WO2009096346A1 - Ultrasonic wave generating device, and apparatus having the device - Google Patents

Ultrasonic wave generating device, and apparatus having the device Download PDF

Info

Publication number
WO2009096346A1
WO2009096346A1 PCT/JP2009/051152 JP2009051152W WO2009096346A1 WO 2009096346 A1 WO2009096346 A1 WO 2009096346A1 JP 2009051152 W JP2009051152 W JP 2009051152W WO 2009096346 A1 WO2009096346 A1 WO 2009096346A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
ultrasonic
ultrasonic generator
voltage threshold
interval
Prior art date
Application number
PCT/JP2009/051152
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Fujiwara
Sota Komae
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Publication of WO2009096346A1 publication Critical patent/WO2009096346A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0261Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken from a transducer or electrode connected to the driving transducer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0669Excitation frequencies

Definitions

  • the present invention relates to an ultrasonic generator that generates ultrasonic waves, and more particularly to an ultrasonic generator that can appropriately detect and oscillate an optimum resonance frequency, and equipment that includes the ultrasonic generator.
  • ultrasonic generators that generate ultrasonic waves.
  • disturbance for example, water droplet adhesion on the device surface, temperature rise of the vibrator accompanying vibration (ultrasonic oscillation) of the vibrator, dust adhesion on the vibration face, surface material aging, etc.
  • the resonance frequency (initial value) necessary for excitation may change due to changes.
  • the required ultrasonic frequency oscillation that was initially planned and the sound pressure level associated with the oscillation cannot be obtained. Therefore, techniques for solving such problems have been proposed.
  • a ripple voltage generation circuit, an oscillation circuit whose frequency is changed by the ripple voltage by applying the ripple voltage, an output whose frequency is changed from the oscillation circuit, and a half-wave voltage from the rectifier are input.
  • An “ultrasonic oscillation circuit comprising an output circuit that applies an output in which a pulse output is superimposed on a half-wave voltage to an ultrasonic transducer” is disclosed (for example, see Patent Document 1).
  • the ultrasonic oscillation circuit described in Patent Document 1 has a circuit configuration that reproduces only one frequency in accordance with the element characteristics of the ultrasonic wave. Therefore, in order to cope with frequency fluctuations, the circuit configuration has a number of resonance circuits. For this reason, there is a problem in that it cannot keep up with fluctuations in the resonance frequency that change as appropriate due to disturbance. In addition, a number of resonance circuits have to be mounted, which causes a problem that the circuit configuration becomes complicated. Furthermore, there has been a problem that the cost is increased as the circuit configuration becomes complicated.
  • the present invention has been made to solve the above-described problems. Even when the resonance frequency of an ultrasonic wave changes due to a disturbance, the optimum resonance frequency necessary for excitation is appropriately detected and the optimum resonance frequency is obtained. It is an object of the present invention to provide an ultrasonic generator capable of oscillating the ultrasonic wave and an equipment provided with the ultrasonic generator.
  • An ultrasonic generator is an ultrasonic generator that generates an ultrasonic wave by driving an ultrasonic transducer, and sets a maximum voltage threshold in advance and performs a frequency sweep at a first frequency interval. After that, a frequency sweep is performed at least once at a second frequency interval narrower than the first frequency interval, a resonance frequency that is maximum near the maximum voltage threshold is detected, and an ultrasonic transducer is detected at the resonance frequency. It is characterized by driving.
  • the ultrasonic generator According to the ultrasonic generator according to the present invention, the fluctuation of the predetermined maximum voltage threshold that is set in advance is monitored at any time, the resonance frequency is optimized in accordance with the fluctuation of the maximum voltage threshold, and the resonance that generates the maximum voltage threshold is achieved.
  • the ultrasonic transducer can be driven at a frequency, and an ultrasonic wave at the maximum resonance frequency can be stably generated.
  • the equipment according to the present invention includes the ultrasonic generator having such an effect, it has the same effect.
  • FIG. 3 is an explanatory diagram for explaining the ultrasonic generator according to the first embodiment. It is explanatory drawing for demonstrating the function of the control part of an ultrasonic generator. It is a flowchart which shows the flow of the process for optimizing a resonant frequency. It is the graph which designed the frequency sweep.
  • FIG. 6 is an explanatory diagram for explaining an ultrasonic atomizer according to a second embodiment. 6 is an explanatory diagram for explaining an ultrasonic generator according to Embodiment 3.
  • FIG. 6 is an explanatory diagram for explaining an ultrasonic atomizer according to a second embodiment. 6 is an explanatory diagram for explaining an ultrasonic generator according to Embodiment 3.
  • FIG. 1 is an explanatory diagram for explaining an ultrasonic generator 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram for explaining the function of the control unit 15 of the ultrasonic generator 100. Based on FIG.1 and FIG.2, the ultrasonic generator 100b is demonstrated in detail. 1 and 2 also show a schematic configuration of the ultrasonic generator 100. FIG. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
  • the ultrasonic generator 100 applies a pulse voltage to an ultrasonic vibrator composed of a piezoelectric element such as PZT (lead zirconate titanate) and oscillates the vibrator to generate ultrasonic waves. ing.
  • the ultrasonic generator 100 includes a vibrator (ultrasonic vibrator) 10, a horn 11, and a diaphragm 12.
  • the vibrator 10 is provided with a piezoelectric element, and is oscillated by applying a pulse voltage via a positive electrode terminal and a negative electrode terminal (not shown). That is, the vibrator 10 has a function of oscillating a sound wave (ultrasonic wave) in a predetermined frequency range (generally around 40 kHz) when a pulse voltage is applied.
  • the horn 11 is configured such that both end faces are open and an acoustic path is formed therein, and the vibrator 10 is disposed at one end thereof.
  • the horn 11 is preferably formed in a truncated cone shape and is gradually reduced in diameter from the vibrator 10 side toward the diaphragm 12 side.
  • the diaphragm 12 is attached so as to block the other end of the horn 11 (the end opposite to the end where the vibrator 10 is disposed) and resonates with the oscillation (vibration) of the vibrator 10. It has a function to generate ultrasonic waves that are resonance waves. 1 and 2 show an example in which the horn 11 and the diaphragm 12 are provided, but an ultrasonic wave can be generated by the oscillation of the vibrator 10 without them.
  • the control unit 15 includes a frequency oscillation unit (pulse oscillation unit) 16, an oscillation control unit 17, and a frequency sweep 18.
  • the control unit 15 has a function of detecting a voltage variation of the vibrator 10 and oscillating the vibrator 10 by sweeping a pulse voltage at a predetermined necessary frequency interval.
  • the frequency oscillating unit 16 has a function of periodically and repeatedly transmitting a pulse voltage
  • the oscillation control unit 17 monitors the voltage fluctuation of the diaphragm 10 and transmits the voltage information to the frequency sweep 18.
  • the frequency sweep 18 has a function of detecting a voltage fluctuation based on the voltage information of the oscillation control unit 17 and transmitting a command for sweeping the pulse voltage at a predetermined frequency interval to the frequency oscillation unit 16. Yes.
  • a circuit configuration is provided in which a step-up transformer 13 and an amplifying unit 14 are provided between the control unit 15 and the vibrator 10.
  • the step-up transformer 13 has a function of stepping up the pulse voltage transmitted from the frequency oscillating unit 16.
  • the amplifying unit 14 has a function of amplifying the pulse voltage boosted by the step-up transformer 13. 1 and 2 show an example in which the step-up transformer 13 and the amplifying unit 14 are provided, but an ultrasonic wave can be generated by oscillating the vibrator 10 without these.
  • a pulse voltage having a predetermined frequency is periodically and repeatedly transmitted from the frequency oscillating unit 16 of the control unit 15.
  • This pulse voltage is boosted by the step-up transformer 13, amplified by the amplification unit 14, and then transmitted to the vibrator 10.
  • the vibrator 10 oscillates a sound wave in a predetermined frequency range.
  • the diaphragm 12 resonates via the horn 11 due to the oscillation of the vibrator 10, and ultrasonic waves are emitted by this resonance.
  • the oscillation control unit 17 of the control unit 15 monitors the voltage fluctuation of the resonance frequency generated in the diaphragm 10 and transmits the voltage information to the frequency sweep 18.
