WO2009096310A1 - Heat-detecting sensor array - Google Patents

Heat-detecting sensor array Download PDF

Info

Publication number
WO2009096310A1
WO2009096310A1 PCT/JP2009/050970 JP2009050970W WO2009096310A1 WO 2009096310 A1 WO2009096310 A1 WO 2009096310A1 JP 2009050970 W JP2009050970 W JP 2009050970W WO 2009096310 A1 WO2009096310 A1 WO 2009096310A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal
infrared sensitive
pixel
sensor array
thermal infrared
Prior art date
Application number
PCT/JP2009/050970
Other languages
French (fr)
Japanese (ja)
Inventor
Fumikazu Ojima
Tomoya Inuzuka
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Publication of WO2009096310A1 publication Critical patent/WO2009096310A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J5/14Electrical features thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers

Definitions

  • the present invention relates to a heat detection sensor array.
  • Patent Document 1 discloses a heating element position detection device.
  • the electromotive force in each iron silicide sensor is measured by sequentially opening and closing the switches connected to both ends of each iron silicide sensor, and the measured electromotive force is stored.
  • the infrared incident position is determined by searching the iron silicide sensor which output the maximum electromotive force from the memorize
  • Patent Document 2 discloses an infrared detection device.
  • a vertical direction decoder and a horizontal direction decoder are provided in two-dimensionally arranged infrared detection elements, and the electromotive force generated from each infrared detection element by the switching operation of each decoder is measured.
  • the above-described conventional technology measures the electromotive force generated in each infrared detection element individually. Therefore, the capacity of the storage area that holds the electromotive force output from each infrared detection element is required by the number of two-dimensionally arranged infrared detection elements. In addition, since the electromotive force is measured by switching two-dimensionally arranged infrared detection elements one by one, it takes time to read the electromotive force per frame.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a heat detection sensor array capable of reducing the capacity for storing an electromotive force and increasing the reading speed.
  • the heat detection sensor array of the present invention is a heat detection sensor array having a thermal infrared sensitive region in which a plurality of pixels are two-dimensionally arranged, and each pixel corresponds to the amount of incident heat.
  • Two thermal infrared sensitive parts including an infrared detecting element that outputs an electromotive force, and the two thermal infrared sensitive parts constituting each pixel are arranged between a thin film membrane part and an infrared absorbing film.
  • the thermal infrared sensitive parts of two thermal infrared sensitive parts constituting each pixel are connected in series across a plurality of pixels arranged in the first direction in the two-dimensional array.
  • the other thermal infrared sensitive parts of the two thermal infrared sensitive parts constituting each pixel are connected in series across a plurality of pixels arranged in the second direction in the two-dimensional array. That And butterflies.
  • one of the two thermal infrared sensitive parts constituting each pixel is connected in series in the first direction (for example, the row direction) of the two-dimensional array, and the other is the two-dimensional array.
  • the second direction for example, the column direction.
  • the electromotive force may be measured by switching in units of pixels in each of the first and second directions, and a conventional apparatus that measures the electromotive force by switching one element at a time. Compared to the above, it is possible to shorten the readout time of electromotive force per frame.
  • each of the two thermal infrared sensitive parts may be characterized in that an infrared detecting element is arranged in each of two substantially rectangular regions arranged in parallel in each pixel.
  • the membrane portion is formed by etching a part of the surface of the support substrate having a thin film formed on the surface so as to provide a gap between the support substrate and the thin film.
  • the etching hole formed in (2) may be formed between two thermal infrared sensitive parts.
  • the above-described heat detection sensor array can be suitably configured.
  • the planar shape of the membrane portion is a substantially rectangular shape, and a plurality of etching holes are formed side by side along the diagonal line of the membrane portion.
  • the planar shape of the membrane part includes at least a pair of sides, and the infrared detection element extends from the at least a pair of sides of the membrane part to the inside of the membrane part along a direction intersecting the sides. It is good.
  • FIG. 3 is a side sectional view showing a section taken along line III-III shown in FIG. It is a figure for demonstrating the method of specifying a light-receiving position.
  • FIG. 7 is a side cross-sectional view showing a cross section taken along line VII-VII shown in FIG. 6.
  • 1a, 1b heat detection sensor array, 2 (m, n), 3 (m, n) ... pixel, 10a, 10b ... thermal infrared sensitive region, 11a (m, n), 11b (m, n), 24a (M, n), 24b (m, n)... Thermal infrared sensitive part, 13, 19.
  • each of the parameters M and N is an integer of 2 or more.
  • the parameter m is an arbitrary integer from 1 to M
  • the parameter n is an arbitrary integer from 1 to N.
  • FIG. 1 is a schematic configuration diagram illustrating a heat detection sensor array according to the present embodiment.
  • the heat detection sensor array 1 includes a thermal infrared sensitive region 10 a, a first signal processing circuit 20, and a second signal processing circuit 30.
  • the thermal infrared sensitive region 10a is formed by two-dimensionally arranging pixels 2 (m, n) in M rows and N columns.
  • Each pixel 2 (m, n) includes a thermal infrared sensitive unit 11a (m, n) that outputs an electrical quantity (current, voltage, etc.) corresponding to the intensity of infrared light incident on each pixel 2 and thermal infrared.
  • the sensitive parts 11b (m, n) are arranged adjacent to each other in the same plane.
  • thermal infrared sensitive region 10a over a plurality of pixels 2 (m, 1) to 2 (m, N) arranged in the row direction (first direction, ie, the X-axis direction in FIG. 1) in the two-dimensional array, Among the plurality of thermal infrared sensitive parts 11a (m, n) and 11b (m, n), one thermal infrared sensitive part 11a (m, n) (for example, thermal infrared sensitive part 11a (1,1)) ⁇ 11a (1, N)) are electrically connected in series with each other.
  • a plurality of thermal infrared sensitive sections over a plurality of pixels 2 (1, n) to 2 (M, n) arranged in the column direction (second direction, ie, the Y-axis direction in FIG. 1) in the two-dimensional array.
  • 11a (m, n), 11b (m, n), the other thermal infrared sensitive parts 11b (m, n) (for example, thermal infrared sensitive parts 11b (1,1) to 11b (M, 1)) )
  • FIG. 2 is an enlarged view of the thermal infrared sensitive region 10a shown in FIG.
  • FIG. 3 is a side sectional view showing a section taken along line III-III shown in FIG.
  • the thermal infrared sensitive region 10a of the present embodiment is formed by so-called bulk micromachine technology, and a thermopile forming film 12, an infrared absorbing film 13, a silicon (Si) substrate 14, a first wiring 15, and a second wiring 16 are formed.
  • the silicon substrate 14 has a rectangular planar shape, and has a plurality of lattice portions 17 provided in the planar shape.
  • a region surrounded by the lattice portion 17 is an opening 14a, and a thermopile forming film 12 described later has a thin film structure (membrane structure).
  • the opening 14 a is preferably formed by selective wet etching with respect to the silicon substrate 14.
  • the opening 14a is formed in a shape that extends across the plurality of pixels 2 (m, n) in the column direction (second direction).
  • the thermopile forming film 12 is a film-like member that includes the thermal infrared sensitive portions 11a and 11b of each pixel 2 (m, n).
  • the thermopile forming film 12 is provided on the silicon substrate 14 so as to close the opening 14a.
  • the thermal infrared sensitive portions 11 a and 11 b are respectively constituted by a plurality of thermocouples (infrared detecting elements) T arranged inside the thermopile forming film 12.
  • the plurality of thermocouples (infrared detection elements) T are elements that output an electromotive force according to the amount of incident heat (infrared intensity), and are connected in series with each other in each of the thermal type infrared sensitive portions 11a and 11b.
  • the plurality of thermocouples T in each of the thermal infrared sensitive sections 11a and 11b are arranged in two substantially rectangular areas S1 and S2 arranged in parallel in each pixel 2 (m, n).
  • the thermopile forming film 12 has a structure in which an insulating film 12b is further formed thereon so as to cover a plurality of thermocouples T formed on the insulating thin film 12a. Further, the portion of the thin film 12 a that closes the opening 14 a constitutes a membrane portion in this embodiment, and a plurality of thermocouples T are disposed between the membrane portion and the infrared absorption film 13. In this embodiment, since the opening 14a extends across the plurality of pixels 2 (m, n) in the column direction (second direction), the planar shape of the membrane portion of the thin film 12a is the column direction (second A pair of sides L along the direction of ().
  • thermocouple T extends from the at least one pair of sides L of the membrane part to the inside of the membrane part along a direction intersecting the side.
  • the insulating thin film 12a and the insulating film 12b are made of, for example, SiO 2 , SiN or the like.
  • the infrared absorption film 13 is provided on the membrane portion of the thermopile forming film 12 for each pixel 2 (m, n), and defines an infrared detection region A1.
  • the infrared absorption film 13 is a film that converts incident energy (infrared rays) into heat, and in the present embodiment, the planar shape is rectangular (more preferably square).
  • the infrared absorption film 13 mainly includes a first layer (not shown) mainly containing TiN and a Si-based compound such as SiC, SiN, SiO 2 , Si 3 N 4 , or SiON.
  • the second layer (not shown) is provided.
  • the first wiring 15 electrically connects one thermal infrared sensitive part 11a (m, n) in each pixel 2 (m, n) in series in the row direction (first direction).
  • the pixels 2 (m, n) adjacent to each other extend in the row direction (first direction).
  • the first wiring 15 is made of, for example, aluminum.
  • one of the thermal infrared sensitive parts 11a (m, n) (for example, one of the thermal infrared sensitive parts 11a (1, 1) to 11a (1, 1) N)) are electrically connected in series to form a pixel array extending in the first direction in the thermal infrared sensitive region 10a.
  • the pixel array extending in the first direction is formed in N columns.
  • the first wiring 15 has one end connected to GND (ground) or COMMON (common) and the other end connected to the first signal processing circuit 20.
  • the second wiring 16 electrically connects the other thermal-type infrared sensitive part 11b (m, n) in each pixel 2 (m, n) in series in the column direction (second direction). Are provided extending in the column direction (second direction) between adjacent pixels 2 (m, n).
  • the second wiring 16 is made of, for example, aluminum.
  • the other thermal infrared sensitive parts 11b (m, n) are electrically connected in series to form a pixel array extending in the second direction in the thermal infrared sensitive region 10a.
