JPH0321888A - Pyroelectric type infrared detecting device - Google Patents

Pyroelectric type infrared detecting device

Info

Publication number
JPH0321888A
JPH0321888A JP1157796A JP15779689A JPH0321888A JP H0321888 A JPH0321888 A JP H0321888A JP 1157796 A JP1157796 A JP 1157796A JP 15779689 A JP15779689 A JP 15779689A JP H0321888 A JPH0321888 A JP H0321888A
Authority
JP
Japan
Prior art keywords
pyroelectric
axis direction
unit
pyroelectric element
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1157796A
Other languages
Japanese (ja)
Inventor
Kuni Ogawa
小川 久仁
Ryoichi Takayama
良一 高山
Koji Nomura
幸治 野村
Yoshihiro Tomita
佳宏 冨田
Junko Asayama
純子 朝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1157796A priority Critical patent/JPH0321888A/en
Publication of JPH0321888A publication Critical patent/JPH0321888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To improve space resolution characteristics by scanning an infrared-ray image in order by X-axial movement on a pyroelectric element array where unit pyroelectric elements are arranged electrically in series in an X-axial and a Y-axial direction so that adjacent elements generate counter electromotive forces. CONSTITUTION:The 8X8 unit pyroelectric elements which are arranged in X-Y matrix constitute two blocks of 4X8 unit pyroelectric elements which are symmetrical in the X-axial direction about an upper ground electrode 4 formed in the Y-axial direction at the center part of the matrix. Four X-axial unit pyroelectric elements are arranged alternately in the patterns of electrodes 2 and 3 and unit pyroelectric elements which are arranged in array are connected electrically in series. Eight pyroelectric element arrays are provided in the Y-axial direction. The lengths in the X-axial and Y-axial directions are equalized to the length of the unit pyroelectric elements and an optical unit 5 which has an opening part is provided in each block. Then the X-axial movement is performed on the front surface of the pyroelectric element array to scan the incident infrared-ray image and voltages developed between signal lead-out electrodes 6 and 7 and electrode 4 are supplied as output signals to a signal processing circuit.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電型赤外線センサを用いて物体の位置を検知
する焦電型赤外線検知装置に関すん従来の技術 近抵 侵入者の検知や火災の発見などの防犯・防災の目
的のために 赤外線センサを用いて赤外線源の位置を検
知する装置が使われるようになっtも  赤外線のセン
サとしては化合物半導体を用いた量子型のものと焦電素
子やサーミスタなどを用いた熱型のものかあ,60 i
子型の赤外線センサは液体窒素などで冷却する必要があ
るた吹 防犯・防災などの目的には熱型の赤外線センサ
が用いられていも 特に焦電型のセンサは他の熱型のセ
ンサに比べて感度が高く、赤外線源の位置検知装置に最
適であも 先に我々は 特願昭6 3−2 8 0 7 9 2号
出願において、X軸方向の各単位焦電素子には隣同士を
電極のパターンによって直列接続し 一列に配した焦電
素子列をなLY軸方向には前記焦電素子列を複数列配し
て構成した2次元焦電素子アレイの前面でスリットをX
軸方向に移動させることによって、焦電素子アレイに入
射する赤外線像を走査し 各列の両端の電極間に順次時
系列的に発生する電圧をセンサ出力として読みだすとい
う新規な動作原理に基づく焦電型2次元赤外線検出器を
提案しtら 発明が解決しようとする課題 前記従来例において{友 位置検知の分解能を高めよう
とすると、配列する焦電素子数が多くなもいま、X軸方
向に直列接続した1連の焦電素子列に含まれている単位
焦電素子の数をN,  1つの単位焦電素子に発生する
センサ電圧をVとすると、一定のフレーム周波数のもと
で(友 列の両端の電極間に順次時系列的に発生するセ
ンサ出力となる電圧はV/Nとなる。すなわ松 空間分
解能を高めるために直列接続する画素数を増加する昆 
温度分解能が低下するという欠点があっ亀本発明(よ 
このような従来技術の課題を解決することを目的とする
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a pyroelectric infrared detection device that detects the position of an object using a pyroelectric infrared sensor. Devices that use infrared sensors to detect the location of infrared sources have come into use for the purpose of crime prevention and disaster prevention, such as discovery.Infrared sensors include quantum type sensors using compound semiconductors and pyroelectric elements. Is it a thermal type using a thermistor or the like? 60 i
Although thermal infrared sensors are used for purposes such as crime prevention and disaster prevention, pyroelectric sensors are particularly sensitive compared to other thermal sensors. It has high sensitivity and is ideal for position detection devices for infrared sources. A slit is formed in front of a two-dimensional pyroelectric element array consisting of a plurality of pyroelectric element arrays connected in series and arranged in one row according to the electrode pattern.
A focusing system based on a novel operating principle that scans the infrared image incident on the pyroelectric element array by moving it in the axial direction, and reads out the voltage that is generated in time series between the electrodes at both ends of each row as the sensor output. Problems to be solved by the invention by proposing an electric type two-dimensional infrared detector If the number of unit pyroelectric elements included in a series of pyroelectric elements connected in series is N, and the sensor voltage generated in one unit pyroelectric element is V, then under a constant frame frequency ( The voltage that is the sensor output that occurs sequentially in time series between the electrodes at both ends of the column is V/N.
The disadvantage of the present invention is that the temperature resolution is reduced.
The purpose of this invention is to solve the problems of the prior art.