  • the frequency sweep 18 that has received the voltage information detects whether or not the voltage has fluctuated, and when the voltage fluctuates, transmits a command for sweeping the pulse voltage at a predetermined interval to the frequency oscillating unit 16.
  • the frequency oscillating unit 16 oscillates the vibrator 10 by sweeping the pulse voltage at the specified required frequency interval. That is, the ultrasonic generator 100 can appropriately change the frequency interval of the pulse voltage applied to the vibrator 10 by the voltage fluctuation of the vibrator 10.
  • FIG. 3 is a flowchart showing a processing flow for optimizing the resonance frequency.
  • FIG. 4 is a graph illustrating the frequency sweep. Based on FIG.3 and FIG.4, the optimization of the resonant frequency which is the characteristic matter of the ultrasonic generator 100 which concerns on this Embodiment 1 is demonstrated in detail.
  • the horizontal axis represents frequency (f) and the vertical axis represents sharpness (Q). This sharpness is the same as the voltage value (V).
  • the sharpness indicates a tendency of acoustic characteristics representing a resonance state of the diaphragm 12 due to the oscillation of the vibrator 10, and when a certain resonance phenomenon occurs, the sharpness tends to have a steep peak.
  • the resonance frequency required for excitation may change due to disturbance. Therefore, the ultrasonic generator 100 executes a series of processes shown below for optimizing the resonance frequency of the generated ultrasonic waves.
  • the resonance frequency at the “maximum voltage threshold (for example, set to 12 V or the like)” arbitrarily set in advance is detected. That is, as a first stage, frequency sweep is performed at a predetermined frequency interval (first frequency interval: for example, 5 Hz interval), and the existence range of the resonance frequency that becomes maximum near the maximum voltage threshold is roughly detected and determined ( Step S101).
  • Arrows A and B in FIG. 4 indicate frequency sweeps, and a resonance frequency indicated by a broken line indicates a change state with a predetermined frequency sweep interval (Fs).
  • a frequency sweep at a predetermined frequency interval (second frequency interval: for example, a 0.1 Hz interval) is performed at least once within the existence range determined in the first stage, near the maximum voltage threshold value.
  • the maximum resonance frequency (solid line resonance frequency shown in FIG. 4) is finely detected (step S102). In this way, the resonance frequency at which a predetermined maximum voltage threshold value set in advance is detected.
  • the first stage frequency sweep and the second stage frequency sweep are set to be performed at predetermined time intervals (for example, the first stage frequency sweep and the second stage frequency sweep are combined for one minute). Further, the second-stage frequency sweep may be repeatedly executed for a time until an optimum resonance frequency is detected.
  • the second frequency interval is a frequency interval narrower than the first frequency interval.
  • the pulse voltage of the resonance frequency detected here is transmitted from the frequency oscillating unit 16 to the step-up transformer 13 and transmitted to the vibrator 10 through the amplifying part 14 to drive the vibrator 10 (step S103). That is, the ultrasonic generator 100 can detect the maximum resonance frequency by monitoring the maximum voltage threshold, and can drive the vibrator 10 with the pulse voltage of the maximum resonance frequency. -ing After that, when the state of the surface of the ultrasonic element (the surface of the diaphragm 12 in FIGS. 1 and 2) changes due to disturbance, the resonance frequency also changes accordingly.
  • the frequency sweep 18 detects the fluctuation of the maximum voltage threshold based on the voltage information of the maximum voltage threshold of the oscillation control unit 17 (step S104). If the maximum voltage threshold has not changed (step S104; NO), since the resonance frequency has not changed, the vibrator 10 is driven with the pulse voltage as it is, and the monitoring of the change in the maximum voltage threshold is continued.
  • step S104 if the maximum voltage threshold fluctuates (step S104; YES), the resonance frequency is also changed, so that the resonance frequency is optimized. That is, as in the above operation, as the first stage, frequency sweep is performed at the first frequency interval, and the resonance frequency that is maximum near the maximum voltage threshold is roughly detected (step S105). Next, as a second stage, frequency sweep is performed at least once at the second frequency interval, and the resonance frequency that is maximum near the maximum voltage threshold is detected in detail (step S106). That is, the ultrasonic generator 100 can maintain the resonance frequency that becomes the maximum voltage threshold by monitoring the maximum voltage threshold.
  • the pulse voltage of the resonance frequency detected here is transmitted from the frequency oscillating unit 16 to the step-up transformer 13, and is transmitted to the vibrator 10 through the amplifying part 14, and the vibrator 10 is re-driven (step S107).
  • the driving state of the vibrator 10 can be kept optimal. Therefore, the ultrasonic generator 100 does not complicate the circuit configuration, and monitors the fluctuation of the resonance frequency that changes appropriately due to disturbance by the change of the maximum voltage threshold, optimizes the resonance frequency as needed, and optimizes the resonance. It is possible to always generate ultrasonic waves having a frequency. That is, it is possible to stably generate ultrasonic waves at the maximum resonance frequency. Note that the case where the frequency sweep is executed in two stages has been described as an example, but the present invention is not limited to this.
  • FIG. 5 is an explanatory diagram for explaining an ultrasonic atomizer 200 according to Embodiment 2 of the present invention.
  • the ultrasonic atomizer 200 which is an example of the equipment provided with the ultrasonic generator 100 is demonstrated.
  • the ultrasonic atomizer 200 atomizes a liquid such as water or medicine (hereinafter simply referred to as source water 23) by generating ultrasonic waves, and atomized liquid (hereinafter simply referred to as the atomized liquid 24). Can be sprayed and supplied to a desired place.
  • the ultrasonic atomizer 200 is provided with an atomization tank 21 and a blower fan 25 in addition to the ultrasonic generator 100.
  • the atomizing tank 21 is provided with a water outlet 22 for supplying the source water 23 to the surface of the diaphragm 12.
  • the liquid outlet of the water flow port 22 is disposed in the vicinity of the surface of the diaphragm 12.
  • the atomizing tank 21 may be provided with a flow rate control device configured by a valve device or the like so that a predetermined amount of source water 23 can be supplied to the surface of the diaphragm 12.
  • the ultrasonic atomizer 200 atomizes the source water 23 by ultrasonic waves, sprays the atomized liquid 24 from the diaphragm 12, and places the atomized liquid 24 on the ultrasonic vibration wave to obtain a predetermined spray distance. It is something that can be done.
  • the resonance frequency can be optimized at any time, and the ultrasonic wave with the optimized resonance frequency can always be generated. That is, it is possible to stably generate ultrasonic waves at the maximum resonance frequency. Therefore, it is possible to stabilize the supply amount of the atomized liquid 24 to be sprayed to a desired place, and to effectively prevent the atomized liquid 24 from being sprayed due to a disturbance. ing.
  • the ultrasonic atomizer 200 is illustrated and described as an example of the equipment including the ultrasonic generator 100.
  • the ultrasonic generator 100 is installed in facilities other than the ultrasonic atomizer 200.
  • Equipment can also be provided in equipment that uses ultrasonic waves, such as an air conditioner, an air cleaner, an ultrasonic processing device, an ultrasonic bonding device, a distance measuring sensor, an ultrasonic cleaning device, and an ultrasonic beauty device. Therefore, these equipments can also optimize the resonance frequency as needed and always generate ultrasonic waves with the optimized resonance frequency. That is, it is possible to stably generate ultrasonic waves at the maximum resonance frequency.
  • Embodiment 3 FIG.
  • the stable operation means of the ultrasonic vibrator has been described.
  • voltage generation due to the piezoelectric effect cannot be generated due to the life or failure of the ultrasonic vibrator
  • unstable operation is caused.
  • Become. 6 is an explanatory diagram for explaining the ultrasonic generator 100 according to the third embodiment.
  • the oscillation control unit 17 detects the voltage fluctuation of the ultrasonic vibrator 10, and the ultrasonic vibrator 10.
  • ON-OFF circuit soft SW

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Provided are an ultrasonic generating device, which can detect suitably a resonant frequency optimum for vibrations, even if the ultrasonic resonant frequency is changed by disturbances, thereby to oscillate the ultrasonic waves of the optimum resonant frequency, and an apparatus equipped with the ultrasonic generating device. The ultrasonic generating device (100) is characterized by setting a maximum voltage threshold in advance to perform a frequency sweep at a first frequency interval and then at least one frequency sweep at a second frequency interval narrower than the first frequency interval, and by detecting a resonant frequency to become the maximum near the maximum voltage threshold, thereby to drive a vibrator (13) with that resonant frequency.

