WO2009096343A1 - Siliceous powder, process for production of the same, and use thereof - Google Patents

Siliceous powder, process for production of the same, and use thereof Download PDF

Info

Publication number
WO2009096343A1
WO2009096343A1 PCT/JP2009/051125 JP2009051125W WO2009096343A1 WO 2009096343 A1 WO2009096343 A1 WO 2009096343A1 JP 2009051125 W JP2009051125 W JP 2009051125W WO 2009096343 A1 WO2009096343 A1 WO 2009096343A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
siliceous powder
siliceous
content
source material
Prior art date
Application number
PCT/JP2009/051125
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhisa Nishi
Syuji Sasaki
Hiroshi Murata
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to CN2009801032632A priority Critical patent/CN101925534B/en
Priority to JP2009551501A priority patent/JP5606740B2/en
Priority to KR1020107013421A priority patent/KR101442034B1/en
Publication of WO2009096343A1 publication Critical patent/WO2009096343A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to a siliceous powder, a production method thereof and an application.
  • semiconductors are rapidly becoming smaller, thinner, and higher in density.
  • a semiconductor mounting method surface mounting suitable for high-density mounting on a wiring board or the like is mainly used.
  • an ultra-thin semiconductor package has been used, and the thickness of the package has become very thin.
  • a PoP (Package-on-Package) mounting method in which another semiconductor is mounted on a semiconductor has been put into practical use, and the semiconductor has been further reduced in thickness.
  • Patent Document 1 a technique has been adopted in which bending strength is improved and stress is reduced by a technique of improving an epoxy resin, a phenol resin curing agent, or the like used for a semiconductor sealing material.
  • Patent Document 2 a technique of improving an epoxy resin, a phenol resin curing agent, or the like used for a semiconductor sealing material.
  • Patent Document 1 a technique of improving an epoxy resin, a phenol resin curing agent, or the like used for a semiconductor sealing material
  • Patent Document 2 a technique of improving an epoxy resin, a phenol resin curing agent, or the like used for a semiconductor sealing material
  • these methods do not provide sufficient bending strength improvement effects, and semiconductor encapsulants that can withstand mounting temperatures with lead-free solder and have significantly improved solder crack resistance are still available in thinner packages than before. Absent.
  • An object of the present invention is to provide a siliceous powder suitable for the preparation of a semiconductor encapsulant having improved bending strength and further improved solder crack resistance.
  • the present inventor conducted extensive research to achieve the above object, and found a siliceous powder that achieves this.
  • the present invention is based on such knowledge and has the following gist.
  • SiO 2, Al 2 O 3, and the content of B 2 O 3 (as oxide) is at total least 99.5 wt% of the total content of Al 2 O 3 and B 2 O 3
  • the siliceous powder according to the above (1) in which is 0.1 to 20% by mass.
  • the siliceous powder according to the above (1) or (2) which has a specific surface area of 0.5 to 5 m 2 / g and an average particle diameter of 1 to 60 ⁇ m.
  • An inorganic powder comprising the siliceous powder according to any one of (1) to (3) above.
  • At least two burners are arranged in the furnace body at an angle of 2 to 10 ° with respect to the central axis of the furnace body, and raw siliceous powder is supplied from one burner to at least one burner.
  • a resin composition having improved bending strength and solder crack resistance particularly a resin composition as a semiconductor sealing material, and a siliceous powder suitable for preparing the resin composition are provided. Is done.
  • the siliceous powder of the present invention is a siliceous powder having a Freundlich adsorption constant K of pyridine of 1.3 to 5.0. Since pyridine, which is a basic substance, adsorbs on the acid sites on the surface of the siliceous powder, the larger the value of the adsorption constant K of this material, the greater the number of acid sites on the surface of the siliceous powder. When the acid point of the siliceous powder is large, the bonding point with a basic silane coupling agent such as aminosilane or phenylaminosilane increases.
  • a basic silane coupling agent such as aminosilane or phenylaminosilane
  • the adhesion between the resin component such as epoxy resin and phenol resin in the semiconductor sealing material and the surface of the siliceous powder becomes stronger, the bending strength is improved, and moisture is present at the interface between the resin component and the siliceous powder. Since it becomes difficult to penetrate, solder crack resistance is also greatly improved.
  • the Freundlich adsorption constant K of pyridine is less than 1.3, the bonding point between the silane coupling agent and the siliceous powder is reduced, so that the bending strength and solder crack resistance of the semiconductor encapsulant are remarkably improved. I can't.
  • Freundlich adsorption constant K of pyridine exceeds 5.0, the number of acid sites on the surface of the siliceous powder becomes too large and the epoxy resin is cured. For this reason, since the viscosity of the sealing material at the time of packaging a semiconductor using a semiconductor sealing material rises, the malfunction that a moldability will be impaired will arise.
  • the value of Freundlich adsorption constant K of pyridine is preferably 1.5 to 4.5, particularly preferably 2.0 to 4.3. These values are specific when compared with the values of Freundlich adsorption constant K of conventional siliceous powders of 0.07 to 0.8.
  • the Freundlich adsorption constant K of pyridine can be measured by the following procedure.
  • log K is obtained from the Y axis intercept, and K can be calculated.
  • A is the amount of pyridine adsorbed on 1 g of siliceous powder ( ⁇ mol / g)
  • C is the residual pyridine concentration ( ⁇ mol / ml) in the supernatant
  • K and n are constants.
  • An example of an ultraviolet-visible spectrophotometer used for measurement is “Ultraviolet-visible spectrophotometer model UV-1800” manufactured by Shimadzu Corporation.
  • Examples of the reagent used to prepare the pyridine standard solution are pyridine (grade for spectroscopic analysis) and n-heptane (grade for spectroscopic analysis) manufactured by Wako Pure Chemical Industries, Ltd.
  • the absorbance measurement wavelength was 251 nm, and only n-heptane was measured to correct the background.
  • 0.00 mmol / l, 0.25 mmol / l, 0.50 mmol / l, and 1.00 mmol / l pyridine standard solutions were used.
  • the siliceous powder of the present invention is characterized in that the total content of SiO 2 , Al 2 O 3 , and B 2 O 3 (as oxide) is 99.5% by mass or more, and Al 2 O 3 and The total content of B 2 O 3 is 0.1 to 20% by mass.
  • the total content of SiO 2 , Al 2 O 3 , and B 2 O 3 is less than 99.5% by mass, that is, the content other than SiO 2 , Al 2 O 3 , and B 2 O 3 is 0.5% by mass. If it exceeds 50%, a substance that becomes an unnecessary impurity increases when the semiconductor sealing material is used, which is not preferable.
  • the total content of SiO 2 , Al 2 O 3 , and B 2 O 3 is preferably 99.6% by mass or more, and more preferably 99.7% by mass or more.
  • the total content of Al 2 O 3 and B 2 O 3 in the siliceous powder is preferably 0.1 to 20% by mass.
  • This acid point increases the bonding point between the basic silane coupling agent and the surface of the siliceous powder, thereby improving the bending strength and solder crack resistance.
  • the acid point is not sufficiently increased.
  • the thermal expansion coefficient of the siliceous powder Becomes too large and adversely affects solder crack resistance.
  • the total content of Al 2 O 3 and B 2 O 3 is more preferably 0.2 to 18% by mass, still more preferably 0.3 to 15% by mass.
  • the SiO 2 content (oxide conversion) of the siliceous powder of the present invention is the mass reduction method
  • the Al 2 O 3 content (oxide conversion) is the atomic absorption analysis method
  • the B 2 O 3 content (oxide conversion) is The measurement can be performed by the following procedure using ICP emission analysis.
  • (1) Measurement of SiO 2 content 2.5 g of siliceous powder is precisely weighed in a platinum dish, and 20 ml, 1 ml and 1 ml of reagent-grade hydrofluoric acid, reagent-grade sulfuric acid and pure water are added to the platinum dish. The platinum dish is allowed to stand on a sand bath heated to 300 ° C. for 15 minutes to dissolve and dry the powder.
  • a platinum dish is put in a muffle furnace heated to 1000 ° and heated for 10 minutes to evaporate fluorinated silicic acid. After cooling to room temperature in a desiccator, the mass of the platinum dish is precisely weighed, and the content of SiO 2 in the siliceous powder is calculated from the mass reduction rate.
  • An example of an atomic absorption photometer is the product name “Atomic Absorption Photometer Model AA-969” manufactured by Nippon Jarrel Ash.
  • An example of a standard solution used for preparing a calibration curve is an Al standard solution for atomic absorption (concentration 1000 ppm) manufactured by Kanto Chemical. Note that an acetylene-nitrous oxide flame was used as a flame for measurement, and the absorbance at a wavelength of 309.3 nm was measured and quantified.
  • the amount of B in this solution is quantified by a calibration curve method using an ICP emission spectroscopic analyzer.
  • the amount of B is converted into B 2 O 3 to calculate the content in the siliceous powder.
  • an ICP emission spectroscopic analyzer is a trade name “Model SPS-1700R” manufactured by Seiko Instruments Inc., which measures emission intensity at a wavelength of 249.8 nm.
  • An example of a standard solution used for preparing a calibration curve is an atomic absorption B standard solution (concentration 1000 ppm) manufactured by Kanto Chemical Co., Inc.
  • the effect of improving the bending strength and solder crack resistance in the resin composition of the present invention is that when the specific surface area of the siliceous powder is in the range of 0.5 to 5 m 2 / g and the average particle diameter is in the range of 1 to 60 ⁇ m. Is further encouraged. When the specific surface area is less than 0.5 m 2 / g, the bonding area between the silane coupling agent and the siliceous powder surface is too small, and it is difficult to improve the bending strength and solder crack resistance.
  • the specific surface area exceeds 5 m 2 / g, it means that the siliceous powder contains a large amount of small particles or there are irregularities on part or all of the particle surface, and the semiconductor is encapsulated using a semiconductor encapsulant. Since the viscosity of the sealing material at the time of packaging rises, moldability will be impaired.
  • the range of the specific surface area is preferably 0.6 to 4.8 m 2 / g, more preferably 0.7 to 4.7 m 2 / g.
  • the average particle size of the siliceous powder is less than 1 ⁇ m, so that the viscosity of the sealing material when packaging the semiconductor using the semiconductor sealing material is increased, so that the moldability is impaired. Absent. Conversely, when the average particle diameter exceeds 60 ⁇ m, the thickness of the semiconductor package is so thin that the semiconductor chip is damaged or a uniform package without unevenness cannot be obtained. Will occur.
  • a preferred average particle size range is 2 to 55 ⁇ m, and a more preferred range is 3 to 50 ⁇ m.
  • the maximum particle size is preferably 196 ⁇ m or less, more preferably 128 ⁇ m or less.
  • the average particle size of the siliceous powder of the present invention is measured based on particle size measurement by a laser diffraction scattering method.
  • a measuring instrument to be used for example, a product name “Cirrus Granurometer Model 920” manufactured by Cirrus Co., Ltd. is used, and siliceous powder is dispersed in water. Measure from The particle size distribution was measured when the particle diameter channel was 0.3, 1, 1.5, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 196 ⁇ m. Do. In the measured particle size distribution, the particle size at which the cumulative mass is 50% is the average particle size, and the particle size at which the cumulative mass is 100% is the maximum particle size.
  • the content of the siliceous powder of the present invention in the inorganic powder is preferably 0.5% by mass or more, and more preferably 2% by mass or more.
  • the inorganic powder is preferably a siliceous powder and / or an alumina powder. These powders may be used alone or in combination. Silica powder is selected when the thermal expansion coefficient of the semiconductor encapsulant is lowered or when the wear of the mold is reduced, and alumina powder is selected when thermal conductivity is imparted. In addition, it is preferable that siliceous powder is 95% or more by the value of the amorphous ratio measured by the postscript method.
  • the siliceous powder of the present invention preferably has an amorphous ratio measured by the following method of 95% or more, particularly 98% or more.
  • Amorphous ratio is specified by X-ray diffraction analysis using a powder X-ray diffractometer (for example, “Model Mini Flex” manufactured by RIGAKU) in the range of 2 ⁇ of CuK ⁇ ray of 26 ° to 27.5 °. Measured from the intensity ratio of diffraction peaks.
  • crystalline silica has a main peak at 26.7 °, but amorphous silica has no peak.
  • the average sphericity of the siliceous powder, the inorganic powder, and the alumina powder of the present invention is preferably 0.80 or more, and particularly preferably 0.85 or more. Thereby, the viscosity of a resin composition falls and a moldability can also be improved.
  • the average sphericity is obtained by taking a particle image taken with a stereomicroscope (for example, trade name “Model SMZ-10” manufactured by Nikon Corporation) into an image analysis apparatus (for example, trade name “MacView” manufactured by Mountec Co., Ltd.). Measured from the projected area (A) and the perimeter (PM).
  • At least two burners are disposed in the furnace body at an angle of 2 to 10 ° with respect to the central axis of the furnace body, and at least raw silica material powder is contained from one burner.
  • a siliceous powder manufacturing method is characterized in that an Al source material and / or a B source material are injected into a flame from one burner.
  • the raw material siliceous powder and the Al source material and / or B source material are injected into the flame from the same burner, the injected raw material always spreads in a conical shape, so the Al source material is formed on the surface of the raw material siliceous powder.
  • the arrangement angle of the burner is less than 2 °, the focal point is located outside the flame, and the proportion of the Al source material and / or B source material fused to the surface of the raw siliceous powder decreases.
  • the burner arrangement angle exceeds 10 °, it is not preferable because the Al source material and / or the B source material are focused on the surface of the raw siliceous powder before fusing.
  • a more preferable burner arrangement angle is in the range of 3 to 8 °.
  • the resin composition of the present invention is a resin composition containing the siliceous powder or inorganic powder of the present invention.
  • the content of the siliceous powder or inorganic powder in the resin composition is 10 to 95% by mass, more preferably 30 to 90% by mass.
  • the resin examples include epoxy resin, silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamide such as polyimide, polyamideimide and polyetherimide, polyester such as polybutylene terephthalate and polyethylene terephthalate, polyphenylene sulfide , Aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile / acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber / styrene) resin, etc. can do.
  • epoxy resins, silicone resins, phenol resins and the like are preferable.
  • an epoxy resin having two or more epoxy groups in one molecule is preferable.
  • phenol novolac type epoxy resin orthocresol novolak type epoxy resin
  • epoxidized phenol and aldehyde novolak resin epoxidized phenol and aldehyde novolak resin
  • glycidyl ether such as bisphenol A, bisphenol F and bisphenol S
  • phthalic acid dimer acid, etc.
  • Novolak-type resin obtained by reacting with para-xylene under an oxidation catalyst; polyparahydroxystyrene resin; bisphenol compounds such as bisphenol A and bisphenol S; trifunctional phenols such as pyrogallol and phloroglucinol; maleic anhydride and phthalic anhydride Acid anhydrides such as acid and pyromellitic anhydride; aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone; That.
  • a curing accelerator such as triphenylphosphine, benzyldimethylamine, 2-methylimidazole can be used.
  • the following components can be further blended as necessary.
  • rubbery substances such as silicone rubber, polysulfide rubber, acrylic rubber, butadiene rubber, styrene block copolymer, and saturated elastomer; resinous substances such as various thermoplastic resins and silicone resins; and epoxy And a resin obtained by modifying a part or all of a resin or phenol resin with amino silicone, epoxy silicone, alkoxy silicone, or the like.
  • the amorphous ratio of the siliceous powder was 99.5% or more. These siliceous powders were measured for Freundlich adsorption constant K of pyridine, SiO 2 content, Al 2 O 3 content, B 2 O 3 content, specific surface area, average particle diameter, average sphericity, etc. It was shown to.
  • siliceous powder and inorganic powder as a filler for a semiconductor encapsulant, 86.5 parts (parts by mass, the same applies hereinafter) of 4,4′-bis (2 , 3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl type epoxy resin 6.7 parts, phenol resin 5.5 parts, triphenylphosphine 0.3 part, phenylaminosilane 0.6 part, Carbon black (0.1 part) and carnauba wax (0.3 part) were added and dry blended with a Henschel mixer.
  • a resin composition particularly a semiconductor sealing material, which is superior in bending strength and solder crack resistance than the Comparative Examples is prepared. Can do.

