WO2009095796A2 - Tapasin augmentation for enhanced immune response - Google Patents
Tapasin augmentation for enhanced immune response Download PDFInfo
- Publication number
- WO2009095796A2 WO2009095796A2 PCT/IB2009/005030 IB2009005030W WO2009095796A2 WO 2009095796 A2 WO2009095796 A2 WO 2009095796A2 IB 2009005030 W IB2009005030 W IB 2009005030W WO 2009095796 A2 WO2009095796 A2 WO 2009095796A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cancer
- carcinoma
- tapasin
- cell
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
- A61P31/06—Antibacterial agents for tuberculosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5152—Tumor cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5156—Animal cells expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55516—Proteins; Peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/80—Vaccine for a specifically defined cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10341—Use of virus, viral particle or viral elements as a vector
- C12N2710/10343—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- the MHC Class I antigen presentation pathway is important both for the initiation of anti-tumor immune responses through cross-presentation of tumor antigens to CD8 + T cells, and in the recognition and killing of tumor cells by tumor-specific cytotoxic lymphocytes (CTLs).
- CTLs tumor-specific cytotoxic lymphocytes
- An important component in both these processes is the chaperone protein Tapasin (Tpn), a 48 kDa type I membrane glycoprotein whose function is assisting in the loading of antigenic peptides onto Class I molecules in the endo reticulum (ER).
- Tpn mediates this function include retaining empty MHC Class I molecules in the ER until loaded with peptides, stabilizing transported associated with antigen processing protein (TAP), bridging MHC Class I antigens to TAP, and supporting the binding of high-affinity peptides to MHC Class I antigen.
- TAP antigen processing protein
- surface MHC Class I molecules are more stable and thus more efficient at presenting antigens to CTLs or their precursors. Defects in Tpn expression lead to the destabilization of the MHC Class I loading complex including TAPl and TAP2, and a reduction in the expression of MHC molecules at the cell surface.
- Tpn is known to be down-regulated in many human carcinomas such as breast cancer, melanoma, colorectal carcinoma, and both small cell and non-small cell lung carcinoma, as well as mouse cancers such as mouse fibrosarcoma and mouse melanoma.
- Tpn is more frequently lost than TAP 1 , latent membrane protein 2 (LMP2) and latent membrane protein 7 (LMP7), suggesting that the loss of Tpn could be a key event in overcoming immune-surveillance in these tumors.
- LMP2 latent membrane protein 2
- LMP7 latent membrane protein 7
- the mouse lung carcinoma cell line CMT.64 derived from a spontaneous lung carcinoma in a C57BL/6 mouse, is characterized by the down-regulation of many components of the antigen presentation pathway, including MHC Class I heavy chain, ⁇ 2 - microglobulin, LMP2 and LMP7, TAPl and TAP2, and Tpn.
- hTpn human Tpn
- hTAPl human TAPl
- This invention is directed to the expression of Tpn in Tpn-deficient cancer cells to restore the expression of functional surface MHC Class I antigen complexes, augment tumor cell immunogenicity and promote long term survival of animals bearing these metastatic tumors.
- the expression of Tpn in the Tpn-deficient mouse hepatoma cell line H6 carcinoma cell line and the human HepG2 cell line has been shown to increase surface MHC Class I expression, suggesting that this approach can be effective in treating many carcinomas.
- the results presented here indicate that the enhanced MHC Class I surface expression and immunogenicity due to AdhTpn infection in vivo significantly retards CMT.64 tumor growth and enhances animal survival.
- AdhTpn injections localized to the site of the tumor infect the CMT.64 cells and increase the activity of the endogenous antigen presentation pathway, leading to surface expression of MHC Class I-restricted tumor antigens that can then be recognized by the increased numbers of tumor-infiltrating CD8 + T cells, assisted by CD4 + T cells and CDl Ic + dendritic cells (DCs).
- the restoration of surface MHC Class I expression and increased immunogenicity of the tumor cells occurs despite multiple APC defects in CMT.64 cells, which include the down-regulation of MHC Class I heavy chain, ⁇ 2 -microglobulin, TAPl, TAP2, LMP2, and LMP7. Residual transport of the peptides into the ER may be due to low levels of TAP expression (undetectable by Western blot) providing sufficient MHC Class I peptide complexes in the presence of Tpn-mediated chaperone activity for a significant increase in susceptibility to killing by specific T cell effectors. Steady state levels of other components of the antigen presentation pathway including TAP have been shown to be stabilized by Tpn.