Description

超音波発生装置及びそれを備えた設備機器Ultrasonic generator and equipment equipped with the same
 本発明は、超音波を発生する超音波発生装置に関し、特に最適な共振周波数を適宜探知し発振できる超音波発生装置及びそれを備えた設備機器に関するものである。 The present invention relates to an ultrasonic generator that generates ultrasonic waves, and more particularly to an ultrasonic generator that can appropriately detect and oscillate an optimum resonance frequency, and equipment that includes the ultrasonic generator.
 従来から、超音波を発生する超音波発生装置が存在する。このような超音波発生装置では、外乱(たとえば、デバイス面への水滴付着や、振動子の加振(超音波発振)に伴う振動子の温度上昇、振動面への塵埃付着、表面材料の経年変化等)により、加振に必要な共振周波数(初期値)が変化してしまうことがある。そうなると、当初予定していた必要な超音波周波数の発振や、発振に伴う音圧レベルが得られないことになってしまう。そこで、そのような問題を解決するための技術が提案されている。 Conventionally, there are ultrasonic generators that generate ultrasonic waves. In such an ultrasonic generator, disturbance (for example, water droplet adhesion on the device surface, temperature rise of the vibrator accompanying vibration (ultrasonic oscillation) of the vibrator, dust adhesion on the vibration face, surface material aging, etc. The resonance frequency (initial value) necessary for excitation may change due to changes. In such a case, the required ultrasonic frequency oscillation that was initially planned and the sound pressure level associated with the oscillation cannot be obtained. Therefore, techniques for solving such problems have been proposed.
 そのようなものとして、「交流電源と、該交流電源からの電圧を半波整流する整流器と、該整流器の出力で標準温度及び標準負荷に対する共振周波数になるように調整されたリップル電圧を発生するリップル電圧発生回路と、該リップル電圧を印加することによって、前記リップル電圧によって周波数が変化する発振回路と、該発振回路からの周波数が変化された出力と整流器からの半波電圧とが入力されて半波電圧にパルス出力が重畳された出力を超音波振動子に印加する出力回路とからなる超音波発振回路」が開示されている(たとえば、特許文献1参照)。 As such, “the AC power supply, the rectifier that half-wave rectifies the voltage from the AC power supply, and the output of the rectifier generates a ripple voltage that is adjusted to a resonant frequency for standard temperature and standard load. A ripple voltage generation circuit, an oscillation circuit whose frequency is changed by the ripple voltage by applying the ripple voltage, an output whose frequency is changed from the oscillation circuit, and a half-wave voltage from the rectifier are input. An “ultrasonic oscillation circuit comprising an output circuit that applies an output in which a pulse output is superimposed on a half-wave voltage to an ultrasonic transducer” is disclosed (for example, see Patent Document 1).
特開2001-300419号公報(第2、3頁、第1図)Japanese Patent Laid-Open No. 2001-300419 (pages 2, 3 and 1)
 特許文献1に記載の超音波発振回路では、超音波の素子特性に応じて、ひとつの周波数だけを再生する回路構成であった。したがって、周波数変動に対応すべく、いくつもの共振回路を搭載した回路構成となっていた。そのために、外乱によって適宜変化する共振周波数の変動に追いつけないという問題があった。また、いくつもの共振回路を搭載しなければならず、回路構成が複雑になってしまうという問題もあった。さらに、回路構成の複雑化に伴い、高コスト化を招くという問題もあった。 The ultrasonic oscillation circuit described in Patent Document 1 has a circuit configuration that reproduces only one frequency in accordance with the element characteristics of the ultrasonic wave. Therefore, in order to cope with frequency fluctuations, the circuit configuration has a number of resonance circuits. For this reason, there is a problem in that it cannot keep up with fluctuations in the resonance frequency that change as appropriate due to disturbance. In addition, a number of resonance circuits have to be mounted, which causes a problem that the circuit configuration becomes complicated. Furthermore, there has been a problem that the cost is increased as the circuit configuration becomes complicated.
 本発明は、以上のような問題を解決するためになされたもので、外乱によって超音波の共振周波数が変化しても、加振に必要な最適な共振周波数を適宜探知し、最適な共振周波数の超音波を発振することができる超音波発生装置及びそれを備えた設備機器を提供するものである。 The present invention has been made to solve the above-described problems. Even when the resonance frequency of an ultrasonic wave changes due to a disturbance, the optimum resonance frequency necessary for excitation is appropriately detected and the optimum resonance frequency is obtained. It is an object of the present invention to provide an ultrasonic generator capable of oscillating the ultrasonic wave and an equipment provided with the ultrasonic generator.
 本発明に係る超音波発生装置は、超音波振動子を駆動して超音波を発生する超音波発生装置であって、予め最大電圧閾値を設定しておき、第1の周波数間隔で周波数スイープを行なってから、前記第1の周波数間隔よりも狭い第2の周波数間隔で周波数スイープを少なくとも1回行ない、前記最大電圧閾値近傍で最大となる共振周波数を探知し、その共振周波数で超音波振動子を駆動することを特徴とする。 An ultrasonic generator according to the present invention is an ultrasonic generator that generates an ultrasonic wave by driving an ultrasonic transducer, and sets a maximum voltage threshold in advance and performs a frequency sweep at a first frequency interval. After that, a frequency sweep is performed at least once at a second frequency interval narrower than the first frequency interval, a resonance frequency that is maximum near the maximum voltage threshold is detected, and an ultrasonic transducer is detected at the resonance frequency. It is characterized by driving.
 本発明に係る超音波発生装置によれば、予め設定してある所定の最大電圧閾値の変動を随時監視し、最大電圧閾値の変動に伴って共振周波数を最適化し、最大電圧閾値が発生する共振周波数で超音波振動子を駆動することができ、最大の共振周波数での超音波を安定的に発生させることができる。また、本発明に係る設備機器は、このような効果を有する超音波発生装置を備えているので、同様の効果を有している。 According to the ultrasonic generator according to the present invention, the fluctuation of the predetermined maximum voltage threshold that is set in advance is monitored at any time, the resonance frequency is optimized in accordance with the fluctuation of the maximum voltage threshold, and the resonance that generates the maximum voltage threshold is achieved. The ultrasonic transducer can be driven at a frequency, and an ultrasonic wave at the maximum resonance frequency can be stably generated. Moreover, since the equipment according to the present invention includes the ultrasonic generator having such an effect, it has the same effect.
実施の形態1に係る超音波発生装置を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining the ultrasonic generator according to the first embodiment. 超音波発生装置の制御部の機能を説明するための説明図である。It is explanatory drawing for demonstrating the function of the control part of an ultrasonic generator. 共振周波数を最適化するための処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process for optimizing a resonant frequency. 周波数スイープを図案化したグラフである。It is the graph which designed the frequency sweep. 実施の形態2に係る超音波霧化装置を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining an ultrasonic atomizer according to a second embodiment. 実施の形態3に係る超音波発生装置を説明するための説明図である。6 is an explanatory diagram for explaining an ultrasonic generator according to Embodiment 3. FIG.
符号の説明Explanation of symbols