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

The invention provides a siliceous powder suitable for the preparation of semiconductor-encapsulating materials and a process for the production of the powder. A siliceous powder exhibiting a Freudlich adsorption constant (K) of 1.3 to 5.0 for pyridine, particularly preferably, such a siliceous powder wherein the total content of SiO2, Al2O3, and B2O3 is 99.5mass% or above (in terms of oxide) and the total content of Al2O3 and B2O3 is 0.1 to 20mass%; a process for the production of a siliceous powder which comprises arranging at least two burners in a furnace at angles of 2 to 10° to the central axis of the furnace body and ejecting a raw material siliceous powder from one of the burners and an Al source substance and/or a B source substance from the other(s) of the burners into flame; and resin compositions containing the siliceous powder or an inorganic powder.

Description

シリカ質粉末、その製造方法及び用途Siliceous powder, production method and use thereof
 本発明は、シリカ質粉末、その製造方法及び用途に関する。 The present invention relates to a siliceous powder, a production method thereof and an application.
 電子機器の小型化、軽量化、高性能化の要求に対応して、半導体の小型化、薄型化、高密度化が急速に進展している。また、半導体の実装方法も配線基板などへの高密度実装に好適な表面実装が主流になっている。近年、この表面実装型の半導体は、配線基板への実装高さを低くするため、超薄型の半導体パッケージが使用されるようになってきており、パッケージの肉厚が非常に薄くなっている。さらに最近では、半導体の上に、もう一段半導体を実装するPoP(Package on Package)実装法が実用化されており、半導体の薄型化がより一層進展している。 In response to the demands for smaller, lighter, and higher performance electronic devices, semiconductors are rapidly becoming smaller, thinner, and higher in density. As a semiconductor mounting method, surface mounting suitable for high-density mounting on a wiring board or the like is mainly used. In recent years, in order to reduce the mounting height of the surface-mount type semiconductor on the wiring board, an ultra-thin semiconductor package has been used, and the thickness of the package has become very thin. . Furthermore, recently, a PoP (Package-on-Package) mounting method in which another semiconductor is mounted on a semiconductor has been put into practical use, and the semiconductor has been further reduced in thickness.
 一方、昨今の環境問題への意識の高まりから、半導体の配線基板への実装には、環境負荷の大きい鉛を含有しない鉛フリーハンダが使用されるようになってきており、実装する際の温度が従来よりも、数10℃高くなっている。すなわち、半導体パッケージが従来よりも薄くなった状態で、従来よりも高温にさらされ実装される為、パッケージクラックの問題が多発するようになってきており、半導体封止材には、より一層の曲げ強度の向上、耐ハンダクラック性の向上などが要求されている。 On the other hand, due to the recent increase in awareness of environmental issues, lead-free solder that does not contain lead, which has a large environmental impact, has come to be used for mounting semiconductors on wiring boards. However, it is several tens of degrees Celsius higher than before. In other words, the semiconductor package is exposed to a higher temperature than in the past in a state where the semiconductor package is thinner, so that the problem of package cracks has frequently occurred. Improvements in bending strength and solder crack resistance are required.
 この要求を満たすべく、半導体封止材に使用するエポキシ樹脂やフェノール樹脂硬化剤等を改良する手法などによって、曲げ強度を向上させる、低応力化を図るといった手法がとられている(特許文献1及び特許文献2参照)。しかし、これらの手法では曲げ強度の向上効果は十分ではなく、従来よりも薄いパッケージで、鉛フリーハンダでの実装温度に耐え、耐ハンダクラック性を著しく向上させることができる半導体封止材は未だない。 In order to satisfy this requirement, a technique has been adopted in which bending strength is improved and stress is reduced by a technique of improving an epoxy resin, a phenol resin curing agent, or the like used for a semiconductor sealing material (Patent Document 1). And Patent Document 2). However, these methods do not provide sufficient bending strength improvement effects, and semiconductor encapsulants that can withstand mounting temperatures with lead-free solder and have significantly improved solder crack resistance are still available in thinner packages than before. Absent.
 また、セラミックス粉末を改質する手法としては、半導体封止材の高温放置特性(信頼性)を改善する目的で、アンモニアの化学的吸着量を制御し、半導体封止材中の不純物をトラップさせた例などが挙げられる。(特許文献3参照)
特開2001-233937号公報 特開平10-279669号公報 WO/2007/132771号公報
In addition, as a method of modifying ceramic powder, in order to improve the high temperature storage characteristics (reliability) of the semiconductor encapsulant, the chemical adsorption amount of ammonia is controlled to trap impurities in the semiconductor encapsulant. Examples. (See Patent Document 3)
JP 2001-233937 A JP-A-10-279669 WO / 2007/132771
 本発明の目的は、曲げ強度を向上させ、耐ハンダクラック性を更に向上させた半導体封止材などの調製に好適なシリカ質粉末を提供することである。 An object of the present invention is to provide a siliceous powder suitable for the preparation of a semiconductor encapsulant having improved bending strength and further improved solder crack resistance.
 本発明者は、上記の目的を達成するべく鋭意研究を進めたところ、これを達成するシリカ質粉末を見出した。本発明はかかる知見に基づくものであり、以下の要旨を有する。
(1)ピリジンのフロイントリッヒ吸着定数Kが1.3~5.0であることを特徴とするシリカ質粉末。
(2)SiO、Al、及びBの含有率(酸化物換算)の合計が99.5質量%以上であり、Al及びBの含有率の合計が0.1~20質量%である上記(1)に記載のシリカ質粉末。
(3)比表面積が0.5~5m/gであり、かつ平均粒子径が1~60μmである上記(1)又は(2)に記載のシリカ質粉末。
(4)上記(1)~(3)のいずれか一項に記載のシリカ質粉末を含有することを特徴とする無機質粉末。
(5)無機質粉末がシリカ質粉末及び/又はアルミナ質粉末である上記(4)に記載の無機質粉末。
(6)少なくとも2本のバーナーを、炉体の中心軸に対して2~10°の角度をつけて炉体に配置し、1本のバーナーからは原料シリカ質粉末を、少なくとも1本のバーナーからはアルミニウム源物質及び/又はホウ素源物質を火炎に噴射することを特徴とする上記(1)~(3)のいずれか一項に記載のシリカ質粉末の製造方法。
(7)アルミニウム源物質が酸化アルミニウム粉末であり、原料シリカ質粉末のAlの含有率が1質量%以下である上記(6)に記載のシリカ質粉末の製造方法。
(8)酸化アルミニウム粉末の平均粒子径が0.01~10μmである上記(7)に記載のシリカ質粉末の製造方法。
(9)上記(1)~(3)のいずれか一項に記載のシリカ質粉末、又は上記(4)又は(5)に記載の無機質粉末を含有することを特徴とする樹脂組成物。
(10)樹脂組成物の樹脂がエポキシ樹脂である上記(9)に記載の樹脂組成物。
(11)上記(9)又は(10)に記載の樹脂組成物を用いた半導体封止材。
The present inventor conducted extensive research to achieve the above object, and found a siliceous powder that achieves this. The present invention is based on such knowledge and has the following gist.
(1) A siliceous powder characterized in that Freundlich adsorption constant K of pyridine is 1.3 to 5.0.
(2) SiO 2, Al 2 O 3, and the content of B 2 O 3 (as oxide) is at total least 99.5 wt% of the total content of Al 2 O 3 and B 2 O 3 The siliceous powder according to the above (1), in which is 0.1 to 20% by mass.
(3) The siliceous powder according to the above (1) or (2), which has a specific surface area of 0.5 to 5 m 2 / g and an average particle diameter of 1 to 60 μm.
(4) An inorganic powder comprising the siliceous powder according to any one of (1) to (3) above.
(5) The inorganic powder according to (4), wherein the inorganic powder is a siliceous powder and / or an alumina powder.
(6) At least two burners are arranged in the furnace body at an angle of 2 to 10 ° with respect to the central axis of the furnace body, and raw siliceous powder is supplied from one burner to at least one burner. The method for producing siliceous powder according to any one of the above (1) to (3), wherein an aluminum source material and / or a boron source material is injected into a flame.
(7) The method for producing siliceous powder according to (6), wherein the aluminum source material is aluminum oxide powder, and the content of Al 2 O 3 in the raw siliceous powder is 1% by mass or less.
(8) The method for producing a siliceous powder according to the above (7), wherein the aluminum oxide powder has an average particle size of 0.01 to 10 μm.
(9) A resin composition comprising the siliceous powder according to any one of (1) to (3) above, or the inorganic powder according to (4) or (5) above.
(10) The resin composition according to (9), wherein the resin of the resin composition is an epoxy resin.
(11) A semiconductor sealing material using the resin composition according to (9) or (10).
 本発明によれば、曲げ強度、耐ハンダクラック性を向上させた樹脂組成物、特に半導体封止材としての樹脂組成物と、該樹脂組成物を調製するのに好適なシリカ質粉末とが提供される。 According to the present invention, a resin composition having improved bending strength and solder crack resistance, particularly a resin composition as a semiconductor sealing material, and a siliceous powder suitable for preparing the resin composition are provided. Is done.
 以下、本発明を詳細に説明する。
 本発明のシリカ質粉末は、ピリジンのフロイントリッヒ吸着定数Kが1.3~5.0であるシリカ質粉末である。塩基性物質であるピリジンは、シリカ質粉末表面の酸点に吸着するため、この物質の吸着定数Kの値が大きいほどシリカ質粉末表面の酸点の数が多いことを意味する。シリカ質粉末の酸点が多いと、アミノシラン、フェニルアミノシランなどの塩基性シランカップリング剤との結合点が多くなる。このため半導体封止材中のエポキシ樹脂、フェノール樹脂などの樹脂成分とシリカ質粉末表面との密着性がより強固になり、曲げ強度が向上するとともに、樹脂成分とシリカ質粉末との界面に水分が入り込みにくくなるため、耐ハンダクラック性も飛躍的に向上する。
Hereinafter, the present invention will be described in detail.
The siliceous powder of the present invention is a siliceous powder having a Freundlich adsorption constant K of pyridine of 1.3 to 5.0. Since pyridine, which is a basic substance, adsorbs on the acid sites on the surface of the siliceous powder, the larger the value of the adsorption constant K of this material, the greater the number of acid sites on the surface of the siliceous powder. When the acid point of the siliceous powder is large, the bonding point with a basic silane coupling agent such as aminosilane or phenylaminosilane increases. For this reason, the adhesion between the resin component such as epoxy resin and phenol resin in the semiconductor sealing material and the surface of the siliceous powder becomes stronger, the bending strength is improved, and moisture is present at the interface between the resin component and the siliceous powder. Since it becomes difficult to penetrate, solder crack resistance is also greatly improved.
