200936500 六、發明說明: 【發明所屬之技術領域】 本發明係關於氧化矽質粉末、其製造方法及用途。 【先前技術】 對應於電子機器之小型化、輕量化、高性能化的要求, 半導體之小型化、薄型化、高密度化正急速地進展著。又, 半導體之封裝方法或對於配線基板等之高密度封裝中較佳 的表面封裝則變爲主流。近年來,該表面封裝型之半導體 〇 係爲了降低對於配線基板之封裝高度,由於可使用超薄型 之半導體封裝體,故封裝厚度變得非常薄。再者最近,在 ,半導體之上,使封裝再一層半導體之PoP (封裝體上之封 裝(Package on Package))封裝法實用化,半導體之薄型化 正更進一步進展著。 另外,由於近來之對於環境問題的意識高漲,在對於 半導體之配線基板的封裝中,由於使用不含有環境負擔大 之鉛的無鉛焊劑,封裝時之溫度變得較以往高數1 〇 °c。即, 〇 在半導體封裝體較以往薄的狀態下,由於較以往高溫封 裝,變得多發生封裝體龜裂的問題,故在半導體封裝材料 方面,則要求更進一步之彎曲強度的提升、耐焊劑龜裂性 的提升等。 爲了滿足該要求,藉由改良使用於半導體封裝材料之 環氧樹脂或酚樹脂硬化劑等的方法等,而採用提升彎曲強 度、謀求低應力化的方法(参照專利文獻1及專利文獻2)。 然而,在彼等方法中,彎曲強度提升效果不足’在較以往 200936500 薄之封裝體中’尙無耐於無鉛焊劑之封裝溫度、且可顯著 提升耐焊劑龜裂性的半導體封裝材料。 又,改質陶瓷粉末的方法方面,以改善半導體封裝材 料之高溫放置特性(信賴性)爲目的,舉出有控制氨之化 學吸附量、捕集半導體封裝材料中之不純物的範例等。(参 照專利文獻3 ) [專利文獻1] 特開200 1 -233 937號公報 [專利文獻2] 特開平1 0-279669號公報 〇 [專利文獻3] WO/2007/1 3277 1號公報 【發明内容】 發明所欲解決之課題 本發明之目的爲提供適合於提升彎曲強度、進一步提升 耐焊劑龜裂性之半導體封裝材料等之調製的氧化矽質粉末。 解決課題之手段 本發明者進行爲了達成上述目的之專心一志的硏究’ 發現達成該目的的氧化矽質粉末。本發明係基於相關之見 Q 識者,具有以下的要點。 (1) 一種氧化矽質粉末,其特徵爲吡啶之弗朗依德里 希(Freundlich)吸附常數K爲1.3至5.0。 (2 )如上述(1)所記載之氧化矽質粉末’其中si〇2、 A12〇3、及B2〇3之含有率(氧化物換算)合計爲99.5質量 %以上、而入1203及B2〇3之含有率合計爲0.1至20質量!。 (3 )如上述(1)或(2)所記載之氧化矽質粉末’其中比 表面積爲〇.5至5m2/g,而且平均粒徑爲1至60μιη。 (4) 一種無機質粉末’其特徵爲含有如上述(1)至 200936500 (3 )中任一項所記載的氧化矽質粉末。 (5 )如上述(4)所記載之無機質粉末,其中無機質粉 末爲氧化矽質粉末及/或氧化鋁質粉末。 (6)—種如上述(1)至(3)中任一項所記載之氧化 矽質粉末的製造方法,其特徵爲相對於爐體中心軸安裝成 2至10°之角度來配置至少2支燃燒器於爐體,由1支燃燒 器朝火焰噴射原料氧化矽質粉末、由至少1支燃燒器朝火 焰噴射鋁源物質及/或硼源物質。 © ( 7 )如上述(6)所記載之氧化矽質粉末的製造方法, 其中鋁源物質爲氧化鋁粉末,原料氧化矽質粉末之ai2o3 的含有率爲1質量%以下》 (8 )如上述(7)所記載之氧化矽質粉末的製造方法, 其中氧化鋁粉末之平均粒徑爲0.01至10 μιη。 (9) 一種樹脂組成物,其特徵爲含有如上述(1)至 (3)中任一項所記載之氧化矽質粉末,或含有如上述(4) 或(5)所記載之無機質粉末。 1 0 )如上述(9)所記載之樹脂組成物,其中樹脂組成 物之樹脂爲環氧樹脂。 (11) 一種半導體封裝材料,其使用上述(9)或(10) 所記載之樹脂組成物。 根據本發明可提供提升彎曲強度、耐焊劑龜裂性之樹 脂組成物、特別是作爲導體封裝材料之樹脂組成物、適合 於調製該樹脂組成物的氧化矽質粉末。 200936500 【實施方式】 以下,詳細説明本發明。 本發明之氧化矽質粉末爲吡啶之弗朗依德里希 01:^11<11411)吸附常數1:爲1.3至5.〇的氧化矽質粉末。由 於其爲鹼性物質之吡啶吸附於氧化矽質粉末表面的酸點 上,該物質之吸附常數K値愈大表示氧化矽質粉末表面的 酸點數愈多的意思。氧化矽質粉末之酸點多時,則與胺基 矽烷、苯胺基矽烷等之鹼性矽烷偶合劑的鍵結點變多。因 © 此半導體封裝材料中之環氧樹脂、酚樹脂等之樹脂成分及 與氧化矽質粉末表面之密著性變得更穩固,由於提高彎曲 強度,同時水分變得難以進入樹脂成分與氧化矽質粉末的 界面,因此亦飛躍地提升耐封裝性。 吡啶之弗朗依德里希(Freundlich)吸附常數K未滿1.3 時,由於矽烷偶合劑與氧化矽質粉末的鍵結點變少,故不 能顯著地改善半導體封裝材料的彎曲強度或耐焊劑龜裂 性。另外,吡啶之弗朗依德里希(Freundlich)吸附常數K超 ❹ W 過5.0時,則氧化矽質粉末表面之酸點數目變得過多,而 使環氧樹脂硬化。因此爲了使用半導體封裝材料以提升封 裝半導體時之封裝材料的黏度,而產生所謂使成形性受損 的問題。較佳之吡啶的弗朗依德里希(Freundlich)吸附常數 K値爲1.5至4.5,特佳爲2.0至4.3»該等之値與習知之 氧化矽質粉末的弗朗依德里希(Freundlich)吸附常數K値 0.07至0.8比較時則較爲獨特。 吡啶之弗朗依德里希(Freundlich)吸附常數K可由如 200936500 以下之步驟來測定。 (1) 吡啶標準溶液之調製:將分光分析用吡啶0.1 mol 取入於500 ml測量燒瓶中,以分光分析用正庚烷定容。其 次,各別取入0.25m卜0.50ml、1.00ml之前述吡啶溶液於 200ml測量燒瓶中,以正庚烷定容,調製 0.25mmol/l、 0.50mmol/l、1.00mmol/l的卩比陡標準溶液。 (2) 對於氧化矽質粉末的吸附:預先於200 °C加熱2 小時間乾燥,精秤已於乾燥器中靜置冷卻之氧化矽質粉末 ❹ 各4.00g於3個25ml測量燒瓶中。將20ml之0.25mmol/卜 0.50mmol/l、l.OOmmol/Ι之卩比陡標準溶液置入該各測量燒 瓶中,振盪混合3分鐘。將該測量燒瓶置入設定於2 5 °C的 恒溫槽中2小時,使吡啶吸附於氧化矽質粉末。 (3 )吡啶吸附量之測定:從已混合吡啶標準溶液與氧 化矽質粉末之前述測量燒瓶,個別取出上澄清液,置入紫 外可見光分光光度計的測定元件,藉由吸光度定量未吸附 而殘留之殘留吡啶濃度。 W (4)吡啶之弗朗依德里希(Freundlich)吸附常數K的 計算:藉由logA=logK+ (1/n) logC之弗朗依德里希 (Freundlich)吸附式計算U比陡之弗朗依德里希(Freundlich) 吸附常數K。SP,繪製以logA爲Y軸、以(1/n) logC爲 X軸之曲線圖時,可由Y軸片段求得logK來計算K。其中, A爲吸附於氧化矽質粉末lg之吡啶量(4111〇1/8),<:爲上澄 清液中之殘留耻啶濃度(μιηοΐ/ml),Κ、η爲常數。 還有,若舉例使用於測定之紫外可見光分光光度計, 200936500 則有島津製作所公司製商品名「紫外可見光分光光度計 UV- 1 8 0 0型」。若舉例用於調製吡啶標準溶液之藥劑,則有 和光純藥工業公司製之吡啶(分光分析用等級)、及正庚烷 (分光分析用等級)。又,以251nm爲吸光度之測定波長, 僅測定正庚烷來進行背景補償。在檢量線之製作中,使用 0.00mmmol/l、〇.25mmol/l、0.50mmol/l、1..OOmmol/Ι 的 B比 啶標準溶液。 又,本發明之氧化矽質粉末的特徴爲Si〇2、Ah〇3、及 ® B2O3之含有率(氧化物換算)合計爲99.5質量%以上, Al2〇3及B2〇3之含有率合計爲0.1至20質量% 。Si02、 八1203、及8203,之含有率合計未滿99.5質量%,即5丨02、 Al2〇3、及B2〇3以外之含有率超過0.5質量%時,因在形 成半導體封裝材料時,增加不必要之不純物的物質而不 佳。例如Na20、Fe203等,一部份成爲離子而溶出,對半 導體晶片或配線造成損害。MgO、K20、CaO等,增大氧化 矽質粉末之熱膨脹率,對耐封裝性造成不良影響。200936500 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a cerium oxide powder, a method for producing the same, and a use thereof. [Prior Art] In response to the demand for miniaturization, weight reduction, and high performance of electronic equipment, the miniaturization, thinning, and high density of semiconductors are rapidly progressing. Further, a semiconductor packaging method or a preferred surface package for a high-density package such as a wiring board has become mainstream. In recent years, in order to reduce the package height for a wiring substrate, the surface mount type semiconductor has a very thin package thickness because an ultrathin semiconductor package can be used. Further, recently, on the semiconductor, a PoP (Package On Package) encapsulation method for packaging another semiconductor has been put into practical use, and the thinning of semiconductors is progressing further. In addition, in recent years, the awareness of environmental issues has increased, and in the packaging of semiconductor wiring boards, the temperature at the time of packaging has been increased by 1 〇 ° C by using a lead-free solder which does not contain lead which is environmentally burdened. In other words, in the state where the semiconductor package is thinner than the conventional one, the package is cracked more frequently than in the conventional high-temperature package. Therefore, in the semiconductor package material, further improvement in bending strength and solder resistance are required. Increased cracking and so on. In order to satisfy the above-mentioned requirements, a method of improving the bending strength and reducing the stress is employed by a method of improving an epoxy resin or a phenol resin curing agent or the like used for a semiconductor encapsulating material (see Patent Document 1 and Patent Document 2). However, in these methods, the bending strength improvement effect is insufficient 'in the thin package of 200936500', which is not resistant to the package temperature of the lead-free solder, and can significantly improve the solder paste crack resistance of the semiconductor package material. In addition, for the purpose of improving the high-temperature placement characteristics (reliability) of the semiconductor package material, there are examples of controlling the chemical adsorption amount of ammonia and trapping impurities in the semiconductor package material. [Patent Document 3] [Patent Document 1] Japanese Laid-Open Patent Publication No. JP-A No. Hei. No. Hei. SUMMARY OF THE INVENTION Problem to be Solved by the Invention An object of the present invention is to provide a cerium oxide powder which is prepared by a semiconductor encapsulating material or the like which is suitable for improving bending strength and further improving solder crack resistance. Means for Solving the Problem The inventors of the present invention conducted an investigation into the goal of achieving the above-mentioned purpose. The present invention has the following points based on the relevant findings. (1) A cerium oxide powder characterized by Freundlich adsorption constant K of pyridine of from 1.3 to 5.0. (2) The cerium oxide powder described in the above (1), wherein the content ratios (in terms of oxides) of si〇2, A12〇3, and B2〇3 are 99.5% by mass or more, and 1203 and B2 are added. The total content of 3 is 0.1 to 20 masses! (3) The cerium oxide powder as described in the above (1) or (2) wherein the specific surface area is 〇5 to 5 m2/g, and the average particle diameter is from 1 to 60 μm. (4) An inorganic powder, which is characterized by containing the cerium oxide powder according to any one of the above (1) to 200936500 (3). (5) The inorganic powder according to the