  • the pixel array extending in the second direction is formed in M rows. Note that one end of the second wiring 16 is connected to GND (ground) or COMMON (common), and the other end is connected to the second signal processing circuit 30.
  • the first signal processing circuit 20 detects a voltage indicating the amount of heat of infrared rays incident on the thermal infrared sensitive region 10a for each pixel array in the first direction.
  • the second signal processing circuit 30 detects a voltage indicating the amount of heat of infrared rays incident on the thermal infrared sensitive region 10a for each pixel array in the second direction.
  • the first signal processing circuit 20 and the second signal processing circuit 30 may be operated at the same timing, or may be operated independently in time series order.
  • FIG. 4 is a diagram for explaining a method of specifying the light receiving position of the heat detection sensor array 1a of the present embodiment.
  • the heat detection sensor array 1a shown in FIG. 4 is formed by two-dimensionally arranging pixels in 8 columns ⁇ 8 rows.
  • the thermal infrared sensitive portions 11a of the pixels 2 (m, n) arranged at the incident positions A voltage signal is output from each of 11b.
  • the voltage signal output from the thermal infrared sensor 11a is detected by the first signal processing circuit 20 as an output signal of the pixel array in the first direction including the pixel 2 (m, n).
  • the voltage signal output from the thermal infrared sensor 11b is detected by the second signal processing circuit 30 as an output signal of the pixel array in the second direction including the pixel 2 (m, n).
  • a voltage signal is output from the pixel array in the second, third, fifth, and sixth columns with respect to the first direction, and a voltage signal from the third, fourth, and fifth rows with respect to the second direction. Is output.
  • the intensity of the voltage changes according to the number of light receiving pixels 2 (m, n) included in the pixel array. Then, the light receiving position is specified by calculating the pixel 2 (m, n) in which the output voltages in the first direction and the second direction overlap.
  • thermal detection sensor array 1 of this embodiment As shown in FIGS. 2 and 3, in the thermal detection sensor array 1 of the present embodiment, one thermal infrared sensitive part 11a of two thermal infrared sensitive parts constituting each pixel 2 (m, n). (M, n) are connected in series in the first direction (row direction) of the two-dimensional array, and the other thermal type infrared sensitive part 11b (m, n) is in the second direction (column) of the two-dimensional array. Direction).
  • an output signal corresponding to the infrared intensity can be obtained from the pixel array in the first direction including the pixel 2 (m, n) on which infrared rays are incident, and the pixel 2 (m, n). Since an output signal corresponding to the infrared intensity can be obtained from the pixel array in the second direction including the pixel 2, the pixel 2 (m, n) can be specified by specifying these pixel arrays. Thus, since it is sufficient to read out the output signal and hold the signal value for each pixel column in each of the first and second directions, the output signal value is held as compared with the case of reading and holding one pixel at a time. Therefore, the capacity of the storage area can be reduced.
  • the output signal reading speed is improved, and the change in the detected light can be detected at a higher speed.
  • FIG. 5 is a schematic configuration diagram showing the heat detection sensor array according to the present embodiment.
  • the heat detection sensor array 1 b according to the present embodiment includes a thermal infrared sensitive region 10 b, a first signal processing circuit 20, and a second signal processing circuit 30.
  • the pixels 3 (m, n) are two-dimensionally arranged in M rows and N columns.
  • Each pixel includes a thermal infrared sensitive unit 24a (m, n) and a thermal infrared sensitive unit 24b (m, n) that output electrical quantities (current, voltage, etc.) corresponding to the intensity of light incident on each pixel.
  • electrical quantities current, voltage, etc.
  • thermal infrared sensitive region 10b over a plurality of pixels 3 (m, 1) to 3 (m, N) arranged in the row direction (first direction, that is, the X-axis direction in FIG. 5) in the two-dimensional array, Among the plurality of thermal type infrared sensitive parts 24a (m, n) and 24b (m, n), one thermal type infrared sensitive part 24a (m, n) (for example, thermal type infrared sensitive part 24a (1,1)) ⁇ 24a (1, N)) are electrically connected in series with each other.
  • thermal infrared sensitive portions over a plurality of pixels 3 (1, n) to 3 (M, n) arranged in the column direction (second direction, ie, the Y-axis direction in FIG. 5) in the two-dimensional array.
  • 24a (m, n), 24b (m, n), the other thermal infrared sensitive parts 24b (m, n) (for example, thermal infrared sensitive parts 24b (1,1) to 24b (M, 1)) )
  • thermal infrared sensitive parts 24b for example, thermal infrared sensitive parts 24b (1,1) to 24b (M, 1)
  • FIG. 6 is an enlarged view of the thermal infrared sensitive region 10b shown in FIG.
  • FIG. 7 is a side sectional view showing a section taken along line VII-VII shown in FIG.
  • the thermal infrared sensitive region 10b of the present embodiment is formed by so-called surface micromachine technology, and a thermopile forming film 18, an infrared absorbing film 19, a silicon (Si) substrate 20, a first wiring 21, and a second wiring 22 are formed.
  • the silicon substrate 20 has a rectangular planar shape, and has a plurality of concave portions 20a formed in a rectangular planar shape on the surface side.
  • the recess 20a is preferably formed by wet etching, and constitutes a gap between the substrate 20 and the thermopile forming film 18.
  • the thermopile forming film 18 is a film-like member including the thermal infrared sensitive portions 24a and 24b of each pixel 3 (m, n) inside.
  • the thermopile forming film 18 is provided on the silicon substrate 20 so as to close the opening of the recess 20a.
  • the thermal-type infrared sensitive parts 24 a and 24 b are respectively constituted by a plurality of thermocouples (infrared detecting elements) T arranged inside the thermopile forming film 18.
  • the plurality of thermocouples T are connected in series with each other in each of the thermal infrared sensitive parts 24a and 24b. Further, the plurality of thermocouples T in each of the thermal infrared sensitive parts 24a and 24b are arranged in two regions R1 and R2 arranged in parallel in each pixel 3 (m, n), respectively.
  • the thermopile forming film 18 has a structure in which an insulating film 18b is further formed thereon so as to cover a plurality of thermocouples T formed on the insulating thin film 18a. Is made.
  • the portion of the thin film 18 a that closes the recess 20 a constitutes a membrane portion in the present embodiment, and a plurality of thermocouples T are disposed between the membrane portion and the infrared absorption film 19.
  • the planar shape of the recess 20a is formed in a rectangular shape
  • the planar shape of the membrane portion of the thin film 18a is also a rectangular shape.
  • a plurality of holes (etching holes) 23 are formed along the diagonal line of the membrane portion.
  • the plurality of holes 23 are used when a part of the surface of the silicon substrate 20 is etched to form the recess 20a. Further, the plurality of holes 23 of the present embodiment are formed between the two thermal infrared sensitive parts 24a and 24b, and the thermal infrared sensitive parts 24a and 24b are divided from each other by the multiple holes 23.
  • the planar shape of the membrane portion is rectangular, the planar shape of the membrane portion is along a pair of sides L1 along the row direction (first direction) and along the column direction (second direction). Another pair of sides L2 is included.
  • the thermocouple T extends from the pair of sides L1 and L2 of the membrane part to the inside of the membrane part along a direction intersecting the side.
  • the infrared absorption film 19 is provided on the membrane portion of the thermopile forming film 18 for each pixel 3 (m, n), and defines an infrared detection region A2.
  • the infrared absorbing film 19 is a film that converts incident energy (infrared rays) into heat, and in the present embodiment, the planar shape is rectangular (more preferably square). Since the recess 20a is formed on the surface of the silicon substrate 20 corresponding to the infrared detection region A2, the infrared absorption film 19 forms a membrane structure together with the thermopile formation film 18.
  • the first wiring 21 electrically connects one thermal infrared sensitive part 24a (m, n) in each pixel 3 (m, n) in series in the row direction (first direction).
  • the pixels 3 (m, n) adjacent to each other extend in the row direction (first direction).
  • the first wiring 21 is made of, for example, aluminum.
  • one of the thermal infrared sensitive parts 24a (m, n) (for example, one of the thermal infrared sensitive parts 24a (1, 1) to 24 a (1, N)) are electrically connected in series to form a pixel array extending in the first direction in the thermal infrared sensitive region 10b.
  • the pixel array extending in the first direction is formed in N columns.
  • the first wiring 21 has one end connected to GND (ground) or COMMON (common) and the other end connected to the first signal processing circuit 20.
  • the second wiring 22 electrically connects the other thermal-type infrared sensitive part 24b (m, n) in each pixel 3 (m, n) in the column direction (second direction) in the column direction.
  • the pixels 3 (m, n) adjacent to each other extend in the column direction (second direction).
  • the second wiring 22 is made of, for example, aluminum.
  • the other thermal infrared sensitive parts 24b (m, n) (for example, the other thermal infrared sensitive parts 24b (1,1) -24b ( M, 1)) are electrically connected in series to form a pixel array extending in the second direction in the thermal infrared sensitive region 10b.
  • the pixel array extending in the second direction is formed in M rows.
  • the second wiring 22 has one end connected to GND (ground) or COMMON (common) and the other end connected to the second signal processing circuit 30.
  • thermal infrared sensitive region 10b of the present embodiment the same effects as those of the thermal infrared sensitive region 10a of the first embodiment can be obtained.
  • the heat detection sensor array according to the present invention is not limited to the above-described embodiments, and various other modifications are possible.
  • the thermal detection sensor array of the above embodiment has a bulk micromachine type or surface micromachine type configuration, but the thermal infrared sensitive part constituting each pixel is arranged between the thin film membrane part and the infrared absorption film. Any other form may be used.
  • the present invention provides a heat detection sensor array in which the capacity for storing electromotive force can be reduced and the readout speed can be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Provided is a heat-detecting sensor array having thermal-type infrared sensing regions, in which a plurality of pixels are arrayed two-dimensionally. Of two thermal-type infrared sensing units (11a (m, n) and 11b (m, n)) constituting the individual pixels, the thermal-type infrared sensing units (11a (m, n)) of one side are connected in series with each other over a plurality of pixels 2(m, n) arrayed in a first direction of the two-dimensional array. Of the two thermal-type infrared sensing units (11a (m, n) and 11b (m, n)) constituting the individual pixels (2(m, n)), the thermal-type infrared sensing units (11a (m, n)) of the other side are connected in series with each other over the plural pixels (2(m, n)) arrayed in a second direction of the two-dimensional array.