課題を解決するための手段 本発明は 複数個の単位焦電素子をX−Yマトリックス
状に配列した2次元焦電素子アレイにおいて、 lブロ
ックを、各単位焦電素子が電気的に直列でかつ隣接する
単位焦電素子同士が逆起電力となるようにX軸方向に配
線したl連の焦電素子列をY軸方向に複数本配置して構
成した焦電素子アレイと、前記焦電素子アレイ上をX軸
方向に移動し 各焦電素子に照射する赤外線像を順次走
査す&X軸方向の長さは前記単位焦電素子のX軸方向の
長さに概ね等しくY軸方向の長さはY軸方向に配列した
全ての前記単位焦電素子のY軸方向の長さに概ね等しい
開口部を有する光学スリットとで構成し 前記ブロック
をX軸方向に複数個配置したものであも 作用 本発明It,  X軸方向に直列接続した1連の焦電素
子列に含まれている単位焦電素子の数を、必要な温度分
解能を満足できる数(n)に固定した2次元焦電素子ブ
ロックを構戊すると、このブロック内でα χ軸方向の
両端の電極間に順次時系列的に発生するセンサ出力電圧
はV/nとなん この2次元焦電素子ブロックをX軸方
向にm個接続L,X軸方向の全画素数をnxm=N個と
してもセンサ出力電圧は各ブロックにおいてV/nが保
持されるため温度分解能の低下は生じなL1  すなわ
板 従来のセンサに比べ温度分解能がm倍改善できも 実施例 以下に 本発明の実施例について図面を参照しながら説
明すも 第1図に本発明の焦電型赤外線検知装置の一実施例の平
面図(同(A)図)と断面図(同(B)図)と等価回路
(同(C)図)とを示す。焦電薄膜1の両面に各々、上
部電極2及び下部電極3を形戊し 各車位焦電素子を構
成している。X−Yマトリックス状に配した8×8個の
各車位焦電素子(よ マトリックスの中央部Y軸方向に
形成した上部接地電極4を対象軸として、X軸方向に左
右対象な各々4×8個の単位焦電素子からなる2つのブ
ロックを構成していも 各ブロック内のX軸方向の4個
の単位焦電素子は隣同士が前記電極2.3のパターンに
よって交互に配線され 一列に配した単位焦電素子が電
気的に直列接続をなし焦電素子列を形成してい4Y軸方
向に8本の前記焦電素子列を配列してい4X軸方向の長
さは前記単位焦電素子のX軸方向の長さに概ね等しくY
軸方向の長さはY軸方向に配列した全ての前記単位焦電
素子のY軸方向の長さに概ね等しい開口部を有する光学
スリット5を、各ブロック内に各々1本ずつ設けて、前
記焦電素子アレイの前面上X軸方向に移動させることに
よって、焦電素子アレイに入射する赤外線像を走査し 
各ブロックにおいて、各列の端部に設けた各々左右の信
号取出電極6、 7と前記上部接地電極4との間に発生
する電圧を出力信号として信号処理回路に接続していも
ここで左ブロック内の任意の焦電素子列中の赤外線が照
射されている単位焦電素子8に注目すると、本単位焦電
素子では赤外線の強度に応じた信号電圧Vが発生すも 
同一焦電素子列中で赤外線が照射されていない他の単位
焦電素子には電圧は発生せ風 単位焦電素子8にコンデ
ンサーを直列に接続したのと等価であ瓜 十分高い入力
インピーダンスの信号処理回路を接続した場魚 信号取
出電極6に現われる出力信号は各焦電素子の出力の和と
なん つまり、出力電圧は単位焦電素子8に発生する電
圧Vに等しくなも スリットの移動に伴って各車位焦電
素子に照射した赤外線量に比例した電圧力交 信号取出
電極6に順次出力されも 同様にして、右ブロック内の
任意の焦電素子列中の赤外線が照射されている単位焦電
素子9の出力信号は 信号取出電極7に現われも つま
り、本方法で(よ 2次元焦電素子アレイを2つのブロ
ックに分割することにより、前記光学スリット5の1回
の走査で同一の焦電素子列中の2個の単位焦電素子から
の出力信号を同時に取り出すことが出来る。これにより
、一定のフレーム周波数の下で、温度分解能を低下する
ことなく、センサの画素数を2倍に出来るわけであも ここで用いる光学スリット5ζ上 l枚の基板上に左右
のブロックに対応する2本の開口溝を備え左右のブロッ
ク内を連動して移動するものであってもよいし 分離さ
れた2枚の光学スリットが左右のブロック内を各々単独
に移動するものであってもよ(X., 本実施例で(上 2次元焦電素子アレイを2つのブロッ
クに分割する場合について述べた力支 それ以上の数に
分割することも勿論可能であも発明の効果 本発明により、一定のフレーム周波数の下で、温度分解
能を低下することなく、センサの画素数を増加し空間分
解能が改善されな 2次元焦電素子アレイを備えた焦電
型赤外線検知装置を容易に実現できるものであも
Means for Solving the Problems The present invention is characterized in that in a two-dimensional pyroelectric element array in which a plurality of unit pyroelectric elements are arranged in an X-Y matrix, each unit pyroelectric element is electrically connected in series and A pyroelectric element array configured by arranging a plurality of l pyroelectric element rows in the Y-axis direction and wired in the X-axis direction so that adjacent unit pyroelectric elements generate a back electromotive force, and the pyroelectric element It moves in the X-axis direction on the array and sequentially scans the infrared image irradiated to each pyroelectric element.The length in the X-axis direction is approximately equal to the length in the X-axis direction of the unit pyroelectric element, and the length in the Y-axis direction is composed of an optical slit having an opening approximately equal to the length in the Y-axis direction of all the unit pyroelectric elements arranged in the Y-axis direction, and a plurality of the blocks arranged in the X-axis direction also works. The present invention It is a two-dimensional pyroelectric element in which the number of unit pyroelectric elements included in a series of pyroelectric element arrays connected in series in the X-axis direction is fixed to a number (n) that satisfies the required temperature resolution. When a block is constructed, the sensor output voltage that is generated sequentially in time series between the electrodes at both ends in the α and χ axis directions within this block is V/n.This two-dimensional pyroelectric element block is divided into m pieces in the X-axis direction. Connection L, even if the total number of pixels in the X-axis direction is nxm = N, the sensor output voltage is maintained at V/n in each block, so there is no decrease in temperature resolution. In the following, embodiments of the present invention will be explained with reference to the drawings. Fig. 1 is a plan view of an embodiment of the pyroelectric infrared detection device of the present invention (Fig. ), a cross-sectional view (Figure (B)), and an equivalent circuit (Figure (C)). An upper electrode 2 and a lower electrode 3 are formed on both sides of the pyroelectric thin film 1, respectively, to constitute each pyroelectric element. 