいが、2種以上の単量体を共重合させた共重合体であってもよい。単量体としては、例えば、カルボキシル基を有する単量体、スルホン酸基を有する単量体、ヒドロキシル基を有する単量体、ポリエチレンオキシド鎖を有する単量体、アミノ基を有する単量体、複素環を有する単量体などを用いることができる。 The water-soluble polymer may be a homopolymer or a copolymer obtained by copolymerizing two or more monomers. As the monomer, for example, a monomer having a carboxyl group, a monomer having a sulfonic acid group, a monomer having a hydroxyl group, a monomer having a polyethylene oxide chain, a monomer having an amino group, A monomer having a heterocyclic ring can be used.
 アミド基を有する単量体としては、(メタ)アクリルアミド、N-メチロールアクリルアミド、N-2-ヒドロキシエチルアクリルアミド、アクリロイルモルフォリン、ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド、N-ビニルアセトアミド、N-ビニルホルムアミドなどを用いることができる。 Monomers having an amide group include (meth) acrylamide, N-methylolacrylamide, N-2-hydroxyethylacrylamide, acryloylmorpholine, dimethylaminopropylacrylamide, N, N-dimethylacrylamide, N-isopropylacrylamide, N -Vinylacetamide, N-vinylformamide and the like can be used.
 カルボキシル基を有する単量体としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、およびこれらの塩を用いることができる。これらは、酸無水物の状態で用いてもよい。 As the monomer having a carboxyl group, acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, and salts thereof can be used. You may use these in the state of an acid anhydride.
 ヒドロキシル基を有する単量体としては、ビニルアルコール、アリルアルコール、ヒドロキシエチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ビニルグリコール酸などを用いることができる。側鎖のアルキル鎖長およびエチレンオキシド鎖長は、特に限定はされない。 As the monomer having a hydroxyl group, vinyl alcohol, allyl alcohol, hydroxyethyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, vinyl glycolic acid or the like can be used. The side chain alkyl chain length and ethylene oxide chain length are not particularly limited.
 アミノ基を有する単量体としては、N,N-ジメチルアミノエチル(メタ)アクリレートなどを用いることができる。側鎖のアルキル鎖長は特に限定はされず、また、種々のカチオン化剤によって、4級塩化されたものであってもよい。 As the monomer having an amino group, N, N-dimethylaminoethyl (meth) acrylate or the like can be used. The side chain alkyl chain length is not particularly limited, and may be quaternized with various cationizing agents.
 複素環を有する単量体としては、ビニルイミダゾール、ビニルピロリドン、ビニルピリジン、ビニルオキサゾリン、N-ビニルカプロラクタム、ビニルピロール、ビニルキノリンなどを用いることができる。 As the monomer having a heterocyclic ring, vinyl imidazole, vinyl pyrrolidone, vinyl pyridine, vinyl oxazoline, N-vinyl caprolactam, vinyl pyrrole, vinyl quinoline and the like can be used.
 また、分子内に重合性二重結合とスルホン酸基を有する界面活性剤が市販されており、このような界面活性剤を単量体として用いてもよい。このような界面活性剤としては、商品名「エレミノールJS-2」(三洋化成社製)、商品名「ラテムルASK」(花王社製)などがある。 Further, a surfactant having a polymerizable double bond and a sulfonic acid group in the molecule is commercially available, and such a surfactant may be used as a monomer. Examples of such a surfactant include a trade name “Eleminol JS-2” (manufactured by Sanyo Kasei Co., Ltd.), a trade name “Latemul ASK” (manufactured by Kao Corporation), and the like.
 その他の単量体としては、シクロヘキシル(メタ)アクリレート、スチレン、α-メチルスチレン、ビニルトルエン、p-メチルスチレンなどの芳香族ビニル化合物、ブタジエン、イソプレン、2-クロル-1,3-ブタジエン、1-クロル-1,3-ブタジエンなどの脂肪族共役ジエン、(メタ)アクリロニトリルなどのシアン化ビニル化合物、リン酸化合物などを挙げることができる。上記単量体は、1種単独でまたは2種以上を組み合わせて使用することができる。 Other monomers include cyclohexyl (meth) acrylate, styrene, α-methylstyrene, vinyltoluene, p-methylstyrene and other aromatic vinyl compounds, butadiene, isoprene, 2-chloro-1,3-butadiene, 1 -Aliphatic conjugated dienes such as chloro-1,3-butadiene, vinyl cyanide compounds such as (meth) acrylonitrile, and phosphoric acid compounds. The said monomer can be used individually by 1 type or in combination of 2 or more types.
 水溶性高分子の重量平均分子量は、2,000~1,200,000であることが好ましく、10,000~800,000であることがより好ましい。水溶性高分子の重量平均分子量が上記範囲にあると、銅膜のディッシング抑制効果を向上させることができる。 The weight average molecular weight of the water-soluble polymer is preferably 2,000 to 1,200,000, and more preferably 10,000 to 800,000. When the weight average molecular weight of the water-soluble polymer is in the above range, the dishing suppressing effect of the copper film can be improved.
 水溶性高分子の含有量は、化学機械研磨用水系分散体の全質量に対し、0.001質量%以上1質量%以下であることが好ましく、0.01質量%以上0.5質量%以下であることがより好ましい。水溶性高分子の含有量が上記範囲にあると、銅膜のディッシング抑制効果を向上させることができる。 The content of the water-soluble polymer is preferably 0.001% by mass or more and 1% by mass or less, and 0.01% by mass or more and 0.5% by mass or less with respect to the total mass of the chemical mechanical polishing aqueous dispersion. It is more preferable that When the content of the water-soluble polymer is in the above range, the dishing suppressing effect of the copper film can be improved.
 1.7 有機酸、無機酸、およびその塩
 本実施形態に係る化学機械研磨用水系分散体は、必要に応じて有機酸、無機酸、およびそれらの塩を含有することができる。有機酸、無機酸、およびそれらの塩は、上記(A)成分および上記(B)成分と併用することにより、銅膜に対する研磨速度をさらに促進させる効果がある。
1.7 Organic acid, inorganic acid, and salt thereof The chemical mechanical polishing aqueous dispersion according to this embodiment may contain an organic acid, an inorganic acid, and a salt thereof as necessary. Organic acids, inorganic acids, and salts thereof have the effect of further promoting the polishing rate for the copper film when used in combination with the component (A) and the component (B).
 上記有機酸、無機酸、およびそれらの塩として、例えば、クエン酸、リンゴ酸、シュウ酸、マレイン酸、マロン酸、コハク酸、酒石酸、乳酸、安息香酸などの有機酸;炭酸、硝酸、硫酸、アミド硫酸、リン酸などの無機酸;およびこれらのアンモニウム塩、カリウム塩などが挙げられる。 Examples of the organic acid, inorganic acid, and salts thereof include, for example, citric acid, malic acid, oxalic acid, maleic acid, malonic acid, succinic acid, tartaric acid, lactic acid, benzoic acid, and other organic acids; carbonic acid, nitric acid, sulfuric acid, And inorganic acids such as amidosulfuric acid and phosphoric acid; and ammonium and potassium salts thereof.
 上記有機酸、無機酸、およびその塩の含有量は、上記(A)成分および上記(B)成分の含有量と合わせて、化学機械研磨用水系分散体の全質量に対し、好ましくは0.01質量%以上5質量%以下であり、より好ましくは0.05質量%以上2質量%以下である。含有量が上記範囲内にあると、銅膜に対する研磨速度をさらに促進させることができる。 The content of the organic acid, inorganic acid, and salt thereof, together with the content of the component (A) and the component (B), is preferably 0.00 with respect to the total mass of the chemical mechanical polishing aqueous dispersion. It is 01 mass% or more and 5 mass% or less, More preferably, it is 0.05 mass% or more and 2 mass% or less. When the content is within the above range, the polishing rate for the copper film can be further accelerated.
 1.8 pH調整剤
 本実施形態に係る化学機械研磨用水系分散体のpHは、好ましくは8~11であり、より好ましくは9~10.5である。pHが上記範囲内にあると、一般的に使用されるベンゾトリアゾールまたはその誘導体などの防食剤を添加することなく、銅膜のコロージョンの発生を防止することができる。pHを調整するために、例えば、水酸化カリウム、アンモニア、エチレンジアミン、およびTMAH(テトラメチルアンモニウムハイドロオキサイド)などの塩基性化合物を添加することができる。アンモニアはそれ自身が銅への錯形成能を有すると共に、上記(A)成分または(B)成分の銅に対する錯形成を助長する働きがあるため好ましく用いられる。
1.8 pH Adjuster The pH of the chemical mechanical polishing aqueous dispersion according to this embodiment is preferably 8 to 11, and more preferably 9 to 10.5. When the pH is within the above range, corrosion of the copper film can be prevented without adding a commonly used anticorrosive agent such as benzotriazole or a derivative thereof. In order to adjust pH, basic compounds, such as potassium hydroxide, ammonia, ethylenediamine, and TMAH (tetramethylammonium hydroxide), can be added, for example. Ammonia is preferably used because it itself has the ability to form a complex with copper and promotes the complex formation of component (A) or component (B) with copper.