 ピリジンのフロイントリッヒ吸着定数Kが1.3未満であると、シランカップリング剤とシリカ質粉末との結合点が少なくなるため、半導体封止材の曲げ強度や耐ハンダクラック性を顕著に改善することができない。一方、ピリジンのフロイントリッヒ吸着定数Kが5.0を超えると、シリカ質粉末表面の酸点の数が多くなりすぎ、エポキシ樹脂を硬化させてしまう。このため半導体封止材を用いて半導体をパッケージングする際の封止材の粘度が上昇するため、成形性が損なわれてしまうという不具合が生じてしまう。好ましいピリジンのフロイントリッヒ吸着定数Kの値は1.5~4.5、特に好ましくは2.0~4.3である。これらの値は、従来のシリカ質粉末のフロイントリッヒ吸着定数Kの値0.07~0.8と比較すると特異的である。 If the Freundlich adsorption constant K of pyridine is less than 1.3, the bonding point between the silane coupling agent and the siliceous powder is reduced, so that the bending strength and solder crack resistance of the semiconductor encapsulant are remarkably improved. I can't. On the other hand, when Freundlich adsorption constant K of pyridine exceeds 5.0, the number of acid sites on the surface of the siliceous powder becomes too large and the epoxy resin is cured. For this reason, since the viscosity of the sealing material at the time of packaging a semiconductor using a semiconductor sealing material rises, the malfunction that a moldability will be impaired will arise. The value of Freundlich adsorption constant K of pyridine is preferably 1.5 to 4.5, particularly preferably 2.0 to 4.3. These values are specific when compared with the values of Freundlich adsorption constant K of conventional siliceous powders of 0.07 to 0.8.
 ピリジンのフロイントリッヒ吸着定数Kは以下のような手順で測定することができる。
(1)ピリジン標準溶液の調製:分光分析用ピリジン0.1molを500mlメスフラスコに取り、分光分析用n-ヘプタンで定容する。次に、前記ピリジン溶液を200mlメスフラスコにそれぞれ、0.25ml、0.50ml、1.00ml取り、n-ヘプタンで定容し、0.25mmol/l、0.50mmol/l、1.00mmol/lのピリジン標準溶液を調製する。
(2)シリカ質粉末への吸着:あらかじめ200℃で2時間加熱して乾燥させ、デシケーター中で放冷しておいたシリカ質粉末各4.00gを、25mlメスフラスコ3本に精秤する。この各メスフラスコに0.25mmol/l、0.50mmol/l、1.00mmol/lのピリジン標準溶液20mlを入れ、3分間振り混ぜる。このメスフラスコを25℃に設定した恒温槽に2時間入れ、ピリジンをシリカ質粉末に吸着させる。
(3)ピリジン吸着量の測定:ピリジン標準溶液とシリカ質粉末とを混合した前記メスフラスコから、それぞれ上澄み液を取り、紫外可視分光光度計の測定セルに入れ、吸着されずに残った残留ピリジン濃度を吸光度により定量する。
(4)ピリジンのフロイントリッヒ吸着定数Kの算出: logA=logK+(1/n)logCのフロイントリッヒ吸着式によりピリジンのフロイントリッヒ吸着定数Kを算出する。すなわち、logAをY軸に、(1/n)logCをX軸にしたグラフを描くと、Y軸切片からlogKが求まり、Kが算出できる。ここで、Aはシリカ質粉末1gに吸着したピリジン量(μmol/g)、Cは上澄み液中の残留ピリジン濃度(μmol/ml)、K、nは定数である。
The Freundlich adsorption constant K of pyridine can be measured by the following procedure.
(1) Preparation of pyridine standard solution: Take 0.1 mol of pyridine for spectroscopic analysis in a 500 ml volumetric flask and make a constant volume with n-heptane for spectroscopic analysis. Next, 0.25 ml, 0.50 ml, and 1.00 ml of the pyridine solution were taken in 200 ml volumetric flasks, respectively, and fixed with n-heptane, and then 0.25 mmol / l, 0.50 mmol / l, 1.00 mmol / Prepare 1 standard solution of pyridine.
(2) Adsorption onto siliceous powder: 4.00 g of each siliceous powder that has been dried by heating at 200 ° C. for 2 hours and allowed to cool in a desiccator is precisely weighed into three 25 ml volumetric flasks. In each volumetric flask, 20 ml of a pyridine standard solution of 0.25 mmol / l, 0.50 mmol / l, and 1.00 mmol / l is added and shaken for 3 minutes. This volumetric flask is placed in a thermostat set at 25 ° C. for 2 hours to adsorb pyridine onto the siliceous powder.
(3) Measurement of pyridine adsorption amount: From the volumetric flask in which the pyridine standard solution and the siliceous powder are mixed, each supernatant liquid is taken and placed in a measurement cell of an ultraviolet-visible spectrophotometer, and residual pyridine remaining without being adsorbed The concentration is quantified by absorbance.
(4) Calculation of Freundlich adsorption constant K of pyridine: Freundlich adsorption constant K of pyridine is calculated by the Freundlich adsorption formula of logA = logK + (1 / n) logC. That is, if a graph is drawn with log A on the Y axis and (1 / n) log C on the X axis, log K is obtained from the Y axis intercept, and K can be calculated. Here, A is the amount of pyridine adsorbed on 1 g of siliceous powder (μmol / g), C is the residual pyridine concentration (μmol / ml) in the supernatant, and K and n are constants.
 なお、測定に使用する紫外可視分光光度計を例示すれば、島津製作所社製商品名「紫外可視分光光度計 モデルUV-1800」である。ピリジン標準溶液を調製するのに用いる試薬を例示すれば、和光純薬工業社製のピリジン(分光分析用グレード)、及びn-ヘプタン(分光分析用グレード)である。また、吸光度の測定波長は251nmとし、n-ヘプタンのみを測定しバックグランド補正をした。検量線の作成には、0.00mmmol/l、0.25mmol/l、0.50mmol/l、1.00mmol/lのピリジン標準溶液を用いた。 An example of an ultraviolet-visible spectrophotometer used for measurement is “Ultraviolet-visible spectrophotometer model UV-1800” manufactured by Shimadzu Corporation. Examples of the reagent used to prepare the pyridine standard solution are pyridine (grade for spectroscopic analysis) and n-heptane (grade for spectroscopic analysis) manufactured by Wako Pure Chemical Industries, Ltd. The absorbance measurement wavelength was 251 nm, and only n-heptane was measured to correct the background. For the preparation of the calibration curve, 0.00 mmol / l, 0.25 mmol / l, 0.50 mmol / l, and 1.00 mmol / l pyridine standard solutions were used.
 また、本発明のシリカ質粉末の特徴は、SiO、Al、及びBの含有率(酸化物換算)の合計が99.5質量%以上であり、Al及びBの含有率の合計が0.1~20質量%であることである。SiO、Al、及びBの含有率の合計が99.5質量%未満、すなわち、SiO、Al、及びB以外の含有率が0.5質量%を超えると、半導体封止材とした際に、必要でない不純物となる物質が増えてしまうため、好ましくない。例えばNaO、Feなどは、一部がイオンとなり溶出し、半導体チップや配線にダメージを与えてしまう。MgO、KO、CaOなどは、シリカ質粉末の熱膨張率を大きくして、耐ハンダクラック性に悪影響を与えてしまう。
 SiO、Al、及びBの含有率の合計は、好ましくは99.6質量%以上、さらに好ましくは99.7質量%以上である。
 また、シリカ質粉末のAl及びBの含有率の合計は0.1~20質量%であることが好ましい。シリカ質粉末中にAl、Bが存在すると、Al、Bの位置が強い酸点になる。この酸点により、塩基性シランカップリング剤とシリカ質粉末表面との結合点が増加するため、曲げ強度、耐ハンダクラック性が改善される。Al及びBの含有率の合計が0.1質量%未満であると、酸点の増加が十分でなく、逆に20質量%を超えると、シリカ質粉末の熱膨張率が大きくなりすぎ、耐ハンダクラック性に悪影響を与えてしまう。より好ましいAl及びBの含有率の合計は0.2~18質量%、さらに好ましくは0.3~15質量%である。
Further, the siliceous powder of the present invention is characterized in that the total content of SiO 2 , Al 2 O 3 , and B 2 O 3 (as oxide) is 99.5% by mass or more, and Al 2 O 3 and The total content of B 2 O 3 is 0.1 to 20% by mass. The total content of SiO 2 , Al 2 O 3 , and B 2 O 3 is less than 99.5% by mass, that is, the content other than SiO 2 , Al 2 O 3 , and B 2 O 3 is 0.5% by mass. If it exceeds 50%, a substance that becomes an unnecessary impurity increases when the semiconductor sealing material is used, which is not preferable. For example, Na 2 O, Fe 2 O 3 and the like are partly ionized and eluted, causing damage to the semiconductor chip and wiring. MgO, K 2 O, CaO, etc. increase the coefficient of thermal expansion of the siliceous powder and adversely affect the solder crack resistance.
The total content of SiO 2 , Al 2 O 3 , and B 2 O 3 is preferably 99.6% by mass or more, and more preferably 99.7% by mass or more.
The total content of Al 2 O 3 and B 2 O 3 in the siliceous powder is preferably 0.1 to 20% by mass. When Al and B are present in the siliceous powder, the positions of Al and B become strong acid sites. This acid point increases the bonding point between the basic silane coupling agent and the surface of the siliceous powder, thereby improving the bending strength and solder crack resistance. When the total content of Al 2 O 3 and B 2 O 3 is less than 0.1% by mass, the acid point is not sufficiently increased. Conversely, when the total content exceeds 20% by mass, the thermal expansion coefficient of the siliceous powder Becomes too large and adversely affects solder crack resistance. The total content of Al 2 O 3 and B 2 O 3 is more preferably 0.2 to 18% by mass, still more preferably 0.3 to 15% by mass.
 本発明のシリカ質粉末のSiO含有率(酸化物換算)は質量減少法、Al含有率(酸化物換算)は原子吸光分析法、B含有率(酸化物換算)は、ICP発光分析法を用いて、下記のような手順で測定することができる。
(1)SiO含有率の測定:シリカ質粉末2.5gを白金皿に精秤し、試薬特級フッ化水素酸、試薬特級硫酸、純水をそれぞれ20ml、1ml、1ml加える。その白金皿を300℃に加熱されたサンドバス上に15分間静置して粉末を溶解、乾固させる。次に、1000°に加熱されたマッフル炉に白金皿を入れ10分間加熱して、フッ化ケイ酸を蒸発させる。デシケーター内で室温まで放冷後、白金皿の質量を精秤し、質量減少率からシリカ質粉末のSiOの含有率を算出する。
The SiO 2 content (oxide conversion) of the siliceous powder of the present invention is the mass reduction method, the Al 2 O 3 content (oxide conversion) is the atomic absorption analysis method, and the B 2 O 3 content (oxide conversion) is The measurement can be performed by the following procedure using ICP emission analysis.
(1) Measurement of SiO 2 content: 2.5 g of siliceous powder is precisely weighed in a platinum dish, and 20 ml, 1 ml and 1 ml of reagent-grade hydrofluoric acid, reagent-grade sulfuric acid and pure water are added to the platinum dish. The platinum dish is allowed to stand on a sand bath heated to 300 ° C. for 15 minutes to dissolve and dry the powder. Next, a platinum dish is put in a muffle furnace heated to 1000 ° and heated for 10 minutes to evaporate fluorinated silicic acid. After cooling to room temperature in a desiccator, the mass of the platinum dish is precisely weighed, and the content of SiO 2 in the siliceous powder is calculated from the mass reduction rate.