 10 振動子、11 ホーン、12 振動板、13 昇圧トランス、14 増幅部、15 制御部、16 周波数発振部、17 発振制御部、18 周波数スイープ、21 霧化用タンク、22 流水口、23 源水、24 霧化液体、25 送風ファン、27 ON-OFF回路、100 超音波発生装置、200 超音波霧化装置。 10 vibrator, 11 horn, 12 diaphragm, 13 step-up transformer, 14 amplification unit, 15 control unit, 16 frequency oscillation unit, 17 oscillation control unit, 18 frequency sweep, 21 atomization tank, 22 water outlet, 23 source water 24 atomizing liquid, 25 blower fan, 27 ON-OFF circuit, 100 ultrasonic generator, 200 ultrasonic atomizer.
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係る超音波発生装置100を説明するための説明図である。図2は、超音波発生装置100の制御部15の機能を説明するための説明図である。図1及び図2に基づいて、超音波発生装置100bについて詳細に説明する。また、図1及び図2には、超音波発生装置100の概略構成を併せて図示している。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram for explaining an ultrasonic generator 100 according to Embodiment 1 of the present invention. FIG. 2 is an explanatory diagram for explaining the function of the control unit 15 of the ultrasonic generator 100. Based on FIG.1 and FIG.2, the ultrasonic generator 100b is demonstrated in detail. 1 and 2 also show a schematic configuration of the ultrasonic generator 100. FIG. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
 超音波発生装置100は、PZT(チタン酸ジルコン酸鉛)等の圧電素子で構成される超音波振動子にパルス電圧を印加し、振動子を発振させることによって、超音波を発生させるようになっている。図1及び図2に示すように、超音波発生装置100は、振動子(超音波振動子)10と、ホーン11と、振動板12とを有している。振動子10には、圧電素子が設けられ、図示省略の正電極端子及び負電極端子を介してパルス電圧が印加され、発振するようになっている。つまり、振動子10は、パルス電圧が印加されることによって、所定の周波数範囲(一般的に40kHz前後)の音波(超音波)を発振する機能を有しているのである。 The ultrasonic generator 100 applies a pulse voltage to an ultrasonic vibrator composed of a piezoelectric element such as PZT (lead zirconate titanate) and oscillates the vibrator to generate ultrasonic waves. ing. As shown in FIGS. 1 and 2, the ultrasonic generator 100 includes a vibrator (ultrasonic vibrator) 10, a horn 11, and a diaphragm 12. The vibrator 10 is provided with a piezoelectric element, and is oscillated by applying a pulse voltage via a positive electrode terminal and a negative electrode terminal (not shown). That is, the vibrator 10 has a function of oscillating a sound wave (ultrasonic wave) in a predetermined frequency range (generally around 40 kHz) when a pulse voltage is applied.
 ホーン11は、両端面が開口され、内部に音響通路が形成されるように構成されており、その一端部に振動子10が配置されている。また、ホーン11は、円錐台形状に構成され、振動子10側から振動板12側に向けて徐々に縮径されているのが好ましい。振動板12は、ホーン11の他端部(振動子10が配置されている端部の反対側の端部)を塞ぐように取り付けられており、振動子10の発振(振動)と共振することによって共振波である超音波を作り出す機能を有している。なお、図1及び図2では、ホーン11及び振動板12が設けられている場合を例に示しているが、これらがなくても振動子10の発振によって超音波を作り出すことができる。 The horn 11 is configured such that both end faces are open and an acoustic path is formed therein, and the vibrator 10 is disposed at one end thereof. In addition, the horn 11 is preferably formed in a truncated cone shape and is gradually reduced in diameter from the vibrator 10 side toward the diaphragm 12 side. The diaphragm 12 is attached so as to block the other end of the horn 11 (the end opposite to the end where the vibrator 10 is disposed) and resonates with the oscillation (vibration) of the vibrator 10. It has a function to generate ultrasonic waves that are resonance waves. 1 and 2 show an example in which the horn 11 and the diaphragm 12 are provided, but an ultrasonic wave can be generated by the oscillation of the vibrator 10 without them.
 図1に示すように、制御部15は、周波数発振部(パルス発振部)16、発振制御部17及び周波数スイープ18で構成されている。この制御部15は、図2に示すように、振動子10の電圧変動を検知し、所定の必要周波数間隔でパルス電圧をスイープさせて振動子10を発振させる機能を有している。具体的には、周波数発振部16がパルス電圧を周期的に繰り返し発信させる機能を有し、発振制御部17が振動板10の電圧変動を監視し、その電圧情報を周波数スイープ18に伝達する機能を有し、周波数スイープ18が発振制御部17の電圧情報に基づいて電圧変動を検知し、所定の周波数間隔でパルス電圧をスイープさせるための指令を周波数発振部16に伝達する機能を有している。 As shown in FIG. 1, the control unit 15 includes a frequency oscillation unit (pulse oscillation unit) 16, an oscillation control unit 17, and a frequency sweep 18. As shown in FIG. 2, the control unit 15 has a function of detecting a voltage variation of the vibrator 10 and oscillating the vibrator 10 by sweeping a pulse voltage at a predetermined necessary frequency interval. Specifically, the frequency oscillating unit 16 has a function of periodically and repeatedly transmitting a pulse voltage, and the oscillation control unit 17 monitors the voltage fluctuation of the diaphragm 10 and transmits the voltage information to the frequency sweep 18. The frequency sweep 18 has a function of detecting a voltage fluctuation based on the voltage information of the oscillation control unit 17 and transmitting a command for sweeping the pulse voltage at a predetermined frequency interval to the frequency oscillation unit 16. Yes.
 また、制御部15と振動子10との間には、昇圧トランス13及び増幅部14が設けられる回路構成となっている。昇圧トランス13は、周波数発振部16から発信されたパルス電圧を昇圧する機能を有している。増幅部14は、昇圧トランス13で昇圧されたパルス電圧を増幅する機能を有している。なお、図1及び図2では、昇圧トランス13及び増幅部14が設けられている場合を例に示しているが、これらがなくても振動子10を発振させて超音波を作り出すことができる。 Further, a circuit configuration is provided in which a step-up transformer 13 and an amplifying unit 14 are provided between the control unit 15 and the vibrator 10. The step-up transformer 13 has a function of stepping up the pulse voltage transmitted from the frequency oscillating unit 16. The amplifying unit 14 has a function of amplifying the pulse voltage boosted by the step-up transformer 13. 1 and 2 show an example in which the step-up transformer 13 and the amplifying unit 14 are provided, but an ultrasonic wave can be generated by oscillating the vibrator 10 without these.
 ここで、超音波発生装置100の超音波発生の仕組みについて説明する。まず、制御部15の周波数発振部16から所定周波数のパルス電圧を周期的に繰り返し発信させる。このパルス電圧は、昇圧トランス13で昇圧され、増幅部14で増幅されてから振動子10に伝達される。そうすると、振動子10は、所定の周波数範囲の音波を発振する。超音波発生装置100は、振動子10の発振によって、ホーン11を介して振動板12が共振し、この共振によって超音波を放射するようになっている。 Here, the mechanism of ultrasonic generation of the ultrasonic generator 100 will be described. First, a pulse voltage having a predetermined frequency is periodically and repeatedly transmitted from the frequency oscillating unit 16 of the control unit 15. This pulse voltage is boosted by the step-up transformer 13, amplified by the amplification unit 14, and then transmitted to the vibrator 10. Then, the vibrator 10 oscillates a sound wave in a predetermined frequency range. In the ultrasonic generator 100, the diaphragm 12 resonates via the horn 11 due to the oscillation of the vibrator 10, and ultrasonic waves are emitted by this resonance.