Description

熱検出センサアレイThermal detection sensor array
 本発明は、熱検出センサアレイに関するものである。 The present invention relates to a heat detection sensor array.
 従来の熱検出センサアレイとしては、例えば特許文献1または特許文献2に記載されたものがある。特許文献1には、発熱体位置検出装置が開示されている。この装置では、各珪化鉄センサの両端に接続されたスイッチを順次開閉操作することによって、それぞれの珪化鉄センサにおける起電力を測定し、測定された起電力を記憶する。そして、記憶された起電力の中から最大起電力を出力した珪化鉄センサを検索することで赤外線入射位置を決定している。 Examples of conventional heat detection sensor arrays include those described in Patent Document 1 or Patent Document 2. Patent Document 1 discloses a heating element position detection device. In this apparatus, the electromotive force in each iron silicide sensor is measured by sequentially opening and closing the switches connected to both ends of each iron silicide sensor, and the measured electromotive force is stored. And the infrared incident position is determined by searching the iron silicide sensor which output the maximum electromotive force from the memorize | stored electromotive force.
 また、特許文献2には、赤外線検出装置が開示されている。この装置では、2次元配列された赤外線検出素子に、垂直方向デコーダおよび水平方向デコーダを設け、各デコーダのスイッチング操作によって各赤外線検出素子から発生する起電力をそれぞれ測定している。
特開平5-149738号公報 特開2005-303720号公報
Patent Document 2 discloses an infrared detection device. In this apparatus, a vertical direction decoder and a horizontal direction decoder are provided in two-dimensionally arranged infrared detection elements, and the electromotive force generated from each infrared detection element by the switching operation of each decoder is measured.
Japanese Patent Laid-Open No. 5-14938 JP 2005-303720 A
 しかしながら、上述の従来技術は、各赤外線検出素子において発生する起電力をそれぞれ個別に測定している。そのため、各赤外線検出素子から出力された起電力を保持する記憶領域の容量が、2次元配列された赤外線検出素子の数だけ必要になる。また、2次元配列された赤外線検出素子を1素子ずつスイッチングして起電力を測定するので、1フレームあたりの起電力の読み出しに時間を要する。 However, the above-described conventional technology measures the electromotive force generated in each infrared detection element individually. Therefore, the capacity of the storage area that holds the electromotive force output from each infrared detection element is required by the number of two-dimensionally arranged infrared detection elements. In addition, since the electromotive force is measured by switching two-dimensionally arranged infrared detection elements one by one, it takes time to read the electromotive force per frame.
 本発明は、上記課題を鑑みてなされたものであり、起電力を記憶する容量を小さくでき、読み出し速度を速くできる熱検出センサアレイを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a heat detection sensor array capable of reducing the capacity for storing an electromotive force and increasing the reading speed.
 上記課題を解決するために、本発明の熱検出センサアレイは、複数の画素が2次元配列された熱型赤外線感応領域を有する熱検出センサアレイであって、各画素は、入射した熱量に応じた起電力を出力する赤外線検出素子を含む2つの熱型赤外線感応部を有しており、各画素を構成する2つの熱型赤外線感応部は、薄膜状のメンブレン部と赤外線吸収膜との間に配置されており、2次元配列における第1の方向に配列されている複数の画素にわたって、各画素を構成する2つの熱型赤外線感応部のうち一方の熱型赤外線感応部同士が直列に接続されており、2次元配列における第2の方向に配列されている複数の画素にわたって、各画素を構成する2つの熱型赤外線感応部のうち他方の熱型赤外線感応部同士が直列に接続されていることを特徴とする。 In order to solve the above problems, the heat detection sensor array of the present invention is a heat detection sensor array having a thermal infrared sensitive region in which a plurality of pixels are two-dimensionally arranged, and each pixel corresponds to the amount of incident heat. Two thermal infrared sensitive parts including an infrared detecting element that outputs an electromotive force, and the two thermal infrared sensitive parts constituting each pixel are arranged between a thin film membrane part and an infrared absorbing film. The thermal infrared sensitive parts of two thermal infrared sensitive parts constituting each pixel are connected in series across a plurality of pixels arranged in the first direction in the two-dimensional array. The other thermal infrared sensitive parts of the two thermal infrared sensitive parts constituting each pixel are connected in series across a plurality of pixels arranged in the second direction in the two-dimensional array. That And butterflies.
 上記した熱検出センサアレイにおいては、各画素を構成する2つの熱型赤外線感応部の一方が2次元配列の第1の方向(例えば行方向)に直列に接続されており、他方が2次元配列の第2の方向(例えば列方向)に直列に接続されている。このような構成において、或る画素に赤外線が入射すると、当該画素を含む第1の方向の画素配列から赤外線強度に応じた起電力を得ることができ、また、当該画素を含む第2の方向の画素配列から赤外線強度に応じた起電力を得ることができるので、これらの画素配列を特定することにより当該画素を特定することができる。したがって、上記した熱検出センサアレイによれば、第1および第2の方向それぞれにおける画素配列毎に起電力の値を保持すれば足りるので、起電力値を保持するための記憶領域の容量を小さくすることができる。また、上記起電力を測定する際には、第1および第2の方向それぞれの画素配列単位でスイッチングして起電力を測定すればよく、1素子ずつスイッチングして起電力を測定する従来の装置と比較して1フレームあたりの起電力の読み出し時間を短縮することが可能となる。 In the above-described heat detection sensor array, one of the two thermal infrared sensitive parts constituting each pixel is connected in series in the first direction (for example, the row direction) of the two-dimensional array, and the other is the two-dimensional array. Are connected in series in the second direction (for example, the column direction). In such a configuration, when infrared light is incident on a certain pixel, an electromotive force corresponding to the infrared intensity can be obtained from the pixel array in the first direction including the pixel, and the second direction including the pixel. Since the electromotive force corresponding to the infrared intensity can be obtained from the pixel array, the pixel can be specified by specifying these pixel arrays. Therefore, according to the above-described heat detection sensor array, it is sufficient to hold the value of the electromotive force for each pixel arrangement in each of the first and second directions, so that the capacity of the storage area for holding the electromotive force value can be reduced. can do. Further, when measuring the electromotive force, the electromotive force may be measured by switching in units of pixels in each of the first and second directions, and a conventional apparatus that measures the electromotive force by switching one element at a time. Compared to the above, it is possible to shorten the readout time of electromotive force per frame.
 また、2つの熱型赤外線感応部それぞれは、各画素内に並設された2つの略矩形状の領域それぞれに赤外線検出素子が配列されて成ることを特徴としてもよい。或いは、メンブレン部が、表面に薄膜が形成された支持基板の該表面の一部をエッチングして支持基板と薄膜との間に隙間を設けることにより形成されており、該エッチングを行うために薄膜に形成されるエッチングホールが、2つの熱型赤外線感応部の間に形成されていることを特徴としてもよい。これらにより、上記した熱検出センサアレイを好適に構成することができる。後者の場合、メンブレン部の平面形状が略矩形状であり、複数のエッチングホールが、メンブレン部の対角線に沿って並んで形成されていると尚良い。 Further, each of the two thermal infrared sensitive parts may be characterized in that an infrared detecting element is arranged in each of two substantially rectangular regions arranged in parallel in each pixel. Alternatively, the membrane portion is formed by etching a part of the surface of the support substrate having a thin film formed on the surface so as to provide a gap between the support substrate and the thin film. The etching hole formed in (2) may be formed between two thermal infrared sensitive parts. Thus, the above-described heat detection sensor array can be suitably configured. In the latter case, it is more preferable that the planar shape of the membrane portion is a substantially rectangular shape, and a plurality of etching holes are formed side by side along the diagonal line of the membrane portion.
 また、メンブレン部の平面形状が少なくとも一対の辺を含んでおり、赤外線検出素子は、メンブレン部の少なくとも一対の辺から当該辺と交差する方向に沿ってメンブレン部の内側へ延びていることを特徴としてもよい。 Further, the planar shape of the membrane part includes at least a pair of sides, and the infrared detection element extends from the at least a pair of sides of the membrane part to the inside of the membrane part along a direction intersecting the sides. It is good.
 本発明によれば、起電力を記憶する容量を小さくでき、読み出し速度を速くできる熱検出センサアレイを提供することができる。 According to the present invention, it is possible to provide a heat detection sensor array capable of reducing the capacity for storing the electromotive force and increasing the reading speed.
本発明による熱検出センサアレイの第1実施形態の概略構成図である。It is a schematic block diagram of 1st Embodiment of the heat detection sensor array by this invention. 図1に示す熱型赤外線感応領域の拡大図である。It is an enlarged view of the thermal type infrared sensitive area | region shown in FIG. 図1に示すIII-III線に沿った断面を示す側面断面図である。FIG. 3 is a side sectional view showing a section taken along line III-III shown in FIG. 受光位置を特定する方法を説明するための図である。It is a figure for demonstrating the method of specifying a light-receiving position. 本発明による熱検出センサアレイの第2実施形態の概略構成図である。It is a schematic block diagram of 2nd Embodiment of the heat detection sensor array by this invention. 図5示す熱型赤外線感応領域の拡大図である。It is an enlarged view of the thermal type infrared sensitive area | region shown in FIG. 図6に示すVII-VII線に沿った断面を示す側面断面図である。FIG. 7 is a side cross-sectional view showing a cross section taken along line VII-VII shown in FIG. 6.
符号の説明Explanation of symbols
 1a,1b…熱検出センサアレイ、2(m,n),3(m,n)…画素、10a,10b…熱型赤外線感応領域、11a(m,n),11b(m,n),24a(m,n),24b(m,n)…熱型赤外線感応部、13,19…赤外線吸収膜。 1a, 1b ... heat detection sensor array, 2 (m, n), 3 (m, n) ... pixel, 10a, 10b ... thermal infrared sensitive region, 11a (m, n), 11b (m, n), 24a (M, n), 24b (m, n)... Thermal infrared sensitive part, 13, 19.
 以下、図面を参照しつつ本発明に係る熱検出センサアレイの好適な実施形態について詳細に説明する。なお、図面の説明において、同一又は相当部分には同一符号を付し、重複する説明を省略する。以下では、パラメータMおよびNそれぞれを2以上の整数とする。また、特に明示しない限りは、パラメータmを1以上M以下の任意の整数とし、パラメータnを1以上N以下の任意の整数とする。 Hereinafter, a preferred embodiment of a heat detection sensor array according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Hereinafter, each of the parameters M and N is an integer of 2 or more. Unless otherwise specified, the parameter m is an arbitrary integer from 1 to M, and the parameter n is an arbitrary integer from 1 to N.
