WO2009095577A1 - Dispositif de levage et deplacement d'un objet comprenant une centrale inertielle - Google Patents

Dispositif de levage et deplacement d'un objet comprenant une centrale inertielle Download PDF

Info

Publication number
WO2009095577A1
WO2009095577A1 PCT/FR2009/050074 FR2009050074W WO2009095577A1 WO 2009095577 A1 WO2009095577 A1 WO 2009095577A1 FR 2009050074 W FR2009050074 W FR 2009050074W WO 2009095577 A1 WO2009095577 A1 WO 2009095577A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertial unit
link
obj
cable
traction
Prior art date
Application number
PCT/FR2009/050074
Other languages
English (en)
Inventor
Pierre Aristaghes
Valérie BLANCHET
Original Assignee
Saipem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saipem S.A. filed Critical Saipem S.A.
Priority to AT09706039T priority Critical patent/ATE532740T1/de
Priority to EP09706039A priority patent/EP2231499B1/fr
Priority to BRPI0907390-6A priority patent/BRPI0907390A2/pt
Publication of WO2009095577A1 publication Critical patent/WO2009095577A1/fr
Priority to MA32975A priority patent/MA31990B1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements

Definitions

  • the present invention relates to the installation of artificial blocks for constituting shore protection dikes or dikes against the effects of waves.
  • It relates more particularly to the underwater control of the position and orientation of the blocks during handling and more particularly at the time of the final removal of said blocks on the structure.
  • Coastal shorelines and port areas are generally protected from the effects of waves and waves by structures with a shell that can withstand the extreme conditions of the sea for decades or even centuries.
  • the devices are generally made of natural blocks (rockfill) or artificial blocks (concrete blocks), resistant by their mass and / or their shape and / or nesting, said blocks being either simply deposited in bulk when it comes to rough quarry blocks, either arranged in one another according to a predefined laying plan with rules to be respected (case of monolayer shells), or else arranged p seudo-random when it comes to blocks of shapes more mas sive (eg cubic or pdococic blocks and their derivatives).
  • the problem posed is to handle, in a controlled, precise and reliable manner, artificial blocks of all shapes, and to position them accurately and in accordance with the laying plans, on the shell of a dike being built. in the submarine zone from the bottom of the sea, to the emerging zone of the said structure, or even on its aerial part.
  • the present invention provides a device for lifting and moving an object and comprising a crane, said crane comprising an arrow equipped with a first cable, said lifting cable, comprising at its end a link adapted to support a said obj and which is suspended from it by means of a gripping device, characterized in that said link is equipped with an inertial unit, said inertial unit being fixed on said link, preferably so that the axis said link, when stretched by a said suspended object, or coincides with one of the axes of the reference (Xc, Yc, Zc) related to the inertial unit, said inertial unit being connected to a computer, preferably located in the cabin of the crane operator, to which are transmitted the data, recorded in real time, of longitudinal accelerations of said inertial unit in the three directions of a movable marker (Xc, Yc, Zc) and rotational accelerations ( ⁇ 1, ⁇ 2, ⁇ 3) of said inertial unit relative to the same axes of the movable reference (Xc,
  • reference (Xc, Yc, Zc) related to the inertial unit means that said marker is fixed relative to the control unit when it is movable relative to the fixed reference (X, Y, Z).
  • An inertial unit is an accelerometer device known to those skilled in the art, able to record in real time its accelerations of longitudinal displacement in the three directions of the space of a movable marker (Xc, Yc, Zc) and the rotational displacement accelerations ( ⁇ 1, ⁇ 2, ⁇ 3) of the same movable marker, with respect to the three axes of a fixed reference (X, Y, Z) of the space.
  • said computer first calculates the evolution of the position and trajectory of said inertial unit. And, knowing these position and orientation of the inertial unit, as well as the distance of said inertial unit with respect to the center of gravity of said obj and, this distance being constant since said link remains stretched by said obj and which is suspended to it, the computer can deduce, by a simple geometric calculation, a position and orientation in real time of said object.
  • said inertial unit is thus not fixed directly on said object, as is customary in other areas of use of this type of device, for the following reasons:
  • the present invention therefore also provides a method of moving and lifting an object with the aid of a device according to the invention, characterized in that said object is moved and in order to put it at a given location. , depending on its position and its angular orientation with respect to the three dimensions of the space (XYZ, ⁇ l - ⁇ 2- ⁇ 3) and, preferably, as a function of the visualization of its movements, as calculated by said computer . More particularly, in the method according to the invention, said obj and is a concrete block and is realized, by lifting, moving and laying blocks, an assembly of blocks in a desired position for the realization of a protection dam of shore or harbor dike resting on the bottom of the sea.
  • said inertial unit is fixed on said link at a distance from said block such that said inertial unit is always kept out of water.
  • said inertial unit is coupled to a Kalman filter which makes it possible to clip the acceleration amplitudes recorded by the inertial unit, in the event of a large acceleration amplitude of the inertial unit caused by an impact. on said object, and making it possible to substitute, at these amplitudes of accelerations thus clipped (hereinafter parasitic accelerations), the probable values of evolution of the position parameters of said inertial unit, and, preferably, said Kalman filter allowing in addition, to identify the location of said shock and, more preferably, to visualize on the screen the position of the object and during the impact and / or of another said obj and already posed with which said object in progress pose collided.
  • parasitic accelerations the probable values of evolution of the position parameters of said inertial unit
  • Kalman filters are known to those skilled in the art. Such a filter is a recursive estimator which is used to eliminate "parasitic" movements calculated aberrantly by the computer in view of their appearance in the form of peaks, whereas these movements are not carried out in reality, in particular in case shocks on said obj and, as explained later.
  • this Kalman filter is used to further identify the location to which said obj has been shocked, for example by visualizing said obj and by a different color at each shock, in the zone. said shock.
  • this last information is very useful for the crane operator, to adjust the position of the block in the final phase of removal of said obj and, in particular a block on a dike, and more particularly in the absence of any visibility of said block by the crane operator or a diver assistance to supervise said final phase.
  • said inertial unit is combined with a device for directly measuring the position, in said fixed reference (X, Y, Z), of said inertial unit, said measurement comprising the study of the traj and of a wave emitted by said measuring device, such as a laser sighting device, an automatic theodolite or, preferably, a differential GPS.
  • a device for directly measuring the position, in said fixed reference (X, Y, Z), of said inertial unit said measurement comprising the study of the traj and of a wave emitted by said measuring device, such as a laser sighting device, an automatic theodolite or, preferably, a differential GPS.
  • This embodiment makes it possible to implement a method in which, advantageously, only the angular acceleration data ( ⁇ 1, ⁇ 2, ⁇ 3) recorded with the aid of said inertial unit are processed within the computer; it being coupled to a Kalman filter, and the longitudinal position in the space of said obj and with respect to said fixed reference (X, Y, Z) being provided by means of an additional device for direct determination of the position longitudinal of said inertial unit by means of wave emission, such as a laser sighting device, an automatic theodolite or, preferably, a differential GPS.
  • the realization by the Kalman filter of the clipping of the amplitudes of acceleration caused by shocks on said obj and, is exploited to identify and, preferably, to display on a screen, the occurrence of a shock on said object.
  • said link is constituted by the lower part of the hoisting cable.
  • said link is independent of the lifting cable and has a greater torsional rigidity than said lifting cable, said link being preferably consisting of a metal chain or a tube or profile made of steel or composite material, said tube or profile having a torsional rigidity and flexural flexibility with respect to its longitudinal direction.
  • flexion with respect to the longitudinal direction is used here to mean a bending by which the straight axis of said link at rest adopts a curved shape with respect to said rectilinear axis, when it is stressed in bending.
  • This torsional stiffness combined with a flexible flexion with respect to the longitudinal direction of the link, makes it possible to achieve a first greater mechanical filtering parasitic accelerations recorded at the inertial unit due to possible shocks on a said obj and. Moreover, and above all, this torsional stiffness of said link enables the position and orientation of said obj and movements of said object visualized following the calculations of said computer to be more faithful with respect to the real movements of said object and, that is, say are better synchronized with the movements of said inertial unit.
  • said link is connected to the lower end of said lifting cable by a ring or hook connection, the upper end of said link cooperating with said hook or connecting ring via a pin.
  • pin a ball bearing device, roller, or even smooth bearing type, allowing rotations of said link on itself, without torsion at its connection to said ring or hook connection.
  • said inertial unit is integral with said link in the vicinity of said connecting ring or hook between said lifting cables and said link, where appropriate under a said journal connected to the end of said link and cooperating with a said hook or connecting ring;
  • said gripping device is integral with the lower end of the link and capable of cooperating with a said object, so that the movements of the said object and in rotation with respect to the axis of the said link are reflected at the said lower end of the link; .
  • the center of gravity of said obj and remains in alignment with said link being lifted and moved.
  • the gripping device at the lower end of said link is constituted by a plurality of slings arranged in crow's feet, connected to a plurality of lifting rings, integral with said obj and distributed around said obj and such that the center of gravity of said object remains in alignment with said link being lifted and moved.
  • said gripping device is constituted by an entirely rigid device, of the type of sugar tongs.
  • gripping devices such as sugar tongs or crow's feet, are particularly advantageous so that any rotation of said obj and itself is reflected by a rotation of said link and therefore of said inertial unit, so that the rotational movements of said obj and itself are more accurately retranscribed by the calculations made on the basis of the data recorded from the movements of the inertial unit.
  • it implements a crane whose lower end of said boom rests on an arrow support, itself secured to a steering turret, and said boom being inclined in a vertical plane, said boom being adapted to be rotated relative to a vertical axis integral with said boom support.
  • the device according to the invention comprises said hoisting cable suspended at the end of said boom, coupled to a second cable, said traction cable, one end of which is connected to a winch, preferably integral. a support platform for said boom, the other end of the pulling cable being integral with the suspension hoisting rope, preferably at a hook or connecting ring at the lower end of said hoisting rope, such that the reduction in length of said pulling cable, by actuation of said pulling winch, makes it possible to incline said lifting cable with respect to the vertical ZZ and to move in translation said obj and, in a vertical plane not passing by said traction cable and said lifting cable, preferably a vertical plane passing through the axis of said arrow (X1 X '1), that is to say when said traction cable is located in the same vertical plane as the axis of said arrow (Xl X'l).
  • a said traction cable makes it possible to accurately move the said connecting ring or hook and therefore the said object in translation in a vertical plane comprising the axis of the arrow, and to bring the said object closer to the said traction hoist. without having to change the inclination of the boom and, of course, without having to move the crane, which is prohibited when it is being lifted a heavy obj.
  • the device according to the invention comprises at least two traction cables connected, respectively, to two traction winches, one end of each traction cable being connected to a said traction hoist, preferably secured to a support of said boom, the another end of each of the two traction cables being integral with said lifting cable, preferably at its lower end at the level of the same said ring or hook connection (I d), the two traction winches being arranged on either side of said arrow, preferably symmetrically, so that a reduction in length of at least one of said two traction cables makes it possible to move said object laterally with respect to a vertical plane not passing by the axis X 1 X '1 of said arrow, in a plane defined by the two traction cables, preferably a different length reduction for the two cables traction arranged symmetrically with respect
  • the two said traction hoists are arranged at both ends of a transverse beam secured to a platform supporting said boom. This makes it possible, in particular, to adjust at the end of the laying the adequacy of the position of a block with respect to the already laid block of a dike in progress.
  • the present invention therefore provides a method in which a displacement and lifting device, as defined above, is implemented and the stability and positioning of said object is adjusted and at least one said traction winch is actuated.
  • said link is connected at its upper end to a motor bearing, integral with said connecting ring or hook, said motorized bearing for controlling the motorized rotation of said link and said object and in rotation on itself when its motor is actuated, and said motorized bearing j being the role of trunnion when its engine is disengaged.
  • This rotation can be controlled by the crane operator and allows to adjust the position of the obj and as needed during its final removal, particularly in the case of a block to be deposited in a particular laying plane on an as the appearance of blocks of a dike in progress.
  • said motorized bearing cooperates with a rigid arm, said reaction arm, which makes it possible to take up the torsional forces generated by said motorized bearing in rotation, at the upper part of said motorized bearing secured to said connecting ring or hook, said reaction arm being interposed between the end of a said traction cable and the upper portion of said motor bearing which it is secured.
  • the present invention therefore also provides a method in which a device of this type according to the invention is implemented and said motorized bearing is rotated so as to orient the object and, by rotation on itself, in the final phase. of deposit.
  • FIG. 1 represents, in section and in side view, the installation of artificial blocks of cubic shape, for producing the shell of an embankment embankment according to the prior art
  • FIGS. 2A-2B represent respectively in top view and in side view, a cube-shaped block
  • FIGS. 3A-3B show a side view of a "gripper” type gripping device for adjusting the orientation angle of said block relative to the vertical