8 x 8 pyroelectric elements arranged in an X-Y matrix (with the upper ground electrode 4 formed in the Y-axis direction in the center of the matrix as the symmetrical axis, each 4 x 8 pyroelectric element is symmetrical in the X-axis direction). Even if the four unit pyroelectric elements in the X-axis direction in each block are arranged in two blocks, the adjacent four unit pyroelectric elements are alternately wired according to the pattern of the electrodes 2.3 and arranged in a line. The unit pyroelectric elements are electrically connected in series to form a pyroelectric element row, and the eight pyroelectric element rows are arranged in the Y-axis direction, and the length in the X-axis direction is equal to Y approximately equal to the length in the X-axis direction
One optical slit 5 having an opening whose axial length is approximately equal to the length in the Y-axis direction of all the unit pyroelectric elements arranged in the Y-axis direction is provided in each block. By moving the front surface of the pyroelectric element array in the X-axis direction, the infrared image incident on the pyroelectric element array is scanned.
In each block, even if the voltage generated between the left and right signal extraction electrodes 6, 7 provided at the ends of each column and the upper ground electrode 4 is connected to the signal processing circuit as an output signal, the left block If we pay attention to the unit pyroelectric element 8 that is irradiated with infrared rays in any arbitrary pyroelectric element array, we can see that this unit pyroelectric element generates a signal voltage V that corresponds to the intensity of the infrared rays.
No voltage is generated in other unit pyroelectric elements in the same pyroelectric element array that are not irradiated with infrared rays.This is equivalent to connecting a capacitor in series with unit pyroelectric element 8.A signal with a sufficiently high input impedance When the processing circuit is connected, the output signal appearing at the signal extraction electrode 6 is the sum of the outputs of each pyroelectric element.In other words, the output voltage is equal to the voltage V generated in the unit pyroelectric element 8. A voltage force exchange proportional to the amount of infrared rays irradiated to the pyroelectric element at each vehicle position is sequentially output to the signal extraction electrode 6. Similarly, the unit focal point irradiated with infrared rays in any pyroelectric element row in the right block is The output signal of the electric element 9 also appears on the signal extraction electrode 7. In other words, in this method (by dividing the two-dimensional pyroelectric element array into two blocks, the same focus can be achieved with one scan of the optical slit 5). The output signals from two unit pyroelectric elements in the electric element array can be extracted simultaneously.This allows the number of pixels of the sensor to be doubled without reducing the temperature resolution under a constant frame frequency. Although it is possible, the optical slit 5ζ used here may have two opening grooves corresponding to the left and right blocks on one substrate and move in conjunction within the left and right blocks, or it may be separated. The two optical slits may move independently within the left and right blocks ( Although it is of course possible to divide the force into a larger number of units, the present invention improves the spatial resolution by increasing the number of pixels of the sensor without reducing the temperature resolution under a constant frame frequency. Although it is possible to easily realize a pyroelectric infrared detector equipped with a two-dimensional pyroelectric element array,