 (第1の実施形態)
 図1は、本実施形態に係る熱検出センサアレイを示す概略構成図である。本実施形態に係る熱検出センサアレイ1は、図1に示されるように、熱型赤外線感応領域10aと、第1信号処理回路20と、第2信号処理回路30とを有している。熱型赤外線感応領域10aは、画素2(m,n)がM行N列に2次元配列されてなる。各画素2(m,n)は、各々に入射した赤外光の強度に応じた電気的な量(電流、電圧など)を出力する熱型赤外線感応部11a(m,n)および熱型赤外線感応部11b(m,n)が同一面内にて隣接して配設されることにより構成されている。
(First embodiment)
FIG. 1 is a schematic configuration diagram illustrating a heat detection sensor array according to the present embodiment. As shown in FIG. 1, the heat detection sensor array 1 according to the present embodiment includes a thermal infrared sensitive region 10 a, a first signal processing circuit 20, and a second signal processing circuit 30. The thermal infrared sensitive region 10a is formed by two-dimensionally arranging pixels 2 (m, n) in M rows and N columns. Each pixel 2 (m, n) includes a thermal infrared sensitive unit 11a (m, n) that outputs an electrical quantity (current, voltage, etc.) corresponding to the intensity of infrared light incident on each pixel 2 and thermal infrared. The sensitive parts 11b (m, n) are arranged adjacent to each other in the same plane.
 熱型赤外線感応領域10aにおいては、2次元配列における行方向(第1の方向すなわち図1におけるX軸方向)に配列された複数の画素2(m,1)~2(m,N)にわたって、複数の熱型赤外線感応部11a(m,n)、11b(m,n)のうち一方の熱型赤外線感応部11a(m,n)同士(例えば、熱型赤外線感応部11a(1,1)~11a(1,N))が互いに電気的に直列接続されている。また、2次元配列における列方向(第2の方向すなわち図1におけるY軸方向)に配列された複数の画素2(1,n)~2(M,n)にわたって、複数の熱型赤外線感応部11a(m,n)、11b(m,n)のうち他方の熱型赤外線感応部11b(m,n)同士(例えば、熱型赤外線感応部11b(1,1)~11b(M,1))が互いに電気的に直列接続されている。 In the thermal infrared sensitive region 10a, over a plurality of pixels 2 (m, 1) to 2 (m, N) arranged in the row direction (first direction, ie, the X-axis direction in FIG. 1) in the two-dimensional array, Among the plurality of thermal infrared sensitive parts 11a (m, n) and 11b (m, n), one thermal infrared sensitive part 11a (m, n) (for example, thermal infrared sensitive part 11a (1,1)) ˜11a (1, N)) are electrically connected in series with each other. In addition, a plurality of thermal infrared sensitive sections over a plurality of pixels 2 (1, n) to 2 (M, n) arranged in the column direction (second direction, ie, the Y-axis direction in FIG. 1) in the two-dimensional array. 11a (m, n), 11b (m, n), the other thermal infrared sensitive parts 11b (m, n) (for example, thermal infrared sensitive parts 11b (1,1) to 11b (M, 1)) ) Are electrically connected in series with each other.
 ここで、図2および図3を参照して熱型赤外線感応領域10aの構成についてより詳細に説明する。図2は、図1に示す熱型赤外線感応領域10aの拡大図である。また、図3は、図2に示すIII-III線に沿った断面を示す側面断面図である。本実施形態の熱型赤外線感応領域10aは、いわゆるバルクマイクロマシン技術によって形成され、サーモパイル形成膜12と、赤外線吸収膜13と、シリコン(Si)基板14と、第1配線15と、第2配線16とを備える。シリコン基板14は、矩形の平面形状を有しており、その平面形状内に設けられた複数の格子部17を有する。格子部17によって囲まれる領域は開口14aとなっており、後述するサーモパイル形成膜12を薄膜構造(メンブレン構造)としている。なお、この開口14aは、シリコン基板14に対する選択的ウェットエッチングにより好適に形成される。また、本実施形態では、開口14aは列方向(第2の方向)の複数の画素2(m、n)に跨って延伸する形状に形成されている。 Here, the configuration of the thermal infrared sensitive region 10a will be described in more detail with reference to FIG. 2 and FIG. FIG. 2 is an enlarged view of the thermal infrared sensitive region 10a shown in FIG. FIG. 3 is a side sectional view showing a section taken along line III-III shown in FIG. The thermal infrared sensitive region 10a of the present embodiment is formed by so-called bulk micromachine technology, and a thermopile forming film 12, an infrared absorbing film 13, a silicon (Si) substrate 14, a first wiring 15, and a second wiring 16 are formed. With. The silicon substrate 14 has a rectangular planar shape, and has a plurality of lattice portions 17 provided in the planar shape. A region surrounded by the lattice portion 17 is an opening 14a, and a thermopile forming film 12 described later has a thin film structure (membrane structure). The opening 14 a is preferably formed by selective wet etching with respect to the silicon substrate 14. In the present embodiment, the opening 14a is formed in a shape that extends across the plurality of pixels 2 (m, n) in the column direction (second direction).
 サーモパイル形成膜12は、各画素2(m,n)の熱型赤外線感応部11a,11bを内部に含む膜状の部材である。サーモパイル形成膜12は、開口14aを塞ぐようにシリコン基板14上に設けられている。熱型赤外線感応部11a,11bは、サーモパイル形成膜12の内部に配列された複数の熱電対(赤外線検出素子)Tによってそれぞれ構成されている。複数の熱電対(赤外線検出素子)Tは、入射した熱量(赤外線強度)に応じた起電力を出力する素子であり、各熱型赤外線感応部11a,11bのそれぞれにおいて互いに直列に接続されている。また、各熱型赤外線感応部11a,11bにおける複数の熱電対Tは、各画素2(m、n)内に並設された2つの略矩形状の領域S1,S2にそれぞれ配列されている。 The thermopile forming film 12 is a film-like member that includes the thermal infrared sensitive portions 11a and 11b of each pixel 2 (m, n). The thermopile forming film 12 is provided on the silicon substrate 14 so as to close the opening 14a. The thermal infrared sensitive portions 11 a and 11 b are respectively constituted by a plurality of thermocouples (infrared detecting elements) T arranged inside the thermopile forming film 12. The plurality of thermocouples (infrared detection elements) T are elements that output an electromotive force according to the amount of incident heat (infrared intensity), and are connected in series with each other in each of the thermal type infrared sensitive portions 11a and 11b. . In addition, the plurality of thermocouples T in each of the thermal infrared sensitive sections 11a and 11b are arranged in two substantially rectangular areas S1 and S2 arranged in parallel in each pixel 2 (m, n).
 サーモパイル形成膜12は、絶縁性の薄膜12a上に形成された複数の熱電対Tを覆うように絶縁膜12bがその上に更に形成された構造を成している。また、薄膜12aのうち開口14aを塞ぐ部分は本実施形態においてメンブレン部を構成しており、複数の熱電対Tはこのメンブレン部と赤外線吸収膜13との間に配置されている。本実施形態では、開口14aが列方向(第2の方向)の複数の画素2(m、n)に跨って延伸しているので、薄膜12aのメンブレン部の平面形状は、列方向(第2の方向)に沿った一対の辺Lを含んでいる。そして、熱電対Tは、メンブレン部の少なくとも一対の辺Lから当該辺と交差する方向に沿ってメンブレン部の内側へ延びている。なお、絶縁性の薄膜12aおよび絶縁膜12bは、例えばSiO、SiN等からなる。 The thermopile forming film 12 has a structure in which an insulating film 12b is further formed thereon so as to cover a plurality of thermocouples T formed on the insulating thin film 12a. Further, the portion of the thin film 12 a that closes the opening 14 a constitutes a membrane portion in this embodiment, and a plurality of thermocouples T are disposed between the membrane portion and the infrared absorption film 13. In this embodiment, since the opening 14a extends across the plurality of pixels 2 (m, n) in the column direction (second direction), the planar shape of the membrane portion of the thin film 12a is the column direction (second A pair of sides L along the direction of (). The thermocouple T extends from the at least one pair of sides L of the membrane part to the inside of the membrane part along a direction intersecting the side. The insulating thin film 12a and the insulating film 12b are made of, for example, SiO 2 , SiN or the like.
 赤外線吸収膜13は、各画素2(m、n)毎にサーモパイル形成膜12のメンブレン部上に設けられており、赤外線検出領域A1を規定している。赤外線吸収膜13は、入射されるエネルギ(赤外線)を熱に変換する膜であり、本実施形態ではその平面形状が矩形状(より好ましくは正方形状)となっている。赤外線吸収膜13は、TiNを主に含む第1の層(図示しない)と、SiC、SiN、SiO、Si、或いはSiON等のSi系化合物を主に含み第1の層上に設けられる第2の層(図示しない)とから形成されている。 The infrared absorption film 13 is provided on the membrane portion of the thermopile forming film 12 for each pixel 2 (m, n), and defines an infrared detection region A1. The infrared absorption film 13 is a film that converts incident energy (infrared rays) into heat, and in the present embodiment, the planar shape is rectangular (more preferably square). The infrared absorption film 13 mainly includes a first layer (not shown) mainly containing TiN and a Si-based compound such as SiC, SiN, SiO 2 , Si 3 N 4 , or SiON. The second layer (not shown) is provided.
 第1配線15は、各画素2(m,n)における一方の熱型赤外線感応部11a(m,n)を行方向(第1の方向)にわたって電気的に直列接続するものであり、行方向に隣り合う画素2(m,n)間を行方向(第1の方向)に延びて設けられている。第1配線15は、例えばアルミニウムにより形成されている。このように、各画素2(m,n)における一方の熱型赤外線感応部11a(m,n)を第1配線15によって接続することにより、2次元配列における第1の方向に配列された画素2(m,1)~2(m,N)にわたって、一方の熱型赤外線感応部11a(m,n)同士(例えば、一方の熱型赤外線感応部11a(1,1)~11a(1,N))が電気的に直列接続されて、熱型赤外線感応領域10aにおいて第1の方向に延びる画素配列が構成される。この第1の方向に延びる画素配列は、N列形成されることになる。なお、第1配線15は、一方の端部がGND(接地)またはCOMMON(共通)に接続され、他方の端部が第1信号処理回路20に接続される。 The first wiring 15 electrically connects one thermal infrared sensitive part 11a (m, n) in each pixel 2 (m, n) in series in the row direction (first direction). The pixels 2 (m, n) adjacent to each other extend in the row direction (first direction). The first wiring 15 is made of, for example, aluminum. Thus, by connecting one thermal infrared sensitive part 11a (m, n) in each pixel 2 (m, n) by the first wiring 15, the pixels arranged in the first direction in the two-dimensional array. 2 (m, 1) to 2 (m, N), one of the thermal infrared sensitive parts 11a (m, n) (for example, one of the thermal infrared sensitive parts 11a (1, 1) to 11a (1, 1) N)) are electrically connected in series to form a pixel array extending in the first direction in the thermal infrared sensitive region 10a. The pixel array extending in the first direction is formed in N columns. The first wiring 15 has one end connected to GND (ground) or COMMON (common) and the other end connected to the first signal processing circuit 20.