  • FIG. 4 shows in side view the laying of artificial blocks of cubic shape using the lifting device according to the invention
  • FIG. 4A represents the cartesian orthogonal coordinate system linked to the inertial unit with respect to the fixed reference Cartesian reference frame XYZ,
  • FIG. 4B represents the Cartesian orthogonal coordinate system Xc-Yc-Zc relating to the oblique position of the inertial unit with reference to FIG. 4;
  • FIG. 5 is a view relating to Figure 4 shown in view of sus, in which the positioning of the hook is provided by two traction cables connected to two traction winches, the latter being either integral with the structure of the crane installed on fixed supports in relation to the ground,
  • FIG. 5A represents a view from above of the lateral and longitudinal displacements of the connecting hook acting along the length of the traction cables connected to the traction hoists
  • FIG. 5B shows an inertial unit 6 mounted on a rigid link 8a, consisting of a profiled tube of steel or rigid material, and connected to the lower end of the hoist cable and a traction cable 9a-9b via a pin 29,
  • FIGS. 6A-6B illustrate the operating mode of a Kalman filter
  • FIG. 7 is the logic diagram of the operation of a Kalman filter in the particular case of laying blocks according to the invention.
  • FIGS. 8A and 8C are side views of a rigid link constituted by a tube or section made of steel or rigid material 8a (FIG. 8A) or by a steel chain 8b (FIG. 8C), cooperating with the connection point ends of the traction cables 9 and lifting cable 1a through a motor bearing 30 cooperating with a reaction bar 32,
  • FIG. 8B is a top view of Figures 8A and 8C.
  • a crane 1 installed on the embankment 2a closer to the sea 3 handles a block 4 suspended by a clamp 5 to the main cable of said crane, said lifting cable, to make the shell of a fill 2c according to a predetermined profile corresponding substantially to the curve 2d.
  • the crane comprises a support platform 14 which supports a cockpit 13 and an arrow Ib which rests on the platform 14 by its lower end.
  • the arrow I b is in an inclined position relative to the vertical, this inclination being variable and adjustable, in particular by means of an arrow support cable I c connected to a lifting winch 18 supported by said platform 14.
  • the support platform 14 is able to be displaced in rotation about a vertical axis ZZ with respect to its displacement means on which it rests, such as tracks 19, thus rotating the boom and the cabin of the crane around a vertical axis.
  • the orientation of the arrow I b in the vertical plane can be adjusted so that the block 4 can be positioned vertically to its destination and then lowered by unscrewing the cable. to be deposited at the desired location on the already assembled work. This procedure works properly when the sea is calm and the work can be controlled by divers.
  • the work when a large chop or an offshore swell 3a is established over a long period, the work must be interrupted because, under the effect of said swell, the suspended block is urged and oscillates for several meters. in all directions, and more or less randomly.
  • the swell breaks or creates a major agitation suspending particles of sand or aggregates, or creating micro-bubbles and foam, which make the visibility almost zero, thus preventing any intervention by the divers.
  • FIGS. 2A-2B show respectively in plan view and in side view an artificial block 4 of known shape, substantially cubic having on its lateral faces median recesses, under form of substantially cylindrical grooves semicircular section.
  • These recesses or grooves 4a have the advantage of facilitating gripping, increase the interblock reactions and the "porosity" of a semblance of blocks.
  • the dissipated energy is considerably increased by this porosity and the attenuation effect is thus reinforced.
  • the storage of the blocks during manufacture and supply which requires a very orderly arrangement so as to occupy as little space as possible, as shown in FIG.
  • FIGS. 3A-3B a front view is shown of a known gripping device 5a of the "sugar tong" type in the form of a half circle, which makes it possible to grasp the block either vertically (FIG. 3A) or with a angle ⁇ relative to the vertical ( Figure 3B).
  • the gripping device is constituted by a crowbar slings 5b having at least three strands attached to the lifting rings 5c incorporated in precise positions of the block before pouring concrete.
  • This gripping device 5b makes it possible to maintain the center of gravity of the block in the alignment axis of the link 8, on the one hand, and, on the other hand, favors the synchronization of the rotations of said block and said link with respect to the axis Zc ( axis of said link 8).
  • FIG 4 there is shown in side view the device according to the invention consists of a ring or connecting hook I d located at the end of the hoist cable l a.
  • the connecting hook I d is connected to the upper end of a link consisting of a sling 8, preferably via a pin, its lower end being connected to a crowbar 5b connected to the lifting rings 5c integral with the block 4.
  • an inertial unit 6 is installed, the function of which is to record in real time the accelerations of longitudinal displacement along the Xc-Yc-Zc axes, as well as the rotational accelerations ⁇ i - ⁇ 2 - ⁇ 3 around the same axes.
  • the Cartesian coordinate system corresponding to said axes is a relative reference to the actual support of the inertial unit, as shown in FIG. 4A, the Zc axis corresponding to the longitudinal axis of the link 8.
  • the said axis Zc corresponds with the Z axis of the fixed marker, the Xc-Yc axes having an angular offset ⁇ with respect to the XY axes of the fixed marker.
  • the longitudinal accelerations according to Xc-Yc-Zc and angular according to ⁇ i - ⁇ 2 - ⁇ 3 are recorded in real time within the inertial unit and transmitted to a computer, preferably located in the crane operator's cabin. This allows, by a double integration with respect to time, to calculate the exact trajectory of said inertial unit, as well as its orientation, and thus the direction of the link 8, since the orientation of the link 8 is constant with respect to the orientation. of the inertial unit.
  • block 40 is entered on the storage area of FIG. 5, said block being in the known position XO-YO-ZO, then
  • the link 8 is stretched by acting on the lifting cable 1 a, the said link is then vertical and the Cartesian marks relating to the inertial unit and the absolute reference point have the Z axis in common as detailed in FIG. 4A, then,
  • the inertial unit is triggered which then records all the movements of said central unit, then
  • the position of the block is calculated in real time, and the final approach by the crane operator, before removal, is performed, even in the absence of visibility or in the absence of any control by divers, thanks to said calculated XYZ position of the block, the movements of the block as well as the state of the work already performed being displayed on a screen in the cabin crane operator, and
  • the gripping device is disconnected, preferably automatically by a release device, not shown, controlled from the crane operator's cabin;
  • the crane is then free to go to grab the next block on the storage area.
  • FIG 4 there is shown a traction cable 9 connected at its right end to the ring I d and at its left end to a traction winch 10 secured to the turret 13 of the crane.
  • the length ⁇ of said pull cable is reduced, for bring the ring or connecting hook I d towards the vertical of the point of deposit, which has the advantageous effects of drastically limiting the oscillations of the block in the XoZ plane.
  • this maneuver is much faster than straightening the arrow I b of the crane by acting on the cables I c, to come to position its end to the vertical of said point of removal.
  • the point C of the triangle moves upwards in the figure by describing a circular arc 12 centered at A.
  • the ring or connecting hook is advantageously positioned accurately at any point on the surface 1 1, while preventing the rocking movements of said ring in the two directions XX-YY.
  • Compact devices are commercially available, including an inertial unit equipped with a gyroscope and accelerometer for measuring movements, the orientation and position of an object and which it is secured. It will be possible to use a device marketed by XSens Technologies B. V. (the Netherlands).
  • These devices generally comprise a metal support on which is fixed the inertial unit itself. This support will be attached to the link.
  • an inertial unit is known to those skilled in the art, but its operation in the context of the invention is very particular. Indeed, in the final phase of the approach, just before the removal of the block on the structure, the block comes in contact with the adjacent blocks in general before moving into its final position. These shocks induce sudden variations in speed, and therefore significant accelerations, which disturb the inertial unit, which is then no longer able to provide a precise and reliable calculated positioning, which creates an unacceptable shift in the calculated position of the block with respect to its real position.
  • the Kalman filter is a recursive estimator. This means that to estimate the current state of a system, only the previous state and the current measurements are needed to estimate the future position with optimal accuracy.
  • the acceleration, angular or longitudinal has a series of peaks 15 during a lapse of time s ⁇ t.
  • the block has hardly moved, but the mathematical calculation consisting of the double integration of accelerations on each of the axes over this period ⁇ t, generally leads to aberrant calculated movements, because not performed in reality.
  • the Kalman filter detects these parasitic accelerations by simple analysis in real time of the previous step of the movement, the filter insulates them by clipping said accelerations 16a-16b, and thus does not take them into account in the mathematical calculation of the instantaneous position.
  • the Kalman filter is able, by analyzing the previous steps, to predict the movements during this short period ⁇ t and thus to substitute for these parasitic accelerations, the probable evolution of the system, as represented in FIG. 6B, leading thus to a better reliability in the calculation of the instantaneous position.
  • the longitudinal acceleration peaks are observed to signal to the crane shocks blocks with adjacent blocks or those of the lower layer, but the accelerations themselves are not directly taken into account in the calculation of the position.
  • the XYZ position in real time of the inertial unit 6 then knowing the evolution in real time of the angular accelerations ⁇ i - ⁇ 2 - ⁇ 3 of said power plant, we deduce the direction of the link 8, and knowing the distance from the center of gravity of the block to said central inertial which is a constant length L, we calculate the exact position of the center of gravity of the block.
  • the inertial unit is provided with a DGPS satellite positioning system.
  • This system known to those skilled in the art, is a differential system, that is to say, a beacon is installed on the inertial unit and a second beacon is installed on the ground at a fixed point.
  • FIG. 7 shows a first global mode of operation of the positioning system, in which the 6 main raw parameters (longitudinal accelerations Xc-Yc-Zc and angular accelerations ⁇ l - ⁇ 2- ⁇ 3) are transmitted. from the inertial unit 6 to the computer, preferably located in the cabin 13 of the crane operator. The data is then processed within the computer 20 by the Kalman filter 20a and the position 21 of the block 4 is established based on all or part of these 6 filtered parameters.
  • the 6 main raw parameters longitudinal accelerations Xc-Yc-Zc and angular accelerations ⁇ l - ⁇ 2- ⁇ 3
  • the crane operator knows the type of shock and its amplitude, is able to judge the type of contact between the block being installed and the work already done, and so determine in the absence of any visual contact, or any information from divers, the adequacy of the position of the block relative to the laying plane, so its correct installation .
  • FIG. 7 there is shown a second preferred overall mode of operation of the positioning system, in which the 6 main parameters in the raw state (longitudinal accelerations Xc-Yc-Zc and angular accelerations ⁇ l - ⁇ 2- ⁇ 3) are transmitted from the inertial unit 6 to the computer preferably located in the cabin crane operator. Only the angular accelerating data ⁇ l - ⁇ 2- ⁇ 3 then processed within the computer 20 by the Kalman filter 20a, the position in the space of said inertial unit 6 being provided by a remote measurement means 7a.
  • the link 8a consists of a bar, preferably rectilinear, resistant to torsion, and rigidly secured to the gripping tool, so that the orientation of the integral inertial unit of the link 8a has the same orientation along the Zc axis as the block 4.
  • Said link 8a is connected to the connecting ring I d via a motorized bearing 30, electrical, hydraulic or pneumatic, supplied with energy by means not shown, j or the role of trunnion when the engine is disengaged.
  • a rigid arm acting as a reaction arm 32, integral with the upper part 30a of the engine, is connected to a traction cable 9b under tension.
  • the lower part 30b of the engine is rigidly connected to said link 8a.
  • the lower part 30b of the motorization drives the inertial unit 6 and the block 4, the angular displacements being substantially identical due to the torsional rigidity along the ZZ axis of said link 8a.
  • the reaction arm counterbalances the effects of torsion at the upper part 30a of the engine. Indeed, as shown in FIG. 8B, a torsion torque M applied to the upper part 30a of the motorization induces a rotation 32a of the reaction arm 32.
  • the device according to the invention is represented with two traction cables 9a-9b, only the traction cable 9b is connected to the reaction arm, the cable 9a being connected directly or to the ring or hook I d, either at the upper part 30a of the motor, in the immediate vicinity of its axis of rotation.
  • the reaction arm 32 is connected directly to said cable.
  • the motorization is removed, and the link 8a having a torsional stiffness along the axis Zc, is on the one hand suspended from the ring or hook I d, and from secondly rigidly connected to the reaction arm 32.
  • the position of the gripping tool is preferably adjusted so that once the crane is in position in the drop zone, the block has the right orientation, since the crane operator then more means to vary this angular positioning along the vertical axis Zc.
  • FIG. 8C shows an advantageous embodiment of the link 8 having torsional rigidity, which is in the form of a chain 8b. Indeed, in the absence of tension in the chain, it is possible to turn it on its axis ZZ with little effort, but when we apply a significant tension, each link being connected perpendicular to the next and the diameter of the wire of each of the rings being slightly less than the free internal diameter of the ring adj acent, the chain will naturally tend to reposition in a configuration of zero torsion, so perpendicular to the adjoining link, as detailed in the figure 8C.
  • the link 8, 8a-8b with torsional stiffness along the axis ZZ can be obtained from a simple steel tube, or else from a profile made of composite material, which has good torsional stiffness, while keeping a large flexible bending in the XoZ and YoZ planes, which advantageously allows a first mechanical filtering of the shocks on the blocks, thus avoiding passing directly to the inertial unit all the parasitic accelerations due to shocks.
  • the hoisting rope is continuous up to the gripping device 5, the hook or the ring then being replaced by a mechanical cable clamp from gripping said hoisting rope at a fixed point on which the end of the traction cable or cables is connected, the part above the cable tie then serving as the hoisting cable and the part underneath said cable tie acting as the link 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Control And Safety Of Cranes (AREA)
  • Jib Cranes (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Paper (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