 1.9 用途
 本実施形態に係る化学機械研磨用水系分散体は、主として半導体装置の配線を形成する銅膜を化学機械研磨するための研磨材として使用することができる。具体的には、銅(または銅合金)ダマシン配線を形成する際の研磨材として使用することができる。化学機械研磨によって銅(または銅合金)ダマシン配線を形成する工程は、主として銅(または銅合金)の除去を行う第1研磨工程と、主として銅(または銅合金)の下部に形成された導電性バリアメタル膜を除去する第2研磨工程と、からなるが、上記化学機械研磨用水系分散体は第1研磨工程に用いると効果的である。
1.9 Applications The chemical mechanical polishing aqueous dispersion according to this embodiment can be used mainly as a polishing material for chemical mechanical polishing of a copper film that forms wiring of a semiconductor device. Specifically, it can be used as an abrasive when forming copper (or copper alloy) damascene wiring. The process of forming a copper (or copper alloy) damascene wiring by chemical mechanical polishing includes a first polishing process that mainly removes copper (or copper alloy) and a conductive material that is mainly formed under the copper (or copper alloy). A second polishing step for removing the barrier metal film, and the chemical mechanical polishing aqueous dispersion is effective when used in the first polishing step.
 2.化学機械研磨方法
 上記化学機械研磨用水系分散体を用いて被処理体を化学機械研磨する各工程について、以下図面を用いて具体的に説明する。図1は、化学機械研磨方法の一具体例を模式的に示す断面図である。
2. Chemical Mechanical Polishing Method Each step of chemical mechanical polishing a workpiece using the chemical mechanical polishing aqueous dispersion will be specifically described below with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing one specific example of the chemical mechanical polishing method.
 2.1 被処理体
 図1Aに、被処理体100を示す。図1Aに示すように、被処理体100は、基体10を有する。基体10は、少なくとも図示しない半導体基板を有する。基体10は、例えば、シリコン基板とその上に形成された酸化シリコン膜から構成されていてもよい。さらに、基体10の半導体基板には、トランジスタ等の機能デバイスが形成されていてもよい。
2.1 To-be-processed object The to-be-processed object 100 is shown to FIG. 1A. As illustrated in FIG. 1A, the target object 100 includes a substrate 10. The base 10 has at least a semiconductor substrate (not shown). The base 10 may be composed of, for example, a silicon substrate and a silicon oxide film formed thereon. Furthermore, a functional device such as a transistor may be formed on the semiconductor substrate of the base 10.
 被処理体100は、基体10の上に形成されたシリコン酸化物等からなる絶縁膜12と、絶縁膜12の上に形成されたシリコン窒化物等からなる絶縁膜14と、絶縁膜14の上に配線用凹部22が設けられた絶縁膜16と、絶縁膜16の表面ならびに配線用凹部22の底部および内壁面を覆うように設けられたバリアメタル膜18と、配線用凹部22を充填し、かつバリアメタル膜18の上に形成された銅膜20と、が順次積層されて、構成される。 The object to be processed 100 includes an insulating film 12 made of silicon oxide or the like formed on the substrate 10, an insulating film 14 made of silicon nitride or the like formed on the insulating film 12, and an insulating film 14. Filling the insulating film 16 provided with the wiring recesses 22, the barrier metal film 18 provided so as to cover the surface of the insulating film 16 and the bottom and inner wall surfaces of the wiring recesses 22, and the wiring recesses 22, In addition, a copper film 20 formed on the barrier metal film 18 is sequentially laminated.
 絶縁膜16は、例えば、真空プロセスで形成された酸化シリコン膜(例えば、PETEOS膜(Plasma Enhanced-TEOS膜)、HDP膜(High Density Plasma Enhanced-TEOS膜)、熱化学気相蒸着法により得られる酸化シリコン膜等)、FSG(Fluorine-doped silicate glass)と呼ばれる絶縁膜、ホウ素リンシリケート膜(BPSG膜)、SiON(Silicon oxynitride)と呼ばれる絶縁膜、Siliconnitride、低誘電率の絶縁膜等を挙げることができる。 The insulating film 16 is obtained by, for example, a silicon oxide film formed by a vacuum process (for example, a PETEOS film (Plasma Enhanced-TEOS film), an HDP film (High Density Plasma Enhanced-TEOS film), or a thermal chemical vapor deposition method. Silicon oxide film, etc.), insulating film called FSG (Fluorine-doped silicate glass), boron phosphorous silicate film (BPSG film), insulating film called SiON (Silicon oxynitride), silicon nitride, low dielectric constant insulating film, etc. Can do.
 バリアメタル膜18としては、例えば、タンタル、窒化タンタル、チタン、窒化チタン、タンタル-ニオブ合金等を挙げることができる。バリアメタル膜18は、これらの1種から形成されることが多いが、タンタルと窒化タンタルなど2種以上を併用することもできる。 Examples of the barrier metal film 18 include tantalum, tantalum nitride, titanium, titanium nitride, and tantalum-niobium alloy. The barrier metal film 18 is often formed from one of these, but two or more kinds such as tantalum and tantalum nitride can be used in combination.
 銅膜20は、図1Aに示すように、配線用凹部22を完全に埋めることが必要となる。そのためには、通常化学蒸着法または電気めっき法により、10,000~15,000オングストロームの銅膜を堆積させる。銅膜20の材料としては、純度の高い銅だけでなく、銅を含有する合金を使用することもできる。銅を含有する合金中の銅含有量としては、95質量%以上であることが好ましい。 As shown in FIG. 1A, the copper film 20 needs to completely fill the wiring recess 22. For this purpose, a 10,000 to 15,000 angstrom copper film is usually deposited by chemical vapor deposition or electroplating. As a material of the copper film 20, not only high-purity copper but also an alloy containing copper can be used. The copper content in the alloy containing copper is preferably 95% by mass or more.
 2.2 銅研磨工程
 銅研磨工程は、上記化学機械研磨用水系分散体を用いて、被処理体100の銅膜20を研磨する工程である。銅研磨工程では、図1Bに示すように、配線用凹部22に埋没された部分以外の銅膜20をバリアメタル膜18が露出するまで研磨する。
2.2 Copper Polishing Step The copper polishing step is a step of polishing the copper film 20 of the workpiece 100 using the chemical mechanical polishing aqueous dispersion. In the copper polishing step, as shown in FIG. 1B, the copper film 20 other than the portion buried in the wiring recess 22 is polished until the barrier metal film 18 is exposed.
 銅研磨工程では、例えば、図2に示すような化学機械研磨装置200を用いることができる。図2は、化学機械研磨装置200の模式図を示している。スラリー供給ノズル42からスラリー44を供給し、かつ研磨布46が貼付されたターンテーブル48を回転させながら、半導体基板50を保持したキャリアーヘッド52を当接させることにより行う。なお、図2には、水供給ノズル54およびドレッサー56も併せて示してある。 In the copper polishing step, for example, a chemical mechanical polishing apparatus 200 as shown in FIG. 2 can be used. FIG. 2 shows a schematic diagram of the chemical mechanical polishing apparatus 200. The slurry 44 is supplied from the slurry supply nozzle 42 and the carrier head 52 holding the semiconductor substrate 50 is brought into contact with the turntable 48 to which the polishing cloth 46 is attached while rotating. In FIG. 2, the water supply nozzle 54 and the dresser 56 are also shown.
 キャリアーヘッド52の研磨荷重は、10~1,000gf/cm2の範囲内で選択することができ、好ましくは30~500gf/cm2である。また、ターンテーブル48およびキャリアーヘッド52の回転数は10~250rpmの範囲内で適宜選択することができ、好ましくは30~150rpmである。スラリー供給ノズル42から供給されるスラリー44の流量は、10~1,000mL/分の範囲内で選択することができ、好ましくは50~400mL/分である。 Polishing load of the carrier head 52 may be selected within the range of 10 ~ 1,000gf / cm 2, preferably 30 ~ 500gf / cm 2. Further, the rotation speeds of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 250 rpm, and preferably 30 to 150 rpm. The flow rate of the slurry 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10 to 1,000 mL / min, and preferably 50 to 400 mL / min.