- Tpn expression in CMT.64 cells may stabilize the low level of TAP present in these cells, and therefore significantly increase the H-2K b and H- 2D b surface expression and imniunogenicity of CMT.64 cells in this manner.
- Combining AdhTAPl and AdhTpn in treating carcinomas results in enhanced protection and survival in tumor-bearing animals.
- Tpn expression in mice increases antigen-specific immune responses to exogenously acquired antigens (OVA).
- Components of the peptide loading complex that are essential for direct antigen presentation by virus-infected cells or tumor cells to circulating CD8 + T cells are also required for indirect presentation by professional antigen-presenting cells to precursor CD8 + T cells during the initiation of tumor antigen- specific immune responses.
- the additional Tpn expression that increases cross- presentation activity of DCs in vitro could be a combination of Tpn and a vector effect, suggesting an interaction between the antigen presentation pathway and innate mechanisms.
- the mechanism of increased cross-priming may correlate with the significant increase of CD4 + TILs within tumor masses of mice treated with AdhTpn, which could be related to immunogenicity of the adenovirus vector itself.
- Large numbers of CD4 + T cells favour the CD4 + T cell dependent pathway of CD8 + T cell activation, whereby the CD4 + T cells may stimulate DCs through CD40 ligand and/or present alternative signals that can license DCs for cross-priming, or directly stimulate CD8 + T cells by cytokines such as interleukin-2.
- Adenoviral vectors containing the APC genes encoding Tpn and TAPl can play an important role in future cancer immunotherapies.
- the restoration of Tpn together with TAP have several advantages over other existing approaches and provide a general method for increasing immune responses against tumors regardless of the antigenic composition of the tumor or the MHC haplotypes of the host.
- FIG. l is a series of graphs and blots showing that Tapasin expression in CMT.64 cells after infection with AdhTpn is dose dependent and leads to increased surface MHC Class I levels and presentation of a viral epitope.
- FIG. IA is a blot and graph showing CMT.64 cells infected with AdhTpn at an MOI of 1, 5, 25, 50, and 100 PFU/cell of AdhTpn or ⁇ 5 at 100 PFU/cell and harvested 48h later. Western blotting was carried out with anti-hTpn, mTAPl, and mTAPl polyclonal antibodies and ⁇ -actin mAb. ⁇ -actin was used as a control for protein loading.
- FIG. IB are graphs showing that AdhTpn infection increases both H-2K and H-2D b surface expression in CMT.64 cells. ⁇ 5 - adenovirus vector control, IFN- ⁇ — positive control.
- FIG. 1C shows that the infection of CMT.64 cells with AdhTpn restores MHC Class I antigen presentation of VSV-NP epitope and increases susceptibility to lysis by VSV-NP- specific effector cells.
- Targets CMT/VSV-NP - CMT.64 transfected with VSV-NP (52- 59) minigene, CMT/VSV-NP infected with ⁇ 5 (adenovirus vector control), or CMT/VSV-NP infected with AdhTpn. Effectors: splenocytes from VSV-infected mice.
- FIG. 2 is a series of graphs and photomicrographs showing that AdhTpn increases dendritic cell cross-priming of ovalbumin antigen.
- FIG. 2A shows that AdhTpn increases DC cross-presentation of OVA antigen in vitro. Splenic DCs were infected with AdhTpn or ⁇ 5 for 2 hrs followed by incubation with OVA for 16 hrs and then stained with 25.Dl.16 and measured by FACS analysis.
- FIGS. 2B and 2C show that AdhTpn infection promotes cross-priming of CD8 + T cells after immunization with soluble OVA. C57BL/6 mice were i.p.
- FIG. 2D shows the percentage of CD8 + T cells that recognize the ovalbumin- derived immunodominant peptide SIINFEKL on MHC Class I molecules of spleen and blood APCs were quantified by H-2K b /SIINFEKL tetramer staining.
- FIG. 3 are graphs showing that AdhTpn and AdhTAPl prolong the survival of tumor-bearing mice.
- FIG. 3 A shows that C57BL/6 mice were injected i.p. with CMT.64 cells (4X10 5 cells/mouse) and were treated on days 1, 3, 5, and 8 with either AdhTAPl at 1.25, 2.5, 5.0, 10X10 7 PFU, ⁇ 5 at IXlO 8 PFU in 500 ⁇ l PBS, or PBS and survival was followed for 90 days.