La présente invention concerne un dispositif de levage et déplacement d'un objet (4) comprenant une grue (1), comprenant un lien (8, 8a-8b) apte à supporter un dit objet qui lui est suspendu, ledit lien (8, 8a- 8b) étant équipé d'une centrale inertielle (6) reliée à un ordinateur (20), auquel sont transmises les données enregistrées d'accélérations longitudinales de ladite centrale inertielle dans les trois directions d'un repère mobile (Xc, Yc, Zc) et accélérations en rotation (φ l, φ2, φ3) de ladite centrale inertielle par rapport aux mêmes axes du repère mobile (Xc, Yc, Zc) de ladite centrale inertielle, l'ordinateur étant apte à indiquer position et orientation dudit objet suspendu audit lien, dans un repère fixe (X, Y, Z) de l'espace, déduites des position et orientation de la centrale inertielle, et, de préférence, l'ordinateur étant capable de visualiser sur un écran des mouvements dudit objet dans l'espace.

Description

DISPOSITIF DE LEVAGE ET DEPLACEMENT D'UN OBJET COMPRENANT UNE CENTRALE INERTIELLE
La présente invention concerne la pose de blocs artificiels permettant de constituer des digues de protection de rivage ou des digues contre les effets de la houle.
Elle concerne plus particulièrement le contrôle en sous-marin de la position et de l'orientation des blocs au cours de la manutention et plus particulièrement au moment de la dépose finale desdits blocs sur l'ouvrage.
Les rivages côtiers et les zones portuaires sont en général protégés contre les effets des vagues et de la houle par des ouvrages revêtus d'une carapace capable de résister aux conditions extrêmes de la mer durant des décennies voire des siècles.
De nombreux dispositifs ont été développés de manière à assurer un fonctionnement performant sur des durées très longues, sans déstabilisation significatives de l'ouvrage. Les dispositifs sont en général constitués de blocs naturels (enrochements) ou artificiels (blocs en béton) , résistant par leur masse et/ou leur forme et/ou imbrication, lesdits blocs étant, soit simplement déposés en vrac lorsqu'il s 'agit de blocs bruts de carrière, soit agencés les uns dans les autres selon un plan de pose prédéfini avec des règles à respecter (cas des carapaces monocouche) , soit encore agencés de manière p seudo-aléatoire lorsqu'il s'agit de blocs de formes plus mas sives (cas par exemple des blocs cubiques ou p seudocubiques et de leurs dérivés) .
La mise en place de blocs moulés nécessite des moyens de préhension et de manutention qui permettent une mise en place précise de chacun des blocs dans l'édifice en cours de construction, de manière à ce que la pose des blocs suivants puisse se poursuivre sans difficultés. Si la zone hors d'eau, réalisée en général à la fin de l'ouvrage ne pose pas vraiment de problème car le grutier a une vision directe de l'état de l'ouvrage déjà installé et une maîtrise du positionnement du bloc en cours d'installation, il n'en va pas de même de la portion de l'ouvrage située sous l'eau. On utilise en général le concours de plongeurs qui as sistent alors le grutier durant la phase de dépose du blocs et confirment au grutier le positionnement correct dudit bloc, avant qu'il ne soit déconnecté de son outil de préhension. On s'arrange alors pour travailler en période calme, car, en cas de forte mer ou de houle importante, les plongeurs ne peuvent pas intervenir en toute sécurité, en raison de l'agitation ambiante et en particulier l'absence de visibilité suffisante. Dans certaines régions du monde, les conditions océano-météo n'atteignent quasiment jamais un niveau de calme permettant d'effectuer les opérations de construction dans des conditions acceptables . En effet, dans ces zones une houle persistante de longue période perturbe le rivage dans la zone côtière et ne permet pas l'intervention de plongeurs dans des conditions de sécurité acceptable, et les carapaces sont alors extrêmement délicates à réaliser, et de plus les durées de chantier présentent des risques considérables de prolongation en raison de périodes importantes de " stand-by", c'est-à-dire d'attente de périodes de calme, ce qui engendre des surcoûts considérables pour ces ouvrages.
Ainsi, le problème posé est de manutentionner, de manière contrôlée, précise et fiable, des blocs artificiels de toutes formes, et de les positionner avec précision et en conformité avec les plans de pose, sur la carapace d'une digue en cours de construction dans la zone sous-marine depuis le fond de la mer, jusqu'à la zone émergeante dudit ouvrage, voire sur sa partie aérienne.
Pour ce faire, la présente invention fournit un dispositif de levage et déplacement d'un obj et comprenant une grue, ladite grue comprenant une flèche équipée d'un premier câble, dit câble de levage, comprenant à son extrémité un lien apte à supporter un dit obj et qui lui est suspendu par l'intermédiaire d'un dispositif de préhension, caractérisé en ce que ledit lien est équipé d'une centrale inertielle, ladite centrale inertielle étant fixée sur ledit lien, de préférence de telle sorte que l'axe dudit lien, lorsqu'il est tendu par un dit objet suspendu, soit confondu avec un des axes du repère (Xc, Yc, Zc) lié à la centrale inertielle, ladite centrale inertielle étant reliée à un ordinateur, de préférence situé dans la cabine du grutier, auquel sont transmises les données, enregistrées en temp s réel, d'accélérations longitudinales de ladite centrale inertielle dans les trois direction d'un repère mobile (Xc, Yc, Zc) et accélérations en rotation (φ l , ψ2, φ3) de ladite centrale inertielle par rapport aux mêmes axes du repère mobile (Xc, Yc, Zc) lié à ladite centrale inertielle, l'ordinateur étant apte à indiquer les position et orientation dudit objet suspendu audit lien, dans un repère fixe (X, Y, Z) de l'espace, déduites des position et orientation instantanées de la centrale inertielle, et, de préférence, l'ordinateur étant capable de visualiser sur un écran des mouvements dudit objet dans l'espace.
On entend par "repère (Xc, Yc, Zc) lié à la centrale inertielle" que ledit repère est fixe par rapport à la centrale quand il est mobile par rapport au repère fixe (X, Y, Z) .
Une centrale inertielle est un dispositif accéléromètre connu de l'homme de l'art, apte à enregistrer en temps réel ses accélérations de déplacement longitudinal dans les trois direction de l'espace d'un repère mobile (Xc, Yc, Zc) et les accélérations de déplacement en rotation (φ l , φ2, φ3) du même repère mobile, par rapport aux trois axes d'un repère fixe (X, Y, Z) de l'espace.
On comprend que ledit ordinateur calcule d'abord l'évolution de la position et de la trajectoire de ladite centrale inertielle. Et, connaissant ces position et orientation de la centrale inertielle, ainsi que la distance de ladite centrale inertielle par rapport au centre de gravité dudit obj et, cette distance étant constante puisque ledit lien reste tendu par ledit obj et qui lui est suspendu, l'ordinateur peut en déduire, par un calcul géométrique simple, une position et orientation en temp s réel dudit objet.
Il est ainsi possible, en l'absence de toute visibilité directe dudit obj et par le grutier, de commander le déplacement dudit objet en fonction des données calculées par ledit ordinateur et de déterminer la trajectoire dudit objet pour être posé à un emplacement déterminé voulu, notamment lorsque les obj ets en cause sont des objets de forte charge, de plusieurs dizaines de tonnes, tels que des blocs de béton as semblés pour la réalisation d'une digue sous-marine.
Selon la présente invention, ladite centrale inertielle n'est donc pas fixée directement sur ledit objet, comme il est d'usage dans d'autres domaines d'utilisation de ce type de dispositif, pour les raisons suivantes :
1 - ledit obj et est susceptible de rentrer en collision avec d'autres obj ets lors de sa dépose, plus particulièrement lorsque ledit obj et est un bloc de béton que l'on dépose au fond de la mer pour réaliser une digue, les chocs avec des blocs précédemment posés étant fréquents . La fixation de la centrale inertielle sur ledit obj et risquerait d'entraîner l'endommagement de ladite centrale lors desdits chocs.
2- le fait de déporter le support de la centrale inertielle par rapport audit obj et le long dudit lien permet qu'un premier écrêtage ou filtrage de l'amplitude des accélérations liées aux chocs éventuels, se fasse mécaniquement par l'intermédiaire dudit lien, comme explicité plus loin.
3- le fait de déporter vers le haut ladite centrale permet de la maintenir hors de l'eau et d'utiliser des moyens de positionnement dans l'espace de type GPS (Global Positioning System) , DGPS (GPS différentiel) , de type positionnement laser ou théodolite automatique, comme explicité ci-après.
La présente invention fournit donc également un procédé de déplacement et de levage d'un objet à l'aide d'un dispositif selon l'invention, caractérisé en ce que l'on déplace ledit obj et en vue de le poser à un emplacement déterminé, en fonction de sa position et de son orientation angulaire par rapport aux trois dimensions de l'espace (X-Y-Z, φ l -φ2-φ3) et, de préférence, en fonction de la visualisation de ses mouvements, tels que calculés par ledit ordinateur. Plus particulièrement, dans le procédé selon l'invention, ledit obj et est un bloc de béton et on réalise, par levage, déplacement et pose de blocs, un assemblage de blocs dans une position voulue pour la réalisation d'une digue de protection de rivage ou digue portuaire reposant sur le fond de la mer.
Avantageusement, ladite centrale inertielle est fixée sur ledit lien à une distance dudit bloc telle que ladite centrale inertielle reste touj ours maintenue hors d'eau.
Dans un mode préféré de réalisation, ladite centrale inertielle est couplée à un filtre de Kalman qui permet d'écrêter les amplitudes d'accélérations enregistrées par la centrale inertielle, en cas d'amplitude d'accélération importante de la centrale inertielle causée par un choc sur ledit objet, et permettant de substituer, à ces amplitudes d'accélérations ainsi écrêtées (ci-après accélérations parasites), les valeurs probables d'évolution des paramètres de position de ladite centrale inertielle, et, de préférence, ledit filtre de Kalman permettant en outre d'identifier l'emplacement dudit choc et, de préférence encore, visualiser sur l'écran la position de l'obj et lors du choc et/ou d'un autre dit obj et déj à posé avec lequel ledit objet en cours de pose est rentré en collision.
Ces filtres de Kalman sont connus de l'homme de l'art. Un tel filtre est un estimateur récursif qui est utilisé pour éliminer des mouvements "parasites" calculés de façon aberrante par l'ordinateur compte tenu de leur apparition sous forme de pics, alors que ces mouvements ne sont pas effectués dans la réalité, notamment en cas de chocs sur ledit obj et, comme explicité plus loin.
De façon originale selon la présente invention, ce filtre de Kalman est utilisé pour, en outre, identifier l'emplacement auquel ledit obj et a reçu un choc, par exemple en visualisant ledit obj et par une couleur différente à chaque choc, dans la zone dudit choc. On comprend que cette dernière information est très utile pour le grutier, afin d'ajuster la position du bloc en phase finale de dépose dudit obj et, notamment d'un bloc sur une digue, et plus particulièrement en l'absence de toute visibilité dudit bloc par le grutier ou par un plongeur d'assistance chargé de superviser ladite phase finale.
Dans un mode préféré de réalisation, ladite centrale inertielle est combinée à un dispositif de mesure directe de la position, dans ledit repère fixe (X, Y, Z) , de ladite centrale inertielle, ladite mesure comprenant l'étude du traj et d'une onde émise par ledit dispositif de mesure, tel qu'un dispositif de visée laser, un théodolite automatique ou, de préférence, un GPS différentiel.