above (4), wherein the inorganic powder is a cerium oxide powder and/or an alumina powder. (6) The method for producing a cerium oxide powder according to any one of the above (1) to (3), wherein at least 2 is disposed at an angle of 2 to 10° with respect to a central axis of the furnace body. The burner is placed in the furnace body, and the raw material is oxidized by a burner to the flame, and the aluminum source material and/or the boron source material are sprayed toward the flame by at least one burner. The method for producing a cerium oxide powder according to the above (6), wherein the aluminum source material is alumina powder, and the content of the raw material cerium oxide powder ai2o3 is 1% by mass or less. (8) (7) The method for producing a cerium oxide powder according to the invention, wherein the alumina powder has an average particle diameter of 0.01 to 10 μm. (9) A resin composition comprising the cerium oxide powder according to any one of (1) to (3) above, or the inorganic powder according to (4) or (5) above. The resin composition according to the above (9), wherein the resin of the resin composition is an epoxy resin. (11) A semiconductor encapsulating material using the resin composition according to (9) or (10) above. According to the present invention, a resin composition for improving bending strength and flux crack resistance, particularly a resin composition as a conductor encapsulating material, and a cerium oxide powder suitable for preparing the resin composition can be provided. 200936500 [Embodiment] Hereinafter, the present invention will be described in detail. The cerium oxide powder of the present invention is a ruthenium oxide powder of pyridine, Frondrich 01:^11 <11411) having an adsorption constant of 1: 1.3 to 5. Since the pyridine which is a basic substance is adsorbed on the acid point on the surface of the cerium oxide powder, the larger the adsorption constant K 该 of the substance means the more the number of acid spots on the surface of the cerium oxide powder. When the acid point of the cerium oxide powder is large, the number of bonding points with the basic decane coupling agent such as amino decane or anilino decane increases. The resin composition of the epoxy resin, phenol resin, etc. in the semiconductor encapsulating material and the adhesion to the surface of the cerium oxide powder become more stable, and the bending strength is increased, and the moisture becomes difficult to enter the resin component and the cerium oxide. The interface of the powder also greatly improves the encapsulation resistance. When the Freundlich adsorption constant K of pyridine is less than 1.3, since the bonding point between the decane coupling agent and the cerium oxide powder is small, the bending strength or the solder crack resistance of the semiconductor packaging material cannot be remarkably improved. Sex. Further, when the Freundlich adsorption constant K of pyridine exceeds 5.0, the number of acid sites on the surface of the cerium oxide powder becomes excessive, and the epoxy resin is hardened. Therefore, in order to use the semiconductor encapsulating material to increase the viscosity of the encapsulating material when the semiconductor is packaged, there is a problem that the formability is impaired. The preferred pyridine has a Freundlich adsorption constant K 値 of 1.5 to 4.5, particularly preferably 2.0 to 4.3». These are the Freundlich adsorption constants of conventional cerium oxide powders. K値 0.07 to 0.8 is more unique when compared. The Freundlich adsorption constant K of pyridine can be determined by the steps of, for example, 200936500. (1) Preparation of pyridine standard solution: Spectroscopic analysis was carried out in a 500 ml measuring flask with 0.1 mol of pyridine, and the volume was adjusted to n-heptane by spectroscopic analysis. Next, each of the above pyridine solutions of 0.25 m, 0.50 ml, and 1.00 ml was taken in a 200 ml measuring flask, and the volume was adjusted to n-heptane to prepare a ruthenium ratio of 0.25 mmol/l, 0.50 mmol/l, and 1.00 mmol/l. standard solution. (2) Adsorption of cerium oxide powder: preheated at 200 ° C for 2 hours, and the scale was cooled in a desiccator to cool the oxidized enamel powder 4.0 each of 4.00 g in three 25 ml measuring flasks. 20 ml of 0.25 mmol/bu 0.50 mmol/l, 1.000 mmol/Ι 卩 陡 steep standard solution was placed in each measuring flask and shaken for 3 minutes. The measuring flask was placed in a thermostat set at 25 ° C for 2 hours to adsorb pyridine to the cerium oxide powder. (3) Determination of the amount of pyridine adsorption: From the above-mentioned measuring flask in which the pyridine standard solution and the cerium oxide powder were mixed, the supernatant liquid was separately taken out and placed in a measuring element of an ultraviolet-visible spectrophotometer, and the residue was quantified by absorbance. The residual pyridine concentration. Calculation of the adsorption constant K of Freundlich of W (4) pyridine: calculation of the U-steep Francis by the Freundlich adsorption formula of logA=logK+ (1/n) logC Freundlich adsorption constant K. SP, when plotting logA as the Y-axis and (1/n) logC as the X-axis, the log K can be obtained from the Y-axis segment to calculate K. Wherein, A is the amount of pyridine adsorbed to the cerium oxide powder lg (4111 〇 1/8), and <: is the residual muscarine concentration (μιηοΐ/ml) in the supernatant, and Κ and η are constant. In addition, if it is used for the measurement of the ultraviolet-visible spectrophotometer, the product name "UV-Vis spectrophotometer UV-180 type" manufactured by Shimadzu Corporation is available at 200936500. For example, a pyridine (standard for spectroscopic analysis) and n-heptane (gradation for spectroscopic analysis) manufactured by Wako Pure Chemical Industries, Ltd. are used as an agent for preparing a pyridine standard solution. Further, background compensation was performed by measuring only n-heptane at a measurement wavelength of 251 nm as an absorbance. In the preparation of the calibration curve, a B bipyridine standard solution of 0.00 mmmol/l, 〇.25 mmol/l, 0.50 mmol/l, and 1.0 mmol/Ι was used. In addition, the content of the cerium oxide powder of the present invention is a total of 99.5% by mass or more of the content of Si〇2, Ah3, and B2O3, and the total content of Al2〇3 and B2〇3 is 0.1 to 20% by mass. When the content ratio of Si02, 八1203, and 8203 is less than 99.5% by mass, that is, when the content ratios other than 5丨02, Al2〇3, and B2〇3 exceed 0.5% by mass, the semiconductor package material is increased. Unnecessary material that is not pure is not good. For example, Na20, Fe203, etc., are partially dissolved as ions, causing damage to the semiconductor wafer or wiring. MgO, K20, CaO, etc. increase the thermal expansion coefficient of the enamel powder and adversely affect the encapsulation resistance.