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、 (B),  (C)i上 それぞれ本
発明の一実施例における焦電型赤外線検知装置を示す平
面は 断面は 等価回路であも
The planes shown in Figures 1 (A), (B), and (C)i, each showing a pyroelectric infrared detector according to an embodiment of the present invention, are equivalent circuits in cross section.

Claims (2)

【特許請求の範囲】[Claims] (1)複数個の単位焦電素子をX−Yマトリックス状に
配列した2次元焦電素子アレイの焦電型赤外線検知装置
において、1ブロックが、各単位焦電素子が電気的に直
列でかつ隣接する単位焦電素子同士が逆起電力となるよ
うにX軸方向に配線した1連の焦電素子列をY軸方向に
複数本配置して構成した焦電素子アレイと、前記焦電素
子アレイ上をX軸方向に移動し、各焦電素子に照射する
赤外線像を順次走査する、X軸方向の長さが前記単位焦
電素子のX軸方向の長さに概ね等しくY軸方向の長さが
Y軸方向に配列した全ての前記単位焦電素子のY軸方向
の長さに概ね等しい開口部を有する光学スリットとで構
成され、前記ブロックがX軸方向に複数個配置された事
を特徴とする焦電型赤外線検知装置。
(1) In a pyroelectric infrared detection device with a two-dimensional pyroelectric element array in which a plurality of unit pyroelectric elements are arranged in an A pyroelectric element array configured by arranging a plurality of pyroelectric element rows in the Y-axis direction and wired in the X-axis direction so that adjacent unit pyroelectric elements generate a back electromotive force, and the pyroelectric element A device whose length in the X-axis direction is approximately equal to the length of the unit pyroelectric element in the X-axis direction, which moves in the X-axis direction on the array and sequentially scans the infrared image irradiated to each pyroelectric element. an optical slit having an opening whose length is approximately equal to the length in the Y-axis direction of all the unit pyroelectric elements arranged in the Y-axis direction, and a plurality of the blocks are arranged in the X-axis direction. A pyroelectric infrared detection device featuring:
(2)マトリックスの中央部Y軸方向に形成した接地電
極を対象軸として、X軸方向に左右対象な複数個の単位
焦電素子からなる2つのブロックを構成し、各ブロック
内のX軸方向の単位焦電素子は隣同士が電極パターンに
よって交互に配線され、電気的に直列接続をなす焦電素
子列を形成し、Y軸方向には複数本の前記焦電素子列を
配列し、各ブロックにおいて、各焦電素子列の端部に設
けた信号取出電極と前記接地電極との間に発生する電圧
を出力信号として読みだす事を特徴とする請求項1記載
の焦電型赤外線検知装置。
(2) Construct two blocks consisting of a plurality of unit pyroelectric elements that are symmetrical in the X-axis direction, with the ground electrode formed in the Y-axis direction at the center of the matrix as the symmetrical axis, and the X-axis direction within each block The unit pyroelectric elements are alternately wired adjacent to each other by electrode patterns to form a pyroelectric element row that is electrically connected in series, and a plurality of the pyroelectric element rows are arranged in the Y-axis direction, The pyroelectric infrared detection device according to claim 1, wherein in the block, a voltage generated between a signal extraction electrode provided at an end of each pyroelectric element row and the ground electrode is read out as an output signal. .