Ce mode de réalisation permet de mettre en œuvre un procédé dans lequel, avantageusement, seules les données d'accélération angulaire (φ l , φ2, φ3) enregistrées à l'aide de ladite centrale inertielle sont traitées au sein de l'ordinateur, celui-ci étant couplé à un filtre de Kalman, et la position longitudinale dans l'espace dudit obj et par rapport audit repère fixe (X, Y, Z) étant fournie par l'intermédiaire d'un dispositif additionnel de détermination directe de la position longitudinale de ladite centrale inertielle au moyen d'émission d'ondes, tel qu'un dispositif de visée laser, un théodolite automatique ou, de préférence, un GPS différentiel.
Avantageusement encore, dans un procédé selon l'invention, la réalisation par le filtre de Kalman de l'écrêtage des amplitudes d'accélération causées par des chocs sur ledit obj et, est exploitée pour identifier et, de préférence, visualiser sur un écran, l'occurrence d'un choc sur ledit objet.
Ceci permet, en particulier, d'ajuster en fin de pose l'adéquation de la position d'un bloc par rapport au bloc déjà posé d'une digue en cours de réalisation.
Dans une variante de réalisation, ledit lien est constitué par la partie inférieure du câble de levage. Toutefois, dans une variante préférée, ledit lien est indépendant du câble de levage et présente une rigidité à la torsion supérieure à celle dudit câble de levage, ledit lien étant de préférence constitué d'une chaîne métallique ou d'un tube ou profilé en acier ou matériau composite, ledit tube ou profilé présentant une rigidité à la torsion et de la souplesse en flexion par rapport à sa direction longitudinale.
On entend ici par "flexion par rapport à la direction longitudinale", une flexion par laquelle l'axe rectiligne dudit lien au repos adopte une forme courbe par rapport audit axe rectiligne, lorsqu'il est sollicité en flexion.
Cette rigidité en torsion alliée à une souples se en flexion par rapport à la direction longitudinale du lien, permet de réaliser un premier filtrage mécanique plus important des accélérations parasites enregistrées au niveau de la centrale inertielle dues à des chocs éventuels sur un dit obj et. En outre, et surtout, cette rigidité à la torsion dudit lien permet que les position et orientation dudit obj et et mouvements dudit objet visualisés suite aux calculs dudit ordinateur soient plus fidèles par rapport aux mouvements réels dudit obj et, c'est-à-dire soient mieux synchronisés avec les mouvements de ladite centrale inertielle.
De préférence encore, ledit lien est relié à l'extrémité inférieure dudit câble de levage par un anneau ou crochet de raccordement, l'extrémité supérieure dudit lien coopérant avec ledit crochet ou anneau de raccordement par l'intermédiaire d'un tourillon.
On entend ici par " tourillon", un dispositif à roulement à billes, à rouleaux, ou encore de type palier lisse, autorisant les rotations dudit lien sur lui-même, sans torsion au niveau de son raccordement audit anneau ou crochet de raccordement. Ces caractéristiques permettent que les mouvements de la centrale inertielle reflètent, plus fidèlement encore, les mouvements de l'obj et.
Selon d'autres caractéristiques avantageuses : - ladite centrale inertielle est solidaire dudit lien à proximité dudit anneau ou crochet de raccordement entre lesdits câbles de levage et ledit lien, le cas échéant dessous un dit tourillon relié à l'extrémité dudit lien et coopérant avec un dit crochet ou anneau de raccordement, et
- ledit dispositif de préhension est solidaire de l'extrémité inférieure du lien et apte à coopérer avec un dit objet, de telle sorte que les mouvements dudit obj et en rotation par rapport à l'axe dudit lien soient répercutés à ladite extrémité inférieure du lien.
De préférence, le centre de gravité dudit obj et reste dans l'alignement dudit lien en cours de levage et déplacement.
Dans un mode de réalisation particulier, le dispositif de préhension à l'extrémité inférieure dudit lien est constitué par une pluralité d'élingues disposées en patte d'oie, reliée à une pluralité d'anneaux de levage, solidaires dudit obj et et répartis autour dudit obj et de telle sorte que le centre de gravité dudit objet reste dans l'alignement dudit lien en cours de levage et déplacement.
Dans un autre mode de réalisation, ledit dispositif de préhension est constitué par un dispositif entièrement rigide, de type pince à sucre.
Ces dispositifs de préhension, de type pince à sucre ou en patte d'oie, sont particulièrement avantageux pour que toute rotation dudit obj et sur lui-même soit répercutée par une rotation dudit lien et donc de ladite centrale inertielle, de façon à ce que les mouvements de rotation dudit obj et sur lui-même soient plus fidèlement retranscrits par les calculs opérés sur la base des données enregistrées à partir des mouvements de la centrale inertielle.
Avantageusement, on met en œuvre une grue dont l'extrémité inférieure de ladite flèche repose sur un support de flèche, lui-même solidaire d'une tourelle de pilotage, et ladite flèche étant inclinée dans un plan vertical, ladite flèche étant apte à être déplacée en rotation par rapport à un axe vertical solidaire dudit support de flèche.
Dans une variante de réalisation avantageuse, le dispositif selon l'invention comprend ledit câble de levage suspendu à l'extrémité de ladite flèche, couplé à un deuxième câble, dit câble de traction, dont une extrémité est reliée à un treuil, de préférence solidaire d'une plate-forme support de ladite flèche, l'autre extrémité du câble de traction étant solidaire du câble de levage en suspension, de préférence au niveau d'un crochet ou anneau de raccordement à l'extrémité inférieure dudit câble de levage, de telle sorte que la réduction de longueur dudit câble de traction, par actionnement dudit treuil de traction permette d'incliner ledit câble de levage par rapport à la verticale ZZ et de déplacer en translation ledit obj et, dans un plan vertical pas sant par ledit câble de traction et ledit câble de levage, de préférence, un plan vertical passant par l'axe de ladite flèche (Xl X' l) , c'est-à-dire lorsque ledit câble de traction est situé dans le même plan vertical que l'axe de ladite flèche (Xl X'l) .
La mise en œuvre d'un dit câble de traction permet de déplacer de façon précise ledit anneau ou crochet de raccordement et donc ledit objet en translation dans un plan vertical comprenant l'axe de la flèche, et de rapprocher ledit objet dudit treuil de traction sans avoir à modifier l'inclinaison de la flèche et, bien sur, sans avoir à déplacer la grue, ce qui est proscrit lorsque celle-ci est en cours de levage d'un obj et pesant.
Pour déplacer de façon précise ledit anneau ou crochet de raccordement et donc ledit obj et en translation dans un plan horizontal, c'est-à-dire latéralement par rapport à un plan vertical passant par l'axe de la flèche, avantageusement, le dispositif selon l'invention comporte au moins deux câbles de traction reliés, respectivement, à deux treuils de traction , une extrémité de chacun câble de traction étant reliée à un dit treuil de traction, de préférence solidaire d'un support de ladite flèche, l'autre extrémité de chacun des deux câbles de traction étant solidaire dudit câble de levage, de préférence à son extrémité inférieure au niveau du même dit anneau ou crochet de raccordement (I d), les deux treuils de traction étant disposés de part et d'autre de ladite flèche, de préférence symétriquement, de sorte qu'une réduction de longueur de l'un au moins des deux dits câbles de traction permet de déplacer ledit objet latéralement par rapport à un plan vertical pas sant par l'axe XlX' l de ladite flèche, dans un plan défini par les deux câbles de traction, de préférence une réduction de longueur différente pour les deux câbles de traction disposés symétriquement par rapport à un plan vertical passant par l'axe de ladite flèche.
Ces déplacements latéraux dans un plan incliné par rapport à l'horizontal ou déplacements dans un plan vertical dudit obj et, à l'aide de dit(s) câble(s) de traction, permettent surtout de stabiliser ledit obj et en cas de balancement en cours d'opération, ou d'éviter l'apparition de tels balancements.
Avantageusement encore, les deux dits treuils de traction sont disposés aux deux extrémités d'une poutre transversale solidaire d'une plate-forme supportant ladite flèche. Ceci permet, en particulier, d'ajuster en fin de pose l'adéquation de la position d'un bloc par rapport au bloc déjà posé d'une digue en cours de réalisation.
La présente invention fournit donc un procédé dans lequel on met en œuvre un dispositif de déplacement et de levage, tel que défini ci-dessus, et on ajuste la stabilité et le positionnement dudit obj et en actionnant au moins un dit treuil de traction.
Dans un autre mode préféré de réalisation, ledit lien est relié à son extrémité supérieur à un palier motorisé, solidaire dudit anneau ou crochet de raccordement, ledit palier motorisé permettant de commander la rotation motorisée dudit lien et dudit obj et en rotation sur lui-même lorsque son moteur est actionné, et ledit palier motorisé j ouant le rôle de tourillon lorsque son moteur est débrayé. Cette rotation peut être commandée par le grutier et permet d'ajuster la position de l'obj et en tant que de besoin lors de sa dépose finale, notamment dans le cas d'un bloc à déposer dans un plan de pose particulier sur un as semblage de blocs d'une digue en cours de réalisation.
Avantageusement encore, ledit palier motorisé coopère avec un bras rigide, dit bras de réaction, qui permet de reprendre les efforts de torsion générés par ledit palier motorisé en rotation, au niveau de la partie supérieure dudit palier motorisé solidaire dudit anneau ou crochet de raccordement, ledit bras de réaction étant intercalé entre l'extrémité d'un dit câble de traction et la partie supérieure dudit palier motorisé de laquelle il est solidaire.
La présente invention fournit donc également un procédé dans lequel on met en œuvre un dispositif de ce type selon l'invention et on actionne en rotation ledit palier motorisé de façon à orienter l'obj et, par rotation sur lui-même, en phase finale de dépose.
D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lecture de la description qui va suivre, faite de manière illustrative et non limitative, en référence aux dessins annexés sur lesquels :
- la figure 1 représente en coupe et en vue de côté l'installation de blocs artificiels de forme cubique, pour réaliser la carapace d'une digue à talus selon l'art antérieur,
- les figures 2A-2B représentent respectivement en vue de dessus et en vue de côté, un bloc de forme cubique,
- les figures 3A-3B représentent en vue de côté un dispositif de préhension de blocs de type "pince à sucre" permettant d'ajuster l'angle d'orientation dudit bloc par rapport à la verticale,
- la figure 4 représente en vue de côté la pose de blocs artificiels de forme cubique à l'aide du dispositif de levage selon l'invention, - la figure 4A représente le repère orthogonal cartésien lié à la centrale inertielle par rapport au repère cartésien fixe de référence XYZ,
- la figure 4B représente le repère orthogonal cartésien Xc-Yc-Zc relatif à la position oblique de la centrale inertielle en référence à la figure 4,
- la figure 5 est une vue relative à la figure 4 représentée en vue de des sus, dans laquelle le positionnement du crochet est assuré par deux câbles de traction reliés à deux treuils de traction, ces derniers étant soit solidaires de la structure de la grue, soit installés sur des supports fixes par rapport au sol,
- la figure 5A représente en vue de dessus les déplacements latéral et longitudinal du crochet de raccordement en agis sant sur la longueur des câbles de traction reliés aux treuils de traction,
- la figure 5B représente une centrale inertielle 6 montée sur un lien rigide 8a, constitué d'un tube profilé en acier ou matériau rigide, et reliée à l'extrémité inférieure du câble de levage l a et d'un câble de traction 9a-9b par l'intermédiaire d'un tourillon 29,
- les figures 6A-6B illustrent le mode opératoire d'un filtre de Kalman,
- la figure 7 est le diagramme logique du fonctionnement d'un filtre de Kalman dans le cas particulier de la pose des blocs selon l'invention,