 第2配線16は、各画素2(m,n)における他方の熱型赤外線感応部11b(m,n)を列方向(第2の方向)にわたって電気的に直列接続するものであり、列方向に隣り合う画素2(m,n)間を列方向(第2の方向)に延びて設けられている。第2配線16は、例えばアルミニウムにより形成されている。このように、各画素2(m,n)における他方の熱型赤外線感応部11b(m,n)を第2配線16によって接続することにより、2次元配列における第2の方向に配列された複数の画素2(1,n)~2(M,n)にわたって、他方の熱型赤外線感応部11b(m,n)同士(例えば、他方の熱型赤外線感応部11b(1,1)~11b(M,1))が電気的に直列接続されて、熱型赤外線感応領域10aにおいて第2の方向に延びる画素配列が構成される。この第2の方向に延びる画素配列は、M行形成されることになる。なお、第2配線16は、一方の端部がGND(接地)またはCOMMON(共通)に接続され、他方の端部が第2信号処理回路30に接続される。 The second wiring 16 electrically connects the other thermal-type infrared sensitive part 11b (m, n) in each pixel 2 (m, n) in series in the column direction (second direction). Are provided extending in the column direction (second direction) between adjacent pixels 2 (m, n). The second wiring 16 is made of, for example, aluminum. Thus, by connecting the other thermal-type infrared sensitive part 11b (m, n) in each pixel 2 (m, n) by the second wiring 16, a plurality of arrays arranged in the second direction in the two-dimensional array. Over the other pixels 2 (1, n) to 2 (M, n) of the other thermal infrared sensitive parts 11b (m, n) (for example, the other thermal infrared sensitive parts 11b (1,1) to 11b ( M, 1)) are electrically connected in series to form a pixel array extending in the second direction in the thermal infrared sensitive region 10a. The pixel array extending in the second direction is formed in M rows. Note that one end of the second wiring 16 is connected to GND (ground) or COMMON (common), and the other end is connected to the second signal processing circuit 30.
 第1信号処理回路20は、熱型赤外線感応領域10aに入射した赤外線の熱量を示す電圧を、第1の方向の各画素配列毎に検出する。第2信号処理回路30は、熱型赤外線感応領域10aに入射した赤外線の熱量を示す電圧を、第2の方向の各画素配列毎に検出する。第1信号処理回路20および第2信号処理回路30は、同じタイミングにて動作させてもよく、時系列順で独立して動作させてもよい。 The first signal processing circuit 20 detects a voltage indicating the amount of heat of infrared rays incident on the thermal infrared sensitive region 10a for each pixel array in the first direction. The second signal processing circuit 30 detects a voltage indicating the amount of heat of infrared rays incident on the thermal infrared sensitive region 10a for each pixel array in the second direction. The first signal processing circuit 20 and the second signal processing circuit 30 may be operated at the same timing, or may be operated independently in time series order.
 ここで、図4は、本実施形態の熱検出センサアレイ1aの受光位置を特定する方法を説明するための図である。図4に示す熱検出センサアレイ1aは、画素が8列×8行に2次元配列されて成る。図4に示すように、例えば丸で囲った位置C1,C2に赤外光が入射されると、入射された位置に配列されている画素2(m,n)の熱型赤外線感応部11a、11bのそれぞれから電圧信号が出力される。そして、熱型赤外線感応部11aから出力された電圧信号は、第1信号処理回路20において当該画素2(m,n)を含む第1の方向の画素配列の出力信号として検出される。また、熱型赤外線感応部11bから出力された電圧信号は、第2信号処理回路30において当該画素2(m,n)を含む第2の方向の画素配列の出力信号として検出される。例えば、図4の場合、第1の方向に関しては2,3,5,及び6列目の画素配列から電圧信号が出力され、第2の方向に関しては3,4,及び5行目から電圧信号が出力される。電圧の強度は、当該画素配列に含まれる受光画素2(m,n)の数に応じて変化する。そして、第1の方向および第2の方向の出力電圧が重なり合う画素2(m,n)を算出することで、受光位置を特定する。 Here, FIG. 4 is a diagram for explaining a method of specifying the light receiving position of the heat detection sensor array 1a of the present embodiment. The heat detection sensor array 1a shown in FIG. 4 is formed by two-dimensionally arranging pixels in 8 columns × 8 rows. As shown in FIG. 4, when infrared light is incident on, for example, circled positions C1 and C2, the thermal infrared sensitive portions 11a of the pixels 2 (m, n) arranged at the incident positions, A voltage signal is output from each of 11b. The voltage signal output from the thermal infrared sensor 11a is detected by the first signal processing circuit 20 as an output signal of the pixel array in the first direction including the pixel 2 (m, n). In addition, the voltage signal output from the thermal infrared sensor 11b is detected by the second signal processing circuit 30 as an output signal of the pixel array in the second direction including the pixel 2 (m, n). For example, in the case of FIG. 4, a voltage signal is output from the pixel array in the second, third, fifth, and sixth columns with respect to the first direction, and a voltage signal from the third, fourth, and fifth rows with respect to the second direction. Is output. The intensity of the voltage changes according to the number of light receiving pixels 2 (m, n) included in the pixel array. Then, the light receiving position is specified by calculating the pixel 2 (m, n) in which the output voltages in the first direction and the second direction overlap.
 本実施形態の熱検出センサアレイ1による効果について説明する。図2及び図3に示したように、本実施形態の熱検出センサアレイ1では、各画素2(m,n)を構成する2つの熱型赤外線感応部のうち一方の熱型赤外線感応部11a(m,n)が2次元配列の第1の方向(行方向)に直列に接続されており、他方の熱型赤外線感応部11b(m,n)が2次元配列の第2の方向(列方向)に直列に接続されている。このような構成により、赤外線が入射した画素2(m,n)を含む第1の方向の画素配列から赤外線強度に応じた出力信号を得ることができ、また、当該画素2(m,n)を含む第2の方向の画素配列から赤外線強度に応じた出力信号を得ることができるので、これらの画素配列を特定することにより当該画素2(m,n)を特定することができる。このように、第1および第2の方向それぞれにおける画素列毎に出力信号の読み出し及び信号値の保持を行えば足りるので、一画素ずつ読み出して保持する場合と比較して出力信号値を保持するための記憶領域の容量を小さくすることができる。加えて、出力信号の読み出しの速度が向上し、被検出光の変化をより高速に検出することができる。また、出力信号を測定する際には、第1および第2の方向それぞれの画素列単位でスイッチングして出力信号を測定すればよいので、例えば1画素あたりの読み出し時間を1msとすると、第1の方向の画素配列が8列、第2の方向の画素配列が8列である場合に各画素配列からの信号を順に読み出した場合に必要な時間は16msであり、第1の方向と第2の方向とを並行して読み出した場合に必要な時間は8msとなる。従来は、出力信号を1画素ずつ読み出していたために、全画素の出力信号を読み出すのに64ms(8×8=64)の読み出し時間を必要としていたので、本実施形態の熱検出センサアレイ1aによれば、1フレームあたりの読み出し時間を大幅に短縮することができる。 The effect of the heat detection sensor array 1 of this embodiment will be described. As shown in FIGS. 2 and 3, in the thermal detection sensor array 1 of the present embodiment, one thermal infrared sensitive part 11a of two thermal infrared sensitive parts constituting each pixel 2 (m, n). (M, n) are connected in series in the first direction (row direction) of the two-dimensional array, and the other thermal type infrared sensitive part 11b (m, n) is in the second direction (column) of the two-dimensional array. Direction). With such a configuration, an output signal corresponding to the infrared intensity can be obtained from the pixel array in the first direction including the pixel 2 (m, n) on which infrared rays are incident, and the pixel 2 (m, n). Since an output signal corresponding to the infrared intensity can be obtained from the pixel array in the second direction including the pixel 2, the pixel 2 (m, n) can be specified by specifying these pixel arrays. Thus, since it is sufficient to read out the output signal and hold the signal value for each pixel column in each of the first and second directions, the output signal value is held as compared with the case of reading and holding one pixel at a time. Therefore, the capacity of the storage area can be reduced. In addition, the output signal reading speed is improved, and the change in the detected light can be detected at a higher speed. Further, when measuring the output signal, the output signal may be measured by switching in units of pixel columns in the first and second directions. For example, if the readout time per pixel is 1 ms, the first When the pixel array in the direction of 8 has 8 columns and the pixel array in the second direction has 8 columns, the time required for sequentially reading signals from each pixel array is 16 ms, and the first direction and the second direction The time required for reading in parallel with the direction of is 8 ms. Conventionally, since the output signal is read out pixel by pixel, a read time of 64 ms (8 × 8 = 64) is required to read out the output signals of all the pixels. Accordingly, the readout time per frame can be greatly shortened.
 (第2の実施形態)
 図5は、本実施形態に係る熱検出センサアレイを示す概略構成図である。本実施形態に係る熱検出センサアレイ1bは、図5に示されるように、熱型赤外線感応領域10bと、第1信号処理回路20と、第2信号処理回路30とを有している。熱型赤外線感応領域10bは、画素3(m,n)がM行N列に2次元配列されている。1画素は、各々に入射した光の強度に応じた電気的な量(電流、電圧など)を出力する熱型赤外線感応部24a(m,n)および熱型赤外線感応部24b(m,n)が同一面内にて隣接して配設されることにより構成されている。
(Second Embodiment)
FIG. 5 is a schematic configuration diagram showing the heat detection sensor array according to the present embodiment. As shown in FIG. 5, the heat detection sensor array 1 b according to the present embodiment includes a thermal infrared sensitive region 10 b, a first signal processing circuit 20, and a second signal processing circuit 30. In the thermal infrared sensitive region 10b, the pixels 3 (m, n) are two-dimensionally arranged in M rows and N columns. Each pixel includes a thermal infrared sensitive unit 24a (m, n) and a thermal infrared sensitive unit 24b (m, n) that output electrical quantities (current, voltage, etc.) corresponding to the intensity of light incident on each pixel. Are arranged adjacent to each other in the same plane.
 熱型赤外線感応領域10bにおいては、2次元配列における行方向(第1の方向すなわち図5におけるX軸方向)に配列された複数の画素3(m,1)~3(m,N)にわたって、複数の熱型赤外線感応部24a(m,n)、24b(m,n)のうち一方の熱型赤外線感応部24a(m,n)同士(例えば、熱型赤外線感応部24a(1,1)~24a(1,N))が互いに電気的に直列接続されている。また、2次元配列における列方向(第2の方向すなわち図5におけるY軸方向)に配列された複数の画素3(1,n)~3(M,n)にわたって、複数の熱型赤外線感応部24a(m,n)、24b(m,n)のうち他方の熱型赤外線感応部24b(m,n)同士(例えば、熱型赤外線感応部24b(1,1)~24b(M,1))が互いに電気的に直列接続されている。 In the thermal infrared sensitive region 10b, over a plurality of pixels 3 (m, 1) to 3 (m, N) arranged in the row direction (first direction, that is, the X-axis direction in FIG. 5) in the two-dimensional array, Among the plurality of thermal type infrared sensitive parts 24a (m, n) and 24b (m, n), one thermal type infrared sensitive part 24a (m, n) (for example, thermal type infrared sensitive part 24a (1,1)) ˜24a (1, N)) are electrically connected in series with each other. In addition, a plurality of thermal infrared sensitive portions over a plurality of pixels 3 (1, n) to 3 (M, n) arranged in the column direction (second direction, ie, the Y-axis direction in FIG. 5) in the two-dimensional array. 24a (m, n), 24b (m, n), the other thermal infrared sensitive parts 24b (m, n) (for example, thermal infrared sensitive parts 24b (1,1) to 24b (M, 1)) ) Are electrically connected in series with each other.