JP1157796A 1989-06-20 1989-06-20 Pyroelectric type infrared detecting device Pending JPH0321888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1157796A JPH0321888A (en) 1989-06-20 1989-06-20 Pyroelectric type infrared detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1157796A JPH0321888A (en) 1989-06-20 1989-06-20 Pyroelectric type infrared detecting device

Publications (1)

Publication Number Publication Date
JPH0321888A true JPH0321888A (en) 1991-01-30

Family

ID=15657476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1157796A Pending JPH0321888A (en) 1989-06-20 1989-06-20 Pyroelectric type infrared detecting device

Country Status (1)

Country Link
JP (1) JPH0321888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096310A1 (en) * 2008-01-29 2009-08-06 Hamamatsu Photonics K.K. Heat-detecting sensor array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096310A1 (en) * 2008-01-29 2009-08-06 Hamamatsu Photonics K.K. Heat-detecting sensor array

Similar Documents

Publication Publication Date Title
EP1453098B1 (en) Light detection device, imaging device and distant image acquisition device
EP0368588B1 (en) Pyroelectric infrared detector and manufacturing method of same
JP2773861B2 (en) Thermal image scanning method and apparatus
JP2007114089A (en) Infrared sensor
JPH0321888A (en) Pyroelectric type infrared detecting device
KR900002348B1 (en) Distribute arrangement of photo cell
JP2004286576A (en) Photodetector
US6563947B1 (en) Application specified integrated circuit for use in wavefront detection
JP2689644B2 (en) Pyroelectric infrared detector
JP2523948B2 (en) Pyroelectric infrared detector
WO2009101103A1 (en) An imaging apparatus
Ferrari et al. Array of PZT pyroelectric thick-film sensors for contactless measurement of XY position
US7795569B2 (en) Focal plane detector with integral processor for object edge determination
JP3216523B2 (en) Infrared detector
JP3650307B2 (en) Two-dimensional optical heterodyne scanning detection system
KR101806102B1 (en) An optical positioning sensor
JP3147856B2 (en) Linear infrared detector
JP3008115B2 (en) Passive infrared detector
JPH0341305A (en) Pyroelectric device for detecting infrared ray
EP4036882A1 (en) Detection of a movement of a body in an area which is to be monitored
CN113340435A (en) Infrared thermal imaging method and infrared detector system
JPH05145853A (en) Infrared image pickup device
KR102466856B1 (en) Image Sensor Having Phase Difference Sensing Pixel Arranged as Irregular Hexagon Shape
TW200950069A (en) Heat-detecting sensor array
JPH02248820A (en) Pyroelectric type infrared ray detector