Les figures 8A et 8C sont des vues de coté d'un lien rigide constitué d'un tube ou profilé en acier ou matériau rigide 8a (figure 8A) ou par une chaîne en acier 8b (figure 8C) , coopérant avec le point de raccordement des extrémités des câble de traction 9 et câble de levage l a par l'intermédiaire d'un palier motorisé 30 coopérant avec une barre de réaction 32,
- la figure 8B est une vue de dessus des figures 8A et 8C. Dans la figure 1 , on a représenté la pose de blocs artificiels selon l'art antérieur. Une grue 1 installée sur le remblais 2a au plus près de la mer 3 manutentionne un bloc 4 suspendu par une pince 5 au câble principal l a de ladite grue, dit câble de levage, pour réaliser la carapace d'un remblais 2c selon un profil prédéterminé correspondant sensiblement à la courbe 2d. La grue comporte une plate-forme support 14 qui supporte une cabine de pilotage 13 et une flèche I b qui repose sur la plate-forme 14 par son extrémité inférieure. La flèche I b est en position inclinée par rapport à la verticale, cette inclinaison étant variable et pouvant être réglée, notamment à l'aide d'un câble support de flèche I c relié à un treuil de levage 18 supportée par ladite plate-forme 14. La plate-forme support 14 est apte à être déplacée en rotation autour d'un axe vertical ZZ par rapport à ses moyens de déplacement sur lesquels elle repose, tels que des chenilles 19, entraînant ainsi en rotation la flèche et la cabine de la grue autour d'un axe vertical. En jouant sur la longueur des câbles I c, l'orientation de la flèche I b dans le plan vertical peut être ajustée de manière à ce que le bloc 4 puisse être positionné à la verticale de sa destination, puis descendu par dévirage du câble l a pour être déposé à l'emplacement voulu sur l'ouvrage déj à assemblé. Ce mode opératoire fonctionne correctement lorsque la mer est calme et que le travail peut être contrôlé par plongeurs . Par contre, lorsqu'un clapot important ou une houle du large 3a est établie sur une longue durée, le travail doit être interrompu car, sous l'effet de ladite houle, le bloc en suspension est sollicité et se met à osciller sur plusieurs mètres en tous sens, et ce de manière plus ou moins aléatoire. De plus, dans la zone du remblais non encore protégée, la houle déferle ou crée une agitation importante mettant en suspension des particules de sable ou de granulats, ou encore créant des micro bulles d'air et de l'écume, qui rendent la visibilité quasi nulle, empêchant alors toute intervention des plongeurs.
Sur les figures 2A-2B, on a représenté respectivement en vue de dessus et en vue de côté un bloc artificiel 4 de forme connue, sensiblement cubique présentant sur ses faces latérales des renfoncements médians, sous forme de rainures sensiblement cylindriques à section demi-circulaire. Ces renfoncements ou rainures 4a présentent l'intérêt de faciliter la préhension, d'augmenter les réactions interblocs ainsi que la "porosité" d'un as semblage de blocs. Ainsi, lorsqu'un as semblage de blocs est percuté par la vague incidente, lors de fortes houles ou de tempêtes, l'énergie dissipée est considérablement augmentée par cette porosité et l'effet d'atténuation s'en trouve ainsi renforcée. Contrairement au stockage des blocs lors de la fabrication et de l'approvisionnement, lequel néces site un arrangement très ordonné de manière à occuper le moins de place possible, tel que représenté sur la figure 5, lors de la mise en place des blocs pour une digue, on vise à optimiser la porosité d'ensemble, c'est-à-dire que l'on cherche à installer les blocs de guingois les uns par rapport aux autres tout en leur assurant un contact stable avec les blocs adjacents latéraux et les blocs inférieurs, la couche suivante venant verrouiller définitivement la position de la couche précédente inférieure, assurant ainsi la stabilité de l'ensemble pendant toute la durée de vie de l'ouvrage qui dépas se plusieurs décennies, voire le siècle. Ce mode opératoire est connu de l'homme de l'art et fait l'objet de préparatifs spéciaux conduisant à des plans de pose précis qu'il convient de respecter pour que l'ouvrage d'art puisse remplir correctement son office. De nombreuses formes particulières très différentes ont été développées dans le monde (on se référera par exemple aux recommandations internationales qui les décrivent abondamment) , et certaines d'entre elles présentent l'avantage de s'imbriquer naturellement les unes dans les autres.
Sur les figures 3A-3B, on a représenté en vue de face un dispositif de préhension 5a connu de type "pince à sucre" en forme de demi cercle, ce qui permet de saisir le bloc soit verticalement (figure 3A), soit avec un angle α par rapport à la verticale (figure 3B) .
Sur la figure 4, de façon préférée, le dispositif de préhension est constitué par une patte d'oie en élingues 5b comportant au moins trois brins fixés sur des anneaux de levage 5c incorporés en des positions précises du bloc avant coulage du béton. Ce dispositif de préhension 5b permet de maintenir le centre de gravité du bloc dans l'axe d'alignement du lien 8, d'une part, et, d'autre part, favorise la synchronisation des rotations dudit bloc et dudit lien par rapport à l'axe Zc (axe dudit lien 8) .
Sur la figure 4, on a représenté en vue de côté le dispositif selon l'invention constitué d'un anneau ou crochet de raccordement I d situé à l'extrémité du câble de levage l a. Le crochet de raccordement I d est relié à l'extrémité supérieure d'un lien constitué d'une élingue 8, par l'intermédiaire, de préférence, d'un tourillon, son extrémité inférieure étant reliée à une patte d'oie 5b reliée à des anneaux de levage 5c solidaires du bloc 4. Sur l'élingue 8, de préférence hors de l'eau, de préférence en partie haute à proximité du crochet de raccordement I d, on installe une centrale inertielle 6 dont la fonction est d'enregistrer en temp s réel les accélérations de déplacement longitudinal selon les axes Xc-Yc-Zc, ainsi que les accélérations de rotation φi -φ23 autour des mêmes axes . Le repère cartésien correspondant auxdits axes est un repère relatif au support proprement dit de la centrale d'inertie, comme représenté sur la figure 4A, l'axe Zc correspondant à l'axe longitudinal du lien 8. Ainsi, lorsque le lien 8 est vertical comme indiqué en pointillé sur la figure 4, ledit axe Zc correspond alors avec l'axe Z du repère fixe, les axes Xc-Yc présentant un décalage angulaire θ par rapport aux axes X-Y du repère fixe.
Lorsque l'ensemble constitué du câble l a, de la centrale inertielle 6, du lien 8, du moyen de préhension 5 et du bloc artificiel 4 se déplace, les accélérations longitudinales selon Xc-Yc-Zc et angulaires selon φi -φ23 sont enregistrées en temp s réel au sein de la centrale inertielle et transmises à un ordinateur, situé de préférence dans la cabine du grutier. Ceci permet, par une double intégration par rapport au temps, de calculer la traj ectoire exacte de ladite centrale inertielle, ainsi que son orientation, donc la direction du lien 8, puisque l'orientation du lien 8 est constante par rapport à l'orientation de la centrale inertielle. Connaissant cette direction, ainsi que la distance de la centrale inertielle jusqu'au centre de gravité du bloc, on en déduit par un calcul géométrique simple la position en temp s réel du centre de gravité du bloc, donc la position en temp s réel du bloc, et ce en l'absence de toute visibilité directe du bloc par le grutier.
Ainsi, un mode opératoire préféré est le suivant :
on saisit le bloc 40 sur l'aire de stockage de la figure 5, ledit bloc étant dans la position connue XO-YO-ZO, puis
on tend le lien 8 en agissant sur le câble de levage l a, ledit lien est alors vertical et les repères cartésiens relatifs à la centrale inertielle et le repère absolu ont l'axe Z en commun comme détaillé sur la figure 4A, puis,
- dès que le bloc quitte le sol 2a, on déclenche la centrale inertielle qui enregistre alors tous les déplacements de ladite centrale, puis
on positionne l'extrémité supérieure de la flèche de façon à ce que ledit obj et soit sensiblement à l'aplomb de l'emplacement voulu dans la zone de dépose comme illustré sur la figure 4, puis
- connaissant la position absolue de la centrale inertielle, la position du bloc est calculée en temp s réel, et l'approche finale par le grutier, avant dépose, est effectuée, même en l'absence de visibilité ou en l'absence de tout contrôle par plongeurs, grâce à ladite position X-Y-Z calculée du bloc, les mouvements du bloc ainsi que l'état de l'ouvrage déjà réalisé étant visualisés sur un écran dans la cabine du grutier, et
après dépose, le dispositif de préhension est déconnecté, de préférence de manière automatique par un dispositif de largage, non représenté, commandé depuis la cabine du grutier ;
la grue est alors libre pour aller saisir le bloc suivant sur l'aire de stockage.
Sur la figure 4, on a représenté un câble de traction 9 relié à son extrémité droite à l'anneau I d et à son extrémité gauche à un treuil de traction 10 solidaire de la tourelle 13 de la grue. Lors de la manutention du bloc par la grue, on réduit la longueur ρ dudit câble de traction, pour ramener l'anneau ou crochet de raccordement I d vers la verticale du point de dépose, ce qui a pour effets avantageux de limiter radicalement les oscillations du bloc dans le plan XoZ. De plus, cette manœuvre est beaucoup plus rapide que de redresser la flèche I b de la grue en agis sant sur les câbles I c, pour venir positionner son extrémité à la verticale dudit point de dépose.
Dans une version préférée de l'invention représentée sur la vue en plan de la figure 5, on dispose deux câbles de traction 9a-9b reliés à deux treuils de traction 1 Oa- I Ob, les deux treuils de traction étant avantageusement solidaires d'une poutre 17, elle-même solidaire de la structure porteuse de la flèche I b, donc de la tourelle de la grue. En agissant sur les longueurs respectives Q1 - ρ2 des câbles de traction 9a-9b, on positionne avec précision, de manière bipolaire, l'anneau ou crochet de raccordement I d dans le plan formé par les deux droites que constituent lesdits câbles 9a-9b, lesdites droites se coupant au point C au niveau de l'anneau I d. Ainsi, lorsque l'anneau ou crochet de raccordement I d se trouve ramené vers la tourelle de la grue par réduction de la longueur desdits câbles, comme détaillé sur la figure 4, les deux câbles 9a-9b sont fortement tendus et, si les longueurs Q1 = Q2, l'anneau ou crochet de raccordement se trouve exactement dans l'axe de la flèche de grue. Le triangle ABC formé par l'extrémité du câble sortant du treuil 10a (A) , l'extrémité du câble sortant du treuil 10b (B) et le point C constituant l'anneau ou crochet de raccordement I d est alors isocèle et ledit anneau est alors stabilisé dans sa position évitant ainsi tout balancement latéral par rapport à l'axe de la grue, dans la direction de l'axe Y. Cet effet stabilisateur étant d'autant plus important que l'inclinaison β du câble de grue l a par rapport à la verticale est importante, car la décomposition des forces au niveau de l'anneau ou crochet de raccordement I d (point C) crée une tension horizontale dans les câbles de traction 9a-9b, proportionnelle à ladite inclinaison β .
En réduisant la longueur de l'un des câbles de traction par rapport à l'autre, tel que représenté sur la figure 5A, par exemple le câble de traction 9a, le point C du triangle, donc l'anneau ou crochet de raccordement I d, se déplace vers le haut de la figure en décrivant un arc de cercle 12 centré en A. Ainsi, en jouant sur les longueurs des câbles 9a-9b, on positionne avantageusement avec précision l'anneau ou crochet de raccordement en n'importe quel point de la surface 1 1 , tout en empêchant les mouvements de balancement dudit anneau dans les deux directions XX-YY.
Ainsi, en n'utilisant qu'un seul câble de traction 9 comme expliqué en référence à la figure 4, on supprime la quasi intégralité du balancement de l'anneau ou crochet de raccordement I d dans le plan XoZ uniquement, l'anneau ou crochet de raccordement I d restant libre de se balancer dans le plan perpendiculaire YoZ, alors qu'avec deux câbles de traction 9a-9b comme expliqué en référence à la figure 5, on supprime la quasi intégralité du balancement dans les plans XoZ et YoZ, l'anneau restant alors stable. Et, en jouant sur les différences de longueurs Q1 -Q2 desdits câbles de traction 9a-9b, on déplace avec précision ledit anneau ou crochet de raccordement I d sur une surface 1 1 de plusieurs m2, en toutes directions autour de la position initiale, permettant ainsi un positionnement extrêmement précis et stable dudit blocs dans l'espace.