(2)Al含有率の測定:シリカ質粉末1gを白金皿に精秤し、試薬特級フッ化水素酸、試薬特級過塩素酸をそれぞれ20ml、1ml加える。その白金皿を300℃に加熱されたサンドバス上に15分間静置してから室温まで冷却し、25mlメスフラスコに移しかえ純水で定容する。この溶液中のAl量を原子吸光光度計を用い検量線法により定量する。そのAl量をAlに換算しシリカ質粉末中の含有率を算出する。原子吸光光度計を例示すれば、日本ジャーレルアッシュ社製商品名「原子吸光光度計 モデルAA-969」である。検量線を作成するのに用いる標準液を例示すれば、関東化学社製原子吸光用Al標準液(濃度1000ppm)である。なお、測定の際のフレームにはアセチレン-亜酸化窒素フレームを用い、波長309.3nmにおける吸光度を測定して定量した。 (2) Measurement of Al 2 O 3 content: 1 g of siliceous powder is precisely weighed in a platinum dish, and 20 ml and 1 ml of reagent special grade hydrofluoric acid and reagent special grade perchloric acid are added, respectively. The platinum dish is allowed to stand on a sand bath heated to 300 ° C. for 15 minutes, cooled to room temperature, transferred to a 25 ml volumetric flask, and fixed with pure water. The amount of Al in the solution is quantified by a calibration curve method using an atomic absorption photometer. The Al content is converted to Al 2 O 3 to calculate the content in the siliceous powder. An example of an atomic absorption photometer is the product name “Atomic Absorption Photometer Model AA-969” manufactured by Nippon Jarrel Ash. An example of a standard solution used for preparing a calibration curve is an Al standard solution for atomic absorption (concentration 1000 ppm) manufactured by Kanto Chemical. Note that an acetylene-nitrous oxide flame was used as a flame for measurement, and the absorbance at a wavelength of 309.3 nm was measured and quantified.
(3)B含有率の測定:シリカ質粉末1gを白金皿に精秤し、試薬特級フッ化水素酸、試薬特級硝酸、試薬特級マンニトールの1%水溶液をそれぞれ20ml、1ml、1ml加え、300℃に加熱されたサンドバス上に15分間静置して粉末を溶解、乾固させる。次に、白金皿の乾固物に、試薬特級硝酸、純水をそれぞれ1mlずつ加え、再溶解した後、25mlメスフラスコに移しかえ純水で定容する。この溶液中のB量をICP発光分光分析装置を用い検量線法により定量する。そのB量をBに換算しシリカ質粉末中の含有率を算出する。ICP発光分光分析装置を例示すれば、セイコーインスツルメント社製商品名「モデルSPS-1700R」であり、249.8nmの波長の発光強度を測定する。検量線を作成するのに用いる標準液を例示すれば、関東化学社製原子吸光用B標準液(濃度1000ppm)である。 (3) Measurement of B 2 O 3 content: 1 g of siliceous powder is precisely weighed on a platinum dish, and 1% aqueous solution of reagent special grade hydrofluoric acid, reagent special grade nitric acid, reagent special grade mannitol is added to each 20 ml, 1 ml and 1 ml. Then, leave it on a sand bath heated to 300 ° C. for 15 minutes to dissolve and dry the powder. Next, 1 ml each of reagent-grade nitric acid and pure water is added to the dried product of the platinum dish and redissolved, and then transferred to a 25 ml volumetric flask and fixed with pure water. The amount of B in this solution is quantified by a calibration curve method using an ICP emission spectroscopic analyzer. The amount of B is converted into B 2 O 3 to calculate the content in the siliceous powder. For example, an ICP emission spectroscopic analyzer is a trade name “Model SPS-1700R” manufactured by Seiko Instruments Inc., which measures emission intensity at a wavelength of 249.8 nm. An example of a standard solution used for preparing a calibration curve is an atomic absorption B standard solution (concentration 1000 ppm) manufactured by Kanto Chemical Co., Inc.
 本発明の樹脂組成物における曲げ強度、及び耐ハンダクラック性の向上効果は、シリカ質粉末の比表面積が0.5~5m/gの範囲、平均粒子径が1~60μmの範囲にあるときにさらに助長される。比表面積が0.5m/g未満であると、シランカップリング剤とシリカ質粉末表面との結合面積が小さすぎ、曲げ強度、耐ハンダクラック性が改善されにくい。一方、比表面積が5m/gを超えると、シリカ質粉末が小さい粒子を多量に含むか、粒子表面の一部又は全部に凹凸があることを意味し、半導体封止材を用いて半導体をパッケージングする際の封止材の粘度が上昇するため、成形性が損なわれてしまう。好ましい比表面積の範囲は、0.6~4.8m/g、さらに好ましくは0.7~4.7m/gである。 The effect of improving the bending strength and solder crack resistance in the resin composition of the present invention is that when the specific surface area of the siliceous powder is in the range of 0.5 to 5 m 2 / g and the average particle diameter is in the range of 1 to 60 μm. Is further encouraged. When the specific surface area is less than 0.5 m 2 / g, the bonding area between the silane coupling agent and the siliceous powder surface is too small, and it is difficult to improve the bending strength and solder crack resistance. On the other hand, when the specific surface area exceeds 5 m 2 / g, it means that the siliceous powder contains a large amount of small particles or there are irregularities on part or all of the particle surface, and the semiconductor is encapsulated using a semiconductor encapsulant. Since the viscosity of the sealing material at the time of packaging rises, moldability will be impaired. The range of the specific surface area is preferably 0.6 to 4.8 m 2 / g, more preferably 0.7 to 4.7 m 2 / g.
 また、シリカ質粉末の平均粒子径が1μm未満でも、同様に、半導体封止材を用いて半導体をパッケージングする際の封止材の粘度が上昇するため、成形性が損なわれてしまうため好ましくない。逆に、平均粒子径が60μmを超える場合、半導体パッケージの肉厚が非常に薄くなっているため、半導体チップに傷をつけてしまう問題や、凹凸のない均質なパッケージが得られないという問題が発生してしまう。好ましい平均粒子径の範囲は、2~55μmであり、さらに好ましい範囲は、3~50μmの範囲である。また、最大粒子径は、196μm以下であることが好ましく、さらに好ましくは128μm以下である。 In addition, even if the average particle size of the siliceous powder is less than 1 μm, the viscosity of the sealing material when packaging the semiconductor using the semiconductor sealing material is increased, so that the moldability is impaired. Absent. Conversely, when the average particle diameter exceeds 60 μm, the thickness of the semiconductor package is so thin that the semiconductor chip is damaged or a uniform package without unevenness cannot be obtained. Will occur. A preferred average particle size range is 2 to 55 μm, and a more preferred range is 3 to 50 μm. The maximum particle size is preferably 196 μm or less, more preferably 128 μm or less.
 本発明のシリカ質粉末の平均粒子径は、レーザー回折散乱法による粒度測定に基づいて測定する。使用される測定機としては、例えば、シーラス社製商品名「シーラスグラニュロメーター モデル920」を用い、水にシリカ質粉末を分散させ、さらに超音波ホモジナイザーで200Wの出力で1分間分散処理してから測定する。なお、粒度分布測定は、粒子径チャンネルが0.3、1、1.5、2、3、4、6、8、12、16、24、32、48、64、96、128、196μmにて行なう。測定した粒度分布において、累積質量が50%となる粒子径が平均粒子径、累積質量が100%となる粒子径が最大粒子径である。 The average particle size of the siliceous powder of the present invention is measured based on particle size measurement by a laser diffraction scattering method. As a measuring instrument to be used, for example, a product name “Cirrus Granurometer Model 920” manufactured by Cirrus Co., Ltd. is used, and siliceous powder is dispersed in water. Measure from The particle size distribution was measured when the particle diameter channel was 0.3, 1, 1.5, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 196 μm. Do. In the measured particle size distribution, the particle size at which the cumulative mass is 50% is the average particle size, and the particle size at which the cumulative mass is 100% is the maximum particle size.
 本発明のシリカ質粉末の比表面積は、BET法による比表面積測定に基づいて測定する。比表面積測定機を例示すれば、マウンテック社製商品名「マックソーブ モデルHM-1208」である。 The specific surface area of the siliceous powder of the present invention is measured based on the specific surface area measurement by the BET method. As an example of a specific surface area measuring machine, it is the product name “Muxsorb Model HM-1208” manufactured by Mountec.
 本発明のシリカ質粉末は、他の無機質粉末に混合しても、その効果を発現させることができる。無機質粉末中の本発明のシリカ質粉末の含有率は、0.5質量%以上であることが好ましく、さらには2質量%以上であることが好ましい。無機質粉末の種類としては、シリカ質粉末及び/又はアルミナ質粉末であることが好ましい。これらの粉末は単独で用いてもよく、また二種類混合してもよい。半導体封止材の熱膨張率を低くする場合や、金型の摩耗性を低減する場合にはシリカ質粉末が、熱伝導性を付与する場合にはアルミナ質粉末が選択される。なおシリカ質粉末は、後記の方法で測定された非晶質率の値で95%以上であることが好ましい。 Even if the siliceous powder of the present invention is mixed with other inorganic powder, the effect can be exhibited. The content of the siliceous powder of the present invention in the inorganic powder is preferably 0.5% by mass or more, and more preferably 2% by mass or more. The inorganic powder is preferably a siliceous powder and / or an alumina powder. These powders may be used alone or in combination. Silica powder is selected when the thermal expansion coefficient of the semiconductor encapsulant is lowered or when the wear of the mold is reduced, and alumina powder is selected when thermal conductivity is imparted. In addition, it is preferable that siliceous powder is 95% or more by the value of the amorphous ratio measured by the postscript method.
 本発明のシリカ質粉末は、下記方法で測定された非晶質率が好ましくは95%以上、特には98%以上であることが好ましい。非晶質率は、粉末X線回折装置(例えばRIGAKU社製商品名「モデルMini Flex」)を用い、CuKα線の2θが26°~27.5°の範囲においてX線回折分析を行い、特定回折ピークの強度比から測定する。シリカ粉末の場合、結晶質シリカは、26.7°に主ピークが存在するが、非晶質シリカではピークは存在しない。非晶質シリカと結晶質シリカが混在していると、結晶質シリカの割合に応じた26.7°のピーク高さが得られるので、結晶質シリカ標準試料のX線強度に対する試料のX線強度の比から、結晶質シリカ混在比(試料のX線回折強度/結晶質シリカのX線回折強度)を算出し、式、非晶質率(%)=(1-結晶質シリカ混在比)×100から非晶質率を求める。 The siliceous powder of the present invention preferably has an amorphous ratio measured by the following method of 95% or more, particularly 98% or more. Amorphous ratio is specified by X-ray diffraction analysis using a powder X-ray diffractometer (for example, “Model Mini Flex” manufactured by RIGAKU) in the range of 2θ of CuKα ray of 26 ° to 27.5 °. Measured from the intensity ratio of diffraction peaks. In the case of silica powder, crystalline silica has a main peak at 26.7 °, but amorphous silica has no peak. When amorphous silica and crystalline silica are mixed, a peak height of 26.7 ° corresponding to the ratio of crystalline silica can be obtained, so the X-ray of the sample relative to the X-ray intensity of the crystalline silica standard sample From the intensity ratio, the crystalline silica mixing ratio (X-ray diffraction intensity of the sample / X-ray diffraction intensity of the crystalline silica) is calculated, and the formula, amorphous ratio (%) = (1-crystalline silica mixing ratio) Obtain the amorphous ratio from x100.