Si〇2、A1203、及B2〇3之含有率的合計較佳爲99.6質 量%以上,更佳爲99.7質量%以上。 又,氧化矽質粉末之ai2o3及b2o3含有率的合計較佳 爲0.1至20質量!%。在氧化矽質粉末中存在A1、B時,A1、 B的位置成爲強酸點。藉由該酸點,由於鹼性矽烷偶合劑 與氧化矽質粉末表面的鍵結點增加,故改善彎曲強度、耐 焊劑龜裂性。ai2o3及B203之含有率的合計未滿0.1質量 %時,則酸點之增加不足,相反地超過20質量%時,則氧 200936500 化矽質粉末之熱膨脹率變得過大,對耐焊劑龜裂性造成不 良影響。較佳之Al2〇3及B2〇3之含有率的合計爲0.2至18 質量% ,更佳爲0.3至15質量% 。 本發明之氧化矽質粉末的Si 02含有率(氧化物換算) 係使用質量減少法;A120 3含有率(氧化物換算)係使用原 子吸光分析法;b2o3含有率(氧化物換算)係使用ICP發 光分析法,可由如下述之步驟來測定。 (1) Si〇2含有率之測定:精秤氧化矽質粉末2.5g於 © 白金皿中,個別以20ml、lm卜1ml加入試藥特級氫氟酸' 試藥特級硫酸、純水。將該白金皿靜置於已加熱至3 00°C之 砂浴上15分鐘以溶解、乾燥粉末。其次,將白金皿置入已 加熱至1000°C之蒙孚爐中加熱1〇分鐘以蒸發矽氟酸。在乾 燥器内靜置冷卻至室溫後,精秤白金皿的質量,由質量減 少率計算氧化矽質粉末之Si 02含有率。 (2 ) Al2〇3含有率之測定:精秤氧化矽質粉末lg於白 金皿中,個別以20ml、lml加入試藥特級氫氟酸、試藥特 ® 級過氯酸。將該白金皿靜置於已加熱至3 00 °C之砂浴上15 分鐘然後冷却至室溫,移至2 5 ml測量燒瓶後以純水定容。 藉由使用原子吸光光度計之檢量線法定量該溶液中之A1 量。將該A1量換算成Al2〇3來計算氧化矽質粉末中的含有 率。若舉例原子吸光光度計,則有日本傑羅-艾許 (Jarrell-Ash)公司製商品名「原子吸光光度計A A-9 69型」。 若舉例製作檢量線中所用之標準液,則有關東化學公司製 原子吸光用A1標準液(濃度lOOOppm)。還有,在測定時 -10- 200936500 之火焰方面則使用乙炔-笑氣火焰,測定在波長309.3 nm之 吸光度而定量。 (3) B2〇3含有率之測定:精秤氧化矽質粉末ig於白 金皿中,個別以20ml、lml、lml加入試藥特級氫氟酸、試 藥特級硝酸、試藥特級甘露醇之1 %水溶液,靜置於已加 熱至300 °C之砂浴上15分鐘以溶解、乾燥粉末。其次,在 白金皿的乾燥物中,個別加入平均1 ml試藥特級硝酸、純 水,再溶解後,移至25ml測量燒瓶後以純水定容。藉由使 © 用ICP發光分光分析裝置之檢量線法定量該溶液中的B 量。將該B量換算成B2〇3來計算氧化矽質粉末中的含有 率。若舉例ICP發光分光分析裝置,則有精工儀器公司製 商品名「SPS- 1 700R型」,測定249.8nm之波長的發光強度。 若舉例製作檢量線中所用的標準液,則有關東化學公司製 原子吸光用B標準液(濃度lOOOppm)。 在氧化矽質粉末之比表面積在0.5至5m2/g之範圍、 平均粒徑在1至60 μιη之範圍時,則更加促進本發明之樹 ^ 脂組成物中之彎曲強度、及耐焊劑龜裂性之提升效果。比 表面積未滿〇.5m2/g時,矽烷偶合劑與氧化矽質粉末表面 之鍵結面積過小,則難以改善彎曲強度、耐焊劑龜裂性。 另外,比表面積超過5 m2/g時,氧化矽質粉末包含多量的 小粒子’表示粒子表面之部份或全部有凹凸,由於使用半 導體封裝材料來封裝半導體時的封裝材料黏度上升,而使 成形性受損。較佳之比表面積範圍爲0.6至4.8m2/g,更佳 爲 0.7 至 4.7m2/g。 -11- 200936500 又,即使氧化矽質粉末之平均粒徑未滿Ιμιη,同樣地, 由於使用半導體封裝材料來封裝半導體時的封裝材料黏度 上升,亦因使成形性受損而不佳。相反地,在平均粒徑超 過60μιη的情況下,由於半導體封裝體厚度變得非常薄, 而產生對半導體晶片造成損傷的問題,或所謂得到凹凸非 均質之封裝體的問題。較佳之平均粒徑範圍爲2至55 μιη, 更佳之範圍爲3至50 μιη的範圍。又,最大粒徑較佳爲196 μιη 以下,更佳爲128μιη以下。 © 本發明之氧化矽質粉末之平均粒徑係基於藉由雷射繞 射散射法針對粒度測定來測定。所使用之測定機方面,例 如使用希勒斯(Cirrus)公司製商品名「希勒斯粒度測定機 92 0型」,將氧化矽質粉末分散於水中,再者以超音波均質 機以200W功率進行1分鐘分散處理然後測定。還有,粒 度分布測定係以粒徑通道爲0.3、1、1.5、2、3、4、6、8、 12、16、24、32、48、64、96、128、196μιη 來進行。在所 測定之粒度分布中,累積質量爲50%之粒徑爲平均粒徑, 累積質量爲100%之粒徑爲最大粒徑。 本發明之氧化矽質粉末的比表面積係基於藉由bet法 之比表面積測定來測定。若舉例比表面積測定機,則有茂 提克(MOUNTECH)公司製商品名「馬克索普HM-1208型」。 本發明之氧化矽質粉末即使混合於其他無機質粉末, 亦可發現其效果。無機質粉末中之本發明氧化矽質粉末的 含有率較佳爲0.5質量%以上,更佳爲2質量%以上。無 機質粉末的種類方面,較佳爲氧化矽質粉末及/或氧化鋁質 -12- 200936500 粉末。該等粉末係可單獨地使用,或亦可混合二 低半導體封裝材料之熱膨脹率的情況、或減低模 性的情況下,在氧化矽質粉末賦予熱傳導性的情 擇氧化鋁質粉末。還有氧化矽質粉末較佳爲以後 測定之非晶質率値爲9 5 %以上。 本發明之氧化矽質粉末以下述方法所測定之 較佳爲95%以上、特佳爲98%以上。非晶質率係 X射線繞射裝置(例如RIGAKU公司製商品名「 ® 型」),在CuKa線之2Θ爲26°至27.5°的範圍中進 繞射分析,由特定繞射尖峰強度比來測定。在氧 的情況下,結晶質氧化矽係在26.7°存在主尖峰, 質氧化矽中則不存在尖峰。非晶質氧化矽與結晶 混合在一起時,由於得到對應於結晶質氧化矽 26.7°尖峰高度,從相對於結晶質氧化矽標準試料 強度之試料的X射線強度比,計算結晶質氧化政 (試樣之X射線繞射強度/結晶質氧化矽之X射 度),由通式、非晶質率(% ) = ( 1 -結晶質氧化] XI 00來求得非晶質率。 本發明之氧化矽質粉末、無機質粉末、及氧 末之平均球形度較佳爲0.80以上、特佳爲0.85以 樹脂組成物之黏度降低,亦可提升成形性。平均 將以實體顯微鏡(例如尼康(Nikon)公司製商品名 型」)等所攝影之粒子影像取入於畫面解析裝置( 克(MOUNTECH)公司製商品名「MacVieW」),由 種。在降 具之磨耗 況下則選 述方法所 非晶質率 使用粉末 Mini Flex 行X射線 化矽粉末 而在非晶 質氧化矽 之比例的 之X射線 的混合比 線繞射強 攻混合比) 化鋁質粉 上。因而, 球形度係 r SMZ-10 例如茂提 得自照片 -13- 200936500 之粒子投影面積(A)與周長(PM)來測定。以(B)爲對應 於周長(PM)之真圓面積時,由於該粒子之球形度爲A/B, 故假設具有與試樣周長(PM)同樣之周長的真圓時,從PM =2πΓ、B = πι·2,貝IJ B = πχ ( ΡΜ/2π ) 2,各個粒子的球形度 則爲球形度=Α/Β= Αχ4π/ ( ΡΜ ) 2。求得如此所得之任意 粒子2 00個的球形度,以其平均値爲平均球形度。 其次,說明本發明之氧化矽質粉末的製造方法。 本發明之製造方法爲一種氧化矽質粉末的製造方法, ® 其特徵爲安裝成2至10°之角度來配置至少2支燃燒器於爐 體,由1支燃燒器朝火焰噴射原料氧化矽質粉末、由至少 1支燃燒器朝火焰噴射Α1源物質。及/或Β源物質》若由同 一支燃燒器朝火焰噴射原料氧化矽質粉末與Α1源物質及/ 或Β源物質時,由於所噴射之原料必定擴散成圓錐狀,在 原料氧化矽質粉末的表面上熔融附著Α1源物質及/或Β源 物質的比例變少,而不能製造αι2ο3及Β203含有率之合計 爲0.1至20質量%的本發明氧化矽質粉末。又,即使事先 V 混合原料氧化矽質粉末與A1源物質及/或B源物質,在噴 射時擴散成圓錐狀時,由於分散’分離而使組成變成不均 質。 相對於爐體中心軸設置成2至1 0°之角度,以結合焦點 的方式,配置至少2支燃燒器於爐體,以由1支燃燒器朝 火焰噴射原料氧化矽質粉末而由至少1支燃燒器朝火焰噴 射A1源物質及/或B源物質,可效率極佳地製造本發明之 氧化矽質粉末。藉由使噴射A1源物質及/或B源物質之燃 -14- 200936500 燒器成爲複數支,可更進一步提高本發明之氧化矽質粉末 之組成均質性。較佳之燃燒器支數係相對於原料氧化矽質 粉末之噴射燃燒器1支,A1源物質及/或B源物質之噴射 燃燒器爲2支的比例。又,燃燒器的配置角度必須相對於 爐體中心軸爲2至10°。燃燒器的配置角度未滿2°時,則 使結合焦點的位置變成在火焰之外,在原料氧化矽質粉末 的表面上A1源物質及/或B源物質熔融附著的比例變少。 另外,即使燃燒器配置角度超過10°,在原料氧化矽質粉末 © 的表面上,因A1源物質及/或B源物質在熔融附著前結合 焦點而不佳。較佳燃燒器的配置角度爲3至8°的範圍内。 在本發明中,·>Α1源物質較佳爲氧化鋁粉末。A1源物質 方面,雖舉出有氧化鋁、氫氧化鋁、硫酸鋁、氯化鋁、鋁 有機化合物等,但由於氧化鋁與原料氧化矽質粉末的熔點 接近,在由燃燒器噴射時容易熔融附著於原料氧化矽質粉 末表面,因不純物含有率亦少而最佳。又,氧化鋁粉末之 平均粒徑較佳爲0.01至10 μιη。平均粒徑未滿0.01 μιη時, 粉末容易凝集,在與氧化矽質粉末熔融附著時之組成有變 成不均質的傾向,同樣地即使超過ΙΟμιη,在與氧化矽質粉 末熔融附著時之組成亦變成不均質。較佳之平均粒徑範圍 爲0.03至8μιη、更佳爲0.05至5μιη。 在本發明中,原料氧化矽質粉末之αι2ο3含有率較佳 爲1質量%以下。氧化矽質粉末中的Al、Β之中,僅位於 粉末表面者形成強的酸點,可與鹼性矽烷偶合劑鍵結。因 此,存在於原來原料氧化矽質粉末内部的αι2ο3造成使氧 -15- 200936500 化矽質粉末之熱膨脹率上升等的不良影響。原料氧化矽質 粉末之Al2〇3含有率較佳爲0.8質量%以下、更佳爲0·5質 量%以下。 在原料氧化矽質粉末中,除了前述Α1203以外亦可含 有Fe203、Na20、MgO、CaO、B2〇3等,原料氧化矽質粉末 之Si02含有率爲97質量%以上,再者較佳爲98質量!16以 上。 將原料氧化矽質粉末與A1源物質及/或B源物質朝火 ❹ 焰噴射、熔融附著、捕集的裝置方面’則使用例如在具備 燃燒器之爐體中連接捕集裝置者。爐體爲開放型或密閉 型.,、或者縱型、橫型任一種均可。在捕集裝置中’則設置 重力沈降室、旋風分離器、袋濾機、靜電集塵機等一種以 上,藉由調整該捕集條件,可捕集所製造的氧化矽質粉末。 若顯示其中一例,則有特開平1 1 -5745 1號公報、特開平 11-71107號公報等。 還有,在本發明中,氧化矽質粉末之吡啶的弗朗依德 ® 里希(Freundlich)吸附常數K,可藉由熔融附著於原料氧化 矽質粉末表面之A1源物質及/或B源物質的尺寸、氧化矽 質粉末中之ai2o3含有量及b2o3含有量、氧化矽質粉末之 比表面積及平均粒徑等而增減。氧化矽質粉末中之 Al2〇3 含有率及B2〇3含有率可藉由調整原料氧化矽質粉末與A1 源物質及/或B源物質之對於燃燒器的噴射量比例來個別 增減。氧化矽質粉末之比表面積、平均粒徑等,可藉由原 料氧化矽質粉末的粒度構成或火焰溫度等來調整。又,平 -16- 200936500 均球形度、非晶質率則可藉由原料氧化矽質粉末之朝火焰 的供給量或火焰溫度等來調整。再者,製造各種比表面積' 平均粒徑、ai2o3含有率、B2〇3含有率等不同的氧化矽質 粉末,藉由適宜混合該等2種以上,亦可製造進一步特定 之弗朗依德里希(Freundlich)吸附常數K、Al2〇3含有量、 B2〇3含有量、比表面積、平均粒徑等的氧化矽質粉末。 本發明之樹脂組成物爲含有本發明之氧化矽質粉末或 無機質粉末的樹脂組成物。樹脂組成物中之氧化矽質粉末 © 或無機質粉末之含有率爲10至95質量% 、更佳爲30至 90質量% 。 樹脂方面,可使用環氧樹脂、矽氧樹脂、酚樹脂、三 聚氰胺樹脂、脲樹脂、不飽和聚酯、氟樹脂、聚醯亞胺、 聚醯胺-醯亞胺、聚醚-醯亞胺等之聚醯胺;聚對苯二甲酸 丁二酯、聚對苯二甲酸乙二酯等之聚酯;聚苯硫、芳香族 聚酯、聚颯、液晶聚合物、聚醚颯、聚碳酸酯、順丁烯二 醯亞胺改質樹脂、ABS樹脂、AAS(丙烯腈·丙烯酸橡膠· V 苯乙烯)樹脂、AES(丙烯腈•乙烯•丙烯•二烯橡膠•苯乙 烯)樹脂等。其中特佳爲環氧樹脂、矽氧樹脂、酚樹脂等。 彼等之中,半導體封裝材料方面,較佳爲在1分子中 具有2個以上環氧基的環氧樹脂。舉例來說,有酚酚醛清 漆型環氧樹脂;鄰甲酚酚醛清漆型環氧樹脂;使酚類與醛 類之酚醛清漆樹脂環氧化者;雙酚A、雙酚F及雙酚S等 之環氧丙基醚;藉由苯二甲酸或二元酸等之多元酸與表氯 醇(epichlorohydrine)反應所得的環氧丙基酯酸環氧樹脂; -17- 200936500 鏈狀脂肪族環氧樹脂;環狀脂肪族環氧樹脂;雜環式環氧 樹脂;烷基改質多官能環氧樹脂;β-萘酚醛清漆型環氧樹 脂;1,6-二羥基萘型環氧樹脂;2,7·二羥基萘型環氧樹脂; 雙羥基聯苯型環氧樹脂;再者爲了賦予難燃性而導入溴等 鹵素原子的環氧樹脂等。其中,從耐濕性或耐焊劑回流性 的觀點來看,較佳爲鄰甲酚酚醛清漆型環氧樹脂、雙羥基 聯苯型環氧樹脂、萘骨架之環氧樹脂等。The total content of Si〇2, A1203, and B2〇3 is preferably 99.6% by mass or more, and more preferably 99.7% by mass or more. Further, the total content of ai2o3 and b2o3 of the cerium oxide powder is preferably 0.1 to 20 masses! %. When A1 and B are present in the cerium oxide powder, the positions of A1 and B become strong acid sites. By this acid point, since the bonding point between the basic decane coupling agent and the surface of the cerium oxide powder is increased, the bending strength and the solder crack resistance are improved. When the total content of ai2o3 and B203 is less than 0.1% by mass, the increase in acid point is insufficient, and when it exceeds 20% by mass, the thermal expansion coefficient of oxygen 200936500 enamel powder is excessively large, and the solder resist cracking property is excessive. Causes adverse effects. The total content of Al2〇3 and B2〇3 is preferably 0.2 to 18% by mass, more preferably 0.3 to 15% by mass. The SiO2 content of the cerium oxide powder of the present invention is a mass reduction method by using a mass reduction method; the A120 3 content (oxide conversion) is an atomic absorption spectrometry; and the b2o3 content (oxide conversion) is an ICP. Luminescence analysis can be determined by the steps described below. (1) Measurement of the content of Si〇2: 2.5 g of fine scale oxidized enamel powder was placed in a white gold dish, and 20 ml of lm and 1 ml of lm was added to the test reagent for special grade hydrofluoric acid. The platinum dish was placed on a sand bath heated to 300 ° C for 15 minutes to dissolve and dry the powder. Next, the platinum dish was placed in a Monfort furnace heated to 1000 ° C for 1 minute to evaporate the hydrofluoric acid. After standing in a desiccator to cool to room temperature, the mass of the platinum scale was measured, and the Si 02 content of the cerium oxide powder was