 そして、制御部15の発振制御部17では、振動板10で発生している共振周波数の電圧変動を監視しており、その電圧情報を周波数スイープ18に伝達する。電圧情報を受け取った周波数スイープ18は、電圧が変動したかどうかを検知し、電圧が変動した場合にはパルス電圧を所定の間隔でスイープさせるための指令を周波数発振部16に伝達する。指令を受けた周波数発振部16では、その指令された所定の必要周波数間隔でパルス電圧をスイープさせて振動子10を発振させる。つまり、超音波発生装置100は、振動子10の電圧変動によって、振動子10に加えるパルス電圧の周波数間隔を適宜変更することができるようになっている。 The oscillation control unit 17 of the control unit 15 monitors the voltage fluctuation of the resonance frequency generated in the diaphragm 10 and transmits the voltage information to the frequency sweep 18. The frequency sweep 18 that has received the voltage information detects whether or not the voltage has fluctuated, and when the voltage fluctuates, transmits a command for sweeping the pulse voltage at a predetermined interval to the frequency oscillating unit 16. In response to the command, the frequency oscillating unit 16 oscillates the vibrator 10 by sweeping the pulse voltage at the specified required frequency interval. That is, the ultrasonic generator 100 can appropriately change the frequency interval of the pulse voltage applied to the vibrator 10 by the voltage fluctuation of the vibrator 10.
 図3は、共振周波数を最適化するための処理の流れを示すフローチャートである。図4は、周波数スイープを図案化したグラフである。図3及び図4に基づいて、この実施の形態1に係る超音波発生装置100の特徴事項である共振周波数の最適化について詳細に説明する。図4では、横軸が周波数(f)を、縦軸が尖鋭度(Q)をそれぞれ示している。なお、この尖鋭度は、電圧値(V)と同一である。尖鋭度は、振動子10の発振による振動板12の共振の状態を表す音響特性の傾向を示すものであり、確実な共振現象が発生しているときは、急峻なピークを有する傾向を示す。 FIG. 3 is a flowchart showing a processing flow for optimizing the resonance frequency. FIG. 4 is a graph illustrating the frequency sweep. Based on FIG.3 and FIG.4, the optimization of the resonant frequency which is the characteristic matter of the ultrasonic generator 100 which concerns on this Embodiment 1 is demonstrated in detail. In FIG. 4, the horizontal axis represents frequency (f) and the vertical axis represents sharpness (Q). This sharpness is the same as the voltage value (V). The sharpness indicates a tendency of acoustic characteristics representing a resonance state of the diaphragm 12 due to the oscillation of the vibrator 10, and when a certain resonance phenomenon occurs, the sharpness tends to have a steep peak.
 超音波発生装置100では、外乱により、加振に必要な共振周波数が変化してしまうことがある。そこで、超音波発生装置100は、発生している超音波の共振周波数を最適化するための以下に示す一連の処理を実行するようになっている。電源投入時に、事前に任意設定した「最大電圧閾値(たとえば、12V等と設定)」における共振周波数を探知する。すなわち、第1段階として、所定の周波数間隔(第1の周波数間隔:たとえば5Hz間隔等)で周波数スイープを行ない、最大電圧閾値近傍で最大となる共振周波数の存在範囲を大まかに探知し決定する(ステップS101)。図4の矢印A及び矢印Bが周波数スイープを示し、破線で示す共振周波数が所定の周波数スイープ間隔(Fs)に伴う変化状態を示している。 In the ultrasonic generator 100, the resonance frequency required for excitation may change due to disturbance. Therefore, the ultrasonic generator 100 executes a series of processes shown below for optimizing the resonance frequency of the generated ultrasonic waves. When the power is turned on, the resonance frequency at the “maximum voltage threshold (for example, set to 12 V or the like)” arbitrarily set in advance is detected. That is, as a first stage, frequency sweep is performed at a predetermined frequency interval (first frequency interval: for example, 5 Hz interval), and the existence range of the resonance frequency that becomes maximum near the maximum voltage threshold is roughly detected and determined ( Step S101). Arrows A and B in FIG. 4 indicate frequency sweeps, and a resonance frequency indicated by a broken line indicates a change state with a predetermined frequency sweep interval (Fs).
 次に、第2段階として、所定の周波数間隔(第2の周波数間隔:たとえば0.1Hz間隔等)での周波数スイープを第1段階で決定した存在範囲で少なくとも1回行ない、最大電圧閾値近傍で最大となる共振周波数(図4で示す実線の共振周波数)を細かく探知する(ステップS102)。このようにして、予め設定してある所定の最大電圧閾値が発生する共振周波数を探知する。第1段階の周波数スイープ及び第2段階の周波数スイープは、所定の時間間隔(たとえば、第1段階の周波数スイープと第2段階の周波数スイープを併せて1分間)で行なうように設定しておく。また、第2段階の周波数スイープは、最適な共振周波数を探知するまでの時間、繰り返し実行させるとよい。なお、第2周波数間隔は、第1周波数間隔よりも狭い周波数間隔であるものとする。 Next, as a second stage, a frequency sweep at a predetermined frequency interval (second frequency interval: for example, a 0.1 Hz interval) is performed at least once within the existence range determined in the first stage, near the maximum voltage threshold value. The maximum resonance frequency (solid line resonance frequency shown in FIG. 4) is finely detected (step S102). In this way, the resonance frequency at which a predetermined maximum voltage threshold value set in advance is detected. The first stage frequency sweep and the second stage frequency sweep are set to be performed at predetermined time intervals (for example, the first stage frequency sweep and the second stage frequency sweep are combined for one minute). Further, the second-stage frequency sweep may be repeatedly executed for a time until an optimum resonance frequency is detected. Note that the second frequency interval is a frequency interval narrower than the first frequency interval.
 そして、ここで探知した共振周波数のパルス電圧を周波数発振部16から昇圧トランス13に発信し、増幅部14を経て振動子10に伝達し、振動子10を駆動する(ステップS103)。すなわち、超音波発生装置100は、最大電圧閾値をモニターすることで、最大の共振周波数を探知することができ、この最大の共振周波数のパルス電圧で振動子10を駆動することができるようになっているのである。その後、外乱によって超音波素子表面(図1及び図2では振動板12の表面)の状態が変化すると、それに伴って共振周波数も変動する。 Then, the pulse voltage of the resonance frequency detected here is transmitted from the frequency oscillating unit 16 to the step-up transformer 13 and transmitted to the vibrator 10 through the amplifying part 14 to drive the vibrator 10 (step S103). That is, the ultrasonic generator 100 can detect the maximum resonance frequency by monitoring the maximum voltage threshold, and can drive the vibrator 10 with the pulse voltage of the maximum resonance frequency. -ing After that, when the state of the surface of the ultrasonic element (the surface of the diaphragm 12 in FIGS. 1 and 2) changes due to disturbance, the resonance frequency also changes accordingly.
 この共振周波数が変化すると、それに伴って最大電圧閾値も変化(たとえば、任意設定した最大電圧閾値よりも低い電圧値に変化)することになる。そこで、発振制御部17の最大電圧閾値の電圧情報に基づいて周波数スイープ18が最大電圧閾値の変動を検知する(ステップS104)。最大電圧閾値が変動していなければ(ステップS104;NO)、共振周波数も変化していないため、このままのパルス電圧で振動子10を駆動し、最大電圧閾値の変動の監視を継続する。 When the resonance frequency changes, the maximum voltage threshold value changes accordingly (for example, changes to a voltage value lower than the arbitrarily set maximum voltage threshold value). Therefore, the frequency sweep 18 detects the fluctuation of the maximum voltage threshold based on the voltage information of the maximum voltage threshold of the oscillation control unit 17 (step S104). If the maximum voltage threshold has not changed (step S104; NO), since the resonance frequency has not changed, the vibrator 10 is driven with the pulse voltage as it is, and the monitoring of the change in the maximum voltage threshold is continued.