 本発明のシリカ質粉末、無機質粉末、及びアルミナ質粉末の平均球形度は好ましくは0.80以上、特には0.85以上であることが好ましい。これによって、樹脂組成物の粘度が低下し、成形性も向上させることができる。平均球形度は、実体顕微鏡(例えばニコン社製商品名「モデルSMZ-10型」)等にて撮影した粒子像を画像解析装置(例えばマウンテック社製商品名「MacView」)に取り込み、写真から粒子の投影面積(A)と周囲長(PM)から測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の球形度はA/Bとなるので、試料の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)となる。このようにして得られた任意の粒子200個の球形度を求め、その平均値を平均球形度とした。 The average sphericity of the siliceous powder, the inorganic powder, and the alumina powder of the present invention is preferably 0.80 or more, and particularly preferably 0.85 or more. Thereby, the viscosity of a resin composition falls and a moldability can also be improved. The average sphericity is obtained by taking a particle image taken with a stereomicroscope (for example, trade name “Model SMZ-10” manufactured by Nikon Corporation) into an image analysis apparatus (for example, trade name “MacView” manufactured by Mountec Co., Ltd.). Measured from the projected area (A) and the perimeter (PM). If the area of a perfect circle corresponding to the perimeter (PM) is (B), the sphericity of the particle is A / B, so a perfect circle having the same perimeter as the perimeter (PM) of the sample is assumed. Then, since PM = 2πr and B = πr 2 , B = π × (PM / 2π) 2 , and the sphericity of each particle is sphericity = A / B = A × 4π / (PM) 2 . Become. The sphericity of 200 arbitrary particles thus obtained was determined, and the average value was defined as the average sphericity.
 次に、本発明のシリカ質粉末の製造方法ついて説明する。
 本発明の製造方法は、少なくとも2本のバーナーを、炉体の中心軸に対して2~10°の角度をつけて炉体に配置し、1本のバーナーからは原料シリカ質粉末を、少なくとも1本のバーナーからはAl源物質及び/又はB源物質を火炎に噴射することを特徴とするシリカ質粉末の製造方法である。原料シリカ質粉末とAl源物質及び/又はB源物質とを同一の1本のバーナーから火炎に噴射すると、噴射された原料は必ず円錐状に広がるため、原料シリカ質粉末の表面にAl源物質及び/又はB源物質が融着する割合が少なくなり、Al及びBの含有率の合計が0.1~20質量%である本発明のシリカ質粉末を製造することができない。また、原料シリカ質粉末とAl源物質及び/又はB源物質とを事前に混合しておいても、噴射時に円錐状に広がる際に、分散・分離されるため、組成が不均質になってしまう。
 少なくとも2本のバーナーを、炉体の中心軸に対して2~10°の角度をつけて、焦点を結ぶように炉体に配置し、1本のバーナーからは原料シリカ質粉末を、少なくとも1本のバーナーからはAl源物質及び/又はB源物質を火炎に噴射することで、本発明のシリカ質粉末を極めて効率よく製造することができる。Al源物質及び/又はB源物質を噴射するバーナーを複数本とすることで、本発明のシリカ質粉末の組成の均質性をより一段と高めることができる。好ましいバーナーの本数は、原料シリカ質粉末の噴射バーナー1本に対し、Al源物質及び/又はB源物質の噴射バーナーが2本の割合である。また、バーナーの配置角度は、炉体の中心軸に対して2~10°とする必要がある。バーナーの配置角度が2°未満であると、焦点を結ぶ位置が火炎の外になってしまい、原料シリカ質粉末の表面にAl源物質及び/又はB源物質が融着する割合が少なくなる。一方、バーナー配置角度が10°を超えても、原料シリカ質粉末の表面にAl源物質及び/又はB源物質が融着する前に焦点を結んでしまうので好ましくない。より好ましいバーナーの配置角度は、3~8°の範囲内である。
Next, the manufacturing method of the siliceous powder of the present invention will be described.
In the production method of the present invention, at least two burners are disposed in the furnace body at an angle of 2 to 10 ° with respect to the central axis of the furnace body, and at least raw silica material powder is contained from one burner. A siliceous powder manufacturing method is characterized in that an Al source material and / or a B source material are injected into a flame from one burner. When the raw material siliceous powder and the Al source material and / or B source material are injected into the flame from the same burner, the injected raw material always spreads in a conical shape, so the Al source material is formed on the surface of the raw material siliceous powder. And / or producing the siliceous powder of the present invention in which the ratio of the B source material to be fused is reduced and the total content of Al 2 O 3 and B 2 O 3 is 0.1 to 20% by mass. Can not. In addition, even if the raw siliceous powder and the Al source material and / or B source material are mixed in advance, they are dispersed and separated when spreading in a conical shape at the time of injection, so the composition becomes inhomogeneous. End up.
At least two burners are arranged in the furnace body so as to be focused at an angle of 2 to 10 ° with respect to the central axis of the furnace body. From one burner, at least one raw siliceous powder is placed. The siliceous powder of the present invention can be produced very efficiently by injecting Al source material and / or B source material into the flame from the burner of the present invention. By using a plurality of burners for injecting the Al source material and / or the B source material, the homogeneity of the composition of the siliceous powder of the present invention can be further enhanced. The number of the preferred burners is such that the injection burner of the Al source material and / or the B source material is two to one injection burner of the raw siliceous powder. Further, the arrangement angle of the burner needs to be 2 to 10 ° with respect to the central axis of the furnace body. When the arrangement angle of the burner is less than 2 °, the focal point is located outside the flame, and the proportion of the Al source material and / or B source material fused to the surface of the raw siliceous powder decreases. On the other hand, even if the burner arrangement angle exceeds 10 °, it is not preferable because the Al source material and / or the B source material are focused on the surface of the raw siliceous powder before fusing. A more preferable burner arrangement angle is in the range of 3 to 8 °.
 本発明においては、Al源物質が酸化アルミニウム粉末であることが好ましい。Al源物質としては、酸化アルミニウム、水酸化アルミニウム、硫酸アルミニウム、塩化アルミニウム、アルミニウム有機化合物などが挙げられるが、酸化アルミニウムが原料シリカ質粉末の融点と近いため、バーナーから噴射した際に原料シリカ質粉末の表面に融着しやすく、不純物含有率も少ないため最も好ましい。また、酸化アルミニウム粉末の平均粒子径は0.01~10μmであることが好ましい。平均粒子径が0.01μm未満であると、粉末が凝集しやすく、シリカ質粉末と融着した際の組成が不均質になる傾向にあり、同様に10μmを超えてもシリカ質粉末と融着した際の組成が不均質になる。好ましい平均粒子径の範囲は、0.03~8μm、さらに好ましくは0.05~5μmである。 In the present invention, the Al source material is preferably an aluminum oxide powder. Examples of the Al source material include aluminum oxide, aluminum hydroxide, aluminum sulfate, aluminum chloride, and an aluminum organic compound, but since the aluminum oxide is close to the melting point of the raw siliceous powder, the raw siliceous material is injected from the burner. It is most preferable because it is easily fused to the surface of the powder and has a low impurity content. The average particle size of the aluminum oxide powder is preferably 0.01 to 10 μm. If the average particle size is less than 0.01 μm, the powder tends to aggregate and the composition when fused with the siliceous powder tends to be inhomogeneous. The composition becomes inhomogeneous. A preferable range of the average particle diameter is 0.03 to 8 μm, more preferably 0.05 to 5 μm.
 本発明においては、原料シリカ質粉末のAl含有率が1質量%以下であることが好ましい。シリカ質粉末中のAl、Bのうち、粉末の表面に位置するものだけが強い酸点を形成し、塩基性シランカップリング剤と結合することができる。したがって、元来原料シリカ質粉末内部に存在するAlは、シリカ質粉末の熱膨張率を上昇させる等の悪影響を及ぼしてしまう。原料シリカ質粉末のAl含有率は、好ましくは0.8質量%以下、さらに好ましくは0.5質量%以下である。
 原料シリカ質粉末には、前述したAl以外にもFe、NaO、MgO、CaO、Bなどが含有されていてもよいが、原料シリカ質粉末のSiO含有率は、97質量%以上、さらには、98質量%以上であることが好ましい。
In the present invention, the content of Al 2 O 3 in the raw siliceous powder is preferably 1% by mass or less. Of Al and B in the siliceous powder, only those located on the surface of the powder form strong acid sites and can be combined with the basic silane coupling agent. Therefore, Al 2 O 3 originally present in the raw material siliceous powder has an adverse effect such as increasing the thermal expansion coefficient of the siliceous powder. The Al 2 O 3 content of the raw siliceous powder is preferably 0.8% by mass or less, more preferably 0.5% by mass or less.
The raw silica powders, Fe 2 O 3 in addition to Al 2 O 3 described above, Na 2 O, MgO, CaO , B 2 , etc. O 3 may be contained, but the raw material siliceous powder SiO 2 The content is preferably 97% by mass or more, and more preferably 98% by mass or more.
 原料シリカ質粉末とAl源物質及び/又はB源物質を火炎に噴射し、融着させ、捕集する装置としては、例えばバーナーを備えた炉体に捕集装置が接続されたものが使用される。炉体は、開放型又は密閉型、あるいは縦型、横型のいずれであっても良い。捕集装置には、重力沈降室、サイクロン、バッグフィルター、電気集塵機等の一つ以上が設けられ、その捕集条件を調整することによって、製造したシリカ質粉末を捕集することができる。その一例を示せば、特開平11-57451号公報、特開平11-71107号公報などである。 As a device for injecting, fusing, and collecting raw material siliceous powder and Al source material and / or B source material into a flame, for example, a device in which a collection device is connected to a furnace body equipped with a burner is used. The The furnace body may be an open type or a closed type, or a vertical type or a horizontal type. The collection device is provided with one or more of a gravity settling chamber, a cyclone, a bag filter, an electric dust collector and the like, and the produced siliceous powder can be collected by adjusting the collection conditions. Examples thereof include Japanese Patent Application Laid-Open Nos. 11-57451 and 11-71107.