Des dispositifs compacts sont disponibles dans le commerce, comprenant une centrale inertielle munie de gyroscope et d'accéléromètre pour la mesure de mouvements, de l'orientation et de la position d'un obj et auquel il est solidarisé,. On pourra notamment utiliser un dispositif commercialisé par la société XSens Technologies B . V. (the Netherlands) .
Ces dispositifs comportent en général un support métallique sur lequel est fixée la centrale inertielle proprement dite. C'est ce support qui sera fixé audit lien.
Le fonctionnement d'une centrale inertielle est connu de l'homme de l'art, mais son fonctionnement dans le cadre de l'invention est très particulier. En effet, dans la phase finale de l'approche, juste avant la dépose du bloc sur l'ouvrage, le bloc vient heurter en général les blocs adjacents avant de se mettre ensuite dans sa position définitive. Ces chocs induisent des variations brutales de vitesse, donc des accélérations importantes, qui perturbent la centrale inertielle, laquelle n'est alors plus capable de fournir un positionnement calculé précis et fiable, ce qui crée un décalage inacceptable le la position calculée du bloc par rapport à sa position réelle.
Pour palier cet inconvénient, un filtre de Kalman, connu de l'homme de l'art, est utilisé de manière particulière pour éliminer ces perturbations . Le filtre de Kalman est un estimateur récursif. Cela signifie que pour estimer l'état courant d'un système, seuls l'état précédent et les mesures actuelles sont nécessaires pour estimer la position future avec une précision optimale. Ainsi, en cas de choc latéral comme expliqué sur la figure 6A, l'accélération, angulaire ou longitudinale, présente une série de pics 15 durant un lap s de temp s δt. Pendant cette durée δt, le bloc n'a quasiment pas bougé, mais le calcul mathématique consistant à la double intégration des accélérations sur chacun des axes sur cette période δt, conduit en général à des mouvements calculés aberrants, car non effectués dans la réalité. A cet effet, le filtre de Kalman, détecte ces accélérations parasites par simple analyse en temp s réel de l'étape précédente du mouvement, le filtre les isole en écrêtant 16a- 1 6b lesdites accélérations, et ainsi ne les prend pas en compte dans le calcul mathématique de la position instantanée. Dans certaines configurations, le filtre de Kalman est capable, en analysant les étapes antérieures, de prédire les mouvements durant cette courte période δt et de substituer ainsi à ces accélérations parasites, l'évolution probable du système, comme représenté sur la figure 6B, conduisant ainsi à une meilleure fiabilité dans le calcul de la position instantanée.
Dans une version préférée de l'invention, seules les accélérations angulaires sont utilisées dans le calcul de la position exacte du bloc, les pics d'accélérations longitudinales sont observés pour signaler au grutier les chocs des blocs avec les blocs adj acents ou ceux de la couche inférieure, mais les accélérations elles-mêmes ne sont pas directement prises en compte dans le calcul de la position. Ainsi, pour déterminer la position du bloc en temp s réel, on mesure, par exemple à l'aide d'un théodolite automatique représenté sur la figure 4 sous la même forme Ia-Ib que le dispositif de transmis sion de données, la position X-Y-Z en temps réel de la centrale inertielle 6, puis connaissant l'évolution en temp s réel des accélérations angulaires φi -φ23 de ladite centrale, on en déduit la direction du lien 8, et connaissant la distance du centre de gravité du bloc à ladite centrale inertielle qui est une longueur constante L, on calcule la position exacte du centre de gravité du bloc.
Dans une version préférée de l'invention, la centrale inertielle est munie d'un système de positionnement par satellite de type DGPS. Ce système, connu de l'homme de l'art, est un système différentiel, c'est-à-dire qu'une balise est installée sur la centrale inertielle et une seconde balise est installée à terre en un point fixe. Ainsi, en combinant de manière synchrone les signaux des deux récepteurs, le positionnement du mobile est réalisé, non pas dans l'absolu par rapport au satellite, mais en relatif par rapport au récepteur fixe, améliorant ainsi radicalement la précision du positionnement.
Sur la figure 7, on a représenté un premier mode de fonctionnement global du système de positionnement, dans lequel les 6 paramètres principaux à l'état brut (accélérations longitudinales Xc-Yc-Zc et accélérations angulaires φ l -φ2-φ3) sont transmises depuis la centrale inertielle 6 vers l'ordinateur, situé de préférence dans la cabine 13 du grutier. Les données sont alors traitées au sein de l'ordinateur 20 par le filtre de Kalman 20a et la position 21 du bloc 4 est établie sur la base de tout ou partie de ces 6 paramètres filtrés. L'exploitation des données relatives aux accélérations aberrantes, correspondant aux chocs du bloc avec les blocs adjacents est réalisée en 20b et est affiché en 22, de préférence directement dans la cabine du grutier, avantageusement sous la forme 22a : choc vertical d'amplitude " 3", sous la forme 22b : choc latéral droit (amplitude " 0") et, sous la forme 22b : choc latéral gauche (amplitude "0") . Ainsi, le grutier connais sant le type de choc ainsi que son amplitude, est capable de juger le type de contact entre le bloc en cours d'installation et l'ouvrage déjà réalisé, et ainsi de déterminer en l'absence de tout contact visuel, ou de toute information en provenance de plongeurs, de l'adéquation de la position du bloc par rapport au plan de pose, donc de son installation correcte.
Sur la même figure 7, on a représenté un second mode préféré de fonctionnement global du système de positionnement, dans lequel les 6 paramètres principaux à l'état brut (accélérations longitudinales Xc-Yc-Zc et accélérations angulaires φ l -φ2-φ3) sont transmises depuis la centrale inertielle 6 vers l'ordinateur situé de préférence dans la cabine du grutier. Seules les données d'accélérations angulaires φ l -φ2-φ3 alors traitées au sein de l'ordinateur 20 par le filtre de Kalman 20a, la position dans l'espace de ladite centrale inertielle 6 étant fournie par un moyen de mesure à distance 7a-7b, tel un théodolite automatique, un système de visée laser ou un positionnement satellite de type DGPS, ce qui permet de calculer de manière très précise la position 21 du bloc 4 en ne considérant pas les valeurs des accélérations longitudinales Xc-Yc-Zc. L'exploitation des données relatives aux accélérations aberrantes est réalisée de la même manière qu'expliqué précédemment, ce qui permet au grutier de disposer en temp s réel d'informations précises sur les divers chocs entre le bloc en cours d'installation et l'ouvrage déjà réalisé, juste avant la dépose finale.
Dans une version préférée de l'invention représentée sur les figures 8A-8B, le lien 8a est constitué d'une barre, de préférence rectiligne, résistant à la torsion, et rigidement solidaire de l'outil de préhension, de telle manière que l'orientation de la centrale inertielle solidaire du lien 8a ait la même orientation selon l'axe Zc que le bloc 4. Ledit lien 8a est relié à l'anneau de raccordement I d par l'intermédiaire d'un palier motorisé 30, électrique, hydraulique ou pneumatique, alimenté en énergie par des moyens non représentés, j ouant le rôle de tourillon lorsque le moteur est débrayé. Un bras rigide faisant fonction de bras de réaction 32, solidaire de la partie supérieure 30a de la motorisation, est relié à un câble de traction 9b sous tension. La partie inférieure 30b de la motorisation est relié rigidement audit lien 8a. Ainsi, en actionnant la motorisation dans un sens ou dans l'autre, la partie inférieure 30b de la motorisation entraîne la centrale inertielle 6 ainsi que le bloc 4, les déplacements angulaires étant sensiblement identiques en raison de la rigidité de torsion selon l'axe ZZ dudit lien 8a. Le bras de réaction contrebalance les effets de la torsion au niveau de la partie supérieure 30a de la motorisation. En effet, comme représenté sur la figure 8B, un couple de torsion M appliqué sur la partie supérieure 30a de la motorisation, induit une rotation 32a du bras de réaction 32. Et, du fait que le bras de réaction et le câble de traction 9b sont sous une tension importante en raison de l'angle β du câble de levage l a avec la verticale, une force de rappel F ramène ledit bras 32 dans l'alignement du câble de traction 9b. Ainsi, peu avant de déposer le bloc 4 en position finale, la position instantanée dudit bloc étant connue grâce à la centrale inertielle, le grutier peut ajuster avec précision son orientation de quelques degrés de rotation selon l'axe Zc, en agissant simplement sur la motorisation 30, dans un sens ou dans l'autre. Le mouvement angulaire étant enregistré par la centrale inertielle, est alors immédiatement disponible pour aider le grutier dans cette phase finale de l'installation.
Sur les figures 8A-8B, on a représenté le dispositif selon l'invention avec deux câbles de traction 9a-9b, seul le câble de traction 9b est connecté au bras de réaction, le câble 9a étant connecté directement, soit à l'anneau ou crochet I d, soit au niveau de la partie supérieure 30a de la motorisation, à proximité immédiate de son axe de rotation. Dans le cas de l'utilisation d'un seul câble de traction 9, comme représenté sur la figure 4, le bras de réaction 32 est connecté directement à ce dit câble.
Dans une version simplifiée de l'invention, non représentée, la motorisation est supprimée, et le lien 8a présentant une rigidité en torsion selon l'axe Zc, est d'une part suspendu à l'anneau ou crochet I d, et d'autre part relié rigidement au bras de réaction 32. Il convient alors dans ce cas, lors du saisissage du bloc sur son aire de stockage, comme décrit précédemment en référence à la figure 5, que la position de l'outil de préhension soit pré-ajustée de telle manière qu'une fois la grue en position dans la zone de dépose, le bloc ait la bonne orientation, car le grutier n'a alors plus les moyens de faire varier ce positionnement angulaire selon l'axe vertical Zc.
Sur la figure 8C, on a représenté un mode de réalisation avantageux du lien 8 présentant une rigidité de torsion, lequel se présente sous la forme d'une chaîne 8b. En effet, en l'absence de tension dans la chaîne, il est possible de faire tourner celle-ci sur son axe ZZ avec peu d'efforts, mais dès que l'on applique une tension importante, chacun des maillons étant relié perpendiculairement au suivant et le diamètre du fil de chacun des anneaux étant légèrement inférieur au diamètre interne libre de l'anneau adj acent, la chaîne aura naturellement tendance à se repositionner en configuration de torsion nulle, donc perpendiculairement au maillon adj acent, comme détaillé sur la figure 8C.
Le lien 8, 8a-8b à rigidité de torsion selon l'axe ZZ peut être obtenu à partir d'un simple tube en acier, ou encore d'un profilé en matériau composite, qui présente une bonne rigidité de torsion, tout en gardant une grande souples se en flexion dans les plans XoZ et YoZ, ce qui permet avantageusement de réaliser un premier filtrage mécanique des chocs sur les blocs, évitant ainsi de répercuter directement à la centrale inertielle la totalité des accélérations parasites dues aux chocs.
On reste dans l'esprit de l'invention si le câble de levage est continu jusqu'au dispositif de préhension 5, le crochet ou l'anneau étant alors remplacé par un serre-câble mécanique venant enserrer ledit câble de levage en un point fixe sur lequel est connecté l'extrémité du ou des câbles de traction, la partie au dessus du serre-câble j ouant alors le rôle de câble de levage l a et la partie située en dessous dudit serre-câble jouant le rôle du lien 8.