calculated from the mass reduction rate. (2) Determination of the content of Al2〇3: The fine scale oxidized enamel powder lg is placed in a platinum dish, and the test reagent super hydrofluoric acid and the test drug grade perchloric acid are added in 20 ml and 1 ml respectively. The platinum dish was placed on a sand bath heated to 300 ° C for 15 minutes and then cooled to room temperature, transferred to a 25 ml measuring flask and made up to volume with pure water. The amount of A1 in the solution was quantified by a calibration line method using an atomic absorption spectrophotometer. The content of the cerium oxide powder was calculated by converting the amount of A1 into Al2?3. For example, an atomic absorption spectrophotometer is available under the trade name "Atomic Absorbance Photometer A A-9 69" by the Japanese company Jarrell-Ash. For example, if the standard solution used in the calibration line is prepared, the A1 standard solution for atomic absorption (a concentration of 1000 ppm) manufactured by Toki Chemical Co., Ltd. is used. Further, in the measurement of the flame of -10-200936500, an acetylene-laughing flame was used, and the absorbance at a wavelength of 309.3 nm was measured and quantified. (3) Determination of B2〇3 content rate: fine scale oxidized tannin powder ig in white gold dish, add 20ml, lml, lml to test reagent super hydrofluoric acid, test drug special grade nitric acid, test drug special mannitol 1 The % aqueous solution was placed on a sand bath heated to 300 ° C for 15 minutes to dissolve and dry the powder. Next, in the dried white gold dish, an average of 1 ml of the test sample special grade nitric acid and pure water were separately added, and after dissolving, it was transferred to a 25 ml measuring flask and then made up to a volume of pure water. The amount of B in the solution was quantified by using the calibration line method of the ICP emission spectroscopic analyzer. The B content was converted into B2 〇 3 to calculate the content in the cerium oxide powder. When the ICP emission spectroscopic analyzer is exemplified, the product name "SPS-1700R" manufactured by Seiko Instruments Inc. is used, and the luminous intensity at a wavelength of 249.8 nm is measured. For example, if the standard solution used in the calibration line is prepared, the B standard solution for atomic absorption (a concentration of 1000 ppm) manufactured by Toki Chemical Co., Ltd. is used. When the specific surface area of the cerium oxide powder is in the range of 0.5 to 5 m 2 /g and the average particle diameter is in the range of 1 to 60 μm, the bending strength and the solder resist cracking in the resin composition of the present invention are further promoted. Sexual improvement effect. When the specific surface area is less than 55 m2/g, the bonding area between the decane coupling agent and the surface of the cerium oxide powder is too small, and it is difficult to improve the bending strength and the solder crack resistance. Further, when the specific surface area exceeds 5 m2/g, the cerium oxide powder contains a large amount of small particles 'indicating that some or all of the surface of the particles has irregularities, and the viscosity of the sealing material when the semiconductor is encapsulated by using a semiconductor encapsulating material is increased to form Impaired. The preferred specific surface area ranges from 0.6 to 4.8 m 2 /g, more preferably from 0.7 to 4.7 m 2 /g. -11- 200936500 Further, even if the average particle diameter of the cerium oxide powder is less than Ιμηη, similarly, the viscosity of the sealing material when the semiconductor is packaged by using the semiconductor packaging material is increased, and the moldability is impaired. On the other hand, in the case where the average particle diameter exceeds 60 μm, the thickness of the semiconductor package becomes extremely thin, causing a problem of damage to the semiconductor wafer or a problem of obtaining a package having unevenness and unevenness. The preferred average particle size ranges from 2 to 55 μηη, and more preferably ranges from 3 to 50 μηη. Further, the maximum particle diameter is preferably 196 μηη or less, more preferably 128 μιη or less. The average particle diameter of the cerium oxide powder of the present invention is determined based on particle size measurement by a laser diffraction scattering method. For the measuring machine to be used, for example, the product name "Hills granule measuring machine type 92 0" manufactured by Cirrus Co., Ltd. is used, and the cerium oxide powder is dispersed in water, and the ultrasonic homogenizer is used at 200 W. The dispersion treatment was carried out for 1 minute and then measured. Further, the particle size distribution measurement was carried out with particle diameter channels of 0.3, 1, 1.5, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, and 196 μm. In the particle size distribution measured, the particle diameter at which the cumulative mass is 50% is the average particle diameter, and the particle diameter at which the cumulative mass is 100% is the maximum particle diameter. The specific surface area of the cerium oxide powder of the present invention is measured based on the specific surface area measurement by the beta method. For example, a specific surface area measuring machine is available under the trade name "Marksop HM-1208" manufactured by MOUNTECH. The cerium oxide powder of the present invention can be found to have an effect even when it is mixed with other inorganic powders. The content of the cerium oxide powder of the present invention in the inorganic powder is preferably 0.5% by mass or more, and more preferably 2% by mass or more. The type of the organic powder is preferably a cerium oxide powder and/or an alumina -12-200936500 powder. These powders may be used singly or in the case of mixing the thermal expansion coefficient of the two-low semiconductor encapsulating material or in the case of reducing the moldability, the alumina powder may be imparted with thermal conductivity in the cerium oxide powder. Further, the cerium oxide powder is preferably such that the amorphous ratio 以后 measured later is 95% or more. The cerium oxide powder of the present invention is preferably 95% or more, particularly preferably 98% or more, as measured by the following method. An amorphous ratio X-ray diffraction device (for example, the product name "® type" manufactured by RIGAKU Co., Ltd.) is subjected to diffraction analysis in the range of 26 ° to 27.5 ° of the CuKa line, and the specific diffraction peak intensity ratio is used. Determination. In the case of oxygen, the crystalline lanthanum oxide has a main peak at 26.7° and no spikes in the ruthenium oxide. When the amorphous cerium oxide is mixed with the crystal, the crystal oxidizing power is calculated from the X-ray intensity ratio of the sample corresponding to the strength of the crystalline cerium oxide standard sample by obtaining a peak height of 26.7° corresponding to the crystalline cerium oxide. The X-ray diffraction intensity/X-radiance of crystalline cerium oxide) is obtained by the general formula and the amorphous ratio (%) = (1 - crystalline oxidation) XI 00 to obtain the amorphous