 3.化学機械研磨用水系分散体を調製するためのキット
 上記化学機械研磨用水系分散体は、調製後にそのまま研磨用組成物として使用できる状態で供給することができる。あるいは、上記化学機械研磨用水系分散体の各成分を高濃度で含有する研磨用組成物(すなわち濃縮された研磨用組成物)を準備しておき、使用時にこの濃縮された研磨用組成物を希釈して、所望の化学機械研磨用水系分散体を得てもよい。
3. Kit for Preparing Chemical Mechanical Polishing Aqueous Dispersion The chemical mechanical polishing aqueous dispersion can be supplied in a state where it can be used as a polishing composition as it is after the preparation. Alternatively, a polishing composition (that is, a concentrated polishing composition) containing each component of the chemical mechanical polishing aqueous dispersion at a high concentration is prepared, and the concentrated polishing composition is used at the time of use. It may be diluted to obtain a desired chemical mechanical polishing aqueous dispersion.
 また、以下のように、上記成分のいずれかを含む複数の組成物(例えば、2つまたは3つの組成物)を調製し、これらを使用時に混合して使用することもできる。この場合、複数の液を混合して化学機械研磨用水系分散体を調製した後、これを化学機械研磨装置に供給してもよいし、複数の液を個別に化学機械研磨装置に供給して定盤上で化学機械研磨用水系分散体を調製してもよい。例えば、以下に示す第1~第2のキットを用いて、複数の液を混合することにより、上記化学機械研磨用水系分散体を調製することができる。 Also, as described below, a plurality of compositions (for example, two or three compositions) containing any of the above components can be prepared and used by mixing them at the time of use. In this case, after preparing a chemical mechanical polishing aqueous dispersion by mixing a plurality of liquids, this may be supplied to the chemical mechanical polishing apparatus, or a plurality of liquids may be supplied individually to the chemical mechanical polishing apparatus. A chemical mechanical polishing aqueous dispersion may be prepared on a surface plate. For example, the chemical mechanical polishing aqueous dispersion can be prepared by mixing a plurality of liquids using the following first and second kits.
 3.1 第1のキット
 第1のキットは、第1の組成物および第2の組成物を混合して、上記の化学機械研磨用水系分散体を調製するためのキットであって、前記第1の組成物は、(D)砥粒を含み、前記第2の組成物は、(A)含窒素五員環およびカルボキシル基を有する化合物と、(B)グリシン、アラニンおよびアスパラギン酸から選択される少なくとも1種のアミノ酸と、(E)アニオン性界面活性剤と、を含み、前記第1の組成物および前記第2の組成物の少なくとも一方は、(C)酸化剤を含む。
3.1 First Kit The first kit is a kit for mixing the first composition and the second composition to prepare the chemical mechanical polishing aqueous dispersion. The composition of 1 includes (D) abrasive grains, and the second composition is selected from (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group, and (B) glycine, alanine, and aspartic acid. At least one amino acid and (E) an anionic surfactant, and at least one of the first composition and the second composition contains (C) an oxidizing agent.
 第1のキットを構成する第1の組成物および第2の組成物を調製する場合、第1の組成物および第2の組成物を混合して得られた水系分散体中に、上述した各成分が上述した濃度範囲内に含まれるように、第1の組成物および第2の組成物に含有される各成分の濃度を決定する必要がある。また、第1の組成物および第2の組成物は、各成分を高濃度で含有していてもよく(すなわち濃縮されたものでもよく)、この場合、使用時に希釈して第1の組成物および第2の組成物を得ることが可能である。第1のキットによれば、第1の組成物と第2の組成物とを分けておくことで、特に第1の組成物に含まれる(D)砥粒の分散安定性を高めることができる。 When preparing the first composition and the second composition constituting the first kit, each of the above-described aqueous dispersions is obtained by mixing the first composition and the second composition. It is necessary to determine the concentration of each component contained in the first composition and the second composition so that the components are included in the concentration range described above. The first composition and the second composition may contain each component at a high concentration (that is, may be concentrated). In this case, the first composition is diluted at the time of use. And a second composition can be obtained. According to the first kit, the dispersion stability of the (D) abrasive grains contained in the first composition can be enhanced by separating the first composition and the second composition. .
 第1のキットを用いて上記化学機械研磨用水系分散体を調製する場合、第1の組成物および第2の組成物が別個に用意・供給され、かつ研磨時に一体となっていればよく、その混合方法およびタイミングは特に限定されない。例えば、各成分を高濃度で含有する第1の組成物および第2の組成物を調製し、使用時に第1の組成物および第2の組成物を希釈して、これらを混合し、各成分の濃度が上記範囲内にある化学機械研磨用水系分散体を調製する。具体的には、第1の組成物と第2の組成物とを1:1の重量比で混合する場合には、実際に使用する化学機械研磨用水系分散体の各成分の濃度よりも2倍に濃縮された第1の組成物および第2の組成物を調製すればよい。また、2倍以上の濃度の第1の組成物および第2の組成物を調製し、これらを1:1の重量比で混合した後、各成分が上記範囲となるように水で希釈してもよい。 When preparing the chemical mechanical polishing aqueous dispersion using the first kit, it is sufficient that the first composition and the second composition are separately prepared and supplied and are integrated during polishing, The mixing method and timing are not particularly limited. For example, the first composition and the second composition containing each component at a high concentration are prepared, and the first composition and the second composition are diluted at the time of use, and these are mixed, A chemical mechanical polishing aqueous dispersion in which the concentration of is within the above range is prepared. Specifically, when the first composition and the second composition are mixed at a weight ratio of 1: 1, the concentration of each component of the chemical mechanical polishing aqueous dispersion actually used is 2 What is necessary is just to prepare the 1st composition and 2nd composition which were concentrated twice. Moreover, after preparing the 1st composition and 2nd composition of the density | concentration of 2 times or more and mixing these by the weight ratio of 1: 1, it dilutes with water so that each component may become the said range. Also good.
 第1のキットを使用する場合、研磨時に上記化学機械研磨用水系分散体が調製されていればよい。例えば、第1の組成物と第2の組成物とを混合して上記化学機械研磨用水系分散体を調製した後、これを化学機械研磨装置に供給してもよいし、第1の組成物と第2の組成物とを別個に化学機械研磨装置に供給し、定盤上で混合してもよい。あるいは、第1の組成物と第2の組成物とを別個に化学機械研磨装置に供給し、装置内でライン混合してもよいし、化学機械研磨装置に混合タンクを設けて、混合タンク内で混合してもよい。また、ライン混合の際には、より均一な水系分散体を得るために、ラインミキサーなどを用いてもよい。 When using the first kit, it is sufficient that the chemical mechanical polishing aqueous dispersion is prepared at the time of polishing. For example, the first composition and the second composition may be mixed to prepare the chemical mechanical polishing aqueous dispersion, which may then be supplied to a chemical mechanical polishing apparatus, or the first composition And the second composition may be separately supplied to the chemical mechanical polishing apparatus and mixed on a surface plate. Alternatively, the first composition and the second composition may be separately supplied to the chemical mechanical polishing apparatus and line mixed in the apparatus, or the chemical mechanical polishing apparatus may be provided with a mixing tank, May be mixed. In line mixing, a line mixer or the like may be used in order to obtain a more uniform aqueous dispersion.
 3.2 第2のキット
 第2のキットは、第3の組成物、第4の組成物および第5の組成物を混合して、上記化学機械研磨用水系分散体を調製するためのキットである。第2のキットにおいて、第3の組成物は、(D)砥粒を含む水系分散体であり、第4の組成物は、(A)含窒素五員環およびカルボキシル基を有する化合物と、(B)グリシン、アラニンおよびアスパラギン酸から選択される少なくとも1種のアミノ酸と、(E)アニオン性界面活性剤を含む水溶液であり、第5の組成物は、(C)酸化剤を含む水溶液である。
3.2 Second Kit The second kit is a kit for preparing the chemical mechanical polishing aqueous dispersion by mixing the third composition, the fourth composition, and the fifth composition. is there. In the second kit, the third composition is (D) an aqueous dispersion containing abrasive grains, and the fourth composition is (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group, B) An aqueous solution containing at least one amino acid selected from glycine, alanine and aspartic acid and (E) an anionic surfactant, and the fifth composition is (C) an aqueous solution containing an oxidizing agent. .