 一方、最大電圧閾値が変動していれば(ステップS104;YES)、共振周波数も変化しているため、共振周波数の最適化を実行する。つまり、上記動作と同様に、第1段階として、第1周波数間隔で周波数スイープを行ない、最大電圧閾値近傍で最大となる共振周波数を大まかに探知する(ステップS105)。次に、第2段階として、第2周波数間隔で周波数スイープを少なくとも1回行ない、最大電圧閾値近傍で最大となる共振周波数を詳細に探知する(ステップS106)。つまり、超音波発生装置100は、最大電圧閾値をモニターすることによって、最大電圧閾値となる共振周波数を保つことができるのである。 On the other hand, if the maximum voltage threshold fluctuates (step S104; YES), the resonance frequency is also changed, so that the resonance frequency is optimized. That is, as in the above operation, as the first stage, frequency sweep is performed at the first frequency interval, and the resonance frequency that is maximum near the maximum voltage threshold is roughly detected (step S105). Next, as a second stage, frequency sweep is performed at least once at the second frequency interval, and the resonance frequency that is maximum near the maximum voltage threshold is detected in detail (step S106). That is, the ultrasonic generator 100 can maintain the resonance frequency that becomes the maximum voltage threshold by monitoring the maximum voltage threshold.
 そして、ここで探知した共振周波数のパルス電圧を周波数発振部16から昇圧トランス13に発信し、増幅部14を経て振動子10に伝達し、振動子10を再駆動する(ステップS107)。この動作を繰り返し、振動子10の駆動状態を最適に保つことができるようになっている。したがって、超音波発生装置100は、回路構成を複雑にすることなく、外乱によって適宜変化する共振周波数の変動を最大電圧閾値の変化で監視し、共振周波数の最適化を随時行い、最適化した共振周波数の超音波を常時発生することができる。つまり、最大の共振周波数での超音波発生を安定的に実行することができるのである。なお、周波数スイープを2段階で実行した場合を例に説明したが、これに限定するものではない。 Then, the pulse voltage of the resonance frequency detected here is transmitted from the frequency oscillating unit 16 to the step-up transformer 13, and is transmitted to the vibrator 10 through the amplifying part 14, and the vibrator 10 is re-driven (step S107). By repeating this operation, the driving state of the vibrator 10 can be kept optimal. Therefore, the ultrasonic generator 100 does not complicate the circuit configuration, and monitors the fluctuation of the resonance frequency that changes appropriately due to disturbance by the change of the maximum voltage threshold, optimizes the resonance frequency as needed, and optimizes the resonance. It is possible to always generate ultrasonic waves having a frequency. That is, it is possible to stably generate ultrasonic waves at the maximum resonance frequency. Note that the case where the frequency sweep is executed in two stages has been described as an example, but the present invention is not limited to this.
実施の形態2.
 図5は、本発明の実施の形態2に係る超音波霧化装置200を説明するための説明図である。図5に基づいて、超音波発生装置100を備えた設備機器の一例である超音波霧化装置200について説明する。この超音波霧化装置200は、超音波を発生することによって水や薬剤等の液体(以下、単に源水23と称する)を霧化させ、霧化した液体(以下、単に霧化液体24と称する)を所望の場所に噴霧して供給することができるものである。
Embodiment 2.
FIG. 5 is an explanatory diagram for explaining an ultrasonic atomizer 200 according to Embodiment 2 of the present invention. Based on FIG. 5, the ultrasonic atomizer 200 which is an example of the equipment provided with the ultrasonic generator 100 is demonstrated. The ultrasonic atomizer 200 atomizes a liquid such as water or medicine (hereinafter simply referred to as source water 23) by generating ultrasonic waves, and atomized liquid (hereinafter simply referred to as the atomized liquid 24). Can be sprayed and supplied to a desired place.
 図5に示すように、超音波霧化装置200には、超音波発生装置100に加え、霧化用タンク21と送風ファン25とが設けられている。霧化用タンク21には、源水23を振動板12の表面に供給するための流水口22が設けられている。この流水口22の液体出口は、振動板12の表面の近傍に配置されている。また、霧化用タンク21には、源水23を振動板12の表面に所定量供給できるように弁装置等で構成された流量制御装置を備えておくとよい。この超音波霧化装置200は、超音波によって源水23を霧化し、霧化液体24を振動板12から噴霧させ、霧化液体24を超音波振動波に乗せることで所定の噴霧距離を得ることができるものである。 As shown in FIG. 5, the ultrasonic atomizer 200 is provided with an atomization tank 21 and a blower fan 25 in addition to the ultrasonic generator 100. The atomizing tank 21 is provided with a water outlet 22 for supplying the source water 23 to the surface of the diaphragm 12. The liquid outlet of the water flow port 22 is disposed in the vicinity of the surface of the diaphragm 12. Further, the atomizing tank 21 may be provided with a flow rate control device configured by a valve device or the like so that a predetermined amount of source water 23 can be supplied to the surface of the diaphragm 12. The ultrasonic atomizer 200 atomizes the source water 23 by ultrasonic waves, sprays the atomized liquid 24 from the diaphragm 12, and places the atomized liquid 24 on the ultrasonic vibration wave to obtain a predetermined spray distance. It is something that can be done.
 この超音波霧化装置200には、超音波発生装置100が備えられているので、共振周波数の最適化を随時行ない、最適化した共振周波数の超音波を常時発生することができる。つまり、最大の共振周波数での超音波発生を安定的に実行することができるのである。したがって、所望の場所に噴霧させる霧化液体24の供給量の安定化を図ることができ、外乱によって霧化液体24が噴霧されなくなってしまうということを効果的に防止することができるようになっている。 Since the ultrasonic atomizer 200 is provided with the ultrasonic generator 100, the resonance frequency can be optimized at any time, and the ultrasonic wave with the optimized resonance frequency can always be generated. That is, it is possible to stably generate ultrasonic waves at the maximum resonance frequency. Therefore, it is possible to stabilize the supply amount of the atomized liquid 24 to be sprayed to a desired place, and to effectively prevent the atomized liquid 24 from being sprayed due to a disturbance. ing.
 なお、実施の形態2では、超音波発生装置100を備えた設備機器の一例として超音波霧化装置200を図示して説明したが、超音波発生装置100を超音波霧化装置200以外の設備機器でも超音波を利用する設備機器、たとえば空気調和装置や空気清浄機、超音波加工装置、超音波接合装置、測距センサ、超音波洗浄装置、超音波美容装置等に備えることもできる。したがって、それらの設備機器も、共振周波数の最適化を随時行ない、最適化した共振周波数の超音波を常時発生することができる。つまり、最大の共振周波数での超音波発生を安定的に実行することができるのである。 In the second embodiment, the ultrasonic atomizer 200 is illustrated and described as an example of the equipment including the ultrasonic generator 100. However, the ultrasonic generator 100 is installed in facilities other than the ultrasonic atomizer 200. Equipment can also be provided in equipment that uses ultrasonic waves, such as an air conditioner, an air cleaner, an ultrasonic processing device, an ultrasonic bonding device, a distance measuring sensor, an ultrasonic cleaning device, and an ultrasonic beauty device. Therefore, these equipments can also optimize the resonance frequency as needed and always generate ultrasonic waves with the optimized resonance frequency. That is, it is possible to stably generate ultrasonic waves at the maximum resonance frequency.
実施の形態3.
 また、上記実施例では、超音波振動子の安定動作手段について述べたが、超音波振動子の寿命や故障により、圧電効果による電圧発生が出来なくなった場合に、不安定な動作を起こすことになる。
 そこで、図6は実施の形態3に係る超音波発生装置100を説明するための説明図であり、超音波振動子10の電圧変動を発振制御部17で検知するようにし、超音波振動子10の電圧の低下を任意時間検知したら、電圧低下=寿命又は故障と判断するON-OFF回路(ソフトSW)27を負荷することで、超音波振動子10の駆動を停止することが可能となる。