ratio. The average sphericity of the cerium oxide powder, the inorganic powder, and the oxygen is preferably 0.80 or more, and particularly preferably 0.85, so that the viscosity of the resin composition is lowered, and the formability can be improved. The average will be a stereo microscope (for example, Nikon). The particle image captured by the company's product name, etc., is taken into the screen analysis device (product name "MacVieW" manufactured by MOUNTECH Co., Ltd.), and the method is amorphous under the wear condition of the drop device. The mass ratio uses the powder Mini Flex to X-ray the cerium powder and the X-ray mixing ratio in the proportion of the amorphous cerium oxide is on the aluminum powder. Thus, the sphericity system r SMZ-10 is, for example, measured from the projected area (A) and perimeter (PM) of the particles from photograph -13-200936500. When (B) is a true circular area corresponding to the circumference (PM), since the sphericity of the particle is A/B, it is assumed that there is a true circle having the same circumference as the sample circumference (PM). PM = 2πΓ, B = πι·2, Bay IJ B = πχ ( ΡΜ/2π ) 2, and the sphericity of each particle is sphericity = Α / Β = Αχ 4π / ( ΡΜ ) 2 . The sphericity of 200 particles of any of the particles thus obtained was obtained, and the average enthalpy was average sphericity. Next, a method for producing the cerium oxide powder of the present invention will be described. The manufacturing method of the present invention is a method for producing a cerium oxide powder, characterized in that it is installed at an angle of 2 to 10° to dispose at least two burners in a furnace body, and one burner is sprayed with a raw material to oxidize the enamel. The powder is sprayed with the source material by at least one burner toward the flame. And/or sputum source material, if the oxidized enamel powder and Α1 source material and/or lanthanum source material are sprayed from the same burner toward the flame, the oxidized enamel powder in the raw material is diffused into a conical shape. On the surface of the surface, the ratio of the source material and/or the source material to be melted is small, and the cerium oxide powder of the present invention in which the total content of α1 and the content of ruthenium 203 is 0.1 to 20% by mass cannot be produced. Further, even if the raw material oxidized enamel powder and the A1 source material and/or the B source material are mixed in advance to form a conical shape at the time of ejection, the composition becomes heterogeneous due to dispersion 'separation. Having an angle of 2 to 10° with respect to the central axis of the furnace body, at least two burners are disposed in the furnace body in a manner of combining the focal points to oxidize the cerium powder to the flame by the one burner to at least 1 The burner is sprayed with the A1 source material and/or the B source material toward the flame, and the cerium oxide powder of the present invention can be efficiently produced. The compositional homogeneity of the cerium oxide powder of the present invention can be further improved by making the fuel-injection of the A1 source material and/or the B source material into a plurality of branches. Preferably, the number of burners is one in relation to the jet burner of the raw material oxidized tannin powder, and the ratio of the A1 source material and/or the B source material jet burner is two. Further, the burner must be disposed at an angle of 2 to 10 with respect to the central axis of the furnace. When the arrangement angle of the burner is less than 2°, the position at which the focus is combined becomes the outside of the flame, and the ratio of the A1 source substance and/or the B source substance to the surface of the raw material oxidized enamel powder is less. Further, even if the burner arrangement angle exceeds 10°, it is not preferable to combine the focus of the A1 source substance and/or the B source substance before the fusion adhesion on the surface of the raw material oxidized enamel powder ©. Preferred burner configurations are in the range of 3 to 8 degrees. In the present invention, the <Α1 source material is preferably an alumina powder. In the case of A1 source material, aluminum oxide, aluminum hydroxide, aluminum sulfate, aluminum chloride, aluminum organic compound, etc. are mentioned, but since alumina has a melting point close to that of the raw material cerium oxide powder, it is easily melted when sprayed by a burner. Adhered to the surface of the raw material cerium oxide powder, it is best because the impurity content is small. Further, the average particle diameter of the alumina powder is preferably from 0.01 to 10 μm. When the average particle diameter is less than 0.01 μm, the powder tends to aggregate, and the composition tends to be inhomogeneous when it is fused with the cerium oxide powder. Similarly, even if it exceeds ΙΟμη, the composition becomes fused with the cerium oxide powder. Inhomogeneity. Preferably, the average particle diameter ranges from 0.03 to 8 μm, more preferably from 0.05 to 5 μm. In the present invention, the content of α1 of the raw material cerium oxide powder is preferably 1% by mass or less. Among the Al and cerium in the cerium oxide powder, a strong acid point is formed only on the surface of the powder, and it can be bonded to a basic decane coupling agent. Therefore, αι2ο3 existing in the raw material cerium oxide powder causes an adverse effect such as an increase in the thermal expansion coefficient of the oxygen -15-200936500 enamel powder. The content of Al2〇3 in the raw material oxidized enamel powder is preferably 0.8% by mass or less, more preferably 0.5% by mass or less. The raw material cerium oxide powder may contain Fe203, Na20, MgO, CaO, B2〇3 or the like in addition to the above lanthanum 1203, and the SiO2 content of the raw material oxidized enamel powder is 97% by mass or more, and more preferably 98% by mass. !16 or more. For example, a device in which a raw material oxidized cerium powder and an A1 source material and/or a B source material are sprayed, melted, and collected in a flame is used, for example, a connecting device is connected to a furnace having a burner. The furnace body is of an open type or a closed type, or one of a vertical type and a horizontal type. In the collecting device, a gravity sedimentation chamber, a cyclone separator, a bag filter, an electrostatic precipitator, or the like is provided, and the produced cerium oxide powder can be collected by adjusting the collection conditions. When one of the examples is shown, there are Japanese Laid-Open Patent Publication No. Hei No. Hei. No. Hei. Further, in the present invention, the Freundlich adsorption constant K of the ruthenium oxide powder pyridine can be melted and adhered to the A1 source material and/or the B source attached to the surface of the raw material cerium oxide powder. The size of the substance, the ai2o3 content in the cerium oxide powder, the b2o3 content, the specific surface area of the cerium oxide powder, and the average particle diameter are increased or decreased. The Al2〇3 content and the B2〇3 content in the cerium oxide powder can be individually increased or