 ここで、図6および図7を参照して熱型赤外線感応領域10bの構成についてより詳細に説明する。図6は、図5に示す熱型赤外線感応領域10bの拡大図である。また、図7は、図6に示すVII-VII線に沿った断面を示す側面断面図である。 Here, the configuration of the thermal infrared sensitive region 10b will be described in more detail with reference to FIGS. FIG. 6 is an enlarged view of the thermal infrared sensitive region 10b shown in FIG. FIG. 7 is a side sectional view showing a section taken along line VII-VII shown in FIG.
 本実施形態の熱型赤外線感応領域10bは、いわゆる表面マイクロマシン技術によって形成され、サーモパイル形成膜18と、赤外線吸収膜19と、シリコン(Si)基板20と、第1配線21と、第2配線22とを備える。シリコン基板20は、矩形の平面形状を有しており、その表面側に、矩形の平面形状に形成された凹部20aを複数有する。なお、この凹部20aは、ウェットエッチングによって好適に形成され、基板20とサーモパイル形成膜18との間の隙間を構成する。 The thermal infrared sensitive region 10b of the present embodiment is formed by so-called surface micromachine technology, and a thermopile forming film 18, an infrared absorbing film 19, a silicon (Si) substrate 20, a first wiring 21, and a second wiring 22 are formed. With. The silicon substrate 20 has a rectangular planar shape, and has a plurality of concave portions 20a formed in a rectangular planar shape on the surface side. The recess 20a is preferably formed by wet etching, and constitutes a gap between the substrate 20 and the thermopile forming film 18.
 サーモパイル形成膜18は、各画素3(m,n)の熱型赤外線感応部24a,24bを内部に含む膜状の部材である。サーモパイル形成膜18は、凹部20aの開口を塞ぐようにシリコン基板20上に設けられている。熱型赤外線感応部24a,24bは、サーモパイル形成膜18の内部に配列された複数の熱電対(赤外線検出素子)Tによってそれぞれ構成されている。複数の熱電対Tは、各熱型赤外線感応部24a,24bのそれぞれにおいて互いに直列に接続されている。また、各熱型赤外線感応部24a,24bにおける複数の熱電対Tは、各画素3(m、n)内に並設された2つの領域R1,R2にそれぞれ配列されている。 The thermopile forming film 18 is a film-like member including the thermal infrared sensitive portions 24a and 24b of each pixel 3 (m, n) inside. The thermopile forming film 18 is provided on the silicon substrate 20 so as to close the opening of the recess 20a. The thermal-type infrared sensitive parts 24 a and 24 b are respectively constituted by a plurality of thermocouples (infrared detecting elements) T arranged inside the thermopile forming film 18. The plurality of thermocouples T are connected in series with each other in each of the thermal infrared sensitive parts 24a and 24b. Further, the plurality of thermocouples T in each of the thermal infrared sensitive parts 24a and 24b are arranged in two regions R1 and R2 arranged in parallel in each pixel 3 (m, n), respectively.
 サーモパイル形成膜18は、第1実施形態のサーモパイル形成膜12と同様に、絶縁性の薄膜18a上に形成された複数の熱電対Tを覆うように絶縁膜18bがその上に更に形成された構造を成している。また、薄膜18aのうち凹部20aを塞ぐ部分は本実施形態においてメンブレン部を構成しており、複数の熱電対Tはこのメンブレン部と赤外線吸収膜19との間に配置されている。本実施形態では、凹部20aの平面形状が矩形状に形成されているので、薄膜18aのメンブレン部の平面形状もまた矩形状となっている。そして、メンブレン部の対角線に沿って複数の孔(エッチングホール)23が形成されている。この複数の孔23は、シリコン基板20の表面の一部をエッチングして凹部20aを形成する際に使用される。また、本実施形態の複数の孔23は2つの熱型赤外線感応部24a,24bの間に形成されており、複数の孔23によって熱型赤外線感応部24a,24bが互いに分割されている。 Similar to the thermopile forming film 12 of the first embodiment, the thermopile forming film 18 has a structure in which an insulating film 18b is further formed thereon so as to cover a plurality of thermocouples T formed on the insulating thin film 18a. Is made. The portion of the thin film 18 a that closes the recess 20 a constitutes a membrane portion in the present embodiment, and a plurality of thermocouples T are disposed between the membrane portion and the infrared absorption film 19. In the present embodiment, since the planar shape of the recess 20a is formed in a rectangular shape, the planar shape of the membrane portion of the thin film 18a is also a rectangular shape. A plurality of holes (etching holes) 23 are formed along the diagonal line of the membrane portion. The plurality of holes 23 are used when a part of the surface of the silicon substrate 20 is etched to form the recess 20a. Further, the plurality of holes 23 of the present embodiment are formed between the two thermal infrared sensitive parts 24a and 24b, and the thermal infrared sensitive parts 24a and 24b are divided from each other by the multiple holes 23.
 また、メンブレン部の平面形状が矩形状であることから、メンブレン部の平面形状は、行方向(第1の方向)に沿った一対の辺L1、および列方向(第2の方向)に沿った他の一対の辺L2を含んでいる。そして、熱電対Tは、メンブレン部の各一対の辺L1,L2から当該辺と交差する方向に沿ってメンブレン部の内側へ延びている。 Further, since the planar shape of the membrane portion is rectangular, the planar shape of the membrane portion is along a pair of sides L1 along the row direction (first direction) and along the column direction (second direction). Another pair of sides L2 is included. The thermocouple T extends from the pair of sides L1 and L2 of the membrane part to the inside of the membrane part along a direction intersecting the side.
 赤外線吸収膜19は、各画素3(m、n)毎にサーモパイル形成膜18のメンブレン部上に設けられており、赤外線検出領域A2を規定している。赤外線吸収膜19は、入射されるエネルギ(赤外線)を熱に変換する膜であり、本実施形態ではその平面形状が矩形状(より好ましくは正方形状)となっている。赤外線検出領域A2に相当するシリコン基板20の表面には凹部20aが形成されているので、赤外線吸収膜19は、サーモパイル形成膜18と共にメンブレン構造を成している。 The infrared absorption film 19 is provided on the membrane portion of the thermopile forming film 18 for each pixel 3 (m, n), and defines an infrared detection region A2. The infrared absorbing film 19 is a film that converts incident energy (infrared rays) into heat, and in the present embodiment, the planar shape is rectangular (more preferably square). Since the recess 20a is formed on the surface of the silicon substrate 20 corresponding to the infrared detection region A2, the infrared absorption film 19 forms a membrane structure together with the thermopile formation film 18.
 第1配線21は、各画素3(m,n)における一方の熱型赤外線感応部24a(m,n)を行方向(第1の方向)にわたって電気的に直列接続するものであり、行方向に隣り合う画素3(m,n)間を行方向(第1の方向)に延びて設けられている。第1配線21は、例えばアルミニウムにより形成されている。このように、各画素3(m,n)における一方の熱型赤外線感応部24a(m,n)を第1配線21によって接続することにより、2次元配列における第1の方向に配列された画素3(m,1)~3(m,N)にわたって、一方の熱型赤外線感応部24a(m,n)同士(例えば、一方の熱型赤外線感応部24a(1,1)~24a(1,N))が電気的に直列接続されて、熱型赤外線感応領域10bにおいて第1の方向に延びる画素配列が構成される。この第1の方向に延びる画素配列は、N列形成されることになる。なお、第1配線21は、一方の端部がGND(接地)またはCOMMON(共通)に接続され、他方の端部が第1信号処理回路20に接続される。 The first wiring 21 electrically connects one thermal infrared sensitive part 24a (m, n) in each pixel 3 (m, n) in series in the row direction (first direction). The pixels 3 (m, n) adjacent to each other extend in the row direction (first direction). The first wiring 21 is made of, for example, aluminum. Thus, by connecting one thermal type infrared sensitive part 24a (m, n) in each pixel 3 (m, n) by the first wiring 21, the pixels arranged in the first direction in the two-dimensional arrangement. 3 (m, 1) to 3 (m, N), one of the thermal infrared sensitive parts 24a (m, n) (for example, one of the thermal infrared sensitive parts 24a (1, 1) to 24 a (1, N)) are electrically connected in series to form a pixel array extending in the first direction in the thermal infrared sensitive region 10b. The pixel array extending in the first direction is formed in N columns. The first wiring 21 has one end connected to GND (ground) or COMMON (common) and the other end connected to the first signal processing circuit 20.
 第2配線22は、各画素3(m,n)における他方の熱型赤外線感応部24b(m,n)を列方向(第2の方向)にわたって電気的に直列接続するものであり、列方向に隣り合う画素3(m,n)間を列方向(第2の方向)に延びて設けられている。第2配線22は、例えばアルミニウムにより形成されている。このように、各画素3(m,n)における他方の熱型赤外線感応部24b(m,n)を第2配線22によって接続することにより、2次元配列における第2の方向に配列された複数の画素3(1,n)~3(M,n)にわたって、他方の熱型赤外線感応部24b(m,n)同士(例えば、他方の熱型赤外線感応部24b(1,1)~24b(M,1))が電気的に直列接続されて、熱型赤外線感応領域10bにおいて第2の方向に延びる画素配列が構成される。この第2の方向に延びる画素配列は、M行形成されることになる。なお、第2配線22は、一方の端部がGND(接地)またはCOMMON(共通)に接続され、他方の端部が第2信号処理回路30に接続される。 The second wiring 22 electrically connects the other thermal-type infrared sensitive part 24b (m, n) in each pixel 3 (m, n) in the column direction (second direction) in the column direction. The pixels 3 (m, n) adjacent to each other extend in the column direction (second direction). The second wiring 22 is made of, for example, aluminum. Thus, by connecting the other thermal-type infrared sensitive part 24b (m, n) in each pixel 3 (m, n) by the second wiring 22, a plurality of arrays arranged in the second direction in the two-dimensional array. The other thermal infrared sensitive parts 24b (m, n) (for example, the other thermal infrared sensitive parts 24b (1,1) -24b ( M, 1)) are electrically connected in series to form a pixel array extending in the second direction in the thermal infrared sensitive region 10b. The pixel array extending in the second direction is formed in M rows. The second wiring 22 has one end connected to GND (ground) or COMMON (common) and the other end connected to the second signal processing circuit 30.
 本実施形態の熱型赤外線感応領域10bによれば、上記第1実施形態の熱型赤外線感応領域10aと同様の効果を得ることができる。 According to the thermal infrared sensitive region 10b of the present embodiment, the same effects as those of the thermal infrared sensitive region 10a of the first embodiment can be obtained.
 本発明による熱検出センサアレイは、上記した各実施形態に限られるものではなく、他にも様々な変形が可能である。例えば、上記実施形態の熱検出センサアレイは、バルクマイクロマシン型または表面マイクロマシン型の構成を有するが、各画素を構成する熱型赤外線感応部が薄膜状のメンブレン部と赤外線吸収膜との間に配置されるものであれば他の形態であってもよい。 The heat detection sensor array according to the present invention is not limited to the above-described embodiments, and various other modifications are possible. For example, the thermal detection sensor array of the above embodiment has a bulk micromachine type or surface micromachine type configuration, but the thermal infrared sensitive part constituting each pixel is arranged between the thin film membrane part and the infrared absorption film. Any other form may be used.
 本発明は、起電力を記憶する容量が小さくでき、読み出し速度を速くできる熱検出センサアレイを提供する。 The present invention provides a heat detection sensor array in which the capacity for storing electromotive force can be reduced and the readout speed can be increased.