 
Embodiment 3 FIG.
In the above embodiment, the stable operation means of the ultrasonic vibrator has been described. However, when voltage generation due to the piezoelectric effect cannot be generated due to the life or failure of the ultrasonic vibrator, unstable operation is caused. Become.
6 is an explanatory diagram for explaining the ultrasonic generator 100 according to the third embodiment. The oscillation control unit 17 detects the voltage fluctuation of the ultrasonic vibrator 10, and the ultrasonic vibrator 10. When the voltage drop is detected for an arbitrary time, the driving of the ultrasonic transducer 10 can be stopped by loading an ON-OFF circuit (soft SW) 27 that determines that voltage drop = life or failure.

Claims (8)

  1.  超音波振動子を駆動して超音波を発生する超音波発生装置であって、
     予め最大電圧閾値を設定しておき、第1の周波数間隔で周波数スイープを行なってから、前記第1の周波数間隔よりも狭い第2の周波数間隔で周波数スイープを少なくとも1回行ない、前記最大電圧閾値近傍で最大となる共振周波数を探知し、その共振周波数で超音波振動子を駆動する
     ことを特徴とする超音波発生装置。
    An ultrasonic generator that generates ultrasonic waves by driving an ultrasonic transducer,
    A maximum voltage threshold is set in advance, and after performing a frequency sweep at a first frequency interval, a frequency sweep is performed at least once at a second frequency interval that is narrower than the first frequency interval, and the maximum voltage threshold is set. An ultrasonic generator characterized by detecting a maximum resonance frequency in the vicinity and driving an ultrasonic transducer at the resonance frequency.
  2.  前記第1の周波数間隔での周波数スイープで前記最大電圧閾値近傍で最大となる共振周波数の存在範囲を決定し、その存在範囲内で前記第2の周波数間隔での周波数スイープを実行する
     ことを特徴とする請求項1に記載の超音波発生装置。
    A frequency sweep at the first frequency interval is used to determine a resonance frequency existence range that is maximized in the vicinity of the maximum voltage threshold, and a frequency sweep at the second frequency interval is performed within the existence range. The ultrasonic generator according to claim 1.
  3.  前記第2周波数間隔での周波数スイープを所定の時間間隔で繰り返し実行する
     ことを特徴とする請求項2に記載の超音波発生装置。
    The ultrasonic generator according to claim 2, wherein the frequency sweep at the second frequency interval is repeatedly executed at a predetermined time interval.
  4.  前記最大電圧閾値の変動を監視し、前記最大電圧閾値が変動したときに、前記第1の周波数間隔での周波数スイープと、前記第2の周波数間隔での周波数スイープとを行ない、最大電圧閾値近傍で最大となる共振周波数を探知し、その共振周波数で超音波振動子を再駆動する
     ことを特徴とする請求項1~3のいずれかに記載の超音波発生装置。
    The maximum voltage threshold value is monitored, and when the maximum voltage threshold value fluctuates, a frequency sweep at the first frequency interval and a frequency sweep at the second frequency interval are performed, and the vicinity of the maximum voltage threshold value is performed. The ultrasonic generator according to any one of claims 1 to 3, wherein a maximum resonance frequency is detected and the ultrasonic transducer is re-driven at the resonance frequency.
  5.  両端面が開口され、内部に音響通路が形成されているホーンの端部に前記超音波振動子を配置している
     ことを特徴とする請求項1~4のいずれかに記載の超音波発生装置。
    The ultrasonic generator according to any one of claims 1 to 4, wherein the ultrasonic transducer is disposed at an end of a horn having both end faces opened and an acoustic path formed therein. .
  6.  前記超音波振動子の発振と共振することによって共振波を作り出す振動板を、前記ホーンの前記超音波振動子が配置されている端部の反対側の端部に取り付けている
     ことを特徴とする請求項5に記載の超音波発生装置。
    A diaphragm that generates a resonance wave by resonating with the oscillation of the ultrasonic vibrator is attached to an end of the horn opposite to the end where the ultrasonic vibrator is disposed. The ultrasonic generator according to claim 5.
  7.  圧電素子の圧電効果により任意の圧電を発生する超音波振動子において、前記超音波振動子の電圧変動を制御部で検知し、前記制御部により検知した前記超音波振動子の電圧の低下時間が任意時間以上のとき、前記超音波振動子の寿命または故障と判断する
     ことを特徴とする超音波発生装置。
    In an ultrasonic transducer that generates arbitrary piezoelectricity due to the piezoelectric effect of the piezoelectric element, a voltage fluctuation of the ultrasonic transducer is detected by a control unit, and a voltage drop time of the ultrasonic transducer detected by the control unit is detected. When the time is longer than an arbitrary time, it is determined that the ultrasonic vibrator has a life or failure.
  8.  前記請求項1~7のいずれかに記載の超音波発生装置を備えた
     ことを特徴とする設備機器。 
     
    An equipment comprising the ultrasonic generator according to any one of claims 1 to 7.
PCT/JP2009/051152 2008-01-31 2009-01-26 Ultrasonic wave generating device, and apparatus having the device WO2009096346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-021446 2008-01-31
JP2008021446 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096346A1 true WO2009096346A1 (en) 2009-08-06

Family

ID=40912699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051152 WO2009096346A1 (en) 2008-01-31 2009-01-26 Ultrasonic wave generating device, and apparatus having the device

Country Status (1)

Country Link
WO (1) WO2009096346A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102274053A (en) * 2011-05-19 2011-12-14 天津迈达医学科技有限公司 Ultrasonic handle tuning method for cataract ultrasonic emulsification instrument
CN105772312A (en) * 2016-05-05 2016-07-20 深圳市尚进电子科技有限公司 Ultrasonic aromatization sheet frequency sweep circuit and method
US20190209790A1 (en) * 2016-09-27 2019-07-11 Omron Healthcare Co., Ltd. Ultrasonic vibrator driving apparatus and mesh nebulizer
EP3834949A1 (en) * 2019-12-15 2021-06-16 Shaheen Innovations Holding Limited Ultrasonic systems and methods
US11131000B1 (en) 2020-06-01 2021-09-28 Shaheen Innovations Holding Limited Infectious disease screening device
US11181451B1 (en) 2020-06-01 2021-11-23 Shaheen Innovations Holding Limited Infectious disease screening system
US20210379611A1 (en) * 2018-11-08 2021-12-09 Beijing Naura Microelectronics Equipment Co., Ltd. Spray device and cleaning apparatus
CN114024466A (en) * 2021-11-05 2022-02-08 河南智领医疗设备有限公司 Ultrasonic driving method for physical therapy and ultrasonic therapeutic apparatus
US11254979B2 (en) 2020-06-01 2022-02-22 Shaheen Innovations Holding Limited Systems and devices for infectious disease screening
US11571022B2 (en) 2019-12-15 2023-02-07 Shaheen Innovations Holding Limited Nicotine delivery device
US11660406B2 (en) 2019-12-15 2023-05-30 Shaheen Innovations Holding Limited Mist inhaler devices
US11665483B1 (en) 2021-12-15 2023-05-30 Shaheen Innovations Holding Limited Apparatus for transmitting ultrasonic waves
US11672928B2 (en) 2019-12-15 2023-06-13 Shaheen Innovations Holding Limited Mist inhaler devices
US11700882B2 (en) 2019-12-15 2023-07-18 Shaheen Innovations Holding Limited Hookah device
US11730191B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Hookah device
US11911559B2 (en) 2019-12-15 2024-02-27 Shaheen Innovations Holding Limited Ultrasonic mist inhaler
US11944121B2 (en) 2019-12-15 2024-04-02 Shaheen Innovations Holding Limited Ultrasonic mist inhaler with capillary element
US11944120B2 (en) 2019-12-15 2024-04-02 Shaheen Innovations Holding Limited Ultrasonic mist inhaler with capillary retainer
US12016381B2 (en) 2020-04-06 2024-06-25 Shaheen Innovations Holding Limited Hookah device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314556A (en) * 1988-06-15 1989-12-19 Olympus Optical Co Ltd Ultrasonic treatment apparatus
JP2006212619A (en) * 2005-02-07 2006-08-17 Kazumasa Onishi Ultrasonic machining apparatus
JP2007336752A (en) * 2006-06-16 2007-12-27 Seiko Epson Corp Driving method of piezoelectric actuator, drive unit of piezoelectric actuator, electronic equipment, control program of drive unit of piezoelectric actuator, and storage media