decreased by adjusting the ratio of the raw material oxidized tannin powder to the A1 source material and/or the B source material to the burner. The specific surface area, the average particle diameter, and the like of the cerium oxide powder can be adjusted by the particle size composition of the raw material oxidized cerium powder, the flame temperature, and the like. Further, the flatness and the amorphous ratio of the flat-16-200936500 can be adjusted by the supply amount of the raw material oxidized enamel powder to the flame, the flame temperature, and the like. In addition, various cerium oxide powders having different specific surface areas, such as an average particle diameter, an ai2o3 content, and a B2〇3 content, can be produced, and further, two or more kinds can be appropriately mixed, and further specific Francois can be produced. (Freundlich) A cerium oxide powder having an adsorption constant K, an Al 2 〇 3 content, a B 2 〇 3 content, a specific surface area, and an average particle diameter. The resin composition of the present invention is a resin composition containing the cerium oxide powder or the inorganic powder of the present invention. The content of the cerium oxide powder © or the inorganic powder in the resin composition is 10 to 95% by mass, more preferably 30 to 90% by mass. As the resin, an epoxy resin, a decyloxy resin, a phenol resin, a melamine resin, a urea resin, an unsaturated polyester, a fluororesin, a polyimine, a polyamine, a phthalimide, a polyether-imine, or the like can be used. Polyamide; polybutylene terephthalate, polyester such as polyethylene terephthalate; polyphenylene sulfide, aromatic polyester, polyfluorene, liquid crystal polymer, polyether oxime, polycarbonate , maleic acid imide modified resin, ABS resin, AAS (acrylonitrile, acrylic rubber, V styrene) resin, AES (acrylonitrile, ethylene, propylene, diene rubber, styrene) resin. Among them, epoxy resin, oxime resin, phenol resin and the like are particularly preferred. Among them, the semiconductor encapsulating material is preferably an epoxy resin having two or more epoxy groups in one molecule. For example, there are phenol novolak type epoxy resin; o-cresol novolak type epoxy resin; epoxidized by phenolic and aldehyde novolak resin; bisphenol A, bisphenol F and bisphenol S, etc. a epoxidized propyl ether; a glycidyl ester acid epoxy resin obtained by reacting a polybasic acid such as phthalic acid or a dibasic acid with epichlorohydrine; -17- 200936500 chain aliphatic epoxy resin ; a cyclic aliphatic epoxy resin; a heterocyclic epoxy resin; an alkyl modified polyfunctional epoxy resin; a β-naphthol novolak epoxy resin; a 1,6-dihydroxynaphthalene epoxy resin; 7. Dihydroxynaphthalene type epoxy resin; bishydroxybiphenyl type epoxy resin; and an epoxy resin which introduces a halogen atom, such as bromine, in order to provide flame retardance. Among them, from the viewpoint of moisture resistance and solder reflow resistance, an o-cresol novolak type epoxy resin, a bishydroxybiphenyl type epoxy resin, an epoxy resin of a naphthalene skeleton, and the like are preferable.
本發明中所用之環氧樹脂爲包含環氧樹脂之硬化劑、 或者環氧樹脂之硬化劑與環氧樹脂之硬化促進劑者。環氧 樹脂之硬化劑方面,可舉例有在甲醛、三.聚甲醛或對二甲 苯同時氧化觸媒下,反應選自由酚、甲酚、二甲酚、間苯 二酚、氯苯酚、第三丁酚、壬酚、異丙酚、及辛酚所組成 之群組中的1種或2種以上而得的酚醛清漆型樹脂;聚對 羥基苯乙烯樹脂;雙酚A、雙酚S等之雙酚化合物;五倍 子酚或間苯三酚等3官能酚類;順丁烯二酸酐、酞酐、苯 四甲酸酐等之酸酐;間苯二胺、二胺基二苯基甲烷、二胺 基二苯基硒等之芳香族胺等。 爲了促進環氧樹脂與硬化劑的反應,可使用例如三苯 膦、苄基二甲基胺、2-甲基咪唑等之硬化促進劑。 在本發明之樹脂組成物中,必要時可進一步配合以下 的成分。 低應力化劑方面,舉出有矽氧橡膠、聚硫化物橡膠、 丙烯酸系橡膠、丁二烯系橡膠、苯乙烯系嵌段聚合物、飽 和型彈性體等之橡膠狀物質;各種熱可塑性樹脂、矽氧樹 -18- 200936500 脂等之樹脂狀物質;再者以胺基矽氧烷、環氧基矽氧烷、 烷氧基矽氧烷等改質環氧樹脂、酚樹脂之一部分或全部的 樹脂等。 矽烷偶合劑方面,舉出有γ-環氧丙氧基丙基三甲氧基 矽烷、β-( 3,4_環氧環己基)乙基三甲氧基矽烷等之環氧矽 烷;胺丙基三乙氧基矽烷、脲丙基三乙氧基矽烷、Ν-苯胺 丙基三甲氧基矽烷等之胺基矽烷;苯基三甲氧基矽烷、甲 基三甲氧基矽烷、十八烷基三甲氧基矽烷等之疏水性矽烷 化合物;硫醇基矽烷等。 表面處理劑方面,Zr螯合物、鈦酸鹽偶合劑、鋁系偶 合劑等。 > 難燃助劑方面,舉出有Sb2〇3、Sb204、Sb205等。 難燃劑方面,舉出有鹵化環氧樹脂或磷化合物等。 著色劑方面,舉出有碳黑、氧化鐵、染料、顔料等。 再者離型劑方面,舉出有天然蠟類、合成蠟類、直鏈 脂肪酸之金屬鹽、酸醯胺類、酯類、石蠟等。 本發明之樹脂組成物係可在藉由以掺合機或韓蘇 (Henschel)混合機等掺合上述各材料之既定量後,以加熱 輥、捏合機、單軸或雙軸押出機等混練冷卻後,透過粉碎 來製造》 本發明之半導體封裝材料係樹脂組成物含有環氧樹脂 者,由包含環氧樹脂之硬化劑與環氧樹脂之硬化促進劑的 組成物所構成者。在使用本發明之半導體封裝材料來封裝 半導體中,係採用轉移模具法、真空印刷模具法等之正常 -19- 200936500 作法的成形手段。 [實施例] 雖藉由以下本發明之實例來更詳細地説明’但非受限 於該等所解釋者。 [實例1至9及比較例1至7] 準備平均粒徑、及ai2o3含有率不同之各種原料氧化 矽質粉末、A1源物質、以及B源物質,在記載於特開平 11 _574 51號公報的裝置中,使用在爐體中配置有將其調整 ® 成相對於爐體中心軸安裝成0至15。之角度的複數支燃燒 器的裝置,在火焰中進行熔融、熔融附著、球狀化處理, 製造示於表1之各種氧化矽質粉末 >。又,適宜配合該等粉 末以製造示於表2之氧化矽質粉末、及無機質粉末。 還有,氧化矽質粉末之吡啶弗朗依德里希(Freundlich) 吸附常數K的調整,係藉由變更熔融附著於原料氧化矽質 粉末表面之A1源物質及/或B源物質的平均粒徑、氧化矽 質粉末中的ai2o3含有量及B203含有量、氧化矽質粉末之 ❹The epoxy resin used in the present invention is a hardener comprising an epoxy resin, or a hardener of an epoxy resin and a hardening accelerator for an epoxy resin. The epoxy resin hardener may be exemplified by a simultaneous oxidation catalyst of formaldehyde, trioxane or p-xylene, and the reaction is selected from the group consisting of phenol, cresol, xylenol, resorcinol, chlorophenol, and third. A novolac type resin obtained by one or more of a group consisting of butanol, indophenol, propofol, and octylphenol; a poly-p-hydroxystyrene resin; a bisphenol A, a bisphenol S, or the like a bisphenol compound; a trifunctional phenol such as gallic phenol or phloroglucin; an acid anhydride such as maleic anhydride, phthalic anhydride or benzene tetracarboxylic anhydride; m-phenylenediamine, diaminodiphenylmethane, and diamine An aromatic amine such as diphenyl selenium or the like. In order to promote the reaction of the epoxy resin with the hardener, a hardening accelerator such as triphenylphosphine, benzyldimethylamine or 2-methylimidazole can be used. In the resin composition of the present invention, the following components may be further blended as necessary. Examples of the low stress agent include rubbery materials such as a silicone rubber, a polysulfide rubber, an acrylic rubber, a butadiene rubber, a styrene block polymer, and a saturated elastomer; and various thermoplastic resins. , 矽 oxygen tree -18- 200936500 resin such as resin; in addition to amine oxime, epoxy oxirane, alkoxy oxirane, etc. modified epoxy resin, part or all of phenolic resin Resin and so on. Examples of the decane coupling agent include an epoxy decane such as γ-glycidoxypropyltrimethoxydecane or β-(3,4-epoxycyclohexyl)ethyltrimethoxydecane; Amino decane such as ethoxy decane, urea propyl triethoxy decane, hydrazine-aniline propyl trimethoxy decane; phenyl trimethoxy decane, methyl trimethoxy decane, octadecyl trimethoxy A hydrophobic decane compound such as decane; a thiol decane or the like. As the surface treatment agent, a Zr chelate compound, a titanate coupling agent, an aluminum-based coupling agent, or the like. > Examples of the flame retardant auxiliary include Sb2〇3, Sb204, and Sb205. Examples of the flame retardant include halogenated epoxy resins or phosphorus compounds. Examples of the colorant include carbon black, iron oxide, a dye, a pigment, and the like. Further, examples of the release agent include natural waxes, synthetic waxes, metal salts of linear fatty acids, acid amides, esters, and paraffins. The resin composition of the present invention may be kneaded by a heating roll, a kneader, a uniaxial or biaxial extruder, or the like by blending the above materials with a blender or a Henschel mixer or the like. After the cooling, the semiconductor encapsulating