 第2のキットを構成する第3~5の組成物を調製する場合、第3~5の組成物を混合して得られた水系分散体中に、上述した各成分が上述した濃度範囲内に含まれるように、第3~5の組成物に含有される各成分の濃度を決定する必要がある。また、第3~5の組成物は、各成分を高濃度で含有していてもよく(すなわち濃縮されたものでもよく)、この場合、使用時に希釈して第3~5の組成物を得ることが可能である。第3のキットによれば、第3~5の組成物を分けておくことで、第3の組成物に含まれる(D)砥粒の分散安定性および第5の組成物に含まれる(C)酸化剤の保存安定性を向上させることができる。 When preparing the third to fifth compositions constituting the second kit, the above-mentioned components are within the above-mentioned concentration range in the aqueous dispersion obtained by mixing the third to fifth compositions. In order to be included, it is necessary to determine the concentration of each component contained in the third to fifth compositions. The third to fifth compositions may contain each component in a high concentration (that is, may be concentrated). In this case, the third to fifth compositions are obtained by diluting at the time of use. It is possible. According to the third kit, by separating the third to fifth compositions, (D) the dispersion stability of the abrasive grains contained in the third composition and the fifth composition (C ) The storage stability of the oxidizing agent can be improved.
 第2のキットを用いて上記化学機械研磨用水系分散体を調製する場合、第3~5の組成物が別個に用意・供給され、かつ研磨時に一体となっていればよく、その混合方法およびタイミングは特に限定されない。例えば、各成分を高濃度で含有する第3~5の組成物を調製し、使用時に第3~5の組成物を希釈して、これらを混合し、各成分の濃度が上記範囲内にある化学機械研磨用水系分散体を調製する。具体的には、第3~5の組成物を1:1:1の重量比で混合する場合には、実際に使用する化学機械研磨用水系分散体の各成分の濃度よりも3倍に濃縮された第3~5の組成物を調製すればよい。また、3倍以上の濃度の第5~7の組成物を調製し、これらを1:1:1の重量比で混合した後、各成分が上記範囲となるように水で希釈してもよい。 When the chemical mechanical polishing aqueous dispersion is prepared using the second kit, it is sufficient that the third to fifth compositions are separately prepared and supplied and integrated together during polishing. The timing is not particularly limited. For example, the third to fifth compositions containing each component at a high concentration are prepared, and the third to fifth compositions are diluted at the time of use and mixed, and the concentration of each component is within the above range. An aqueous dispersion for chemical mechanical polishing is prepared. Specifically, when the third to fifth compositions are mixed at a weight ratio of 1: 1: 1, the concentration is 3 times the concentration of each component of the chemical mechanical polishing aqueous dispersion actually used. The prepared third to fifth compositions may be prepared. Alternatively, compositions 5 to 7 having a concentration of 3 times or more may be prepared, mixed at a weight ratio of 1: 1: 1, and then diluted with water so that each component is in the above range. .
 第2のキットを使用する場合、研磨時に上記化学機械研磨用水系分散体が調製されていればよい。例えば、第3~5の組成物を混合して上記化学機械研磨用水系分散体を調製した後、これを化学機械研磨装置に供給してもよいし、第3~5の組成物を別個に化学機械研磨装置に供給し、定盤上で混合してもよい。あるいは、第3~5の組成物を別個に化学機械研磨装置に供給し、装置内でライン混合してもよいし、化学機械研磨装置に混合タンクを設けて、混合タンク内で混合してもよい。また、ライン混合の際には、より均一な水系分散体を得るために、ラインミキサーなどを用いてもよい。 When using the second kit, the chemical mechanical polishing aqueous dispersion may be prepared at the time of polishing. For example, the aqueous dispersion for chemical mechanical polishing may be prepared by mixing the third to fifth compositions and then supplied to the chemical mechanical polishing apparatus, or the third to fifth compositions may be separately added. It may be supplied to a chemical mechanical polishing apparatus and mixed on a surface plate. Alternatively, the third to fifth compositions may be separately supplied to the chemical mechanical polishing apparatus and mixed in a line in the apparatus. Alternatively, a mixing tank may be provided in the chemical mechanical polishing apparatus and mixed in the mixing tank. Good. In line mixing, a line mixer or the like may be used in order to obtain a more uniform aqueous dispersion.
 4.実施例
 以下、本発明を実施例により説明するが、本発明はこの実施例により何ら限定されるものではない。なお、本実施例においては、粒子の平均一次粒子径を走査型電子顕微鏡により、また粒子の平均二次粒子径をレーザー回折法により測定した(測定装置:堀場製作所社製、動的光散乱式粒径分布測定装置、品番「HORIBA LB550」)。
4). Examples Hereinafter, the present invention will be described by way of examples. However, the present invention is not limited to the examples. In this example, the average primary particle size of the particles was measured by a scanning electron microscope, and the average secondary particle size of the particles was measured by a laser diffraction method (measuring device: manufactured by Horiba, Ltd., dynamic light scattering type). Particle size distribution measuring device, product number “HORIBA LB550”).
 4.1 コロイダルシリカ粒子を含む水分散体の調製
 コロイダルシリカ「C35」は、以下のように調製した。濃度25質量%のアンモニア水70質量部、イオン交換水40質量部、エタノール170質量部およびテトラエトキシシラン20質量部を、フラスコに仕込み、回転速度180rpmで撹拌しながら60℃に昇温した。温度を60℃に維持しながら撹拌を2時間継続してコロイダルシリカ粒子のアルコール分散体を得た。
4.1 Preparation of Water Dispersion Containing Colloidal Silica Particles Colloidal silica “C35” was prepared as follows. A flask was charged with 70 parts by mass of ammonia water having a concentration of 25% by mass, 40 parts by mass of ion-exchanged water, 170 parts by mass of ethanol and 20 parts by mass of tetraethoxysilane, and the temperature was raised to 60 ° C. while stirring at a rotational speed of 180 rpm. Stirring was continued for 2 hours while maintaining the temperature at 60 ° C. to obtain an alcohol dispersion of colloidal silica particles.
 引き続きイオン交換水を添加してロータリーエバポレータによりアルコール成分を除去し、コロイダルシリカ粒子を20質量%含む水分散体「C35」を調製した。この水分散体に含まれるコロイダルシリカ粒子の平均一次粒子径は35nmであり、平均二次粒子径は70nmであった。 Subsequently, ion-exchanged water was added and the alcohol component was removed by a rotary evaporator to prepare an aqueous dispersion “C35” containing 20% by mass of colloidal silica particles. The average primary particle diameter of the colloidal silica particles contained in this aqueous dispersion was 35 nm, and the average secondary particle diameter was 70 nm.
 また、前記反応において、アンモニア水、エタノール、テトラエトキシシランの使用量および撹拌時の温度を適宜変更して、コロイダルシリカ粒子(平均一次粒子径50nm、平均二次粒子径90nm)を8質量%含む水分散体「C50」、およびコロイダルシリカ粒子(平均一次粒子径80nm、平均二次粒子径200nm)を8質量%含む水分散体「C80」を調製した。 Moreover, in the said reaction, the usage-amount of ammonia water, ethanol, tetraethoxysilane, and the temperature at the time of stirring are changed suitably, and 8 mass% of colloidal silica particles (average primary particle diameter 50nm, average secondary particle diameter 90nm) are included. An aqueous dispersion “C50” containing 8% by mass of an aqueous dispersion “C50” and colloidal silica particles (average primary particle size 80 nm, average secondary particle size 200 nm) was prepared.