 なお、本発明において、シリカ質粉末のピリジンのフロイントリッヒ吸着定数Kは、原料シリカ質粉末の表面に融着させるAl源物質及び/又はB源物質のサイズ、シリカ質粉末中のAl含有量及びB含有量、シリカ質粉末の比表面積及び平均粒子径などによって増減が可能である。シリカ質粉末中のAl含有率及びB含有率は、原料シリカ質粉末とAl源物質及び/又はB源物質のバーナーへの噴射量の比を調整することによってそれぞれ増減可能である。シリカ質粉末の比表面積、平均粒子径などは、原料シリカ質粉末の粒度構成や火炎温度などによって調整可能である。また、平均球形度、非晶質率は原料シリカ質粉末の火炎への供給量や火炎温度などによって調整可能である。さらには、比表面積、平均粒子径、Al含有率、B含有率などが異なるシリカ質粉末を種々製造しておき、それらの2種以上を適宜混合することによって、フロイントリッヒ吸着定数K、Al含有量、B含有量、比表面積、平均粒子径などが更に特定されたシリカ質粉末を製造することもできる。 In the present invention, Freundlich adsorption constant K of pyridine of siliceous powder is the size of Al source material and / or B source material fused to the surface of the raw siliceous powder, Al 2 O 3 in siliceous powder. It can be increased or decreased depending on the content and B 2 O 3 content, the specific surface area of the siliceous powder, the average particle size, and the like. The content of Al 2 O 3 and B 2 O 3 in the siliceous powder can be increased or decreased by adjusting the ratio of the raw siliceous powder and the Al source material and / or the B source material to the burner. It is. The specific surface area, average particle diameter, and the like of the siliceous powder can be adjusted by the particle size configuration of the raw siliceous powder, the flame temperature, and the like. The average sphericity and the amorphous ratio can be adjusted by the amount of raw siliceous powder supplied to the flame, the flame temperature, and the like. Furthermore, various kinds of siliceous powders having different specific surface areas, average particle diameters, Al 2 O 3 content ratios, B 2 O 3 content ratios and the like are manufactured in advance, and two or more kinds thereof are mixed as appropriate to obtain Freundlich. It is also possible to produce a siliceous powder in which the adsorption constant K, Al 2 O 3 content, B 2 O 3 content, specific surface area, average particle diameter and the like are further specified.
 本発明の樹脂組成物は、本発明のシリカ質粉末又は無機質粉末を含有する樹脂組成物である。樹脂組成物中のシリカ質粉末又は無機質粉末の含有率は10~95質量%であり、さらに好ましくは30~90質量%である。 The resin composition of the present invention is a resin composition containing the siliceous powder or inorganic powder of the present invention. The content of the siliceous powder or inorganic powder in the resin composition is 10 to 95% by mass, more preferably 30 to 90% by mass.
 樹脂としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネイト、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリル・アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム・スチレン)樹脂等を使用することができる。なかでも、エポキシ樹脂、シリコーン樹脂、フェノール樹脂等が好ましい。 Examples of the resin include epoxy resin, silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamide such as polyimide, polyamideimide and polyetherimide, polyester such as polybutylene terephthalate and polyethylene terephthalate, polyphenylene sulfide , Aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile / acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber / styrene) resin, etc. can do. Of these, epoxy resins, silicone resins, phenol resins and the like are preferable.
 これらの中、半導体封止材としては、1分子中にエポキシ基を2個以上有するエポキシ樹脂が好ましい。例示すれば、フェノールノボラック型エポキシ樹脂;オルソクレゾールノボラック型エポキシ樹脂;フェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの;ビスフェノールA、ビスフェノールF及びビスフェノールSなどのグリシジルエーテル;フタル酸やダイマー酸などの多塩基酸とエポクロルヒドリンとの反応により得られるグリシジルエステル酸エポキシ樹脂;線状脂肪族エポキシ樹脂;脂環式エポキシ樹脂;複素環式エポキシ樹脂;アルキル変性多官能エポキシ樹脂;β-ナフトールノボラック型エオキシ樹脂;1,6-ジヒドロキシナフタレン型エポキシ樹脂;2,7-ジヒドロキシナフタレン型エポキシ樹脂;ビスヒドロキシビフェニル型エポキシ樹脂;更には難燃性を付与するために臭素などのハロゲン原子を導入したエポキシ樹脂;等である。中でも、耐湿性や耐ハンダリフロー性の点からは、オルソクレゾールノボラック型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、ナフタレン骨格のエポキシ樹脂等が好適である。 Among these, as the semiconductor sealing material, an epoxy resin having two or more epoxy groups in one molecule is preferable. For example, phenol novolac type epoxy resin; orthocresol novolak type epoxy resin; epoxidized phenol and aldehyde novolak resin; glycidyl ether such as bisphenol A, bisphenol F and bisphenol S; phthalic acid, dimer acid, etc. Glycidyl ester acid epoxy resin obtained by reaction of polybasic acid with epochorohydrin; linear aliphatic epoxy resin; alicyclic epoxy resin; heterocyclic epoxy resin; alkyl-modified polyfunctional epoxy resin; β-naphthol Novolac type epoxy resin; 1,6-dihydroxynaphthalene type epoxy resin; 2,7-dihydroxynaphthalene type epoxy resin; bishydroxybiphenyl type epoxy resin; and further, halogen atoms such as bromine are added to impart flame retardancy. , And the like; input epoxy resin. Among these, from the viewpoint of moisture resistance and solder reflow resistance, orthocresol novolac type epoxy resins, bishydroxybiphenyl type epoxy resins, epoxy resins having a naphthalene skeleton, and the like are preferable.
 本発明で用いるエポキシ樹脂は、エポキシ樹脂の硬化剤、又はエポキシ樹脂の硬化剤とエポキシ樹脂の硬化促進剤を含むものである。エポキシ樹脂の硬化剤としては、例えばフェノール、クレゾール、キシレノール、レゾルシノール、クロロフェノール、t-ブチルフェノール、ノニルフェノール、イソプロピルフェノール、及びオクチルフェノールからなる群から選ばれた1種又は2種以上をホルムアルデヒド、パラホルムアルデヒド又はパラキシレンとともに酸化触媒下で反応させて得られるノボラック型樹脂;ポリパラヒドロキシスチレン樹脂;ビスフェノールA、ビスフェノールS等のビスフェノール化合物;ピロガロールやフロログルシノール等の3官能フェノール類;無水マレイン酸、無水フタル酸、無水ピロメリット酸等の酸無水物;メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン;等を挙げることができる。
 エポキシ樹脂と硬化剤との反応を促進させるために、例えばトリフェニルホスフィン、ベンジルジメチルアミン、2-メチルイミダゾール等の硬化促進剤を使用することができる。
The epoxy resin used in the present invention contains an epoxy resin curing agent or an epoxy resin curing agent and an epoxy resin curing accelerator. Examples of the epoxy resin curing agent include one or more selected from the group consisting of phenol, cresol, xylenol, resorcinol, chlorophenol, t-butylphenol, nonylphenol, isopropylphenol, and octylphenol. Novolak-type resin obtained by reacting with para-xylene under an oxidation catalyst; polyparahydroxystyrene resin; bisphenol compounds such as bisphenol A and bisphenol S; trifunctional phenols such as pyrogallol and phloroglucinol; maleic anhydride and phthalic anhydride Acid anhydrides such as acid and pyromellitic anhydride; aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone; That.
In order to accelerate the reaction between the epoxy resin and the curing agent, for example, a curing accelerator such as triphenylphosphine, benzyldimethylamine, 2-methylimidazole can be used.
 本発明の樹脂組成物には、更に以下の成分を必要に応じて配合することができる。
 低応力化剤として、シリコーンゴム、ポリサルファイドゴム、アクリル系ゴム、ブタジエン系ゴム、スチレン系ブロックコポリマー、飽和型エラストマー等のゴム状物質;各種熱可塑性樹脂、シリコーン樹脂等の樹脂状物質;更にはエポキシ樹脂、フェノール樹脂の一部又は全部をアミノシリコーン、エポキシシリコーン、アルコキシシリコーンなどで変性した樹脂;などが挙げられる。
 シランカップリング剤として、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン;アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N-フェニルアミノプロピルトリメトキシシラン等のアミノシラン;フェニルトリメトキシシラン、メチルトリメトキシシラン、オクタデシルトリメトキシシラン等の疎水性シラン化合物;メルカプトシランなどが挙げられる。
 表面処理剤として、Zrキレート、チタネートカップリング剤、アルミニウム系カップリング剤などが挙げられる。
 難燃助剤として、Sb、Sb、Sbなどが挙げられる。
 難燃剤として、ハロゲン化エポキシ樹脂やリン化合物などが挙げられる。
 着色剤として、カーボンブラック、酸化鉄、染料、顔料などが挙げられる。
 更には離型剤として、天然ワックス類、合成ワックス類、直鎖脂肪酸の金属塩、酸アミド類、エステル類、パラフィンなどが挙げられる。
In the resin composition of the present invention, the following components can be further blended as necessary.
As a stress-reducing agent, rubbery substances such as silicone rubber, polysulfide rubber, acrylic rubber, butadiene rubber, styrene block copolymer, and saturated elastomer; resinous substances such as various thermoplastic resins and silicone resins; and epoxy And a resin obtained by modifying a part or all of a resin or phenol resin with amino silicone, epoxy silicone, alkoxy silicone, or the like.
As silane coupling agents, epoxy silanes such as γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane; aminopropyltriethoxysilane, ureidopropyltriethoxysilane, N-phenyl Examples include aminosilanes such as aminopropyltrimethoxysilane; hydrophobic silane compounds such as phenyltrimethoxysilane, methyltrimethoxysilane, and octadecyltrimethoxysilane; mercaptosilane.
Examples of the surface treatment agent include Zr chelate, titanate coupling agent, and aluminum coupling agent.
Examples of the flame retardant aid include Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 and the like.
Examples of flame retardants include halogenated epoxy resins and phosphorus compounds.
Examples of the colorant include carbon black, iron oxide, dye, and pigment.
Furthermore, examples of the releasing agent include natural waxes, synthetic waxes, metal salts of linear fatty acids, acid amides, esters, and paraffin.
 本発明の樹脂組成物は、上記各材料の所定量をブレンダーやヘンシェルミキサー等によりブレンドした後、加熱ロール、ニーダー、一軸又は二軸押し出し機等により混練したものを冷却後、粉砕することによって製造することができる。 The resin composition of the present invention is produced by blending a predetermined amount of each of the above materials with a blender, a Henschel mixer, etc., then kneading with a heating roll, kneader, uniaxial or biaxial extruder, etc. can do.
 本発明の半導体封止材は、樹脂組成物がエポキシ樹脂を含有するものであり、エポキシ樹脂の硬化剤とエポキシ樹脂の硬化促進剤とを含む組成物からなるものである。本発明の半導体封止材を用いて半導体を封止するには、トランスファーモールド法、真空印刷モールド法等の常套の成形手段が採用される。 The semiconductor encapsulant of the present invention is such that the resin composition contains an epoxy resin and is composed of a composition containing an epoxy resin curing agent and an epoxy resin curing accelerator. In order to seal the semiconductor using the semiconductor sealing material of the present invention, conventional molding means such as a transfer molding method and a vacuum printing molding method are employed.