Claims

REVENDICATIONS
1. Dispositif de levage et déplacement d'un obj et (4) comprenant une grue (1) , ladite grue comprenant une flèche (I b) équipée d'un premier câble, dit câble de levage (l a) , comprenant à son extrémité un lien (8, 8a- 8b) apte à supporter un dit obj et qui lui est suspendu par l'intermédiaire d'un dispositif de préhension (5b) , caractérisé en ce que ledit lien (8, 8a- 8b) est équipé d'une centrale inertielle (6) , ladite centrale inertielle étant fixée sur ledit lien (8, 8a-8b) , de préférence de telle sorte que l'axe dudit lien, lorsqu'il est tendu par un dit obj et suspendu, soit confondu avec un des axes (7c) du repère (Xc, Yc, Zc) lié à la centrale inertielle, ladite centrale inertielle (6) étant reliée à un ordinateur (20) , de préférence situé dans la cabine (13) du grutier, auquel sont transmises les données enregistrées en temps réel d'accélérations longitudinales de ladite centrale inertielle dans les trois direction d'un repère mobile (Xc, Yc, Zc) et accélérations en rotation (φ l , ψ2, φ3) de ladite centrale inertielle par rapport aux mêmes axes du repère mobile (Xc, Yc, Zc) lié à ladite centrale inertielle, l'ordinateur étant apte à indiquer les position et orientation dudit obj et suspendu audit lien dans un repère fixe (X, Y, Z) de l'espace, déduites des position et orientation de la centrale inertielle, et, de préférence, l'ordinateur étant capable de visualiser sur un écran des mouvements dudit objet dans l'espace.
2. Dispositif selon la revendication 1 , caractérisé en ce que ladite centrale inertielle (6) est couplée à un filtre de Kalman (20a) qui permet d'écrêter (16a- 1 6b) les amplitudes d'accélérations enregistrées par la centrale inertielle, en cas d'amplitude d'accélération importante de la centrale inertielle causée par un choc sur ledit obj et, et de substituer à ces amplitudes d'accélérations ainsi écrêtées les valeurs probables d'évolution des paramètres de position de ladite centrale inertielle, et, de préférence, ledit filtre de Kalman permettant en outre d'identifier l'emplacement dudit choc et, de préférence encore, visualiser sur l'écran la position de l'obj et lors du choc et/ou d'un autre dit obj et déjà posé avec lequel ledit obj et en cours de pose est rentré en collision.
3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que ladite centrale inertielle (6) est combinée à un dispositif de mesure directe de la position de ladite centrale inertielle dans ledit repère fixe (φ l , ψ2, φ3) , ladite mesure comprenant l'étude du trajet d'une onde émise par ledit dispositif de mesure, tel qu'un dispositif de visée laser, un théodolite automatique ou, de préférence, un GPS différentiel.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que ledit lien (8, 8a-8b) présente une rigidité à la torsion supérieure à celle dudit câble de levage (l a) , ledit lien étant de préférence constitué d'une chaîne métallique ou d'un tube ou profilé en acier ou matériau composite, ledit tube ou profilé présentant une rigidité à la torsion et de la souples se en flexion par rapport à sa direction longitudinale.
5. Dispositif selon la revendication 4, caractérisé en ce que ledit lien (8, 8a-8b) est relié à l'extrémité inférieure dudit câble de levage par un anneau ou crochet de raccordement (I d) , l'extrémité supérieure dudit lien (8) coopérant avec ledit crochet ou anneau de raccordement (I d) par l'intermédiaire d'un tourillon (29) .
6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que :
- ladite centrale inertielle (6) est solidaire dudit lien (8, 8a-8b) à proximité dudit anneau ou crochet de raccordement (I d) entre lesdits câbles de levage et ledit lien, le cas échéant dessous un dit tourillon (29) relié à l'extrémité dudit lien et coopérant avec un dit crochet ou anneau de raccordement (I d) , et
- le dispositif de préhension (5b) est solidaire de l'extrémité inférieure du lien (8, 8a-8b) et apte à coopérer avec un dit obj et, de telle sorte que les mouvements dudit obj et en rotation par rapport à l'axe dudit lien (Zc) soient répercutés à ladite extrémité inférieure dudit lien.
7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que ledit câble de levage (l a) , suspendu à l'extrémité de ladite flèche (I b) , est couplé à un deuxième câble, dit câble de traction (9) , dont une extrémité est reliée à un treuil (10) , de préférence solidaire d'une plateforme support (14) de ladite flèche, l'autre extrémité du câble de traction (9) étant solidaire du câble de levage en suspension, de préférence au niveau d'un crochet ou anneau de raccordement (I d) à l'extrémité inférieure dudit câble de levage, de telle sorte que la réduction de longueur dudit câble de traction, par actionnement dudit treuil de traction permette d'incliner (β) ledit câble de levage (l a) par rapport à la verticale (ZZ) et de déplacer en translation ledit obj et (4) , dans un plan vertical pas sant par ledit câble de traction et ledit câble de levage, de préférence, un plan vertical passant par l'axe de ladite flèche (Xl X' l) .
8. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce qu'il comporte au moins deux câbles de traction (9a, 9b) reliés, respectivement, à deux treuils de traction (10a, 10b), une extrémité de chacun câble de traction étant reliée à un dit treuil de traction (10a, 10b) , de préférence solidaire d'un support (14) de ladite flèche, l'autre extrémité de chacun des deux câbles de traction étant solidaire dudit câble de levage (l a) , de préférence à son extrémité inférieure au niveau du même dit anneau ou crochet de raccordement (I d) , les deux treuils de traction étant disposés de part et d'autre de ladite flèche, de préférence symétriquement, de sorte qu'une réduction de longueur (ρ l -ρ2) , de l'un au moins des deux dits câbles de traction (9a, 9b) permet de déplacer ledit obj et latéralement par rapport au plan vertical passant par à l'axe (XlX' l) de ladite flèche, dans un plan pas sant par les deux câbles de traction (9a, 9b) , de préférence une réduction de longueur différente pour les deux câbles de traction disposés symétriquement par rapport à un plan vertical pas sant par l'axe de ladite flèche.
9. Dispositif selon la revendication 8, caractérisé en ce que les deux dits treuils de traction (10a, 10b) sont disposés aux deux extrémités d'une poutre transversale (17) solidaire d'une plate-forme (14) supportant ladite flèche.
10. Procédé de déplacement et de levage d'un objet à l'aide d'un dispositif selon l'une des revendications 1 à 9, caractérisé en ce que l'on déplace ledit obj et en vue de le poser à un emplacement déterminé, en fonction de sa position et de son orientation angulaire par rapport aux trois dimensions de l'espace dans un repère fixe (X, Y, Z) et, de préférence, en fonction de la visualisation de ses mouvements, tels que calculés par ledit ordinateur.
1 1. Procédé selon la revendication 10, caractérisé en ce que ledit obj et est un bloc de béton et on réalise, par levage, déplacement et pose de blocs, un assemblage de blocs dans une position voulue pour la réalisation d'une digue de protection de rivage ou digue portuaire reposant sur le fond de la mer.
12. Procédé selon la revendication 1 1 , caractérisé en ce que ladite centrale inertielle est fixée sur ledit lien à une distance dudit bloc telle que ladite centrale inertielle reste touj ours maintenue hors d'eau.
13. Procédé selon l'une des revendications 10 à 12, caractérisé en ce que, seules, les données d'accélération angulaire (φ l , ψ2, φ3) enregistrées à l'aide de ladite centrale inertielle sont traitées au sein de l'ordinateur (20) , celui-ci étant couplé à un filtre de Kalman (20a) , et la position longitudinale dans l'espace dudit obj et par rapport audit repère fixe (X, Y, Z) étant fournie par l'intermédiaire d'un dispositif additionnel de détermination directe de la position de ladite centrale inertielle au moyen d'émis sion d'ondes (7a-7b) , tel qu'un dispositif de type système de visée laser, théodolite ou, de préférence, un dispositif de type GPS différentiel.
14. Procédé selon la revendication 13, caractérisé en ce que la réalisation par le filtre de Kalman (20a) de l'écrêtage (16a, 16b) des amplitudes d'accélération causées par des chocs sur ledit objet, est exploitée pour identifier et, de préférence, visualiser sur un écran, l'occurrence d'un choc sur ledit objet.
15. Procédé selon l'une des revendications 10 à 14, caractérisé en ce que l'on met en œuvre un dispositif de déplacement et de levage, tel que défini dans l'une des revendications 7 et 9, et on ajuste la stabilité et le positionnement dudit obj et en actionnant au moins un dit treuil de traction.
16. Procédé selon l'une des revendications 10 à 1 5, caractérisé en ce que l'on met en œuvre un dispositif selon l'une des revendications 10 ou
1 1 , et on actionne en rotation ledit palier motorisé (30) de façon à orienter l'objet, par rotation sur lui-même, en phase finale de dépose.
PCT/FR2009/050074 2008-01-25 2009-01-20 Dispositif de levage et deplacement d'un objet comprenant une centrale inertielle WO2009095577A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT09706039T ATE532740T1 (de) 2008-01-25 2009-01-20 Vorrichtung zum hochheben und bewegen eines gegenstandes, einschliesslich einer inerten einheit
EP09706039A EP2231499B1 (fr) 2008-01-25 2009-01-20 Dispositif de levage et deplacement d'un objet comprenant une centrale inertielle
BRPI0907390-6A BRPI0907390A2 (pt) 2008-01-25 2009-01-20 Dispositivo de levantamento e deslocamento de um objeto, compreendendo uma central inercial
MA32975A MA31990B1 (fr) 2008-01-25 2010-07-01 Dispositif de levage et deplacement d'un objet comprenant une centrale inertielle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0850489A FR2926804B1 (fr) 2008-01-25 2008-01-25 Dispositif de levage et deplacement d'un objet comprenant la mise en oeuvre d'une centrale inertielle
FR0850489 2008-01-25