material-based resin composition of the present invention contains an epoxy resin, and is composed of a composition comprising a curing agent for an epoxy resin and a curing accelerator for an epoxy resin. In the case of encapsulating a semiconductor by using the semiconductor encapsulating material of the present invention, a forming means of a normal -19-200936500 method such as a transfer mold method or a vacuum printing mold method is employed. [Embodiment] It is explained in more detail by the following examples of the invention, but is not limited to those explained. [Examples 1 to 9 and Comparative Examples 1 to 7] Various raw material oxidized enamel powders, A1 source materials, and B source materials having different average particle diameters and ai2o3 content ratios were prepared, and are described in JP-A-11-57451. In the apparatus, it is arranged in the furnace body to adjust it to 0 to 15 with respect to the central axis of the furnace body. The apparatus of the plurality of burners at the angle was melted, melted, and spheroidized in a flame to produce various cerium oxide powders > shown in Table 1. Further, these powders are suitably blended to produce cerium oxide powder and inorganic powder shown in Table 2. Further, the adjustment of the Freundlich adsorption constant K of the cerium oxide powder is carried out by changing the average particle diameter of the A1 source substance and/or the B source substance which are melt-attached to the surface of the raw material oxidized enamel powder. And the content of ai2o3 and the content of B203 in the cerium oxide powder, and the cerium oxide powder
比表面積及平均粒徑等來進行。氧化矽質粉末中之Al2〇3 含有率及b203含有率的調整,係藉由調整原料氧化矽質粉 末與A1源物質及/或B源物質之對於燃燒器的噴射量比來 進行。氧化矽質粉末之比表面積、平均粒徑等之調整,係 藉由調整原料氧化矽質粉末的粒度構成或火焰溫度等來進 行。又,氧化矽質粉末之平均球形度、非晶質率等之調整, 係藉由調整原料氧化矽質粉末之對於火焰的供給量或火焰 溫度等來進行。還有,火焰之最高溫度爲約2000 °C至2300 °C -20- 200936500 的範圍。 氧化矽質粉末的非晶質率均爲9 9.5%以上。 測定該等氧化矽質粉末之吡啶弗朗依德里希 (Freundlich)吸附常數K、Si02含有率、Al2〇3含有率、b2〇3 含有率、比表面積、平均粒徑、平均球形度等,並示於表2。 爲了評估所得之氧化矽質粉末、及無機質粉末之作爲 半導體封裝材料的塡充材料的特性,相對於各粉末8 6.5份 (質量份,以下相同),添加4,4’-雙(2,3-環氧丙氧基) ® -3,3’,5,5’-四甲基聯苯型環氧樹脂6.7份、酚樹脂5.5份、 三苯膦0.3份、苯胺基矽烷0.6份、碳黑0.1份、及棕櫚蠟 0.3份,以韓蘇(Herrschel)混合機進行乾式掺合。然後,以 同方向咬合之雙軸押出混練機(螺桿徑D = 25mm、捏合盤 長 lODmm、攪拌葉片回轉數 80至 120rpm、吐出量 2.5kg/Hr、混練物溫度100至101 t)加熱混練。以鑄壓機 鑄壓混練物(吐出物),冷却後,粉碎以製造半導體封裝材 料,依照以下評估彎曲強度、耐焊劑龜裂性及成形性(螺 旋流動)。該等結果示於表2。 (1)彎曲強度 如下測定上述所得之半導體封裝材料硬化體的彎曲強 度。即,使用轉移成型成型機以175 °C、120秒爲成型條件, 成型上述各半導體封裝材料成爲寬lOmmx長80mmx高4mm 的形狀,以1 7 5 °C的溫度硬化6小時後各製作5支評估用測 試片。然後,使用島津製作所公司製商品名「高壓釜 AG-500 0A型」,依照JISK7171來測定彎曲強度。還有,支 -21 - 200936500 點間距離爲64mm、加重速度爲5mm/分、測定環境爲25 °C、 5 0% RH,求得各測定値(n = 5)的平均値作爲彎曲強度。 數値(MPa)愈大表示愈有彎曲強度性的意思。 (2) 耐焊劑龜裂性 如下測定上述所得之半導體封裝材料的耐焊劑龜裂 性。SP,以銀糊接著9.6mmx9.6mmx〇.4mm模擬半導體晶 片於已實施厚150 μηι之鍍銀的銅製的引綫框(lead frame)。 其次,使用上述各半導體封裝材料,在使用轉移成型機並 以175°C、120秒爲成型條件進行封裝後,以175°C之溫度 後硬化 6 小時,製作耐焊劑龜裂性評估用 15mm><19mmxl.8mm的60針QFP (四方平坦封裝體(Quad Flat Package))試樣。其次,以85 °C、85% RH之環境條件 處理該評估用試樣各10個72小時後,以溫度爲25 0°C之焊 劑回流裝置加熱。然後,將評估用試樣裁切一半,硏磨裁 切面後,以顯微鏡觀察龜裂產生的大小。以龜裂之大小爲 70 μιη以上者爲不良,求得10個中之不良個數。該結果示 於表2。 (3) 螺旋流動 使用配備有依照 ΕΜΜΙ-Ι-66 ( Epoxy Molding Material Institute(環氧成型材料硏究院);Society of Plastic Industry (塑膠工業協會))裝置螺旋流動測定用模具之轉移 成型機,測定半導體封裝材料的螺旋流動値。轉移成型條 件爲模具溫度175 °C、成型壓力7.4MPa、保壓時間120秒。 螺旋流動値愈大,表示具有優異的流動性。 -22- 2 5(639 * m ^Sj\ ilmtt P 张 » 贓 0.06 氧化鋁 〇〇 i 4 CN OO VD vn 〇 〇 0.06 氫氧化鋁 ο r-H CN oo VO v〇 o 〇〇 CS ·—> CO 氧化鋁 oq ο CS oo vo v〇 o τ-Η ►-H 0.06 1 1 1-H * 〇 oo VO m o 〇 〇 ffi r-j as 氧化鋁 oq ν〇 rp 〇 oo vo v〇 o 〇 〇 Ο <N oq 氧化鋁 CO CO <N 卜 On v〇 c4 b 0.08 氧化鋁 寸 C<i r—H CN S CO ω 0.03 氫氧化鋁 oo IT) 嫜 CN CN S s Q oq CS 氧化鋁 CO wn i—H CS 卜 σ\ p u 0.06 氧化鋁 寸 〇 1—S CS oo vo vo ο V-i r-i CQ 0.06 ! 氧化硼 oo T· < CO oo Ό v〇 ο f—H < 0.06 氧化鋁 oq v/1 τ' H CO oo ο 項目 原料氧化矽質粉末之平均粒徑㈣ 原料氧化矽質粉末之ai2o3含有率價量%) A1源物質,B源物質之種類 A1源物質,B源物質之平均粒徑㈣ 燃燒器設置角度(0) 噴射原料氧化矽質粉末之燃燒器支數(支) g 鑛 m m 忉 0Q 鬆 β LPG 流量(m3/Hr) 氧流量(m3/Hr) 原料氧化矽質粉末之噴射量(_1·) A1源物質,B源物質之噴射量(kg/Hr) 燃燒器 之條件 -s- 200936500The specific surface area, the average particle diameter, and the like are carried out. The Al2〇3 content rate and the b203 content rate in the cerium oxide powder are adjusted by adjusting the ratio of the amount of the raw material oxidized enamel powder to the A1 source material and/or the B source material to the burner. The adjustment of the specific surface area, the average particle diameter, and the like of the cerium oxide powder is carried out by adjusting the particle size composition of the raw material oxidized enamel powder, the flame temperature, and the like. Further, the adjustment of the average sphericity, the amorphous ratio, and the like of the cerium oxide powder is carried out by adjusting the supply amount of the raw material oxidized enamel powder to the flame, the flame temperature, and the like. Also, the maximum temperature of the flame is in the range of about 2000 °C to 2300 °C -20-200936500. The amorphous ratio of the cerium oxide powder is 9 9.5% or more. Determination of the pyridine Frondrich adsorption constant K, SiO 2 content, Al 2 〇 3 content, b 2 〇 3 content, specific surface area, average particle diameter, average sphericity, etc. of the oxidized enamel powder, and Shown in Table 2. In order to evaluate the characteristics of the obtained cerium oxide powder and the inorganic filler as a semiconductor packaging material, 4,4'-double (2,3) was added to 6.5 parts (parts by mass) of each powder. -glycidoxy) ® -3,3',5,5'-tetramethylbiphenyl type epoxy resin 6.7 parts, phenol resin 5.5 parts, triphenylphosphine 0.3 parts, aniline decane 0.6 parts, carbon black 0.1 part, and 0.3 parts of palm wax, were dry blended with a Herrschel mixer. Then, the two-axis extrusion kneading machine in the same direction (screw diameter D = 25 mm, kneading disc length lODmm, stirring blade rotation number 80 to 120 rpm, discharge amount 2.5 kg/Hr, kneading material temperature 100 to 101 t) was heated and kneaded. The kneaded material (discharged material) was cast by a casting press, cooled, and pulverized to produce a semiconductor package material, and bending strength, solder crack resistance, and formability (spiral flow) were evaluated in accordance with the following. These results are shown in Table 2. (1) Bending strength The bending strength of the hardened body of the semiconductor encapsulating material obtained above was measured as follows. That is, each of the semiconductor package materials was molded into a shape having a width of 10 mm x 80 mm x a height of 4 mm using a transfer molding machine at 175 ° C for 120 seconds, and was cured at a temperature of 175 ° C for 6 hours, and then 5 pieces were produced. Test piece for evaluation. Then, the product name "autoclave AG-500 0A type" manufactured by Shimadzu Corporation was used, and the bending strength was measured in accordance with JIS K7171. Further, the distance between the points -21 - 200936500 was 64 mm, the speed of the increase was 5 mm/min, and the measurement environment was 25 °C, 50% RH, and the average enthalpy of each measurement 値 (n = 5) was obtained as the bending strength. The larger the number 値 (MPa), the more the bending strength is. (2) Solder resist cracking property The solder paste crack resistance of the semiconductor package obtained above was measured as follows. SP, with a silver paste followed by a 9.6 mm x 9.6 mm x 〇. 4 mm analog semiconductor