 以下本発明の実施例によりさらに詳細に説明するが、これらに限定して解釈されるものではない。
 実施例1~9及び比較例1~7
 平均粒子径、及びAl含有率の異なる、種々の原料シリカ質粉末、Al源物質、並びにB源物質を準備し、これを、特開平11-57451号公報に記載された装置に、炉体の中心軸に対して0~15°の角度をつけられるように調整した複数のバーナーを炉体に配置した装置を用いて、火炎中で溶融、融着、球状化処理し、表1に示される種々のシリカ質粉末を製造した。また、これらの粉末を適宜配合して表2に示されるシリカ質粉末、及び無機質粉末を製造した。
 なお、シリカ質粉末のピリジンのフロイントリッヒ吸着定数Kの調整は、原料シリカ質粉末の表面に融着させるAl源物質及び/又はB源物質の平均粒子径、シリカ質粉末中のAl含有量及びB含有量、シリカ質粉末の比表面積及び平均粒子径などを変更することによって行った。シリカ質粉末中のAl含有率及びB含有率の調整は、原料シリカ質粉末とAl源物質及び/又はB源物質のバーナーへの噴射量の比を調整することによって行った。シリカ質粉末の比表面積、平均粒子径などの調整は、原料シリカ質粉末の粒度構成や火炎温度などを調整することによって行なった。また、シリカ質粉末の平均球形度、非晶質率などの調整は、原料シリカ質粉末の火炎への供給量や火炎温度などを調整することによって行った。なお、火炎の最高温度は約2000℃~2300℃の範囲であった。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention should not be construed as being limited thereto.
Examples 1 to 9 and Comparative Examples 1 to 7
Various raw material siliceous powders, Al source materials, and B source materials having different average particle diameters and Al 2 O 3 contents were prepared, and these were prepared in an apparatus described in JP-A-11-57451. Table 1 shows melting, fusing, and spheroidizing treatments in a flame using an apparatus in which a plurality of burners adjusted to have an angle of 0 to 15 ° with respect to the central axis of the furnace body are arranged in the furnace body. Various siliceous powders shown in Table 1 were produced. Moreover, these powders were appropriately blended to produce siliceous powder and inorganic powder shown in Table 2.
The Freundlich adsorption constant K of pyridine of siliceous powder is adjusted by adjusting the average particle diameter of the Al source material and / or B source material fused to the surface of the raw material siliceous powder, Al 2 O 3 in the siliceous powder. It was carried out by changing the content, B 2 O 3 content, specific surface area of siliceous powder, average particle size, and the like. The adjustment of the Al 2 O 3 content and the B 2 O 3 content in the siliceous powder is performed by adjusting the ratio of the raw siliceous powder and the injection amount of the Al source material and / or B source material to the burner. It was. Adjustment of the specific surface area, average particle diameter, etc. of the siliceous powder was performed by adjusting the particle size constitution, flame temperature, etc. of the raw siliceous powder. Further, adjustment of the average sphericity, amorphous ratio, etc. of the siliceous powder was performed by adjusting the supply amount of the raw siliceous powder to the flame, the flame temperature, and the like. The maximum temperature of the flame was in the range of about 2000 ° C to 2300 ° C.
 シリカ質粉末の非晶質率はいずれも99.5%以上であった。
 これらのシリカ質粉末のピリジンのフロイントリッヒ吸着定数K、SiO含有率、Al含有率、B含有率、比表面積、平均粒子径、平均球形度などを測定し、表2に示した。
The amorphous ratio of the siliceous powder was 99.5% or more.
These siliceous powders were measured for Freundlich adsorption constant K of pyridine, SiO 2 content, Al 2 O 3 content, B 2 O 3 content, specific surface area, average particle diameter, average sphericity, etc. It was shown to.
 得られたシリカ質粉末、及び無機質粉末の半導体封止材の充填材としての特性を評価するため、各粉末86.5部(質量部、以下同じ)に対し、4,4’-ビス(2,3-エポキシプロポキシ)-3,3’、5,5’-テトラメチルビフェニル型エポキシ樹脂6.7部、フェノール樹脂5.5部、トリフェニルホスフィン0.3部、フェニルアミノシラン0.6部、カーボンブラック0.1部、及びカルナバワックス0.3部を加え、ヘンシェルミキサーにてドライブレンドした。その後、同方向噛み合い二軸押出混練機(スクリュー径D=25mm、ニーディングディスク長10Dmm、パドル回転数80~120rpm、吐出量2.5kg/Hr、混練物温度100~101℃)で加熱混練した。混練物(吐出物)をプレス機にてプレスし、冷却した後、粉砕して半導体封止材を製造し、曲げ強度、耐ハンダクラック性及び成形性(スパイラルフロー)を以下に従って評価した。それらの結果を表2に示した。 In order to evaluate the characteristics of the obtained siliceous powder and inorganic powder as a filler for a semiconductor encapsulant, 86.5 parts (parts by mass, the same applies hereinafter) of 4,4′-bis (2 , 3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl type epoxy resin 6.7 parts, phenol resin 5.5 parts, triphenylphosphine 0.3 part, phenylaminosilane 0.6 part, Carbon black (0.1 part) and carnauba wax (0.3 part) were added and dry blended with a Henschel mixer. Thereafter, the mixture was heated and kneaded by a twin screw extrusion kneader (screw diameter D = 25 mm, kneading disk length 10 Dmm, paddle rotation speed 80 to 120 rpm, discharge rate 2.5 kg / Hr, kneaded material temperature 100 to 101 ° C.). . The kneaded product (discharged product) was pressed with a press, cooled, and then pulverized to produce a semiconductor encapsulant, and the bending strength, solder crack resistance and moldability (spiral flow) were evaluated as follows. The results are shown in Table 2.
(1)曲げ強度
 上記で得られた半導体封止材の硬化体の曲げ強度を次のようにして測定した。すなわち、上記各半導体封止材を、トランスファー成型機を用いて成型条件を175℃で120秒とし、幅10mm×長さ80mm×高さ4mmの形状に成型し、175℃の温度で6時間後硬化させて評価用テストピースを各5本作製した。そして、島津製作所社製商品名「オートグラフ モデルAG-5000A」を使用して、JIS K 7171に準拠し曲げ強度を測定した。なお、支点間距離は64mm、加重速度は5mm/分、測定環境は25℃で50%RHとし、各測定値(n=5)の平均値を求めて曲げ強度とした。
  数値(MPa)が大きいほど曲げ強度性があることを意味する。
(1) Bending strength The bending strength of the cured body of the semiconductor encapsulant obtained above was measured as follows. That is, each of the semiconductor encapsulants is molded into a shape of width 10 mm × length 80 mm × height 4 mm using a transfer molding machine at 175 ° C. for 120 seconds, and after 6 hours at a temperature of 175 ° C. Five test pieces for evaluation were prepared by curing. Then, the bending strength was measured according to JIS K 7171 using a trade name “Autograph Model AG-5000A” manufactured by Shimadzu Corporation. The distance between the fulcrums was 64 mm, the weighting speed was 5 mm / min, the measurement environment was 50% RH at 25 ° C., and the average value of each measurement value (n = 5) was determined as the bending strength.
A larger numerical value (MPa) means higher bending strength.
(2)耐ハンダクラック性
 上記で得られた半導体封止材の耐ハンダクラック性を次のようにして測定した。すなわち、9.6mm×9.6mm×0.4mmの模擬半導体チップを厚み150μmの銀メッキを施した銅製のリードフレームに銀ペーストで接着した。つぎに、上記各半導体封止材を用いて、トランスファー成型機を使用して成型条件を175℃で120秒として封止した後、175℃の温度で6時間後硬化させて、耐ハンダクラック性評価用15mm×19mm×1.8mmの60ピンQFP(Quad Flat Package)サンプルを作製した。ついで、この評価用サンプル各10個を85℃で85%RHの環境条件で72時間処理した後、温度が250℃のハンダリフロー装置で加熱した。その後、評価用サンプルを半分に切断し、切断面を研磨した後、顕微鏡でクラックの発生の大きさを観察した。クラックの大きさが70μm以上のものを不良とし、10個中の不良個数を求めた。その結果を表2に示した。
(2) Solder crack resistance The solder crack resistance of the semiconductor encapsulant obtained above was measured as follows. That is, a 9.6 mm × 9.6 mm × 0.4 mm simulated semiconductor chip was bonded to a copper lead frame having a thickness of 150 μm with silver plating with a silver paste. Next, each of the semiconductor encapsulants is sealed using a transfer molding machine at a molding condition of 175 ° C. for 120 seconds, then post-cured at a temperature of 175 ° C. for 6 hours, and solder crack resistance. A 60-pin QFP (Quad Flat Package) sample of 15 mm × 19 mm × 1.8 mm for evaluation was produced. Next, each of the 10 samples for evaluation was treated at 85 ° C. under an environmental condition of 85% RH for 72 hours, and then heated by a solder reflow apparatus having a temperature of 250 ° C. Thereafter, the sample for evaluation was cut in half, the cut surface was polished, and then the size of the occurrence of cracks was observed with a microscope. A crack having a size of 70 μm or more was regarded as defective, and the number of defects out of 10 was determined. The results are shown in Table 2.
(3)スパイラルフロー
 EMMI-I-66(Epoxy Molding Material Institute;Society of Plastic Industry)に準拠したスパイラルフロー測定用金型を取り付けたトランスファー成型機を用い、半導体封止材のスパイラルフロー値を測定した。トランスファー成型条件は、金型温度175℃、成型圧力7.4MPa、保圧時間120秒とした。スパイラルフロー値が大きいほど、優れた流動性を持つことを示す。
(3) Spiral flow The spiral flow value of the semiconductor encapsulant was measured using a transfer molding machine equipped with a spiral flow measurement mold conforming to EMMI-I-66 (Epoxy Molding Material Institute; Society of Plastic Industry). . The transfer molding conditions were a mold temperature of 175 ° C., a molding pressure of 7.4 MPa, and a pressure holding time of 120 seconds. It shows that it has the outstanding fluidity, so that a spiral flow value is large.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例と比較例の対比から明らかなように、本発明のシリカ質粉末によれば、比較例よりも曲げ強度、耐ハンダクラック性に優れた樹脂組成物、特に半導体封止材を調製することができる。 As is clear from the comparison between Examples and Comparative Examples, according to the siliceous powder of the present invention, a resin composition, particularly a semiconductor sealing material, which is superior in bending strength and solder crack resistance than the Comparative Examples is prepared. Can do.
 本発明のシリカ質粉末は、自動車、携帯電子機器、パソコン、家庭電化製品等に使用される半導体封止材、半導体が搭載される積層板、更にはパテ、シーリング材、各種ゴム、各種エンジニアプラスチックスなどの充填材として使用される。また、本発明の樹脂組成物は、半導体封止材の他に、ガラス織布、ガラス不織布、その他有機基材に含浸硬化させてなる例えばプリント基板用のプリプレグや、各種エンジニアプラスチックス等として使用できる。