 コロイダルシリカ「D25」は、以下のように調製した。3号水硝子(シリカ濃度24質量%)を水で希釈し、シリカ濃度3.0質量%の希釈ケイ酸ナトリウム水溶液とした。この水溶液を、水素型陽イオン交換樹脂層を通過させることにより、ナトリウムイオンの大部分を除去したpH3.1の活性ケイ酸水溶液を得た。すぐに攪拌下、10質量%の水酸化カリウム水溶液を加えてpHを7.2に調整し、更に続けて加熱し、沸騰下3時間熱熟成した。得られた水溶液に、先にpHを7.2に調整した活性ケイ酸水溶液の10倍量を6時間かけ少量ずつ添加し、シリカ粒子の平均一次粒子径を26nmに成長させた。次に、前記シリカ粒子を含有する分散体水溶液を沸点78℃での減圧濃縮し、シリカ濃度が32.0質量%であり、pHが9.8である水ガラス製法シリカ粒子分散体を得た。このシリカ粒子分散体を、再度水素型陽イオン交換樹脂層を通過させて、ナトリウムの大部分を除去した後、10質量%の水酸化カリウム水溶液を加えることにより、シリカ粒子濃度が28.0質量%、pHが10.0であるコロイダルシリカ粒子を含む水分散体「D25」を得た。この水分散体に含まれるコロイダルシリカ粒子の平均一次粒子径は26nmであり、平均二次粒子径は26nmであった。 Colloidal silica “D25” was prepared as follows. No. 3 water glass (silica concentration: 24% by mass) was diluted with water to obtain a diluted sodium silicate aqueous solution having a silica concentration of 3.0% by mass. By passing this aqueous solution through a hydrogen-type cation exchange resin layer, an active silicic acid aqueous solution of pH 3.1 from which most of sodium ions were removed was obtained. Immediately under stirring, a 10% by mass aqueous potassium hydroxide solution was added to adjust the pH to 7.2, followed by further heating and aging under boiling for 3 hours. To the resulting aqueous solution, 10 times the amount of the active silicic acid aqueous solution whose pH was previously adjusted to 7.2 was added little by little over 6 hours, and the average primary particle size of the silica particles was grown to 26 nm. Next, the dispersion aqueous solution containing the silica particles was concentrated under reduced pressure at a boiling point of 78 ° C. to obtain a silica glass dispersion having a silica concentration of 32.0% by mass and a pH of 9.8. . This silica particle dispersion is again passed through the hydrogen-type cation exchange resin layer to remove most of sodium, and then a 10% by mass potassium hydroxide aqueous solution is added to obtain a silica particle concentration of 28.0% by mass. % Aqueous dispersion “D25” containing colloidal silica particles having a pH of 10.0 was obtained. The average primary particle diameter of the colloidal silica particles contained in this aqueous dispersion was 26 nm, and the average secondary particle diameter was 26 nm.
 4.2 ポリビニルピロリドン水溶液の調製
 フラスコに、N-ビニル-2-ピロリドン60g、水240g、10質量%の亜硫酸ナトリウム水溶液0.3gおよび10質量%のt-ブチルヒドロパーオキシド水溶液0.3gを添加し60℃窒素雰囲気下で5時間撹拌することによりポリビニルピロリドン(PVP-K30)を得た。「PVP-K30」をゲルパーミエーションクロマトグラフィー(東ソー社製、装置型番「HLC-8120」、カラム型番「TSK-GEL α-M」、溶離液はNaCl水溶液/アセトニトリル)にて測定した結果、ポリエチレングリコール換算の重量平均分子量(Mw)は40,000であった。
4.2 Preparation of aqueous solution of polyvinylpyrrolidone 60 g of N-vinyl-2-pyrrolidone, 240 g of water, 0.3 g of 10% by weight aqueous sodium sulfite and 0.3 g of 10% by weight aqueous t-butyl hydroperoxide were added to the flask. Then, polyvinyl pyrrolidone (PVP-K30) was obtained by stirring for 5 hours in a nitrogen atmosphere at 60 ° C. As a result of measuring “PVP-K30” by gel permeation chromatography (manufactured by Tosoh Corporation, apparatus model number “HLC-8120”, column model number “TSK-GEL α-M”, eluent is NaCl aqueous solution / acetonitrile), polyethylene The weight average molecular weight (Mw) in terms of glycol was 40,000.
 4.3 化学機械研磨用水系分散体の調製
 4.3.1 実施例1
 固形分に換算して0.5質量%に相当する量のコロイダルシリカ水分散体C35をポリエチレン製の瓶に入れ、これに、ヒスチジンを0.25質量%、グリシンを0.5質量%、ドデシルベンゼンスルホン酸アンモニウムを0.05質量%、過酸化水素に換算して0.2質量%に相当する量の30質量%過酸化水素水を順次入れ、28%アンモニア水でpHを9.8に調整した後、全構成成分の量が100質量%となるようにイオン交換水を加えて1時間撹拌した。その後、孔径5μmのフィルターで濾過することにより、表1に記載の実施例1で用いる化学機械研磨用水系分散体を得た。なお、表1~3に記載されている各成分組成量は質量%であり、表記載成分以外の分散体成分は水である。
4.3 Preparation of chemical mechanical polishing aqueous dispersion 4.3.1 Example 1
An amount of colloidal silica aqueous dispersion C35 equivalent to 0.5% by mass in terms of solid content is put into a polyethylene bottle, and 0.25% by mass of histidine, 0.5% by mass of glycine, and dodecyl are added thereto. Ammonium benzenesulfonate was added in an amount of 0.05% by mass and 30% by mass hydrogen peroxide in an amount corresponding to 0.2% by mass in terms of hydrogen peroxide, and the pH was adjusted to 9.8 with 28% ammonia water. After the adjustment, ion-exchanged water was added and stirred for 1 hour so that the amount of all components was 100% by mass. Then, the chemical mechanical polishing aqueous dispersion used in Example 1 shown in Table 1 was obtained by filtering with a filter having a pore diameter of 5 μm. The composition amounts of the components described in Tables 1 to 3 are mass%, and the dispersion component other than the components described in the table is water.
 4.3.2 実施例2~13および比較例1~9
 各成分の種類または含有量を表1~3に示すものに変更したこと以外は、上記の実施例1で用いる化学機械研磨用水系分散体の調製方法と全く同様にして実施例2~13および比較例1~9で用いる化学機械研磨用水系分散体を調製した。
4.3.2 Examples 2 to 13 and Comparative Examples 1 to 9
Except that the types or contents of the respective components were changed to those shown in Tables 1 to 3, Examples 2 to 13 and Example 2 were prepared in the same manner as the method for preparing the chemical mechanical polishing aqueous dispersion used in Example 1 above. Chemical mechanical polishing aqueous dispersions used in Comparative Examples 1 to 9 were prepared.
 4.4 研磨性能の評価
 4.4.1 銅膜の研磨速度評価
 化学機械研磨装置(アプライドマテリアル社製、型式「MIRRA-Mesa」)に、多孔質ポリウレタン製研磨パッド(ローム&ハース社製、品番「IC1010」)を装着し、上記の方法で調製した化学機械研磨用水系分散体を供給しながら、下記の研磨速度測定用基板について、下記の研磨条件にて1分間化学機械研磨処理を行い、下記の手法によって銅膜の研磨速度を算出した。銅膜の研磨速度は、8,000オングストローム以上であることが好ましく、10,000オングストローム以上であることがより好ましい。
4.4 Evaluation of Polishing Performance 4.4.1 Evaluation of Polishing Rate of Copper Film A chemical mechanical polishing apparatus (Applied Materials Co., Model “MIRRA-Mesa”) has a porous polyurethane polishing pad (Rohm & Haas Co., Ltd.) A chemical mechanical polishing treatment is performed for 1 minute under the following polishing conditions for the following polishing rate measurement substrate while supplying the chemical mechanical polishing aqueous dispersion prepared by the above method with the product number “IC1010”) The polishing rate of the copper film was calculated by the following method. The polishing rate of the copper film is preferably 8,000 angstroms or more, and more preferably 10,000 angstroms or more.
 (a)銅研磨速度測定用基板
・8インチ熱酸化膜付きシリコン基板上に膜厚15,000オングストロームの銅膜が設けられたもの。
(A) A copper polishing rate measurement substrate / a silicon substrate with an 8-inch thermal oxide film provided with a copper film having a thickness of 15,000 angstroms.
 (b)研磨条件
・ヘッド回転数:90rpm
・テーブル回転数:90rpm
・キャリアーヘッド荷重:100gf/cm
・化学機械研磨用水系分散体の供給速度:250mL/分
(B) Polishing conditions / head rotation speed: 90 rpm
・ Table rotation speed: 90rpm
Carrier head load: 100 gf / cm 2
-Supply speed of chemical mechanical polishing aqueous dispersion: 250 mL / min
 (c)研磨速度の算出方法
 電気伝導式膜厚測定器(KLAテンコール社製、形式「オムニマップRS75」)を用いて、直流4針法によって研磨処理後のシート抵抗値を測定し、下記式によって研磨後の銅膜の厚さを算出し、化学機械研磨により減少した膜厚と研磨時間とから研磨速度を算出した。この結果を表1~3に示す。
(C) Polishing rate calculation method Using an electric conduction film thickness measuring instrument (manufactured by KLA Tencor, model “Omnimap RS75”), the sheet resistance value after the polishing treatment is measured by a direct current four-needle method. Then, the thickness of the copper film after polishing was calculated, and the polishing rate was calculated from the film thickness reduced by chemical mechanical polishing and the polishing time. The results are shown in Tables 1 to 3.