wafer on a copper lead frame having a thickness of 150 μηι thick. Next, each of the above-described semiconductor encapsulating materials was used, and after molding at 175 ° C for 120 seconds using a transfer molding machine, the film was cured at a temperature of 175 ° C for 6 hours to prepare a solder resist cracking property for 15 mm. <19 mm x 1.8 mm sample of a 60-pin QFP (Quad Flat Package). Next, the evaluation samples were treated for 10 hours each for 72 hours under the environmental conditions of 85 ° C and 85% RH, and then heated by a solder reflow device at a temperature of 25 ° C. Then, the evaluation sample was cut in half, and after dicing the cut surface, the size of the crack was observed by a microscope. If the size of the crack is 70 μmη or more, the number of defects is 10. The results are shown in Table 2. (3) Spiral flow using a transfer molding machine equipped with a mold for spiral flow measurement according to ΕΜΜΙ-Ι-66 (Epoxy Molding Material Institute; Society of Plastic Industry) The spiral flow enthalpy of the semiconductor package material was measured. The transfer molding conditions were a mold temperature of 175 ° C, a molding pressure of 7.4 MPa, and a dwell time of 120 seconds. The larger the spiral flow, the superior fluidity. -22- 2 5(639 * m ^Sj\ ilmtt P sheets » 赃0.06 Alumina 〇〇i 4 CN OO VD vn 〇〇0.06 Aluminium hydroxide ο rH CN oo VO v〇o 〇〇CS ·—> CO Alumina oq ο CS oo vo v〇o τ-Η ►-H 0.06 1 1 1-H * 〇oo VO mo 〇〇ffi rj as Alumina oq ν〇rp 〇oo vo v〇o 〇〇Ο <N Oq Alumina CO CO <N Bu On v〇c4 b 0.08 Alumina inch C<ir-H CN S CO ω 0.03 Aluminium hydroxide oo IT) 嫜CN CN S s Q oq CS Alumina CO wn i-H CS卜σ\ pu 0.06 Alumina inch 〇1—S CS oo vo vo ο Vi ri CQ 0.06 ! Boron oxide oo T· < CO oo Ό v〇ο f—H < 0.06 Alumina oq v/1 τ' H CO oo ο The average particle size of the raw material oxidized enamel powder (4) The raw material oxidized enamel powder ai2o3 content rate valence %) A1 source material, B source material type A1 source material, B source material average particle size (4) Burner Set angle (0) Burner count of sprayed raw material oxidized tantalum powder (min) g Mine mm 忉0Q loose β LPG flow rate (m3/Hr) oxygen flow rate (m3/Hr) raw material oxidized tannin powder The amount of shot (* _1) source substance injection amount A1, B of the source material (kg / Hr) burner of conditions -s- 200936500
£ 比較例: 〇 〇 〇 〇 〇 〇 ο ο ο ο ο ο ο 〇 M3 99.7 1 v〇 On 〇 oo σ< 〇\ OO 比較例6 〇 〇 〇 〇 〇 〇 ο ο ο ο 8 1—^ ο ο 〇 ON | 99.8 1 卜 ^SD CO Οί 0.98 99.7 \〇 m 〇〇 CS 1 比較例5 〇 〇 〇 〇 〇 〇 ο ο ο ο »—Η ο ο ο 〇 5 99.7 22.4 们 CS oo ON 〇 ON 〇< σ\ OO (M 比較例4 〇 〇 〇 〇 〇 〇 ο ο 8 ο ο ο ο 〇 〇〇 | 99.7 1 0.05 σ) s 0.96 o cn CO \ < 〇\ ψ· Η 比較例3 〇 〇 〇 〇 〇 〇 ο ο ι-Η ο ο ο ο ο 〇 1 1 98.1 .....iilJ 2 I 0.99 | o <N «—H 〇 VO m 1 1 比較例2 〇 〇 〇 〇 〇 〇 ο ο ο ο ο ο ο 〇 τ _ .1 vq | 99.8 | 99.5 1 ,丨 00 1 1 CO ON 〇 1 沄 V '< o ~·Η > '< 比較例1 〇 〇 〇 〇 〇 〇 ο ο ο ο ο ο ο 〇 cn 99.9 ! 0.07 r-; OJ vn OS o OO σ< σ\ 艺 » 1 ID 1 " < 實例9 〇 〇 〇 〇 〇 〇 ο ο ο ο ο ο ο CO 99.7 τ*-Η σ\ CN 〇\ oo ON o 1 v〇 CJ 實例8 〇 〇 〇 〇 〇 ο ο ο ο ο ο g 〇 oo Γ99.8 cn oo ON OO cK ON τ·_Η o 實例7 〇 〇 〇 〇 〇 〇 ο ο ο ο ο ο ο 〇 99.9 CS 寸· tn Os c5 8 a\ o σ\ CO 1 — 實例ό 〇 〇 〇 〇 〇 8 Ή ο ο ο ο ο ο ο 〇 〇\ oi 99.7 oo i/n Ό OO 〇 二 ON m v〇 o P; i H 實例5 〇 〇 〇 8 ψ i 〇 〇 ο ο ο ο ο ο ο 〇 vq 99.8 CO wo 0.98 Os σ; 〇\ 1 ' 1 cs 實例4 〇 〇 〇 〇 〇 〇 ο ο ο ο ο ο ο 〇 oo 〇\ 〇\ VO 寸· cs as o CN 實例3 〇 〇 〇 〇 〇 〇 ο ο ο ο ο ο ο 〇 cs CO 99.8 oo tr) ON o ON cK σ\ f Ή o 势 l*M2l 〇 8 1 < 〇 〇 〇 〇 ο ο ο ο ο ο ο 〇 cs 〇〇 σ< ON CN a\ 0.94 o r·· 4 »— o 1 < 寸, 實例1 8 » ·Ή 〇 〇 〇 〇 〇 ο ο ο ο ο ο ο 〇 ON 99.8 ON 〇\ 0.96J o r- 1 o ζ; HD < CQ U Q W ο X >—> 所配合之球狀氧化矽粉末(*)之比例(質量%) 所配合之球狀氧化鋁粉末(*”之比例(質量%) 吡啶之弗朗依德里希吸附常數K㈠ Si02, A1203, B203 含量(質量%) ai2o3,b2o3 含量(質量0/〇) 比表面積(m2/g) 平均粒徑(μηι) 平均球形度(-) 非晶質率(%) 彎曲強度(MPa) 耐焊劑龜裂性(10個中的不良個數) 螺旋流動(cm) 所配合之氧化矽質粉末之比例(質量%) -寸z- «ttssi i2innn?:.Ϊ--Ι —ssf 200936500 如由實例與比較例之對比得知,根_本;f 質粉末,可調製較比較例彎曲強度、耐胃劑(義 樹脂組成物、特別是半導體封裝材料。 本發明之氧化矽質粉未係使用於在汽車, 器、個人電腦、家庭電氣化製品等中所使用& 材料;搭載半導體之積層板;再者使用油灰, 各種橡膠、各種工程塑膠等之塡充材料。又, 脂組成物係除了半導體封裝材料之外,可使月 w 布、玻璃不織布、含浸於其他有機基材並硬不 如印刷基板用的預浸體、或各種工程塑膠等。 還有,此處引用於2008年1月30日申言 申請2 00 8-0 1 8 9 73號之說明書、申請專利範U 全部内容’取入作爲本發明之說明書的揭示。 【圖式簡單說明】 無。 【主要元件符號說明】 〇 無。 明之氧化矽 裂性優異之 行動電子機 半導體封裝 密封材料、 本發明之樹 作爲玻璃織 所構成之例 之日本,專利 、及摘要的 -25-£ Comparative example: 〇〇〇〇〇〇ο ο ο ο ο ο ο 〇 M3 99.7 1 v〇On 〇oo σ< 〇\ OO Comparative Example 6 〇〇〇〇〇〇ο ο ο ο 8 1—^ ο ο 〇ON | 99.8 1 卜^SD CO Οί 0.98 99.7 \〇m 〇〇CS 1 Comparative Example 5 〇〇〇〇〇〇ο ο ο ο »—Η ο ο ο 〇 5 99.7 22.4 We CS oo ON 〇ON 〇< σ\ OO (M Comparative Example 4 〇〇〇〇〇〇ο ο 8 ο ο ο ο 〇〇〇 | 99.7 1 0.05 σ) s 0.96 o cn CO \ < 〇\ ψ· Η Comparative Example 3 〇〇〇 〇〇〇ο ο ι-Η ο ο ο ο ο 〇1 1 98.1 .....iilJ 2 I 0.99 | o <N «—H 〇VO m 1 1 Comparative Example 2 〇〇〇〇〇〇ο ο ο ο ο ο ο 〇τ _ .1 vq | 99.8 | 99.5 1 , 丨00 1 1 CO ON 〇1 沄V '< o ~·Η >'< Comparative Example 1 〇〇〇〇〇〇ο ο ο ο ο ο ο 〇cn 99.9 ! 0.07 r-; OJ vn OS o OO σ< σ\ 艺» 1 ID 1 "< Example 9 〇〇〇〇〇〇ο ο ο ο ο ο ο CO 99.7 τ* -Η σ\ CN 〇\ oo ON o 1 v〇CJ Example 8 〇〇 〇〇〇ο ο ο ο ο ο g 〇oo Γ99.8 cn oo ON OO cK ON τ·_Η o Example 7 〇〇〇〇〇〇ο ο ο ο ο ο ο 〇99.9 CS inch · tn Os c5 8 a \ o σ\ CO 1 — Instance 〇〇〇〇〇 Ή 8 Ή ο ο ο ο ο ο ο 〇〇 oi 99.7 oo i/n Ό OO 〇 2 ON mv〇o P; i H Example 5 〇〇〇 8 ψ i 〇〇ο ο ο ο ο ο ο 〇vq 99.8 CO wo 0.98 Os σ; 〇\ 1 ' 1 cs Instance 4 〇〇〇〇〇〇ο ο ο ο ο ο ο 〇 oo 〇 〇 VO 寸Cs as o CN Example 3 〇〇〇〇〇〇ο ο ο ο ο ο ο 〇 COcs CO 99.8 oo tr) ON o ON cK σ\ f Ή o Potential l*M2l 〇8 1 < 〇〇〇〇ο ο ο ο ο ο ο 〇cs 〇〇σ< ON CN a\ 0.94 or·· 4 »— o 1 < inch, example 1 8 » ·Ή 〇〇〇〇〇ο ο ο ο ο ο ο 〇 ON 99.8 ON 〇 \ 0.96J o r- 1 o ζ; HD < CQ UQW ο X >-> The proportion of spherical cerium oxide powder (*) (% by mass) to be combined with spherical alumina powder (* Proportion (% by mass) Pyrone of Pyridine Derrick adsorption constant K(1) Si02, A1203, B203 Content (% by mass) ai2o3, b2o3 Content (mass 0/〇) Specific surface area (m2/g) Average particle size (μηι) Average sphericity (-) Amorphous rate (% ) Bending strength (MPa) Resistance to solder cracking (number of defects in 10) Spiral flow (cm) Ratio of oxidized enamel powder (% by mass) - inch z- «ttssi i2innn?:.Ϊ- - Ι - ssf 200936500 As seen from the comparison between the examples and the comparative examples, the root powder can be prepared by comparing the bending strength and the gastric resistance (the resin composition, especially the semiconductor packaging material). The cerium oxide powder of the present invention is not used for materials used in automobiles, appliances, personal computers, household electrified products, etc.; laminated sheets on which semiconductors are mounted; and in addition to putty, various rubbers, various engineering plastics, etc. Fill the material. Further, the fat composition is a prepreg for impregnating other organic substrates and being harder than a printed substrate, or various engineering plastics, in addition to a semiconductor encapsulating material. In addition, the specification of the application No. 00 8-0 1 8 9 73, the entire contents of the patent application, is incorporated herein by reference. [Simple description of the diagram] None. [Main component symbol description] 〇 None. Mobile electronic device with excellent oxidative enthalpy cracking semiconductor package Sealing material, tree of the present invention As an example of glass woven fabric, Japan, Patent, and Abstract -25-