- the lowest dose showing a protective effect was chosen for complementation studies with AdhTpn.
- FIG. 3 A shows that C57BL/6 mice were injected i.p. with CMT.64 cells (4X10 5 cells/mouse) and were treated on days 1, 3, 5, and 8 with either AdhTAPl at 1.25, 2.5, 5.0, 10X10 7 PFU, ⁇ 5 at IXlO 8 PFU in 500 ⁇ l PBS, or PBS and survival was followed for 90 days.
- mice treated with AdhTAPl alone or AdhTpn alone were complemented with an equal amount of ⁇ 5 vector to maintain a total Ad dose of 5X10 7 PFU.
- Survivorship of mice treated with AdhTAPl + AdhTpn was similar to that of mice treated with the highest dose (IXlO 8 PFU) of AdhTAPl alone.
- FIG. 4 are photomicrographs showing that tumor infiltrating lymphocytes and DCs were increased in CMT.64 tumors treated with AdhTpn in vivo.
- Tumors were analyzed 19 days after CMT.64 cells were introduced into mice. C57BL/6 mice were injected i.p.
- CMT.64 cells (4X10 5 cells/mouse) and were treated on days 1, 3, 5, and 8 with either 2.5X10 7 PFU/mouse of AdhTpn or ⁇ 5 or PBS only.
- a positive stain is indicated by the intense brown labelling of cell surface membranes (200X magnification).
- HEK 293 cells ATCC, Rockville, MD, U. S. A.
- CRE8 cells S. Hardy et al; J. Virol; 71 : 1842-1849 (1997)
- CMT.64 cells Y. Lou et al; Cancer Res. ; 65: 7926-7933 (2005)
- CMT/VSV-NP CMT.64 transfected with VSV nucleocapsid protein (NP) minigene containing the immunodominant epitope from amino acids 52 to 59 presented on H-2K b
- Tl ATCC, CRL-1991, a hTpn positive cell line
- CRE8 cells have a ⁇ - actin-based expression cassette driving a Cre recombinase gene with an N-terminal nuclear localization signal stably integrated into HEK 293 cells (S. Hardy et al., supra).
- ⁇ 5 virus is an El and E3 deleted version of Ad5 containing loxP sites flanking the packaging site (S. Hardy et al., supra).
- ⁇ 5 and recombinant adenovirus were propagated and titred in HEK 293 cells.
- Primary mouse splenocytes and .220 cells Tpn-deficient human myeloma cells, provided by Dr.
- RNA from human spleen was obtained from Ambion Inc. (Austin, TX).
- cDNA was synthesized using RETROscript R First strand synthesis kit for RT-PCR (Ambion Inc.) using Oligo(dT) primers as per the manufacturer's instructions.
- Tpn cDNA was amplified using primers designed based on the sequence of human Tpn transcript variant 1 (NM_003190) using Pfu DNA polymerase (Stratagene, La Jolla, CA).
- the primer sequences used were as follows: forward primer 5'- GCCATGAAGTCCCTGTCTCTG-S 1 (SEQ ID NO:1) and reverse primer 5'- GGGATTAGGAGC AGATGATAGGGTA-S 1 (SEQ ID NO:2).
- the insert was cloned in pCR-Blunt II -TOPO vector (Invitrogen Life Technologies, Carlsbad, CA) and both strands were sequenced to ensure no mutations were present.
- HTpn was digested from TOPO/hTpn with Pst I and BamHI and then cloned into a Pst I- and BamHI- digested shuttle vector, padlox plasmid (S. Hardy et al., supra).
- the resulting vector, Pad/hTpn was isolated and sequenced to ensure the sequence fidelity.
- the AdhTpn was generated as previously described (S. Hardy et al., supra). Briefly, the pad/hTpn, linearized with Sfil, was co-transfected along with ⁇ 5 DNA into CRE8 cells using LipofectAMINE PLUSTM Reagent (Invitrogen Life Technologies) to generate AdhTpn. AdhTpn recombinant viral clones were identified by immunofluorescence assay and plaque purified three times in HEK 293 cells.
- the recombinant virus was amplified in large- scale stock in HEK 293 cells, purified by CsCl density gradient centrifugation, and titred in HEK 293 cells.
- the identity of AdhTpn was confirmed by PCR and DNA sequencing of purified viral DNA using primers specific for Tpn and adenovirus DNA flanking either side of the Tpn gene.