 銅膜の厚さ(オングストローム)=シート抵抗値(Ω/cm)÷銅の理論抵抗値(Ω/cm)×10 Copper film thickness (angstrom) = sheet resistance value (Ω / cm 2 ) ÷ theoretical resistance value of copper (Ω / cm) × 10 8
 4.4.2 パターン付き銅膜の研磨性能評価
 パターン付きウエハ(シリコン基板上にシリコン窒化膜1,000オングストロームを堆積させ、その上にPETEOS膜5,000オングストロームを順次積層させた後、形式「SEMATECH 854」マスクパターン加工し、その上に250オングストロームのタンタル膜、11,000オングストロームの銅膜を順次積層させたテスト用のSEMATECH INTERNATIONAL社製の基板を用いた。本基板の断面図を模式的に示すと、図1Aのようになる。)を被研磨物とした。被研磨面にタンタル膜が検出された時点を研磨終点としたこと以外は、上記「4.3.1 銅膜の研磨速度評価」における研磨条件と同様にして、化学機械研磨を行った。上記パターン付ウエハの研磨に要する時間は、終点認識時間で100秒以下であることが望まれる。銅膜除去後のウエハについて、銅配線のディッシング、エロージョン、および銅表面粗さを評価した。
4.4.2 Evaluation of Polishing Performance of Patterned Copper Film Wafer with pattern (Silicon nitride film of 1,000 angstrom is deposited on silicon substrate, PETEOS film of 5,000 angstrom is sequentially stacked thereon, A SEMATECH 854 "mask pattern was processed, and a substrate made by SEMATECH INTERNATIONAL for testing, in which a 250 angstrom tantalum film and a 11,000 angstrom copper film were sequentially laminated, was used. Is as shown in FIG. 1A). Chemical mechanical polishing was performed in the same manner as the polishing conditions in “4.3.1 Evaluation of polishing rate of copper film” except that the polishing end point was determined when the tantalum film was detected on the surface to be polished. The time required for polishing the patterned wafer is desirably 100 seconds or less as the end point recognition time. The wafer after the copper film was removed was evaluated for copper wiring dishing, erosion, and copper surface roughness.
 (a)ディッシングの評価方法
 ここで「ディッシング」とは、ウエハの上面(絶縁膜または導電性バリア膜により形成される平面)と、配線部分の最低部位との距離(高低差)のことをいう。幅100μmの銅配線部および幅100μmの絶縁部(共に長さは3.0mmである。)が交互に連続したパターンが、長さ方向に対して垂直方向に3.0mm連続した部分について、配線幅100μmの部分の銅配線の窪み量(ディッシング)を、KLAテンコール社製の精密段差計(形式「HRP-240」)を使用して測定した。この結果を表1~3に示す。ディッシング量は1,000オングストローム以下であることが好ましく、500オングストローム以下であることがより好ましい。
(A) Dishing Evaluation Method Here, “dishing” refers to the distance (level difference) between the upper surface of a wafer (a plane formed by an insulating film or a conductive barrier film) and the lowest part of the wiring portion. . For a portion in which a pattern in which a copper wiring portion having a width of 100 μm and an insulating portion having a width of 100 μm (both lengths are 3.0 mm) are alternately continued is 3.0 mm in a direction perpendicular to the length direction, wiring is performed. The amount of depression (dishing) of the copper wiring in the 100 μm width portion was measured using a precision step gauge (type “HRP-240”) manufactured by KLA Tencor. The results are shown in Tables 1 to 3. The dishing amount is preferably 1,000 angstroms or less, and more preferably 500 angstroms or less.
 (b)エロージョンの評価方法
 幅9μmの銅配線部、および幅1μmのスペース部分が交互に連続した密集パターン部分の配線の長さ方向に垂直な方向について、ディッシング測定と同様に触針段差計を用い高低差を測定した。密集パターンの中央部と、周辺の配線の施されていない部分(フィールド部分)の高低差をエロージョン量とした。この結果を表1~3に示す。エロージョンは、500オングストローム以下であることが好ましく、250オングストローム以下であることがより好ましい。
(B) Evaluation method of erosion A stylus step meter is used in the direction perpendicular to the wiring length direction of the dense pattern portion in which the copper wiring portion having a width of 9 μm and the space portion having a width of 1 μm are alternately arranged similarly to the dishing measurement. The height difference was measured. The difference in height between the central portion of the dense pattern and the peripheral portion (field portion) where no wiring is applied was defined as the erosion amount. The results are shown in Tables 1 to 3. The erosion is preferably 500 angstroms or less, and more preferably 250 angstroms or less.
 (c)銅膜の表面粗さの評価方法
 光学顕微鏡(オリンパス社製、「MX-50」)にて、暗視野観察を行い評価した。視野中に荒れによる輝点のまったく観察されなかった場合を◎とし、わずかに観察された場合を○、やや観察された場合を△、多数観察された場合を×とした。この結果を表1~3に示す。
(C) Evaluation Method for Surface Roughness of Copper Film An evaluation was performed by dark field observation with an optical microscope (Olympus, “MX-50”). A case where no bright spots due to roughness were observed in the field of view was indicated by ◎, a case where it was observed slightly was indicated by △, a case where it was observed slightly was indicated by △, and a case where many were observed were indicated by ×. The results are shown in Tables 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~13の化学機械研磨用水系分散体を用いることにより、銅膜に対する研磨速度は8,000オングストローム/分以上と十分に高いことが確認された。また、銅膜のディッシングは1000オングストローム以下に抑えられ、銅膜のエロージョンも500オングストローム以下に抑えられた。さらに、銅膜の表面粗さも認められなかった。 It was confirmed that by using the chemical mechanical polishing aqueous dispersions of Examples 1 to 13, the polishing rate for the copper film was sufficiently high at 8,000 angstroms / minute or more. Moreover, the dishing of the copper film was suppressed to 1000 angstroms or less, and the erosion of the copper film was also suppressed to 500 angstroms or less. Furthermore, the surface roughness of the copper film was not recognized.
 比較例1の化学機械研磨用水系分散体は、(A)成分を含有していない。比較例1の化学機械研磨用水系分散体を用いると、銅膜に対する研磨速度は十分であったが、パターンウエハの研磨に要する時間が100秒を超えた。さらに、銅膜を保護する効果が低く、銅膜の表面荒れが認められた。 The chemical mechanical polishing aqueous dispersion of Comparative Example 1 does not contain the component (A). When the chemical mechanical polishing aqueous dispersion of Comparative Example 1 was used, the polishing rate for the copper film was sufficient, but the time required for polishing the pattern wafer exceeded 100 seconds. Furthermore, the effect of protecting the copper film was low, and surface roughness of the copper film was observed.
 比較例2の化学機械研磨用水系分散体は、(B)成分を含有していない。比較例2の化学機械研磨用水系分散体を用いると、銅膜に対する研磨速度が不十分であることが確認された。 The chemical mechanical polishing aqueous dispersion of Comparative Example 2 does not contain the component (B). When the chemical mechanical polishing aqueous dispersion of Comparative Example 2 was used, it was confirmed that the polishing rate for the copper film was insufficient.
 比較例3の化学機械研磨用水系分散体に含まれる(A)成分と(B)成分との含有比率(W/W)は、0.17(0.5未満)である。比較例3の化学機械研磨用水系分散体を用いると、銅膜を保護する効果が十分でなく、銅膜の表面荒れが認められた。 The content ratio (W A / W B ) of the component (A) and the component (B) contained in the chemical mechanical polishing aqueous dispersion of Comparative Example 3 is 0.17 (less than 0.5). When the chemical mechanical polishing aqueous dispersion of Comparative Example 3 was used, the effect of protecting the copper film was not sufficient, and surface roughness of the copper film was observed.
 比較例4の化学機械研磨用水系分散体に含まれる(A)成分と(B)成分との含有比率(W/W)は、0.4(0.5未満)である。比較例4の化学機械研磨用水系分散体を用いると、銅膜を保護する効果が十分でなく、銅膜の表面荒れが認められた。 The content ratio (W A / W B ) of the component (A) and the component (B) contained in the chemical mechanical polishing aqueous dispersion of Comparative Example 4 is 0.4 (less than 0.5). When the chemical mechanical polishing aqueous dispersion of Comparative Example 4 was used, the effect of protecting the copper film was not sufficient, and surface roughness of the copper film was observed.