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314556A (en) * 1988-06-15 1989-12-19 Olympus Optical Co Ltd Ultrasonic treatment apparatus
JP2006212619A (en) * 2005-02-07 2006-08-17 Kazumasa Onishi Ultrasonic machining apparatus
JP2007336752A (en) * 2006-06-16 2007-12-27 Seiko Epson Corp Driving method of piezoelectric actuator, drive unit of piezoelectric actuator, electronic equipment, control program of drive unit of piezoelectric actuator, and storage media

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102274053A (en) * 2011-05-19 2011-12-14 天津迈达医学科技有限公司 Ultrasonic handle tuning method for cataract ultrasonic emulsification instrument
CN105772312A (en) * 2016-05-05 2016-07-20 深圳市尚进电子科技有限公司 Ultrasonic aromatization sheet frequency sweep circuit and method
US20190209790A1 (en) * 2016-09-27 2019-07-11 Omron Healthcare Co., Ltd. Ultrasonic vibrator driving apparatus and mesh nebulizer
US11752279B2 (en) * 2016-09-27 2023-09-12 Omron Healthcare Co., Ltd. Ultrasonic vibrator driving apparatus and mesh nebulizer
US20210379611A1 (en) * 2018-11-08 2021-12-09 Beijing Naura Microelectronics Equipment Co., Ltd. Spray device and cleaning apparatus
US11504727B2 (en) * 2018-11-08 2022-11-22 Beijing Naura Microelectronics Equipment Co., Ltd. Spray device and cleaning apparatus
US11819054B2 (en) 2019-12-15 2023-11-21 Shaheen Innovations Holding Limited Nicotine delivery device with airflow arrangement
US11724047B2 (en) 2019-12-15 2023-08-15 Shaheen Innovations Holding Limited Mist inhaler devices
US11944120B2 (en) 2019-12-15 2024-04-02 Shaheen Innovations Holding Limited Ultrasonic mist inhaler with capillary retainer
US11944121B2 (en) 2019-12-15 2024-04-02 Shaheen Innovations Holding Limited Ultrasonic mist inhaler with capillary element
US11911559B2 (en) 2019-12-15 2024-02-27 Shaheen Innovations Holding Limited Ultrasonic mist inhaler
US11878112B2 (en) 2019-12-15 2024-01-23 Shaheen Innovations Holding Limited Mist inhaler devices
US11832646B2 (en) 2019-12-15 2023-12-05 Shaheen Innovations Holding Limited Nicotine delivery device with identification arrangement
US11571022B2 (en) 2019-12-15 2023-02-07 Shaheen Innovations Holding Limited Nicotine delivery device
US11589610B2 (en) 2019-12-15 2023-02-28 Shaheen Innovations Holding Limited Nicotine delivery device having a mist generator device and a driver device
US11602165B2 (en) 2019-12-15 2023-03-14 Shaheen Innovations Holding Limited Nicotine delivery device having a mist generator device and a driver device
US11660406B2 (en) 2019-12-15 2023-05-30 Shaheen Innovations Holding Limited Mist inhaler devices
US11819607B2 (en) 2019-12-15 2023-11-21 Shaheen Innovations Holding Limited Mist inhaler devices
US11666713B2 (en) 2019-12-15 2023-06-06 Shaheen Innovations Holding Limited Mist inhaler devices
EP3834949A1 (en) * 2019-12-15 2021-06-16 Shaheen Innovations Holding Limited Ultrasonic systems and methods
US11672928B2 (en) 2019-12-15 2023-06-13 Shaheen Innovations Holding Limited Mist inhaler devices
US11700882B2 (en) 2019-12-15 2023-07-18 Shaheen Innovations Holding Limited Hookah device
US11717623B2 (en) 2019-12-15 2023-08-08 Shaheen Innovations Holding Limited Mist inhaler devices
US11785985B2 (en) 2019-12-15 2023-10-17 Shaheen Innovations Holding Limited Hookah device
US11730191B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Hookah device
US11730899B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Mist inhaler devices
US11730193B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Hookah device
US11744963B2 (en) 2019-12-15 2023-09-05 Shaheen Innovations Holding Limited Mist inhaler devices
US12016381B2 (en) 2020-04-06 2024-06-25 Shaheen Innovations Holding Limited Hookah device
US12016380B2 (en) 2020-04-06 2024-06-25 Shaheen Innovations Holding Limited Hookah device
US11254979B2 (en) 2020-06-01 2022-02-22 Shaheen Innovations Holding Limited Systems and devices for infectious disease screening
US11181451B1 (en) 2020-06-01 2021-11-23 Shaheen Innovations Holding Limited Infectious disease screening system
US11440012B2 (en) 2020-06-01 2022-09-13 Shaheen Innovations Holding Limited Systems and devices for infectious disease screening
US11385148B2 (en) 2020-06-01 2022-07-12 Shaheen Innovations Holding Limited Infectious disease screening system
US11274352B2 (en) 2020-06-01 2022-03-15 Shaheen Innovations Holding Limited Infectious disease screening device
US11131000B1 (en) 2020-06-01 2021-09-28 Shaheen Innovations Holding Limited Infectious disease screening device
US11946844B2 (en) 2020-06-01 2024-04-02 Shaheen Innovations Holding Limited Infectious disease screening system
US11959146B2 (en) 2020-06-01 2024-04-16 Shaheen Innovations Holding Limited Infectious disease screening device
US11667979B2 (en) 2020-06-01 2023-06-06 Shaheen Innovations Holding Limited Infectious disease screening device
CN114024466B (en) * 2021-11-05 2023-12-12 河南智领医疗设备有限公司 Ultrasonic driving method for physiotherapy and ultrasonic therapeutic apparatus
CN114024466A (en) * 2021-11-05 2022-02-08 河南智领医疗设备有限公司 Ultrasonic driving method for physical therapy and ultrasonic therapeutic apparatus
US11665483B1 (en) 2021-12-15 2023-05-30 Shaheen Innovations Holding Limited Apparatus for transmitting ultrasonic waves

Similar Documents

Publication Publication Date Title
WO2009096346A1 (en) Ultrasonic wave generating device, and apparatus having the device
US8006918B2 (en) Alternating current powered delivery system
JP4572789B2 (en) Ultrasonic generator and ultrasonic beauty device
WO2018061493A1 (en) Ultrasonic oscillator driving device and mesh-type nebulizer
US20080156320A1 (en) Ultrasonic nebulizer and method for atomizing liquid
JP2874833B2 (en) Method and apparatus for safe vibration of ultrasonic decomposer
US5181019A (en) Weighted transducer and driving circuit with feedback
JP4088665B2 (en) Ultrasonic wave generation method and apparatus
US9951767B2 (en) Vibrational fluid mover active controller
JP5421275B2 (en) Actuator with integrated electronic control circuit
JP2008207054A (en) Ultrasonic atomizing device and equipment provided with the same
JP4812657B2 (en) Ultrasonic atomizer and equipment equipped with the same
JPH04150968A (en) Ultrasonic wave atomizer
JP2002102578A (en) Ultrasonic washing device
JP2010099640A (en) Electrostatic atomizing device
JP3277070B2 (en) Ultrasonic cleaning device and ultrasonic cleaning method
JP2008049230A (en) Atomizer
JPS5855066A (en) Supersonic atomizer
US10067487B2 (en) Electronic device and system for controlling applications implementing at least one piezoelectric, electrostrictive or magnetostrictive transducer
JPH0118785B2 (en)
JPH03258378A (en) Method for controlling ultrasonic oscillation and cleaning device
JP2004259983A (en) Device and method for ultrasonic cleaning
TW201929964A (en) Ultrasonic driving device with self-calibration function
JP2006181496A (en) Piezoelectric atomizer
JP2672397B2 (en) Ultrasonic atomizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09705674

Country of ref document: EP

Kind code of ref document: A1