- the primer sequences were as follows: forward primer 5'-AAG AGC ATG CAT GAA GTC CCT GTC TCT G -3' (SEQ ID NO:3) and reverse primer 5'- AAT AAG TCG ACC AGT GAG TGC CCT CAC TCT GCT GCT TTC-3' (SEQ ID NO:4) for amplification of Tpn; forward primer 5'-GTG TTA CTC ATA GCG CGT AA- 3'(SEQ ID NO:5) and reverse primer 5'-CCA TCA AAC GAG TTG GTG CTC-3' (SEQ ID NO: 6) for amplification of adenoviral flanking sequence.
- CMT.64 cells were infected with AdhTpn at 1, 5, 25, 50, and 100 PFU /cell or ⁇ 5 (negative control) at lOOPFU/cell. Tl cells and .220 cells were, respectively, used as hTpn positive and negative controls.
- CMT.64 cells treated with IFN- ⁇ were a positive control for mouse TAPl (mTAPl), mouse TAP2 (mTAP2) and mouse Tpn (mTpn) expression. Two days after infection, cells were lysed and subjected to SDS-PAGE and electro-transferred to Hybond PVDF membrane (Amersham Biosciences, Buckinghamshire, England).
- the blot was treated with rabbit anti-hTpn antibodies (StressGen Biotechnologies Corp, Victoria, BC, Canada), rabbit anti- mTpn antibodies (a gift from Dr. David Williams, University of Toronto), rabbit anti-mTAPl and rabbit anti- mT AP2 (made by our Lab by immunizing rabbits with synthetic peptides generated from the mTAP- 1 (RGGCYRAMVEALAAPAD-C) (SEQ ID NO:7) or mTAP-2 (DGQDVYAHLVQQRLEA) (SEQ ID NO: 8) a peptide corresponding to the last 16 amino acids at C-terminal end of mouse TAP2) sequences conjugated to KLH (QJ. Zhang, Int. J.
- CMT.64 cells were infected with AdhTpn or ⁇ 5 at 50 PFU/cell. Two days after infection, the cells were incubated with anti-MHC class I mAbs, y3 (H-2K b - specific) and 28.14.8S (H-2D b -specific), at 4 0 C for 30 min. Bound antibodies were detected by goat anti-mouse IgG-FITC (Jackson ImmunoResearch Lab). The FACS analysis was performed in a FACSCaliburTM ® (Becton Dickinson, Franklin Lakes, NJ). CTL Assay
- Cytotoxicity was measured in a standard 4 hr 5 l Cr-release assay.
- CMT/VSV-NP stably- transfected CMT.64 cells
- VSV-NP vesicular stomatitis virus nucleoprotein
- AdhTpn or ⁇ 5 vesicular stomatitis virus nucleoprotein
- VSV-NP vesicular stomatitis virus nucleoprotein
- Spleens were obtained from C57BL/6 mice as described (and disrupted by injection of 1 ml RPMI- 1640 medium containing 5% FCS, 1 mg Collagenase D (Roche Applied Science, Laval, Qc, Canada) and incubated for 30 min at 37°C. Subsequently, DC-enriched cell populations were obtained by centrifugation of cell suspension on Ficoll-Paque (Amersham Biosciences) gradients. DCs were then purified by positive selection with anti-CD 1 Ic MACS beads (Miltenyi Biotech, Auburn, CA) with the resulting population being >98% CDl Ic + .
- Splenic DCs were then infected with either AdhTpn or ⁇ 5 at 20 PFU/cell for 2 hrs followed by incubation with ovalbumin (OVA) (Worthington Biochemical Corporation, Lakewood, NJ) at 5mg/ml for 16 hrs at 37°C.
- OVA ovalbumin
- DCs were washed and Fc receptors blocked with 2.4G2 Fc ⁇ III/II blocker (BD PharMingen, Mississauga ON, Canada) before staining with 25.
- D 1.16 mAb A.
- mice were infected i.p. with 1x10 8 PFU AdhTpn, ⁇ 5, or PBS. Soluble OVA (30 mg in 100 ⁇ l) was injected s.c. 16 hrs later and the animals were boosted with the same dose of virus and OVA at day 7.
- splenic DCs were isolated from mouse spleens 24 hrs later, fixed in 0.005% glutaraldehyde and cultured at 37°C in a 96-well plate in the presence of different ratios of B3Z (an IL-2-secreting, LacZ-inducible T cell hybridoma that can be activated upon recognition of H-2K b /SIINFEKL complexes (N. Shastri, J. Immunol, 150: 2724-2736 (1993)), - a gift from Dr. Nilabh Shastri, University of California Berkeley, CA.