 比較例5の化学機械研磨用水系分散体に含まれる(A)成分と(B)成分との含有比率(W/W)は、60(50よりも大きい)である。比較例5の化学機械研磨用水系分散体を用いると、銅膜に対する研磨速度が不十分であることが確認された。 The content ratio (W A / W B ) of the component (A) and the component (B) contained in the chemical mechanical polishing aqueous dispersion of Comparative Example 5 is 60 (greater than 50). When the chemical mechanical polishing aqueous dispersion of Comparative Example 5 was used, it was confirmed that the polishing rate for the copper film was insufficient.
 比較例6の化学機械研磨用水系分散体については、(B)グリシン、アラニン、アスパラギン酸よりなる群から選択される少なくとも1種のアミノ酸に代えて、シスチンを用いたところ、ディッシング、エロージョン共に大幅に悪化しており、銅膜の表面荒れも認められた。 For the chemical mechanical polishing aqueous dispersion of Comparative Example 6, when cystine was used instead of at least one amino acid selected from the group consisting of (B) glycine, alanine, and aspartic acid, both dishing and erosion were greatly reduced. The surface of the copper film was also roughened.
 比較例7の化学機械研磨用水系分散体は、酸化剤を含有していない。比較例7の化学機械研磨用水系分散体を用いると、銅膜に対する研磨速度は580オングストローム/分と十分ではなく、パターンウエハの銅膜除去(凹凸解消)が進まず、研磨を中断した。 The chemical mechanical polishing aqueous dispersion of Comparative Example 7 does not contain an oxidizing agent. When the chemical mechanical polishing aqueous dispersion of Comparative Example 7 was used, the polishing rate for the copper film was not sufficient at 580 angstroms / minute, and the copper film removal (relief of unevenness) of the pattern wafer did not proceed and the polishing was interrupted.
 比較例8の化学機械研磨用水系分散体は、砥粒を含有していない。比較例8の化学機械研磨用水系分散体を用いると、銅膜に対する研磨速度が小さすぎるため、評価することができなかった。 The chemical mechanical polishing aqueous dispersion of Comparative Example 8 does not contain abrasive grains. When the chemical mechanical polishing aqueous dispersion of Comparative Example 8 was used, the polishing rate for the copper film was too low to be evaluated.
 比較例9の化学機械研磨用水系分散体は、ノニオン性界面活性剤を用いている。比較例9の化学機械研磨用水系分散体を用いると、銅配線を保護することができずディッシング、エロージョン共に大幅に悪化した。また、銅膜の表面荒れが認められた。 The chemical mechanical polishing aqueous dispersion of Comparative Example 9 uses a nonionic surfactant. When the chemical mechanical polishing aqueous dispersion of Comparative Example 9 was used, the copper wiring could not be protected and both dishing and erosion were greatly deteriorated. Moreover, the surface roughness of the copper film was recognized.
 以上のように、化学機械研磨用水系分散体として必須成分となる砥粒および酸化剤のほか、(A)成分と(B)成分とを特定の比率で含有し、さらに(E)アニオン性界面活性剤を含有することにより、化学機械研磨用水系分散体の銅膜に対する研磨性能が大幅に向上することがわかった。 As described above, in addition to abrasive grains and oxidizers that are essential components for an aqueous dispersion for chemical mechanical polishing, the component (A) and the component (B) are contained in a specific ratio, and (E) an anionic interface It has been found that the polishing performance of the chemical mechanical polishing aqueous dispersion on the copper film is significantly improved by containing the activator.

Claims (12)

  1.  (A)含窒素五員環およびカルボキシル基を有する化合物と、
     (B)グリシン、アラニンおよびアスパラギン酸から選択される少なくとも1種のアミノ酸と、
     (C)酸化剤と、
     (D)砥粒と、
     (E)アニオン性界面活性剤と、
    を含み、
     前記(A)成分の含有量(W)[質量%]と前記(B)成分の含有量(W)[質量%]との比率(W/W)は、0.5以上50以下である、化学機械研磨用水系分散体。
    (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group;
    (B) at least one amino acid selected from glycine, alanine and aspartic acid;
    (C) an oxidizing agent;
    (D) abrasive grains;
    (E) an anionic surfactant;
    Including
    The ratio (W A / W B ) between the content (W A ) [mass%] of the component (A) and the content (W B ) [mass%] of the component ( B ) is 0.5 or more and 50 The following is an aqueous dispersion for chemical mechanical polishing.
  2.  請求項1において、
     前記(A)含窒素五員環およびカルボキシル基を有する化合物は、ピロール骨格、イミダゾール骨格およびピラゾール骨格から選択される少なくとも1種の複素環構造を有する、化学機械研磨用水系分散体。
    In claim 1,
    The chemical mechanical polishing aqueous dispersion, wherein the compound (A) having a nitrogen-containing five-membered ring and a carboxyl group has at least one heterocyclic structure selected from a pyrrole skeleton, an imidazole skeleton, and a pyrazole skeleton.
  3.  請求項1または2において、
     前記(A)含窒素五員環およびカルボキシル基を有する化合物は、ヒスチジンまたはトリプトファンである、化学機械研磨用水系分散体。
    In claim 1 or 2,
    The chemical mechanical polishing aqueous dispersion, wherein (A) the compound having a nitrogen-containing five-membered ring and a carboxyl group is histidine or tryptophan.
  4.  請求項1ないし3のいずれか一項において、
     前記(D)砥粒は、シリカである、化学機械研磨用水系分散体。
    In any one of Claims 1 thru | or 3,
    The chemical mechanical polishing aqueous dispersion, wherein (D) the abrasive is silica.
  5.  請求項1ないし4のいずれか一項において、
     前記(E)アニオン性界面活性剤は、アルキルベンゼンスルホン酸塩である、化学機械研磨用水系分散体。
    In any one of Claims 1 thru | or 4,
    The (E) anionic surfactant is an alkylbenzene sulfonate, an aqueous dispersion for chemical mechanical polishing.
  6.  請求項1ないし5のいずれか一項において、
     pHは、8~11である、化学機械研磨用水系分散体。
    In any one of Claims 1 thru | or 5,
    A chemical mechanical polishing aqueous dispersion having a pH of 8-11.
  7.  第1の組成物および第2の組成物を混合して、請求項1ないし6のいずれか1項に記載の化学機械研磨用水系分散体を調製するためのキットであって、
     前記第1の組成物は、(D)砥粒を含み、
     前記第2の組成物は、(A)含窒素五員環およびカルボキシル基を有する化合物と、(B)グリシン、アラニンおよびアスパラギン酸から選択される少なくとも1種のアミノ酸と、(E)アニオン性界面活性剤と、を含み、
     前記第1の組成物および前記第2の組成物の少なくとも一方は、(C)酸化剤を含む、化学機械研磨用水系分散体調製用キット。
    A kit for preparing the chemical mechanical polishing aqueous dispersion according to any one of claims 1 to 6, comprising mixing the first composition and the second composition,
    The first composition includes (D) abrasive grains,
    The second composition comprises (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group, (B) at least one amino acid selected from glycine, alanine and aspartic acid, and (E) an anionic interface. An active agent,
    The chemical mechanical polishing aqueous dispersion preparation kit, wherein at least one of the first composition and the second composition contains (C) an oxidizing agent.
  8.  第3の組成物、第4の組成物および第5の組成物を混合して、請求項1ないし6のいずれか1項に記載の化学機械研磨用水系分散体を調製するためのキットであって、
     前記第3の組成物は、(D)砥粒を含み、
     前記第4の組成物は、(A)含窒素五員環およびカルボキシル基を有する化合物と、(B)グリシン、アラニンおよびアスパラギン酸から選択される少なくとも1種のアミノ酸と、(E)アニオン性界面活性剤と、を含み、
     前記第5の組成物は、(C)酸化剤を含む、化学機械研磨用水系分散体調製用キット。
    A kit for preparing the chemical mechanical polishing aqueous dispersion according to any one of claims 1 to 6, wherein the third composition, the fourth composition, and the fifth composition are mixed. And
    The third composition includes (D) abrasive grains,
    The fourth composition comprises (A) a compound having a nitrogen-containing five-membered ring and a carboxyl group, (B) at least one amino acid selected from glycine, alanine and aspartic acid, and (E) an anionic interface. An active agent,
    The fifth composition is a kit for preparing an aqueous dispersion for chemical mechanical polishing, comprising (C) an oxidizing agent.
  9.  請求項7または8において、
     前記(A)含窒素五員環およびカルボキシル基を有する化合物は、ヒスチジンまたはトリプトファンである、化学機械研磨用水系分散体調製用キット。
    In claim 7 or 8,
    The chemical mechanical polishing aqueous dispersion preparation kit, wherein the compound (A) having a nitrogen-containing five-membered ring and a carboxyl group is histidine or tryptophan.