Publications (1)

Publication Number Publication Date
WO2009095577A1 true WO2009095577A1 (fr) 2009-08-06

Family

ID=39735116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050074 WO2009095577A1 (fr) 2008-01-25 2009-01-20 Dispositif de levage et deplacement d'un objet comprenant une centrale inertielle

Country Status (6)

Country Link
EP (1) EP2231499B1 (fr)
AT (1) ATE532740T1 (fr)
BR (1) BRPI0907390A2 (fr)
FR (1) FR2926804B1 (fr)
MA (1) MA31990B1 (fr)
WO (1) WO2009095577A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405721B2 (en) 2008-10-21 2013-03-26 Motion Metrics International Corp. Method, system and apparatus for monitoring loading of a payload into a load carrying container
US8843279B2 (en) 2011-06-06 2014-09-23 Motion Metrics International Corp. Method and apparatus for determining a spatial positioning of loading equipment
WO2015165463A1 (fr) 2014-04-28 2015-11-05 Liftra Ip Aps Procédé et dispositif de commande automatique de la position d'une charge suspendue à un câble principal sur une grue
US20210270607A1 (en) * 2016-12-13 2021-09-02 Pgs Geophysical As Calibration of a Magnetometer in a Towed Object Telemetry Unit Based on Turn Data

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK177006B1 (en) 2010-01-19 2010-11-22 Ah Ind Projects Aps Method for controlling orientation of a load suspended in a carrier wire around the wire as well as a player arrangement
CN113152386B (zh) * 2021-02-04 2023-03-21 南昌工学院 湿法堆存尾矿库缆式起重机分级筑坝系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1481234A (en) * 1922-01-14 1924-01-15 Bergen Point Iron Works Digging apparatus
CA662030A (en) * 1963-04-23 Mansaver Industries Motor actuated rotary crane hook
US4171053A (en) * 1977-08-24 1979-10-16 Cecce Robert F Antipendulation crane
DE4238795A1 (en) * 1992-11-17 1993-07-01 Edgar Von Dipl Ing Hinueber Damping pendulum movement of hanging loads on crane - using microprocessor to control crane movement and load cable length using sensor input of cable angular velocity and acceleration
FR2704847A1 (fr) * 1993-05-05 1994-11-10 Bertin & Cie Procédé et dispositif de limitation du ballant d'une charge suspendue à un support motorisé.
US20050103738A1 (en) * 2003-11-14 2005-05-19 Alois Recktenwald Systems and methods for sway control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA662030A (en) * 1963-04-23 Mansaver Industries Motor actuated rotary crane hook
US1481234A (en) * 1922-01-14 1924-01-15 Bergen Point Iron Works Digging apparatus
US4171053A (en) * 1977-08-24 1979-10-16 Cecce Robert F Antipendulation crane
DE4238795A1 (en) * 1992-11-17 1993-07-01 Edgar Von Dipl Ing Hinueber Damping pendulum movement of hanging loads on crane - using microprocessor to control crane movement and load cable length using sensor input of cable angular velocity and acceleration
FR2704847A1 (fr) * 1993-05-05 1994-11-10 Bertin & Cie Procédé et dispositif de limitation du ballant d'une charge suspendue à un support motorisé.
US20050103738A1 (en) * 2003-11-14 2005-05-19 Alois Recktenwald Systems and methods for sway control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405721B2 (en) 2008-10-21 2013-03-26 Motion Metrics International Corp. Method, system and apparatus for monitoring loading of a payload into a load carrying container
US8843279B2 (en) 2011-06-06 2014-09-23 Motion Metrics International Corp. Method and apparatus for determining a spatial positioning of loading equipment
WO2015165463A1 (fr) 2014-04-28 2015-11-05 Liftra Ip Aps Procédé et dispositif de commande automatique de la position d'une charge suspendue à un câble principal sur une grue
US20210270607A1 (en) * 2016-12-13 2021-09-02 Pgs Geophysical As Calibration of a Magnetometer in a Towed Object Telemetry Unit Based on Turn Data

Also Published As

Publication number Publication date
FR2926804B1 (fr) 2010-03-26
EP2231499B1 (fr) 2011-11-09
ATE532740T1 (de) 2011-11-15
FR2926804A1 (fr) 2009-07-31
BRPI0907390A2 (pt) 2015-07-21
EP2231499A1 (fr) 2010-09-29
MA31990B1 (fr) 2011-01-03

Similar Documents

Publication Publication Date Title
EP2231499B1 (fr) Dispositif de levage et deplacement d'un objet comprenant une centrale inertielle
EP2231498B1 (fr) Dispositif de levage et deplacement d'un objet comprenant un palier motorise
EP2791000B1 (fr) Chaumard pour le guidage d'une chaine d'ancrage, destine a equiper une installation d'ancrage au sol d'une plateforme flottante
CA2654140A1 (fr) Procede de mesure a la volee de la hauteur d'une anode d'electrolyse
CA2961707C (fr) Chaumard destine a cooperer avec une chaine d'ancrage, pour un systeme d'ancrage au sol d'une installation flottante
EP3536899B1 (fr) Machine de forage comportant un dispositif de connexion pour un dispositif de mesure de verticalite
WO2001035011A1 (fr) Systeme de pinces pour maintenir une conduite en tension, et support flottant en comprenant
FR2483388A1 (fr) Appareil a plate-forme de levage muni d'un indicateur de charge limite
FR2590539A1 (fr) Systeme d'amarrage a cable unique, et procede de realisation d'un terminal de haute mer utilisant un tel systeme
CA1112060A (fr) Dispositif de maintien en azimut de l'extremite de tubes immerges au moyen d'un support de surface
FR2859717A1 (fr) Benne preneuse, en particulier benne preneuse d'immersion a moteur
CA1103467A (fr) Procede de depots de materiaux sur les fonds marins selon un trace donne et dispositifs de mise en oeuvre dudit procede
EP2948621B1 (fr) Procede de determination de la position d'un dispositif de coupe dans le sol a l'aide d'un chariot mobile
FR2628141A1 (fr) Dispositif et procede pour le positionnement de precision de corps sur des structures fixes a grandes profondeurs
EP0054498A1 (fr) Installation pour le dragage d'un fond sous-marin, notamment en grande profondeur
EP0585188A1 (fr) Dispositif de pose mécanisée de canalisations souterraines
KR20160098478A (ko) 새들 및 후크 시스템
JP6591977B2 (ja) 埋設アセスメント調査を実行するための方法および装置
CA2975344C (fr) Dispositif de pre-decoupe d'une colonne pour un sol
EP0533559B1 (fr) Appareil d'excavation à benne preneuse
FR2946367A1 (fr) Outil et procede de mise en place de blocs de carapace en beton
EP0709526A2 (fr) Dispositif de remblayage d'une tranchée pour conduites
FR2682474A1 (fr) Procede, dispositif et installation pour determiner la direction du brin allant a l'eau d'un cable de mouillage ou de remorquage sur un navire.
EP0533558A1 (fr) Appareil d'excavation à benne preneuse
FR2539453A1 (fr) Machine de forage polyvalente dotee de moyens de remontee rapide du train de tiges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009706039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2613/KOLNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0907390

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100713