 なお、2008年1月30日に出願された日本特許出願2008-018973号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The siliceous powder of the present invention is a semiconductor encapsulant used in automobiles, portable electronic devices, personal computers, home appliances, etc., a laminated board on which a semiconductor is mounted, a putty, a sealing material, various rubbers, and various engineer plastics. It is used as a filler. Moreover, the resin composition of the present invention is used as a prepreg for printed circuit boards, various engineer plastics, etc. formed by impregnating and curing glass woven fabric, glass nonwoven fabric, and other organic base materials in addition to the semiconductor sealing material. it can.

The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2008-019873 filed on Jan. 30, 2008 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (11)

  1.  ピリジンのフロイントリッヒ吸着定数Kが1.3~5.0であることを特徴とするシリカ質粉末。 Siliceous powder characterized in that Freundlich adsorption constant K of pyridine is 1.3 to 5.0.
  2.  SiO、Al、及びBの含有率(酸化物換算)の合計が99.5質量%以上であり、Al及びBの含有率の合計が0.1~20質量%である請求項1に記載のシリカ質粉末。 SiO 2, Al 2 O 3, and the total content of B 2 O 3 (as oxide) is at least 99.5 wt%, the total content of Al 2 O 3 and B 2 O 3 is 0. The siliceous powder according to claim 1, wherein the content is 1 to 20% by mass.
  3.  比表面積が0.5~5m/gであり、かつ平均粒子径が1~60μmである請求項1又は2に記載のシリカ質粉末。 3. The siliceous powder according to claim 1, having a specific surface area of 0.5 to 5 m 2 / g and an average particle diameter of 1 to 60 μm.
  4.  請求項1~3のいずれか一項に記載のシリカ質粉末を含有することを特徴とする無機質粉末。 An inorganic powder comprising the siliceous powder according to any one of claims 1 to 3.
  5.  無機質粉末がシリカ質粉末及び/又はアルミナ質粉末である請求項4に記載の無機質粉末。 The inorganic powder according to claim 4, wherein the inorganic powder is a siliceous powder and / or an alumina powder.
  6.  少なくとも2本のバーナーを、炉体の中心軸に対して2~10°の角度をつけて炉体に配置し、1本のバーナーからは原料シリカ質粉末を、少なくとも1本のバーナーからはアルミニウム源物質及び/又はホウ素源物質を火炎に噴射することを特徴とする請求項1~3のいずれか一項に記載のシリカ質粉末の製造方法。 At least two burners are placed in the furnace body at an angle of 2 to 10 ° with respect to the central axis of the furnace body. The raw siliceous powder is produced from one burner, and the aluminum is produced from at least one burner. The method for producing siliceous powder according to any one of claims 1 to 3, wherein a source material and / or a boron source material is injected into a flame.
  7.  アルミニウム源物質が酸化アルミニウム粉末であり、原料シリカ質粉末のAlの含有率が1質量%以下である請求項6に記載のシリカ質粉末の製造方法。 The method for producing a siliceous powder according to claim 6, wherein the aluminum source material is an aluminum oxide powder, and the content of Al 2 O 3 in the raw siliceous powder is 1% by mass or less.
  8.  酸化アルミニウム粉末の平均粒子径が0.01~10μmである請求項7に記載のシリカ質粉末の製造方法。 The method for producing a siliceous powder according to claim 7, wherein the average particle diameter of the aluminum oxide powder is 0.01 to 10 µm.
  9.  請求項1~3のいずれか一項に記載のシリカ質粉末、又は請求項4又は5に記載の無機質粉末を含有することを特徴とする樹脂組成物。 A resin composition comprising the siliceous powder according to any one of claims 1 to 3 or the inorganic powder according to claim 4 or 5.
  10.  樹脂組成物の樹脂がエポキシ樹脂である請求項9に記載の樹脂組成物。 The resin composition according to claim 9, wherein the resin of the resin composition is an epoxy resin.
  11.  請求項9又は10に記載の樹脂組成物を用いた半導体封止材。 A semiconductor encapsulant using the resin composition according to claim 9 or 10.
PCT/JP2009/051125 2008-01-30 2009-01-23 Siliceous powder, process for production of the same, and use thereof WO2009096343A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801032632A CN101925534B (en) 2008-01-30 2009-01-23 Siliceous powder, process for production of the same, and use thereof
JP2009551501A JP5606740B2 (en) 2008-01-30 2009-01-23 Siliceous powder, production method and use thereof
KR1020107013421A KR101442034B1 (en) 2008-01-30 2009-01-23 Siliceous powder, process for production of the same, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-018973 2008-01-30
JP2008018973 2008-01-30

Publications (1)

Publication Number Publication Date
WO2009096343A1 true WO2009096343A1 (en) 2009-08-06

Family

ID=40912697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051125 WO2009096343A1 (en) 2008-01-30 2009-01-23 Siliceous powder, process for production of the same, and use thereof

Country Status (7)

Country Link
JP (1) JP5606740B2 (en)
KR (1) KR101442034B1 (en)
CN (1) CN101925534B (en)
MY (1) MY158423A (en)
SG (1) SG188093A1 (en)
TW (1) TWI457281B (en)
WO (1) WO2009096343A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013780A1 (en) * 2012-07-20 2014-01-23 ナミックス株式会社 Liquid sealing material and electronic component using same
JP2018065722A (en) * 2016-10-19 2018-04-26 新日鉄住金マテリアルズ株式会社 Spherical silica powder for semiconductor encapsulation material and process for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040735A (en) * 2019-04-01 2019-07-23 成亚资源科技股份有限公司 The silica regeneration method of discarded package material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229234A (en) * 1999-02-08 2000-08-22 Denki Kagaku Kogyo Kk Production of spherical inorganic substance particle
JP2001199719A (en) * 2000-01-11 2001-07-24 Denki Kagaku Kogyo Kk Method for producing spherical alumina powder
JP2006290724A (en) * 2005-03-17 2006-10-26 Admatechs Co Ltd Spherical silica particle, its production method, and resin composition
WO2007132771A1 (en) * 2006-05-12 2007-11-22 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and method of using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501631B2 (en) * 1997-08-25 2004-03-02 電気化学工業株式会社 Method and apparatus for producing inorganic spherical particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229234A (en) * 1999-02-08 2000-08-22 Denki Kagaku Kogyo Kk Production of spherical inorganic substance particle
JP2001199719A (en) * 2000-01-11 2001-07-24 Denki Kagaku Kogyo Kk Method for producing spherical alumina powder
JP2006290724A (en) * 2005-03-17 2006-10-26 Admatechs Co Ltd Spherical silica particle, its production method, and resin composition
WO2007132771A1 (en) * 2006-05-12 2007-11-22 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and method of using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013780A1 (en) * 2012-07-20 2014-01-23 ナミックス株式会社 Liquid sealing material and electronic component using same
US9748158B2 (en) 2012-07-20 2017-08-29 Namics Corporation Liquid sealing material and electronic component using same
US9805998B2 (en) 2012-07-20 2017-10-31 Namics Corporation Liquid sealing material and electronic component using same
JP2018065722A (en) * 2016-10-19 2018-04-26 新日鉄住金マテリアルズ株式会社 Spherical silica powder for semiconductor encapsulation material and process for producing the same
JP7112179B2 (en) 2016-10-19 2022-08-03 日鉄ケミカル&マテリアル株式会社 Spherical siliceous powder for semiconductor encapsulant and method for producing the same

Also Published As

Publication number Publication date
SG188093A1 (en) 2013-03-28
KR20100117561A (en) 2010-11-03
CN101925534B (en) 2012-12-12
CN101925534A (en) 2010-12-22
JPWO2009096343A1 (en) 2011-05-26
TWI457281B (en) 2014-10-21
TW200936500A (en) 2009-09-01
KR101442034B1 (en) 2014-09-18
JP5606740B2 (en) 2014-10-15
MY158423A (en) 2016-10-14

Similar Documents

Publication Publication Date Title
KR101070505B1 (en) Ceramic powder and applications thereof
JP5553749B2 (en) Amorphous siliceous powder, production method and use thereof
JP5380290B2 (en) Method for producing silica powder
JP5354724B2 (en) Ceramic powder and its use
US20100222487A1 (en) Inorganic hollow powder, process for producing the inorganic hollow powder, and composition comprising the inorganic hollow powder
JP5358273B2 (en) Inorganic hollow powder, its production method and its use
JP5259500B2 (en) Amorphous siliceous powder and its production method and application
JP5410095B2 (en) Amorphous siliceous powder, method for producing the same, and semiconductor sealing material
JP4192073B2 (en) Method for producing silica powder
JP5606740B2 (en) Siliceous powder, production method and use thereof
WO2022202583A1 (en) Inorganic oxide powder, resin composition, and compression molded article
JP5526027B2 (en) Amorphous siliceous powder, method for producing the same, resin composition, and semiconductor sealing material
JP6612919B2 (en) Amorphous silica powder, resin composition, and semiconductor encapsulant
JP2012250869A (en) Spherical alumina powder, manufacturing method therefor and composition using this powder
JP5345787B2 (en) Method for producing silica-alumina composite oxide ultrafine powder for semiconductor encapsulant

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103263.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3288/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107013421

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009551501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PI 2010003272

Country of ref document: MY

122 Ep: pct application non-entry in european phase

Ref document number: 09705057

Country of ref document: EP

Kind code of ref document: A1