Claims (5)

  1.  複数の画素が2次元配列された熱型赤外線感応領域を有する熱検出センサアレイであって、
     各画素は、入射した熱量に応じた起電力を出力する赤外線検出素子を含む2つの熱型赤外線感応部を有しており、
     前記各画素を構成する前記2つの熱型赤外線感応部は、薄膜状のメンブレン部と赤外線吸収膜との間に配置されており、
     前記2次元配列における第1の方向に配列されている複数の画素にわたって、前記各画素を構成する前記2つの熱型赤外線感応部のうち一方の前記熱型赤外線感応部同士が直列に接続されており、
     前記2次元配列における第2の方向に配列されている複数の画素にわたって、前記各画素を構成する前記2つの熱型赤外線感応部のうち他方の前記熱型赤外線感応部同士が直列に接続されていることを特徴とする、熱検出センサアレイ。
    A thermal detection sensor array having a thermal infrared sensitive region in which a plurality of pixels are two-dimensionally arranged,
    Each pixel has two thermal infrared sensitive parts including an infrared detecting element that outputs an electromotive force according to the amount of incident heat,
    The two thermal infrared sensitive parts constituting each pixel are disposed between a thin film membrane part and an infrared absorbing film,
    The thermal infrared sensitive parts of one of the two thermal infrared sensitive parts constituting each pixel are connected in series across a plurality of pixels arranged in the first direction in the two-dimensional array. And
    The other thermal type infrared sensitive parts of the two thermal type infrared sensitive parts constituting each pixel are connected in series across a plurality of pixels arranged in the second direction in the two-dimensional array. A thermal detection sensor array characterized by comprising:
  2.  前記2つの熱型赤外線感応部それぞれは、前記各画素内に並設された2つの略矩形状の領域それぞれに前記赤外線検出素子が配列されて成ることを特徴とする、請求項1に記載の熱検出センサアレイ。 2. The infrared detection element according to claim 1, wherein each of the two thermal infrared sensitive portions includes the infrared detection elements arranged in two substantially rectangular regions arranged in parallel in the pixels. Thermal detection sensor array.
  3.  前記メンブレン部が、表面に薄膜が形成された支持基板の該表面の一部をエッチングして前記支持基板と前記薄膜との間に隙間を設けることにより形成されており、該エッチングを行うために前記薄膜に形成されるエッチングホールが、前記2つの熱型赤外線感応部の間に形成されていることを特徴とする、請求項1に記載の熱検出センサアレイ。 In order to perform the etching, the membrane portion is formed by etching a part of the surface of the support substrate having a thin film formed on the surface to provide a gap between the support substrate and the thin film. The thermal detection sensor array according to claim 1, wherein an etching hole formed in the thin film is formed between the two thermal infrared sensitive parts.
  4.  前記メンブレン部の平面形状が略矩形状であり、
     複数の前記エッチングホールが、前記メンブレン部の対角線に沿って並んで形成されていることを特徴とする、請求項3に記載の熱検出センサアレイ。
    The planar shape of the membrane part is substantially rectangular,
    The heat detection sensor array according to claim 3, wherein the plurality of etching holes are formed side by side along a diagonal line of the membrane part.
  5.  前記メンブレン部の平面形状が少なくとも一対の辺を含んでおり、
     前記赤外線検出素子は、前記メンブレン部の前記少なくとも一対の辺から当該辺と交差する方向に沿って前記メンブレン部の内側へ延びていることを特徴とする、請求項1~4のいずれか一項に記載の熱検出センサアレイ。
    The planar shape of the membrane part includes at least a pair of sides;
    The infrared detection element extends from the at least one pair of sides of the membrane part to the inside of the membrane part along a direction intersecting the sides. The heat detection sensor array described in 1.
PCT/JP2009/050970 2008-01-29 2009-01-22 Heat-detecting sensor array WO2009096310A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-017977 2008-01-29
JP2008017977A JP2009180551A (en) 2008-01-29 2008-01-29 Heat-detecting sensor array