- B3Z an IL-2-secreting, LacZ-inducible T cell hybridoma that can be activated upon recognition of H-2K b /SIINFEKL complexes
- Lymphocytes and splenocytes were double stained with iTAgTM H-2K b /SIINFEKL-PE (Beckman Coulter Canada Inc, Mississauga, ON, Canada) and anti-CD8-FITC (Ly-2) (BD PharMingen) antibodies to determine total and CD8 + splenocytes specific for H-2K b /SIINFEKL.
- FACSCaliburTM was used to collect the data which were analyzed using FlowJo software.
- tumors were established in six groups of 3 or 4 mice per group by i.p. injection of 4X10 5 CMT.64 cells in 500 ⁇ l PBS. On day 1, 3, 5, 8 days after the introduction of CMT.64 cells, the mice were further i.p. injected with either AdhTAPl at 1.25, 2.5, 5.0, 10X10 7 PFU, ⁇ 5 at IXlO 8 PFU in 500 ⁇ l PBS, or PBS and survival was followed for 90 days.
- AdhTpn or AdhTpn plus AdhTAPl treatment in CMT.64 tumor-bearing mice tumors were established in five groups of 14 to 18 mice per group by i.p.
- mice were further i.p. injected with AdhTpn, AdhTAPl, AdhTAPl and AdhTpn, ⁇ 5, (5.0X10 7 PFU/500 ⁇ l PBS.) or PBS and survival was followed for 90 days.
- AdhTpn AdhTAPl
- AdhTAPl AdhTAPl
- AdhTpn 5.0X10 7 PFU/500 ⁇ l PBS.
- PBS 5.0X10 7 PFU/500 ⁇ l PBS.
- survival was followed for 90 days.
- mice treated with only one type of recombinant were complemented with enough ⁇ 5 vector to maintain a total Ad dose of 5X10 7 PFU.
- mice of AdhTpn ⁇ 5 or PBS groups were sacrificed from each group at selected times to observe tumor growth patterns and to measure the number of tumor-infiltrating CD4 + and CD8 + T lymphocytes and CDl Ic + DCs.
- TILs Tumor Infiltrating Lymphocytes
- DCs Tumor Infiltrating Lymphocytes
- TILs and tumor-infiltrating DCs were analysed using both FACS and immunohistochemistry staining (IHC). Tumors were disaggregated into single cells and incubated with rat anti-mouse CD8 (Ly-2) mAb and R-PE-conjugated rat anti-mouse CD4 (L3T4) mAb, and the number of CD8 + and CD4 + TILs was quantified by FACS.
- Acetone fixed cryosections (8 ⁇ m) of frozen tumors were stained for tumor infiltrating cells (CD8 + , CD4 + T cells, and CDl 1 c + DCs) with rat anti-mouse CD4 mAb (RM4-5), rat anti-mouse CD8 mAb (53-6.7), or hamster anti-mouse CDl Ic (HL3).
- Rat IgG 2a was used as isotope control for anti-CD8 and anti CD4 antibodies, whereas hamster IgG was the control for the antibody detecting CDl Ic + cells.
- Antibody binding was detected with biotinylated polyclonal anti-rat IgGs and biotinylated anti-hamster IgG secondary antibodies and streptavidin-HRP and a DAB detection system (all the reagents were purchased from BD Biosciences PharMingen).
- the Chi Squared Test (Multivariate Comparison, FlowJo 3.7.1.) was used to analyze FACS histograms for differences in total H-2K b or H-2K b /OVA 25 7-267 complexes expressed on DCs infected AdhTpn or ⁇ 5 (control vector) following incubation with OVA. Results were considered significant if p ⁇ 0.01 (99% confidence), and T(X) > 10 was empirically determined as a cut off value. Histograms representative of one of four repeated experiments have been shown. Survivorship data was analyzed using the "Comparison of survival distributions" methodology. The data were considered statistically different if p ⁇ 0.05. RESULTS
- AdhTpn increases MHC class I surface expression and immunogenicity in CMT.64 cells.
- CMT.64 cells infected with AdhTpn expressed hTpn in a dose dependent manner (FIG. IA).
- FOG. IA dose dependent manner
- niTpn mTAPl and mTAP2 protein expression was detected in AdhTpn-infected CMT.64 cells by Western blot.