  10.  請求項7ないし9のいずれか一項において、
     前記(E)アニオン性界面活性剤は、アルキルベンゼンスルホン酸塩である、化学機械研磨用水系分散体調製用キット。
    In any one of claims 7 to 9,
    The kit for preparing an aqueous dispersion for chemical mechanical polishing, wherein the (E) anionic surfactant is an alkylbenzene sulfonate.
  11.  請求項7ないし10のいずれか一項に記載の化学機械研磨用水系分散体調製用キットにかかる各組成物を混合する工程を含む、化学機械研磨用水系分散体の調製方法。 A method for preparing an aqueous dispersion for chemical mechanical polishing, comprising the step of mixing each composition according to the kit for preparing an aqueous dispersion for chemical mechanical polishing according to any one of claims 7 to 10.
  12.  請求項1ないし6のいずれか一項に記載の化学機械研磨用水系分散体を用いて、半導体基板上に形成された銅または銅合金からなる膜を研磨する、半導体装置の化学機械研磨方法。 A chemical mechanical polishing method for a semiconductor device, wherein a film made of copper or a copper alloy formed on a semiconductor substrate is polished using the chemical mechanical polishing aqueous dispersion according to any one of claims 1 to 6.
PCT/JP2009/051036 2008-02-07 2009-01-23 Aqueous dispersion for chemical mechanical polishing, kit for preparing the dispersion, method for preparing aqueous dispersion for chemical mechanical polishing using the kit, and chemical mechanical polishing method for semiconductor device WO2009098951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009552431A JP5408437B2 (en) 2008-02-07 2009-01-23 Chemical mechanical polishing aqueous dispersion, kit for preparing the dispersion, method for preparing chemical mechanical polishing aqueous dispersion using the kit, and chemical mechanical polishing method for semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-027216 2008-02-07
JP2008027216 2008-02-07

Publications (1)

Publication Number Publication Date
WO2009098951A1 true WO2009098951A1 (en) 2009-08-13

Family

ID=40952029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051036 WO2009098951A1 (en) 2008-02-07 2009-01-23 Aqueous dispersion for chemical mechanical polishing, kit for preparing the dispersion, method for preparing aqueous dispersion for chemical mechanical polishing using the kit, and chemical mechanical polishing method for semiconductor device

Country Status (3)

Country Link
JP (1) JP5408437B2 (en)
TW (1) TW200940693A (en)
WO (1) WO2009098951A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229827A (en) * 2013-05-24 2014-12-08 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing and method for chemical mechanical polishing
JP2015155523A (en) * 2014-01-15 2015-08-27 株式会社フジミインコーポレーテッド Kit for production of polishing composition and use thereof
CN106085245A (en) * 2015-04-27 2016-11-09 气体产品与化学公司 The copper CMP of low depression
JP2019052295A (en) * 2017-08-17 2019-04-04 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Chemical machinery planarization (cmp) composition for copper and silica penetration electrode (tsv) application and method therefor
CN109716488A (en) * 2016-09-23 2019-05-03 福吉米株式会社 Surface treating composition and using its surface treatment method and semiconductor substrate manufacturing method
JP2019189814A (en) * 2018-04-27 2019-10-31 三菱ケミカル株式会社 Polishing composition
CN116134110A (en) * 2020-07-28 2023-05-16 Cmc材料股份有限公司 Chemical mechanical polishing composition comprising anionic and cationic inhibitors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409738B1 (en) 2009-12-01 2014-07-02 가부시키가이샤 사무코 Wafer polishing method
US8821215B2 (en) * 2012-09-07 2014-09-02 Cabot Microelectronics Corporation Polypyrrolidone polishing composition and method
KR102638622B1 (en) * 2021-07-22 2024-02-19 에스케이엔펄스 주식회사 Polishing compostion for semiconductor process and method for manufacturing semiconductor device by using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116770A1 (en) * 2006-04-03 2007-10-18 Jsr Corporation Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
JP2007273641A (en) * 2006-03-30 2007-10-18 Fujifilm Corp Polishing method
JP2008004621A (en) * 2006-06-20 2008-01-10 Toshiba Corp SLURRY FOR USE IN Cu FILM CMP, POLISHING METHOD, AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273641A (en) * 2006-03-30 2007-10-18 Fujifilm Corp Polishing method
WO2007116770A1 (en) * 2006-04-03 2007-10-18 Jsr Corporation Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
JP2008004621A (en) * 2006-06-20 2008-01-10 Toshiba Corp SLURRY FOR USE IN Cu FILM CMP, POLISHING METHOD, AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229827A (en) * 2013-05-24 2014-12-08 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing and method for chemical mechanical polishing
JP2015155523A (en) * 2014-01-15 2015-08-27 株式会社フジミインコーポレーテッド Kit for production of polishing composition and use thereof
CN106085245A (en) * 2015-04-27 2016-11-09 气体产品与化学公司 The copper CMP of low depression
JP2016208005A (en) * 2015-04-27 2016-12-08 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Low dishing Copper chemical mechanical planarization
US9978609B2 (en) 2015-04-27 2018-05-22 Versum Materials Us, Llc Low dishing copper chemical mechanical planarization
CN109716488A (en) * 2016-09-23 2019-05-03 福吉米株式会社 Surface treating composition and using its surface treatment method and semiconductor substrate manufacturing method
JP2019052295A (en) * 2017-08-17 2019-04-04 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Chemical machinery planarization (cmp) composition for copper and silica penetration electrode (tsv) application and method therefor
JP6995716B2 (en) 2017-08-17 2022-01-17 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Chemical Mechanical Flattening (CMP) Compositions and Methods for Copper and Through Silicon Via (TSV) Applications
JP2019189814A (en) * 2018-04-27 2019-10-31 三菱ケミカル株式会社 Polishing composition
JP7035773B2 (en) 2018-04-27 2022-03-15 三菱ケミカル株式会社 Polishing composition
CN116134110A (en) * 2020-07-28 2023-05-16 Cmc材料股份有限公司 Chemical mechanical polishing composition comprising anionic and cationic inhibitors

Also Published As

Publication number Publication date
TW200940693A (en) 2009-10-01
JP5408437B2 (en) 2014-02-05
JPWO2009098951A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5408437B2 (en) Chemical mechanical polishing aqueous dispersion, kit for preparing the dispersion, method for preparing chemical mechanical polishing aqueous dispersion using the kit, and chemical mechanical polishing method for semiconductor device
JP5472585B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JPWO2009031389A1 (en) Chemical mechanical polishing aqueous dispersion and preparation method thereof, kit for preparing chemical mechanical polishing aqueous dispersion, and chemical mechanical polishing method of semiconductor device
WO2009104517A1 (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
WO2009098924A1 (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
WO2009104465A1 (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JPWO2007116770A1 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
JP2009164186A (en) Polishing composition
JP5447789B2 (en) Chemical mechanical polishing aqueous dispersion, method for preparing the dispersion, and chemical mechanical polishing method
JP2005158867A (en) Set for adjusting water-based dispersing element for chemical-mechanical polishing
WO2011093195A1 (en) Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method using same, and kit for preparing aqueous dispersion for chemical mechanical polishing
JP5344136B2 (en) Aqueous dispersion for chemical mechanical polishing, method for preparing the dispersion, and chemical mechanical polishing method for semiconductor device
JP2009147278A (en) Aqueous dispersant for chemical mechanical polishing, kit for preparing the same, and preparing method for the same
JP5413566B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
KR20210099166A (en) Composition for tungsten CMP
JP2010016344A (en) Aqueous dispersing element for chemical mechanical polishing, manufacturing method thereof, and chemical mechanical polishing method
JP2010118377A (en) Aqueous dispersing element for chemical mechanical polishing, method of preparing dispersing element, and method of performing chemical mechanical polishing of semiconductor device
JP2010034497A (en) Aqueous dispersion for chemo-mechanical polishing and manufacturing method thereof, and chemo-mechanical polishing method
JP5333740B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP5333741B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP5413571B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2009302551A (en) Set for manufacturing water-based dispersing element for chemical-mechanical polishing
JP5413569B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2010258418A (en) Chemical mechanical polishing aqueous dispersion preparation kit, and method for preparing the chemical mechanical polishing aqueous dispersion
WO2021124771A1 (en) Composition for chemical mechanical polishing, chemical mechanical polishing method, and method for manufacturing particles for chemical mechanical polishing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009552431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708149

Country of ref document: EP

Kind code of ref document: A1