Publications (1)

Publication Number Publication Date
WO2009096310A1 true WO2009096310A1 (en) 2009-08-06

Family

ID=40912663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050970 WO2009096310A1 (en) 2008-01-29 2009-01-22 Heat-detecting sensor array

Country Status (3)

Country Link
JP (1) JP2009180551A (en)
TW (1) TW200950069A (en)
WO (1) WO2009096310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055600A (en) * 2013-09-13 2015-03-23 株式会社リコー Heat type infrared sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161520A (en) * 1987-12-18 1989-06-26 Fujitsu Ltd Tablet
JPH0321888A (en) * 1989-06-20 1991-01-30 Matsushita Electric Ind Co Ltd Pyroelectric type infrared detecting device
JPH065832A (en) * 1992-06-19 1994-01-14 Fujitsu Ltd Apparatus and method for position detection
WO2004083774A1 (en) * 2003-03-20 2004-09-30 Hamamatsu Photonics K.K. Optical sensor
WO2007135850A1 (en) * 2006-05-24 2007-11-29 The Ritsumeikan Trust Infrared array sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161520A (en) * 1987-12-18 1989-06-26 Fujitsu Ltd Tablet
JPH0321888A (en) * 1989-06-20 1991-01-30 Matsushita Electric Ind Co Ltd Pyroelectric type infrared detecting device
JPH065832A (en) * 1992-06-19 1994-01-14 Fujitsu Ltd Apparatus and method for position detection
WO2004083774A1 (en) * 2003-03-20 2004-09-30 Hamamatsu Photonics K.K. Optical sensor
WO2007135850A1 (en) * 2006-05-24 2007-11-29 The Ritsumeikan Trust Infrared array sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055600A (en) * 2013-09-13 2015-03-23 株式会社リコー Heat type infrared sensor

Also Published As

Publication number Publication date
JP2009180551A (en) 2009-08-13
TW200950069A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
US8851748B2 (en) Thermal detector, thermal detector device, electronic instrument, and method of manufacturing thermal detector
US8338902B2 (en) Uncooled infrared image sensor
JP5308814B2 (en) Thermopile infrared sensor array
US8592765B2 (en) Thermopile infrared sensor by monolithic silicon micromachining
US7288765B2 (en) Device for detecting infrared radiation with bolometric detectors
JP5645240B2 (en) Infrared array sensor
US8563933B2 (en) Thermal detector, thermal detector device, electronic instrument, and method of manufacturing thermal detector
WO2010035738A1 (en) Infrared sensor
WO2010035739A1 (en) Infrared sensor
WO2010114001A1 (en) Infrared array sensor
JP2011153871A (en) Thermal photodetector, thermal photodetecting device, and electronic instrument
JP5569134B2 (en) Thermal photodetection device and electronic device
CN104412386B (en) Infrared sensor device and the method for manufacturing infrared sensor device
WO2010103932A1 (en) Non-cooled infrared image sensor
JP5728978B2 (en) Thermal photodetector, thermal photodetector, and electronic device
WO2009096310A1 (en) Heat-detecting sensor array
US20030201395A1 (en) Thermal radiation detection device with a limited number of anchor points
JP4456385B2 (en) Infrared array sensor
JP2011027652A (en) Infrared sensor
JP3147856B2 (en) Linear infrared detector
CN219657031U (en) Uncooled focal plane infrared sensor
JP6249381B2 (en) Infrared detecting element and infrared detecting device having the same
JP5624347B2 (en) Infrared sensor and manufacturing method thereof
CN116558651A (en) Uncooled focal plane infrared sensor and preparation method thereof
WO2016020993A1 (en) Infrared sensor and signal detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706500

Country of ref document: EP

Kind code of ref document: A1