- flow cytometry analysis showed that cell surface expression of H-2K b and H-2D b was increased in CMT.64 cells infected with AdhTpn (FIG. IB), whereas cells infected with ⁇ 5 showed no such increase.
- CMT.64 cells treated with IFN- ⁇ were used as a positive control and showed much larger increases in H-2K b and H-2D b surface expression (FIG. IB), as well as increases in endogenous mTpn, mTAPl and mTAP2 protein levels in Western blot analysis (FIG. IA).
- AdhTpn also enhanced the ability of CMT.64 stably transfected with the VSV nucleoprotein minigene (CMT/VSV-NP) to present the immunodominant VSV-NP 5 2-59 peptide to CTLs.
- AdhTpn Increases dendritic cell cross-presentation and cross-priming
- the model antigen OVA was used to assess the ability of DCs infected with AdhTpn to cross-present the immunodominant peptide SIINFEKL in the context of H- 2K b .
- Flow cytometry provides a semi-quantitative readout of the number of cell surface H-2K b /SIINFEKL complexes, allowing assessment of cross-presentation efficiency.
- Splenic CDl Ic + DCs infected in vitro with AdhTpn showed significantly increased cross presentation of SIINFEKL on H-2K b compared to DCs infected with ⁇ 5 (p ⁇ 0.01) (FIG. 2A).
- the total surface H-2K b levels were also slightly increased in AdhTpn-infected DCs compared to ⁇ 5-infected DCs.
- ⁇ 5-infected DCs we administered ⁇ 5, PBS, or AdhTpn i.p. and injected OVA subcutaneously in order to test the effect of AdhTpn in the generation of H-2K b /SIINFEKL-specific CD8 + T cells.
- Spleen-derived DCs taken ex vivo from mice infected with AdhTpn and immunized with OVA had a greater capacity to activate the H-2K b /SIINFEKL-specific T cell hybridoma, B3Z, than DCs from mice infected with vector alone (FIG.
- AdhTpn-infected mice immunized with OVA showed a greater general immune response, detected by an increased number of total CD8 + T cells (data not shown), and a significantly increased OVA-specific response, as shown by a greater number CD8 + T cells specific for H-2K b /SIINFEKL (measured with tetramer staining) in the spleen compared to vector control ( ⁇ 5) or PBS control.
- This increase in OVA-specific CD8 + T cells was even more prominent in peripheral blood from AdhTpn-infected mice compared to ⁇ 5 and PBS controls (FIG. 2C & FIG. 2D).
- AdhTpn Treatment Increases Survival of Mice Bearing CMT.64 Tumors better than AdhTAPA treatment, and maximal protection is achieved by combining both AdhTpn and AdhTAPl
- AdhTAPl adenovirus expressing human TAPl
- AdhTAPl and AdhTpn alone treatments were mixed with an equal number of ⁇ 5 viruses.
- Dual treatment with AdhTpn and AdhTAPl resulted in even greater mouse survival than either virus with ⁇ 5 alone, with 50% long-term survival without visible tumors (greater than 100 days) compared to 30% with AdhTpn and 10% with the low dose of AdhTAPl (FIG. 3B).
- the dual treatment was statistically more effective than ⁇ 5 or AdhTAPl treatment alone at the same viral dose (p ⁇ 0.01), but not stastically different from AdhTpn treatment alone at the same dose.
- AdhTpn and AdhTAPl at 2.5 XlO 7 PFU of each virus (5X10 7 PFU total virus) was equivalent to a much higher dose (IXlO 8 PFU) of AdhTAPl alone, demonstrating that the dual treatment is more efficacious at a given dose (FIG. 3B).
- AdhTpn Treatment Increases TILs and tumor-infiltrating DCs in CMT.64 Tumors
- mice from the AdhTpn treatment group were examined for patterns in tumor growth 20 days after the last treatment injection.
- the peritoneal cavities of mice treated with AdhTpn were tumor-free or had only a few small tumors less than 1 or 2 millimeters in diameter. Both the liver and intestine appeared normal upon visual inspection. This was in sharp contrast to mice treated with PBS or ⁇ 5.
- These mice had large volumes of bloody ascites fluid (2-5 ml) and many tumors distributed throughout the peritoneal cavity. Tumors were observed growing on the liver and intestine and were associated with large fibrotic adhesions.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oncology (AREA)
- Genetics & Genomics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Virology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Communicable Diseases (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Epidemiology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Biochemistry (AREA)
- Plant Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Mycology (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010543588A JP2011518115A (ja) | 2008-01-28 | 2009-01-27 | 免疫応答を増強するためのタパシン増加 |
| AU2009208735A AU2009208735A1 (en) | 2008-01-28 | 2009-01-27 | Tapasin augmentation for enhanced immune response |
| EP09705684.0A EP2247309A4 (en) | 2008-01-28 | 2009-01-27 | TAPASINE REINFORCEMENT FOR AN IMPROVED IMMUNE RESPONSE |
| CN2009801031574A CN102159241A (zh) | 2008-01-28 | 2009-01-27 | 用于增强免疫应答的泰帕森(Tapasin)增加 |
| US12/864,751 US20110117137A1 (en) | 2008-01-28 | 2009-01-27 | Tapasin augmentation for enhanced immune response |
| CA2712964A CA2712964A1 (en) | 2008-01-28 | 2009-01-27 | Tapasin augmentation for enhanced immune response |
| KR1020107016543A KR20110011595A (ko) | 2008-01-28 | 2009-01-27 | 면역 반응 증진을 위한 타파신 증대 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US2400408P | 2008-01-28 | 2008-01-28 | |
| US61/024,004 | 2008-01-28 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2009095796A2 true WO2009095796A2 (en) | 2009-08-06 |
| WO2009095796A3 WO2009095796A3 (en) | 2013-01-03 |
Family
ID=40913348
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2009/005030 Ceased WO2009095796A2 (en) | 2008-01-28 | 2009-01-27 | Tapasin augmentation for enhanced immune response |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US20110117137A1 (enExample) |
| EP (1) | EP2247309A4 (enExample) |
| JP (2) | JP2011518115A (enExample) |
| KR (1) | KR20110011595A (enExample) |
| CN (1) | CN102159241A (enExample) |
| AU (1) | AU2009208735A1 (enExample) |
| CA (1) | CA2712964A1 (enExample) |
| WO (1) | WO2009095796A2 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019145509A1 (en) * | 2018-01-26 | 2019-08-01 | Cambridge Enterprise Limited | Peptide exchange protein |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4418965B2 (ja) * | 1994-09-23 | 2010-02-24 | タップイミューン・インコーポレイテッド | 内在性ペプチドを有するmhcクラスi分子の発現を増強する方法 |
| US6713279B1 (en) * | 1995-12-07 | 2004-03-30 | Diversa Corporation | Non-stochastic generation of genetic vaccines and enzymes |
| US6171820B1 (en) * | 1995-12-07 | 2001-01-09 | Diversa Corporation | Saturation mutagenesis in directed evolution |
| US6479258B1 (en) * | 1995-12-07 | 2002-11-12 | Diversa Corporation | Non-stochastic generation of genetic vaccines |
| US6692923B2 (en) * | 1999-04-14 | 2004-02-17 | Incyte Corporation | Tapasin-like protein |
| WO2002012281A2 (en) * | 2000-08-03 | 2002-02-14 | Johns Hopkins University | Molecular vaccine linking an endoplasmic reticulum chaperone polypeptide to an antigen |
| AU2002246766B2 (en) * | 2000-11-08 | 2007-06-28 | Albert Einstein College Of Medicine Of Yeshiva University | Methods for inhibiting proliferation of astrocytes and astrocytic tumor cells and uses thereof |
| GB0328248D0 (en) * | 2003-12-05 | 2004-01-07 | Oxford Biomedica Ltd | Method |
-
2009
- 2009-01-27 KR KR1020107016543A patent/KR20110011595A/ko not_active Ceased
- 2009-01-27 US US12/864,751 patent/US20110117137A1/en not_active Abandoned
- 2009-01-27 AU AU2009208735A patent/AU2009208735A1/en not_active Abandoned
- 2009-01-27 CA CA2712964A patent/CA2712964A1/en not_active Abandoned
- 2009-01-27 EP EP09705684.0A patent/EP2247309A4/en not_active Withdrawn
- 2009-01-27 JP JP2010543588A patent/JP2011518115A/ja active Pending
- 2009-01-27 WO PCT/IB2009/005030 patent/WO2009095796A2/en not_active Ceased
- 2009-01-27 CN CN2009801031574A patent/CN102159241A/zh active Pending
-
2014
- 2014-06-25 JP JP2014130452A patent/JP2014196338A/ja active Pending
Non-Patent Citations (1)
| Title |
|---|
| See references of EP2247309A4 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019145509A1 (en) * | 2018-01-26 | 2019-08-01 | Cambridge Enterprise Limited | Peptide exchange protein |
| US12397036B2 (en) | 2018-01-26 | 2025-08-26 | Cambridge Enterprise Limited | Peptide exchange protein |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20110011595A (ko) | 2011-02-08 |
| AU2009208735A1 (en) | 2009-08-06 |
| JP2014196338A (ja) | 2014-10-16 |
| EP2247309A2 (en) | 2010-11-10 |
| WO2009095796A3 (en) | 2013-01-03 |
| CN102159241A (zh) | 2011-08-17 |
| EP2247309A4 (en) | 2013-10-16 |
| US20110117137A1 (en) | 2011-05-19 |
| CA2712964A1 (en) | 2009-08-06 |
| JP2011518115A (ja) | 2011-06-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Esslinger et al. | In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8+ T cell responses | |
| Rommelfanger et al. | Systemic combination virotherapy for melanoma with tumor antigen-expressing vesicular stomatitis virus and adoptive T-cell transfer | |
| Pantuck et al. | Phase I trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding MUC-1 and IL-2 in MUC-1-positive patients with advanced prostate cancer | |
| Lou et al. | Combining the antigen processing components TAP and Tapasin elicits enhanced tumor-free survival | |
| Donofrio et al. | Bovine herpesvirus 4-based vector delivering the full length xCT DNA efficiently protects mice from mammary cancer metastases by targeting cancer stem cells | |
| Cappuccini et al. | 5T4 oncofoetal glycoprotein: an old target for a novel prostate cancer immunotherapy | |
| US11788093B2 (en) | Chimeric antigen receptor t-cells expressing interleukin-8 receptor | |
| US20240401075A1 (en) | Vector for cancer treatment | |
| Oh et al. | Dendritic cells transduced with recombinant adenoviruses induce more efficient anti-tumor immunity than dendritic cells pulsed with peptide | |
| Kim et al. | Prime-boost immunization by both DNA vaccine and oncolytic adenovirus expressing GM-CSF and shRNA of TGF-β2 induces anti-tumor immune activation | |
| WO2022057725A1 (zh) | 分离的能够用于表达外源基因的溶瘤腺病毒、载体、治疗剂及其用途 | |
| Babiarova et al. | Immunization with WT1-derived peptides by tattooing inhibits the growth of TRAMP-C2 prostate tumor in mice | |
| JP2025069165A (ja) | 耐性を誘導するための操作された細胞 | |
| US20110117137A1 (en) | Tapasin augmentation for enhanced immune response | |
| Lou et al. | Tumour immunity and T cell memory are induced by low dose inoculation with a non-replicating adenovirus encoding TAP1 | |
| Le Pogam et al. | DNA-mediated adjuvant immunotherapy extends survival in two different mouse models of myeloid malignancies | |
| Barrett et al. | A Synthetic Biology Rheoswitch Therapeutic System® for the Controlled Local Expression of IL-12 as an Immunotherapy for the Treatment of Cancer | |
| US8314076B2 (en) | Method for inhibiting scavenger receptor-A and increasing immune Response to antigens | |
| Notaro | Lentiviral vector-based tumor vaccines to expand and activate tumor-reactive T cells | |
| US20220096614A1 (en) | Peptide-induced nk cell activation | |
| US20100322963A1 (en) | Low dose inoculation with tap for anti-tumor immunity | |
| WO2025072717A1 (en) | Treating cancer | |
| EA048996B1 (ru) | Вектор для лечения рака | |
| Hogan | 403. Toca Retroviral Replicating Vector in Tumor and Blood from Clinical Trial Subjects with Recurrent High Grade Glioma | |
| Milling et al. | Inhibition of melanoma growth after treatment with dendritic cells in a Tyr-SV40E murine model requires CD4+ T cells but not CD8+ T cells |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200980103157.4 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09705684 Country of ref document: EP Kind code of ref document: A2 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2712964 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009208735 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 4529/CHENP/2010 Country of ref document: IN |
|
| ENP | Entry into the national phase |
Ref document number: 20107016543 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010543588 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2009208735 Country of ref document: AU Date of ref document: 20090127 Kind code of ref document: A |
|
| REEP | Request for entry into the european phase |
Ref document number: 2009705684 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009705684 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 12864751 Country of ref document: US |